summaryrefslogtreecommitdiff
path: root/chip/g/flash.c
blob: 33b3adfb8795eef0543c6deefaad04cc14f922fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/* Copyright 2015 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/*
 * The SoC's internal flash consists of two separate "banks" of 256K bytes each
 * (sometimes called "macros" because of how they're implemented in Verilog).
 *
 * Each flash bank contains 128 "blocks" or "pages" of 2K bytes each. These
 * blocks can be erased individually, or the entire bank can be erased at once.
 *
 * When the flash content is erased, all its bits are set to 1.
 *
 * The flash content can be read directly as bytes, halfwords, or words, just
 * like any memory region. However, writes can only happen through special
 * operations, in units of properly aligned 32-bit words.
 *
 * The flash controller has a 32-word write buffer. This allows up to 32
 * adjacent words (128 bytes) within a bank to be written in one operation.
 *
 * Multiple writes to the same flash word can be done without first erasing the
 * block, however:
 *
 * A) writes can only change stored bits from 1 to 0, and
 *
 * B) the manufacturer recommends that no more than two writes be done between
 *    erase cycles for best results (in terms of reliability, longevity, etc.)
 *
 * All of this is fairly typical of most flash parts. This next thing is NOT
 * typical:
 *
 * +--------------------------------------------------------------------------+
 * + While any write or erase operation is in progress, ALL other access to   +
 * + that entire bank is stalled. Data reads, instruction fetches, interrupt  +
 * + vector lookup -- every access blocks until the flash operation finishes. +
 * +--------------------------------------------------------------------------+
 *
 */

#include "common.h"
#include "console.h"
#include "cryptoc/util.h"
#include "flash.h"
#include "flash_config.h"
#include "flash_log.h"
#include "flash_info.h"
#include "registers.h"
#include "shared_mem.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "watchdog.h"

#define CPRINTF(format, args...) cprintf(CC_EXTENSION, format, ## args)

/* Mutex to prevent concurrent accesses to flash engine. */
static struct mutex flash_mtx;

#ifdef CONFIG_FLASH_LOG
static void flash_log_space_control(int enable)
{
	GWRITE_FIELD(GLOBALSEC, FLASH_REGION5_CTRL, WR_EN, !!enable);
}
#endif

int flash_pre_init(void)
{
	struct g_flash_region regions[4];
	int i, num_regions;

	num_regions = flash_regions_to_enable(regions, ARRAY_SIZE(regions));

	for (i = 0; i < num_regions; i++) {
		int reg_base;

		/* Region range */
		reg_base = GBASE(GLOBALSEC) +
			GOFFSET(GLOBALSEC, FLASH_REGION2_BASE_ADDR) +
			i * 8;

		REG32(reg_base) = regions[i].reg_base;

		/*
		 * The hardware requires a value which is 1 less than the
		 * actual region size.
		 */
		REG32(reg_base + 4) = regions[i].reg_size - 1;

		/* Region permissions. */
		reg_base = GBASE(GLOBALSEC) +
			GOFFSET(GLOBALSEC, FLASH_REGION2_CTRL) +
			i * 4;
		REG32(reg_base) = regions[i].reg_perms;
	}

#ifdef CONFIG_FLASH_LOG
	/*
	 * Allow access to flash elog space and register the access control
	 * function.
	 */
	GREG32(GLOBALSEC, FLASH_REGION5_BASE_ADDR) = CONFIG_FLASH_LOG_BASE;
	GREG32(GLOBALSEC, FLASH_REGION5_SIZE) = CONFIG_FLASH_LOG_SPACE - 1;
	GWRITE_FIELD(GLOBALSEC, FLASH_REGION5_CTRL, EN, 1);
	GWRITE_FIELD(GLOBALSEC, FLASH_REGION5_CTRL, RD_EN, 1);
	flash_log_register_flash_control_callback(flash_log_space_control);
#endif
	return EC_SUCCESS;
}

