summaryrefslogtreecommitdiff
path: root/board/cr50/dcrypto/internal.h
blob: 2e6f62e2e899f943c179ecbfd4c22fcecbb7510c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/* Copyright 2015 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef __EC_CHIP_G_DCRYPTO_INTERNAL_H
#define __EC_CHIP_G_DCRYPTO_INTERNAL_H

#include <stddef.h>
#include <string.h>

#include "common.h"
#include "util.h"

#include "cryptoc/p256.h"
#include "cryptoc/sha.h"
#include "cryptoc/sha256.h"
#include "cryptoc/sha384.h"
#include "cryptoc/sha512.h"

#ifdef __cplusplus
extern "C" {
#endif

/*
 * SHA.
 */
#define CTRL_CTR_BIG_ENDIAN (__BYTE_ORDER__  == __ORDER_BIG_ENDIAN__)
#define CTRL_ENABLE         1
#define CTRL_ENCRYPT        1
#define CTRL_NO_SOFT_RESET  0

#define SHA_DIGEST_WORDS   (SHA_DIGEST_SIZE / sizeof(uint32_t))
#define SHA256_DIGEST_WORDS (SHA256_DIGEST_SIZE / sizeof(uint32_t))

#ifdef SHA512_SUPPORT
#define SHA_DIGEST_MAX_BYTES SHA512_DIGEST_SIZE
#else
#define SHA_DIGEST_MAX_BYTES SHA256_DIGEST_SIZE
#endif

enum sha_mode {
	SHA1_MODE = 0,
	SHA256_MODE = 1
};

/*
 * Use this structure to avoid alignment problems with input and output
 * pointers.
 */
struct access_helper {
	uint32_t udata;
} __packed;

#ifndef SECTION_IS_RO
int dcrypto_grab_sha_hw(void);
void dcrypto_release_sha_hw(void);
#endif
void dcrypto_sha_hash(enum sha_mode mode, const uint8_t *data,
		uint32_t n, uint8_t *digest);
void dcrypto_sha_init(enum sha_mode mode);
void dcrypto_sha_update(struct HASH_CTX *unused,
			const void *data, uint32_t n);
void dcrypto_sha_wait(enum sha_mode mode, uint32_t *digest);

/*
 * BIGNUM.
 */
#define LITE_BN_BITS2        32
#define LITE_BN_BYTES        4

struct LITE_BIGNUM {
	uint32_t dmax;              /* Size of d, in 32-bit words. */
	struct access_helper *d;  /* Word array, little endian format ... */
};

#define BN_DIGIT(b, i) ((b)->d[(i)].udata)

void bn_init(struct LITE_BIGNUM *bn, void *buf, size_t len);
#define bn_size(b) ((b)->dmax * LITE_BN_BYTES)
#define bn_words(b) ((b)->dmax)
#define bn_bits(b) ((b)->dmax * LITE_BN_BITS2)
int bn_eq(const struct LITE_BIGNUM *a, const struct LITE_BIGNUM *b);
int bn_check_topbit(const struct LITE_BIGNUM *N);
int bn_modexp(struct LITE_BIGNUM *output,
			const struct LITE_BIGNUM *input,
			const struct LITE_BIGNUM *exp,
			const struct LITE_BIGNUM *N);
int bn_modexp_word(struct LITE_BIGNUM *output,
			const struct LITE_BIGNUM *input,
			uint32_t pubexp,
			const struct LITE_BIGNUM *N);
int bn_modexp_blinded(struct LITE_BIGNUM *output,
			const struct LITE_BIGNUM *input,
			const struct LITE_BIGNUM *exp,
			const struct LITE_BIGNUM *N,
			uint32_t pubexp);
uint32_t bn_add(struct LITE_BIGNUM *c,
		const struct LITE_BIGNUM *a);
uint32_t bn_sub(struct LITE_BIGNUM *c,
		const struct LITE_BIGNUM *a);
int bn_modinv_vartime(struct LITE_BIGNUM *r,
			const struct LITE_BIGNUM *e,
			const struct LITE_BIGNUM *MOD);
int bn_is_bit_set(const struct LITE_BIGNUM *a, int n);

