summaryrefslogtreecommitdiff
path: root/driver/accelgyro_icm426xx.c
diff options
context:
space:
mode:
Diffstat (limited to 'driver/accelgyro_icm426xx.c')
-rw-r--r--driver/accelgyro_icm426xx.c953
1 files changed, 953 insertions, 0 deletions
diff --git a/driver/accelgyro_icm426xx.c b/driver/accelgyro_icm426xx.c
new file mode 100644
index 0000000000..40adaaaace
--- /dev/null
+++ b/driver/accelgyro_icm426xx.c
@@ -0,0 +1,953 @@
+/* Copyright 2020 The Chromium OS Authors. All rights reserved.
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+/**
+ * ICM-426xx accelerometer and gyroscope module for Chrome EC
+ * 3D digital accelerometer & 3D digital gyroscope
+ */
+
+#include "accelgyro.h"
+#include "console.h"
+#include "driver/accelgyro_icm_common.h"
+#include "driver/accelgyro_icm426xx.h"
+#include "hwtimer.h"
+#include "i2c.h"
+#include "math_util.h"
+#include "motion_sense.h"
+#include "spi.h"
+#include "task.h"
+#include "timer.h"
+#include "util.h"
+
+#define CPUTS(outstr) cputs(CC_ACCEL, outstr)
+#define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ## args)
+#define CPRINTS(format, args...) cprints(CC_ACCEL, format, ## args)
+
+#ifdef CONFIG_ACCEL_FIFO
+volatile uint32_t last_interrupt_timestamp;
+#endif /* CONFIG_ACCEL_FIFO */
+
+static int icm426xx_normalize(const struct motion_sensor_t *s, intv3_t v,
+ const uint8_t *raw)
+{
+ /* sensor data is configured as little-endian */
+ v[X] = (int16_t)UINT16_FROM_BYTE_ARRAY_LE(raw, 0);
+ v[Y] = (int16_t)UINT16_FROM_BYTE_ARRAY_LE(raw, 2);
+ v[Z] = (int16_t)UINT16_FROM_BYTE_ARRAY_LE(raw, 4);
+
+ /* check if data is valid */
+ if (v[X] == ICM426XX_INVALID_DATA &&
+ v[Y] == ICM426XX_INVALID_DATA &&
+ v[Z] == ICM426XX_INVALID_DATA) {
+ return EC_ERROR_INVAL;
+ }
+
+ rotate(v, *s->rot_standard_ref, v);
+
+ return EC_SUCCESS;
+}
+
+static int icm426xx_check_sensor_stabilized(const struct motion_sensor_t *s,
+ uint32_t ts)
+{
+ int32_t rem;
+
+ rem = icm_get_sensor_stabilized(s, ts);
+ if (rem == 0)
+ return EC_SUCCESS;
+ if (rem > 0)
+ return EC_ERROR_BUSY;
+
+ /* rem < 0: reset check since ts has passed stabilize_ts */
+ icm_reset_stabilize_ts(s);
+ return EC_SUCCESS;
+}
+
+/* use FIFO threshold interrupt on INT1 */
+#define ICM426XX_FIFO_INT_EN ICM426XX_FIFO_THS_INT1_EN
+#define ICM426XX_FIFO_INT_STATUS ICM426XX_FIFO_THS_INT
+
+static int __maybe_unused icm426xx_enable_fifo(const struct motion_sensor_t *s,
+ int enable)
+{
+ int val, ret;
+
+ if (enable) {
+ /* enable FIFO interrupts */
+ ret = icm_field_update8(s, ICM426XX_REG_INT_SOURCE0,
+ ICM426XX_FIFO_INT_EN,
+ ICM426XX_FIFO_INT_EN);
+ if (ret != EC_SUCCESS)
+ return ret;
+
+ /* flush FIFO data */
+ ret = icm_write8(s, ICM426XX_REG_SIGNAL_PATH_RESET,