int flash_physical_get_protect(int bank)
{
	return 0;				/* Not protected */
}

uint32_t flash_physical_get_protect_flags(void)
{
	return 0;				/* no flags set */
}

uint32_t flash_physical_get_valid_flags(void)
{
	/* These are the flags we're going to pay attention to */
	return EC_FLASH_PROTECT_RO_AT_BOOT |
		EC_FLASH_PROTECT_RO_NOW |
		EC_FLASH_PROTECT_ALL_NOW;
}

uint32_t flash_physical_get_writable_flags(uint32_t cur_flags)
{
	return 0;				/* no flags writable */
}

int flash_physical_protect_at_boot(uint32_t new_flags)
{
	return EC_SUCCESS;			/* yeah, I did it. */
}

int flash_physical_protect_now(int all)
{
	return EC_SUCCESS;			/* yeah, I did it. */
}


enum flash_op {
	OP_ERASE_BLOCK,
	OP_WRITE_BLOCK,
	OP_READ_BLOCK,
};

static int do_flash_op(enum flash_op op, int is_info_bank,
		       int byte_offset, int words)
{
	volatile uint32_t *fsh_pe_control;
	uint32_t opcode, tmp, errors;
	int retry_count, max_attempts, extra_prog_pulse, i;
	int timedelay_us = 100;
	uint32_t prev_error = 0;

	/* Make sure the smart program/erase algorithms are enabled. */
	if (!GREAD(FLASH, FSH_TIMING_PROG_SMART_ALGO_ON) ||
	    !GREAD(FLASH, FSH_TIMING_ERASE_SMART_ALGO_ON)) {
		CPRINTF("%s:%d\n", __func__, __LINE__);
		return EC_ERROR_UNIMPLEMENTED;
	}

	/* Error status is self-clearing. Read it until it does (we hope). */
	for (i = 0; i < 50; i++) {
		tmp = GREAD(FLASH, FSH_ERROR);
		if (!tmp)
			break;
		usleep(timedelay_us);
	}
	/* If we can't clear the error status register then something is wrong.
	 */
	if (tmp) {
		CPRINTF("%s:%d\n", __func__, __LINE__);
		return EC_ERROR_UNKNOWN;
	}

	/* We have two flash banks. Adjust offset and registers accordingly. */
	if (is_info_bank) {
		/* Only INFO bank operations are supported. */
		fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL1);
	} else if (byte_offset >= CFG_FLASH_HALF) {
		byte_offset -= CFG_FLASH_HALF;
		fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL1);
	} else {
		fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL0);
	}

	/* What are we doing? */
	switch (op) {
	case OP_ERASE_BLOCK:
#ifndef CR50_DEV
		if (is_info_bank)
			/* Erasing the INFO bank from the RW section is
			 * unsupported. */
			return EC_ERROR_INVAL;
#endif
		opcode = 0x31415927;
		words = 0;			/* don't care, really */
		/* This number is based on the TSMC spec Nme=Terase/Tsme */
		max_attempts = 45;
		break;
	case OP_WRITE_BLOCK:
		opcode = 0x27182818;
		words--;		     /* count register is zero-based */
		/* This number is based on the TSMC spec Nmp=Tprog/Tsmp */
		max_attempts = 9;
		break;
	case OP_READ_BLOCK:
		if (!is_info_bank)
			/* This code path only supports reading from
			 * the INFO bank.
			 */
			return EC_ERROR_INVAL;
		opcode = 0x16021765;
		words = 1;
		max_attempts = 9;
		break;
	default:
		return EC_ERROR_INVAL;
	}

	/*
	 * Set the parameters. For writes, we assume the write buffer is
	 * already filled before we call this function.
	 */
	GWRITE_FIELD(FLASH, FSH_TRANS, OFFSET,
		     byte_offset / 4);		  /* word offset */
	GWRITE_FIELD(FLASH, FSH_TRANS, MAINB, is_info_bank ? 1 : 0);
	GWRITE_FIELD(FLASH, FSH_TRANS, SIZE, words);

