summaryrefslogtreecommitdiff
path: root/board/cr50/dcrypto/aes.c
blob: 968281472d47cf75c3980ced9277844da9eeaa25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/* Copyright 2015 The ChromiumOS Authors
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "internal.h"
#include "dcrypto_regs.h"
/**
 * Define KEYMGR AES access structure.
 */
static volatile struct keymgr_aes *reg_aes = (void *)(GC_KEYMGR_BASE_ADDR);

static void set_control_register(enum cipher_mode mode, uint32_t key_size,
				 enum encrypt_mode encrypt)
{
	/* Make sure we don't use key coming from keyladder. */
	reg_aes->use_hidden_key = GC_KEYMGR_AES_USE_HIDDEN_KEY_ENABLE_DEFAULT;
	/* Bring AES engine FIFO into known state. */
	reg_aes->ctrl = GC_KEYMGR_AES_CTRL_RESET_MASK;
	reg_aes->ctrl =
		(CTRL_NO_SOFT_RESET << GC_KEYMGR_AES_CTRL_RESET_LSB) |
		(key_size << GC_KEYMGR_AES_CTRL_KEYSIZE_LSB) |
		(mode << GC_KEYMGR_AES_CTRL_CIPHER_MODE_LSB) |
		(encrypt << GC_KEYMGR_AES_CTRL_ENC_MODE_LSB) |
		(CTRL_CTR_BIG_ENDIAN << GC_KEYMGR_AES_CTRL_CTR_ENDIAN_LSB) |
		(CTRL_ENABLE << GC_KEYMGR_AES_CTRL_ENABLE_LSB);

	/* Turn off random nops (which are enabled by default). */
	reg_aes->rand_stall = 0;
	/* Configure random nop percentage at 25%, turn on random nops.  */
	reg_aes->rand_stall = (1 << GC_KEYMGR_AES_RAND_STALL_CTL_FREQ_LSB) |
			      GC_KEYMGR_AES_RAND_STALL_CTL_STALL_EN_MASK;
}

static int wait_read_data(volatile uint32_t *addr)
{
	int empty;
	int count = 20;     /* Wait these many ~cycles. */

	do {
		empty = REG32(addr);
		count--;
	} while (count && empty);

	return empty ? 0 : 1;
}

enum dcrypto_result dcrypto_aes_init(const uint8_t *key, size_t key_len,
				     const uint8_t *iv, enum cipher_mode c_mode,
				     enum encrypt_mode e_mode)
{
	size_t i;
	const struct access_helper *p;
	uint32_t key_mode;

	switch (key_len) {
	case 128:
		key_mode = 0;
		break;
	case 192:
		key_mode = 1;
		break;
	case 256:
		key_mode = 2;
		break;
	default:
		/* Invalid key length specified. */
		return DCRYPTO_FAIL;
	}

	switch (c_mode) {
	case CIPHER_MODE_ECB:
	case CIPHER_MODE_CTR:
	case CIPHER_MODE_CBC:
		set_control_register(c_mode, key_mode, e_mode);
		break;
	default:
		/* Invalid mode specified. */
		return DCRYPTO_FAIL;
	}

	/* Initialize hardware with AES key */
	p = (struct access_helper *) key;
	for (i = 0; i < (key_len >> 5); i++)
		reg_aes->key[i] = p[i].udata;
	/* Trigger key expansion. */
	reg_aes->key_start = 1;

	/* Wait for key expansion. */
	if (!wait_read_data(&reg_aes->key_start)) {
		/* Should not happen. */
		return DCRYPTO_FAIL;
	}

	/* Initialize IV for modes that require it. */
	if (iv)
		DCRYPTO_aes_write_iv(iv);

	return DCRYPTO_OK;
}

enum dcrypto_result DCRYPTO_aes_init(const uint8_t *key, size_t key_len,
				     const uint8_t *iv, enum cipher_mode c_mode,
				     enum encrypt_mode e_mode)
{
	if (!fips_crypto_allowed())
		return DCRYPTO_FAIL;
	return dcrypto_aes_init(key, key_len, iv, c_mode, e_mode);
}

enum dcrypto_result DCRYPTO_aes_block(const uint8_t *in, uint8_t *out)
{
	uint32_t buf[4];
	const uint32_t *inw;
	uint32_t *outw, *outw2;

	if (is_not_aligned(in)) {
		memcpy(buf, in, sizeof(buf));
		inw = buf;
	} else
		inw = (const uint32_t *)in;

	if (is_not_aligned(out))
		outw = buf;
	else
		outw = (uint32_t *)out;

	outw2 = outw;
	dcrypto_aes_process(&outw, &inw, 16);

	if (out != (uint8_t *)outw2)
		memcpy(out, outw2, sizeof(buf));

	return DCRYPTO_OK;
}

void DCRYPTO_aes_write_iv(const uint8_t *iv)
{
	int i;
	uint32_t buf[4];
	const uint32_t *ivw;

	if (is_not_aligned(iv)) {
		memcpy(buf, iv, sizeof(buf));
		ivw = buf;
	} else
		ivw = (uint32_t *)iv;

	for (i = 0; i < 4; i++)
		reg_aes->counter[i] = ivw[i];
}

void DCRYPTO_aes_read_iv(uint8_t *iv)
{
	int i;
	uint32_t buf[4];
	uint32_t *ivw;

	if (is_not_aligned(iv))
		ivw = buf;
	else
		ivw = (uint32_t *)iv;

	for (i = 0; i < 4; i++)
		ivw[i] = reg_aes->counter[i];

	if (iv != (uint8_t *)ivw)
		memcpy(iv, ivw, sizeof(buf));
}

enum dcrypto_result DCRYPTO_aes_ctr(uint8_t *out, const uint8_t *key,
				    uint32_t key_bits, const uint8_t *iv,
				    const uint8_t *in, size_t in_len)
{
	/* Initialize AES hardware. */
	if (DCRYPTO_aes_init(key, key_bits, iv, CIPHER_MODE_CTR,
			     ENCRYPT_MODE) != DCRYPTO_OK)
		return DCRYPTO_FAIL;

	while (in_len > 0) {
		uint32_t tmpin[4];
		uint32_t tmpout[4];
		const uint8_t *inp;
		uint8_t *outp;
		const size_t count = MIN(in_len, 16U);

		if (count < 16) {
			memcpy(tmpin, in, count);
			inp = (uint8_t *)tmpin;
			outp = (uint8_t *)tmpout;
		} else {
			inp = in;
			outp = out;
		}
		if (DCRYPTO_aes_block(inp, outp) != DCRYPTO_OK)
			return DCRYPTO_FAIL;
		if (outp != out)
			memcpy(out, outp, count);

		in += count;
		out += count;
		in_len -= count;
	}
	return DCRYPTO_OK;
}