+ ICM426XX_FIFO_FLUSH);
+ if (ret != EC_SUCCESS)
+ return ret;
+
+ /* set FIFO in streaming mode */
+ ret = icm_write8(s, ICM426XX_REG_FIFO_CONFIG,
+ ICM426XX_FIFO_MODE_STREAM);
+ if (ret != EC_SUCCESS)
+ return ret;
+
+ /* workaround: first read of FIFO count is always 0 */
+ ret = icm_read16(s, ICM426XX_REG_FIFO_COUNT, &val);
+ if (ret != EC_SUCCESS)
+ return ret;
+ } else {
+ /* set FIFO in bypass mode */
+ ret = icm_write8(s, ICM426XX_REG_FIFO_CONFIG,
+ ICM426XX_FIFO_MODE_BYPASS);
+ if (ret != EC_SUCCESS)
+ return ret;
+
+ /* flush FIFO data */
+ ret = icm_write8(s, ICM426XX_REG_SIGNAL_PATH_RESET,
+ ICM426XX_FIFO_FLUSH);
+ if (ret != EC_SUCCESS)
+ return ret;
+
+ /* disable FIFO interrupts */
+ ret = icm_field_update8(s, ICM426XX_REG_INT_SOURCE0,
+ ICM426XX_FIFO_INT_EN, 0);
+ if (ret != EC_SUCCESS)
+ return ret;
+ }
+
+ return EC_SUCCESS;
+}
+
+static int __maybe_unused icm426xx_config_fifo(const struct motion_sensor_t *s,
+ int enable)
+{
+ struct icm_drv_data_t *st = ICM_GET_DATA(s);
+ int mask, val;
+ uint8_t old_fifo_en;
+ int ret;
+
+ switch (s->type) {
+ case MOTIONSENSE_TYPE_ACCEL:
+ mask = ICM426XX_FIFO_ACCEL_EN;
+ break;
+ case MOTIONSENSE_TYPE_GYRO:
+ mask = ICM426XX_FIFO_GYRO_EN;
+ break;
+ default:
+ return EC_ERROR_INVAL;
+ }
+ /* temperature data has to be always present in the FIFO */
+ mask |= ICM426XX_FIFO_TEMP_EN;
+
+ val = enable ? mask : 0;
+
+ mutex_lock(s->mutex);
+
+ ret = icm_field_update8(s, ICM426XX_REG_FIFO_CONFIG1, mask, val);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+
+ old_fifo_en = st->fifo_en;
+ if (enable)
+ st->fifo_en |= BIT(s->type);
+ else
+ st->fifo_en &= ~BIT(s->type);
+
+ if (!old_fifo_en && st->fifo_en) {
+ /* 1st sensor enabled => turn FIFO on */
+ ret = icm426xx_enable_fifo(s, 1);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+ } else if (old_fifo_en && !st->fifo_en) {
+ /* last sensor disabled => turn FIFO off */
+ ret = icm426xx_enable_fifo(s, 0);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+ }
+
+out_unlock:
+ mutex_unlock(s->mutex);
+ return ret;
+}
+
+static void __maybe_unused icm426xx_push_fifo_data(struct motion_sensor_t *s,
+ const uint8_t *raw, uint32_t ts)
+{
+ intv3_t v;
+ struct ec_response_motion_sensor_data vect;
+ int ret;
+
+ if (s == NULL)
+ return;
+
+ ret = icm426xx_normalize(s, v, raw);
+ if (ret == EC_SUCCESS) {
+ vect.data[X] = v[X];
+ vect.data[Y] = v[Y];
+ vect.data[Z] = v[Z];
+ vect.flags = 0;
+ vect.sensor_num = s - motion_sensors;
+ motion_sense_fifo_add_data(&vect, s, 3, ts);
+ }
+}
+
+/* division that round to the nearest integer */
+static int round_divide(int64_t dividend, int divisor)
+{
+ return (dividend > 0) ^ (divisor > 0) ?