	/* TODO: Make sure this function isn't getting called "too often" in
	 * between erases.
	 */
	extra_prog_pulse = 0;
	for (retry_count = 0; retry_count < max_attempts; retry_count++) {
		/* Kick it off */
		GWRITE(FLASH, FSH_PE_EN, 0xb11924e1);
		*fsh_pe_control = opcode;

		/* Wait for completion. 150ms should be enough
		 * (crosbug.com/p/45366).
		 */
		for (i = 0; i < 1500; i++) {
			tmp = *fsh_pe_control;
			if (!tmp)
				break;
			usleep(timedelay_us);
		}

		/* Timed out waiting for control register to clear */
		if (tmp) {
			/* Stop the failed operation. */
			*fsh_pe_control = 0;
			CPRINTF("%s:%d\n", __func__, __LINE__);
			return EC_ERROR_UNKNOWN;
		}
		/* Check error status */
		errors = GREAD(FLASH, FSH_ERROR);

		if (errors && (errors != prev_error)) {
			prev_error = errors;
			CPRINTF("%s:%d errors %x fsh_pe_control %p\n",
				__func__, __LINE__, errors, fsh_pe_control);
		}
		/* Error status is self-clearing. Read it until it does
		 * (we hope).
		 */
		for (i = 0; i < 50; i++) {
			tmp = GREAD(FLASH, FSH_ERROR);
			if (!tmp)
				break;
			usleep(timedelay_us);
		}
		/* If we can't clear the error status register then something
		 * is wrong.
		 */
		if (tmp) {
			CPRINTF("%s:%d\n", __func__, __LINE__);
			return EC_ERROR_UNKNOWN;
		}
		/* The operation was successful. */
		if (!errors) {
			/* From the spec:
			 * "In addition, one more program pulse is needed after
			 * program verification is passed."
			 */
			if (op == OP_WRITE_BLOCK && !extra_prog_pulse) {
				extra_prog_pulse = 1;
				max_attempts++;
				continue;
			}
			return EC_SUCCESS;
		}
		/* If there were errors after completion retry. */
		watchdog_reload();
	}
	CPRINTF("%s:%d, retry count %d\n", __func__, __LINE__, retry_count);
	return EC_ERROR_UNKNOWN;
}

/* Write up to CONFIG_FLASH_WRITE_IDEAL_SIZE bytes at once */
static int write_batch(int byte_offset, int is_info_bank,
		       int words, const uint8_t *data)
{
	volatile uint32_t *fsh_wr_data = GREG32_ADDR(FLASH, FSH_WR_DATA0);
	uint32_t val;
	int i;
	int rv;

	mutex_lock(&flash_mtx);

	/* Load the write buffer. */
	for (i = 0; i < words; i++) {
		/*
		 * We have to write 32-bit values, but we can't guarantee
		 * alignment for the data. We'll just assemble the word
		 * manually to avoid alignment faults. Note that we're assuming
		 * little-endian order here.
		 */
		val = ((data[3] << 24) | (data[2] << 16) |
		       (data[1] << 8) | data[0]);

		*fsh_wr_data = val;
		data += 4;
		fsh_wr_data++;
	}

	rv = do_flash_op(OP_WRITE_BLOCK, is_info_bank, byte_offset, words);

	mutex_unlock(&flash_mtx);

	return rv;
}

static int flash_physical_write_internal(int byte_offset, int is_info_bank,
				int num_bytes, const char *data)
{
	int num, ret;