/*
 * Accelerated bn.
 */
int dcrypto_modexp(struct LITE_BIGNUM *output,
			const struct LITE_BIGNUM *input,
			const struct LITE_BIGNUM *exp,
			const struct LITE_BIGNUM *N);
int dcrypto_modexp_word(struct LITE_BIGNUM *output,
			const struct LITE_BIGNUM *input,
			uint32_t pubexp,
			const struct LITE_BIGNUM *N);
int dcrypto_modexp_blinded(struct LITE_BIGNUM *output,
			const struct LITE_BIGNUM *input,
			const struct LITE_BIGNUM *exp,
			const struct LITE_BIGNUM *N,
			uint32_t pubexp);

struct drbg_ctx {
	uint32_t k[SHA256_DIGEST_WORDS];
	uint32_t v[SHA256_DIGEST_WORDS];
	uint32_t reseed_counter;
};

/*
 * NIST SP 800-90A HMAC DRBG.
 */
enum hmac_result {
	HMAC_DRBG_SUCCESS = 0,
	HMAC_DRBG_INVALID_PARAM = 1,
	HMAC_DRBG_RESEED_REQUIRED = 2
};

/* Standard initialization. */
void hmac_drbg_init(struct drbg_ctx *ctx,
		    const void *p0, size_t p0_len,
		    const void *p1, size_t p1_len,
		    const void *p2, size_t p2_len);
/* Initialize for use as RFC6979 DRBG. */
void hmac_drbg_init_rfc6979(struct drbg_ctx *ctx,
			    const p256_int *key,
			    const p256_int *message);
/* Initialize with at least nbits of random entropy. */
void hmac_drbg_init_rand(struct drbg_ctx *ctx, size_t nbits);
void hmac_drbg_reseed(struct drbg_ctx *ctx,
		      const void *p0, size_t p0_len,
		      const void *p1, size_t p1_len,
		      const void *p2, size_t p2_len);
enum hmac_result hmac_drbg_generate(struct drbg_ctx *ctx, void *out,
				    size_t out_len, const void *input,
				    size_t input_len);
/* Generate p256, with no additional input. */
enum hmac_result hmac_drbg_generate_p256(struct drbg_ctx *ctx, p256_int *k_out);
void drbg_exit(struct drbg_ctx *ctx);

/*
 * Accelerated p256. FIPS PUB 186-4
 */
int dcrypto_p256_ecdsa_sign(struct drbg_ctx *drbg, const p256_int *key,
			    const p256_int *message, p256_int *r, p256_int *s)
	__attribute__((warn_unused_result));
int dcrypto_p256_base_point_mul(const p256_int *k, p256_int *x, p256_int *y)
	__attribute__((warn_unused_result));
int dcrypto_p256_point_mul(const p256_int *k,
		const p256_int *in_x, const p256_int *in_y,
		p256_int *x, p256_int *y)
	__attribute__((warn_unused_result));
int dcrypto_p256_ecdsa_verify(const p256_int *key_x, const p256_int *key_y,
		const p256_int *message, const p256_int *r,
		const p256_int *s)
	__attribute__((warn_unused_result));
int dcrypto_p256_is_valid_point(const p256_int *x, const p256_int *y)
	__attribute__((warn_unused_result));

/* Pick a p256 number between 1 < k < |p256| */
int dcrypto_p256_pick(struct drbg_ctx *drbg, p256_int *output);

/* Overwrite with random p256 value */
void dcrypto_p256_rnd(p256_int *output);

/*
 * Accelerator runtime.
 *
 * Note dcrypto_init_and_lock grabs a mutex and dcrypto_unlock releases it.
 * Do not use dcrypto_call, dcrypto_imem_load or dcrypto_dmem_load w/o holding
 * the mutex.
 */
void dcrypto_init_and_lock(void);
void dcrypto_unlock(void);
uint32_t dcrypto_call(uint32_t adr) __attribute__((warn_unused_result));
void dcrypto_imem_load(size_t offset, const uint32_t *opcodes,
		       size_t n_opcodes);
/*
 * Returns 0 iff no difference was observed between existing and new content.
 */
uint32_t dcrypto_dmem_load(size_t offset, const void *words, size_t n_words);

/**
 * An implementation of memset that ought not to be optimized away;
 * useful for scrubbing security sensitive buffers.
 */
void *always_memset(void *s, int c, size_t n);

/*
 * Key ladder.
 */
#ifndef __cplusplus
enum dcrypto_appid;      /* Forward declaration. */

int dcrypto_ladder_compute_usr(enum dcrypto_appid id,
			const uint32_t usr_salt[8]);
int dcrypto_ladder_derive(enum dcrypto_appid appid, const uint32_t salt[8],
			  const uint32_t input[8], uint32_t output[8]);
#endif

#ifdef __cplusplus
}
#endif

#endif  /* ! __EC_CHIP_G_DCRYPTO_INTERNAL_H */