	/* The offset and size must be a multiple of CONFIG_FLASH_WRITE_SIZE */
	if (byte_offset % CONFIG_FLASH_WRITE_SIZE ||
	    num_bytes % CONFIG_FLASH_WRITE_SIZE)
		return EC_ERROR_INVAL;

	while (num_bytes) {
		num = MIN(num_bytes, CONFIG_FLASH_WRITE_IDEAL_SIZE);
		/*
		 * Make sure that the write operation will not go
		 * past a CONFIG_FLASH_ROW_SIZE boundary.
		 */
		num = MIN(num, CONFIG_FLASH_ROW_SIZE -
			  byte_offset % CONFIG_FLASH_ROW_SIZE);
		ret = write_batch(byte_offset,
				  is_info_bank,
				  num / 4,	/* word count */
				  (const uint8_t *)data);
		if (ret)
			return ret;

		num_bytes -= num;
		byte_offset += num;
		data += num;
	}

	return EC_SUCCESS;
}

int flash_physical_write(int byte_offset, int num_bytes, const char *data)
{
	return flash_physical_write_internal(byte_offset, 0, num_bytes, data);
}

int flash_physical_info_read_word(int byte_offset, uint32_t *dst)
{
	int ret;

	if (byte_offset % CONFIG_FLASH_WRITE_SIZE)
		return EC_ERROR_INVAL;

	mutex_lock(&flash_mtx);

	ret = do_flash_op(OP_READ_BLOCK, 1, byte_offset, 1);
	if (ret == EC_SUCCESS)
		*dst = GREG32(FLASH, FSH_DOUT_VAL1);

	mutex_unlock(&flash_mtx);

	return ret;
}

/*
 * Verify that the range's size is power of 2, the range offset is aligned by
 * size, and the range does not cross the INFO space boundary.
 */
static int valid_info_range(uint32_t offset, size_t size)
{
	if (!size || (size & (size - 1)))
		return 0;

	if (offset & (size - 1))
		return 0;

	if ((offset + size) > FLASH_INFO_SIZE)
		return 0;

	return 1;

}

/* Write access is a superset of read access. */
static int flash_info_configure_access(uint32_t offset,
				       size_t size, int write_mode)
{
	int mask;

	if (!valid_info_range(offset, size))
		return EC_ERROR_INVAL;

	mask = GREG32(GLOBALSEC, FLASH_REGION6_CTRL);
	mask |= GC_GLOBALSEC_FLASH_REGION6_CTRL_EN_MASK |
		GC_GLOBALSEC_FLASH_REGION6_CTRL_RD_EN_MASK;
	if (write_mode)
		mask |= GC_GLOBALSEC_FLASH_REGION6_CTRL_WR_EN_MASK;

	GREG32(GLOBALSEC, FLASH_REGION6_BASE_ADDR) =
		FLASH_INFO_MEMORY_BASE + offset;

	GREG32(GLOBALSEC, FLASH_REGION6_SIZE) = size - 1;
	GREG32(GLOBALSEC, FLASH_REGION6_CTRL) = mask;

	return EC_SUCCESS;
}

int flash_info_read_enable(uint32_t offset, size_t size)
{
	return flash_info_configure_access(offset, size, 0);
}

int flash_info_write_enable(uint32_t offset, size_t size)
{
	return flash_info_configure_access(offset, size, 1);
}

void flash_info_write_disable(void)
{
	GWRITE_FIELD(GLOBALSEC, FLASH_REGION6_CTRL, WR_EN, 0);
}

int flash_info_physical_write(int byte_offset, int num_bytes, const char *data)
{
	if (byte_offset < 0 || num_bytes < 0 ||
		byte_offset + num_bytes > FLASH_INFO_SIZE ||
		(byte_offset | num_bytes) & (CONFIG_FLASH_WRITE_SIZE - 1))
		return EC_ERROR_INVAL;

	return flash_physical_write_internal(byte_offset, 1, num_bytes, data);
}

int flash_physical_erase(int byte_offset, int num_bytes)
{
	int ret;

	/* Offset and size must be a multiple of CONFIG_FLASH_ERASE_SIZE */
	if (byte_offset % CONFIG_FLASH_ERASE_SIZE ||
	    num_bytes % CONFIG_FLASH_ERASE_SIZE)
		return EC_ERROR_INVAL;

	while (num_bytes) {

		mutex_lock(&flash_mtx);

		/* We may be asked to erase multiple banks */
		ret = do_flash_op(OP_ERASE_BLOCK,
				  0,              /* not the INFO bank */
				  byte_offset,
				  num_bytes / 4); /* word count */

		mutex_unlock(&flash_mtx);

		if (ret) {
			CPRINTF("Failed to erase block at %x\n", byte_offset);
			return ret;
		}

		num_bytes -= CONFIG_FLASH_ERASE_SIZE;
		byte_offset += CONFIG_FLASH_ERASE_SIZE;
	}

	return EC_SUCCESS;
}


/* Enable write access to the backup RO section. */
void flash_open_ro_window(uint32_t offset, size_t size_b)
{
	GREG32(GLOBALSEC, FLASH_REGION6_BASE_ADDR) =
		offset + CONFIG_PROGRAM_MEMORY_BASE;
	GREG32(GLOBALSEC, FLASH_REGION6_SIZE) = size_b - 1;
	GWRITE_FIELD(GLOBALSEC, FLASH_REGION6_CTRL, EN, 1);
	GWRITE_FIELD(GLOBALSEC, FLASH_REGION6_CTRL, RD_EN, 1);
	GWRITE_FIELD(GLOBALSEC, FLASH_REGION6_CTRL, WR_EN, 1);
}

static int command_erase_flash_info(int argc, char **argv)
{
	uint32_t *preserved_manufacture_state;
	const size_t manuf_word_count =
		FLASH_INFO_MANUFACTURE_STATE_SIZE / sizeof(uint32_t);
	int i;
	int rv = EC_ERROR_BUSY;
#ifndef CR50_DEV
	const struct SignedHeader *h;

	h = (struct SignedHeader *)get_program_memory_addr(
		system_get_image_copy());
	if (!(h->config1_ & INFO1_IS_ERASABLE)) {
		ccprintf("This image is not authorized to erase INFO1!\n");
		return EC_ERROR_ACCESS_DENIED;
	}
#endif
	if (shared_mem_acquire(FLASH_INFO_MANUFACTURE_STATE_SIZE,
			       (char **)&preserved_manufacture_state) !=
	    EC_SUCCESS) {
		ccprintf("Failed to allocate memory for manufacture state!\n");
		return EC_ERROR_MEMORY_ALLOCATION;
	}

	flash_info_read_enable(0, 2048);

	/* Preserve manufacturing information. */
	for (i = 0; i < manuf_word_count; i++) {
		if (flash_physical_info_read_word(
			    FLASH_INFO_MANUFACTURE_STATE_OFFSET +
				    i * sizeof(uint32_t),
			    preserved_manufacture_state + i) != EC_SUCCESS) {
			ccprintf("Failed to read word %d!\n", i);
			goto exit;
		}
	}

	flash_info_write_enable(0, 2048);

	mutex_lock(&flash_mtx);

	rv = do_flash_op(OP_ERASE_BLOCK, 1, 0, 512);

	mutex_unlock(&flash_mtx);

	if (rv != EC_SUCCESS) {
		ccprintf("Failed to erase info space!\n");
		goto exit;
	}

	if (flash_info_physical_write(FLASH_INFO_MANUFACTURE_STATE_OFFSET,
				      FLASH_INFO_MANUFACTURE_STATE_SIZE,
				      (char *)preserved_manufacture_state) !=
	    EC_SUCCESS) {
		ccprintf("Failed to restore manufacture state!\n");
		goto exit;
	}

	rv = EC_SUCCESS;
exit:
	flash_info_write_disable();

	always_memset(preserved_manufacture_state, 0,
		      FLASH_INFO_MANUFACTURE_STATE_SIZE);
	shared_mem_release(preserved_manufacture_state);

	return rv;
}
DECLARE_SAFE_CONSOLE_COMMAND(eraseflashinfo, command_erase_flash_info, "",
			     "Erase INFO1 flash space");