+ (dividend - divisor / 2) / divisor :
+ (dividend + divisor / 2) / divisor;
+}
+
+static int __maybe_unused icm426xx_load_fifo(struct motion_sensor_t *s,
+ uint32_t ts)
+{
+ struct icm_drv_data_t *st = ICM_GET_DATA(s);
+ int count, i, size;
+ const uint8_t *accel, *gyro;
+ int ret;
+
+ ret = icm_read16(s, ICM426XX_REG_FIFO_COUNT, &count);
+ if (ret != EC_SUCCESS)
+ return ret;
+
+ if (count <= 0)
+ return EC_ERROR_INVAL;
+
+ /* flush FIFO if buffer is not large enough */
+ if (count > ICM_FIFO_BUFFER) {
+ CPRINTS("It should not happen, the EC is too slow for the ODR");
+ ret = icm_write8(s, ICM426XX_REG_SIGNAL_PATH_RESET,
+ ICM426XX_FIFO_FLUSH);
+ if (ret != EC_SUCCESS)
+ return ret;
+ return EC_ERROR_OVERFLOW;
+ }
+
+ ret = icm_read_n(s, ICM426XX_REG_FIFO_DATA, st->fifo_buffer, count);
+ if (ret != EC_SUCCESS)
+ return ret;
+
+ for (i = 0; i < count; i += size) {
+ size = icm_fifo_decode_packet(&st->fifo_buffer[i],
+ &accel, &gyro);
+ /* exit if error or FIFO is empty */
+ if (size <= 0)
+ return -size;
+ if (accel != NULL) {
+ ret = icm426xx_check_sensor_stabilized(st->accel, ts);
+ if (ret == EC_SUCCESS)
+ icm426xx_push_fifo_data(st->accel, accel, ts);
+ }
+ if (gyro != NULL) {
+ ret = icm426xx_check_sensor_stabilized(st->gyro, ts);
+ if (ret == EC_SUCCESS)
+ icm426xx_push_fifo_data(st->gyro, gyro, ts);
+ }
+ }
+
+ return EC_SUCCESS;
+}
+
+#ifdef CONFIG_ACCEL_INTERRUPTS
+
+/**
+ * icm426xx_interrupt - called when the sensor activates the interrupt line.
+ *
+ * This is a "top half" interrupt handler, it just asks motion sense ask
+ * to schedule the "bottom half", ->icm426xx_irq_handler().
+ */
+void icm426xx_interrupt(enum gpio_signal signal)
+{
+#ifdef CONFIG_ACCEL_FIFO
+ last_interrupt_timestamp = __hw_clock_source_read();
+#endif /* CONFIG_ACCEL_FIFO */
+
+ task_set_event(TASK_ID_MOTIONSENSE,
+ CONFIG_ACCELGYRO_ICM426XX_INT_EVENT, 0);
+}
+
+/**
+ * icm426xx_irq_handler - bottom half of the interrupt stack.
+ * Ran from the motion_sense task, finds the events that raised the interrupt.
+ */
+static int icm426xx_irq_handler(struct motion_sensor_t *s, uint32_t *event)
+{
+ int status;
+ int ret;
+
+ if ((s->type != MOTIONSENSE_TYPE_ACCEL) ||
+ (!(*event & CONFIG_ACCELGYRO_ICM426XX_INT_EVENT)))
+ return EC_ERROR_NOT_HANDLED;
+
+ mutex_lock(s->mutex);
+
+ /* read and clear interrupt status */
+ ret = icm_read8(s, ICM426XX_REG_INT_STATUS, &status);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+
+#ifdef CONFIG_ACCEL_FIFO
+ if (status & ICM426XX_FIFO_INT_STATUS)
+ ret = icm426xx_load_fifo(s, last_interrupt_timestamp);
+#endif /* CONFIG_ACCEL_FIFO */
+
+out_unlock:
+ mutex_unlock(s->mutex);
+ return ret;
+}
+
+static int icm426xx_config_interrupt(const struct motion_sensor_t *s)
+{
+ struct icm_drv_data_t *st = ICM_GET_DATA(s);
+ int val, ret;
+
+ /* configure INT1 pin */
+ val = ICM426XX_INT1_PUSH_PULL | ICM426XX_INT1_ACTIVE_HIGH;
+
+ ret = icm_write8(s, ICM426XX_REG_INT_CONFIG, val);
+ if (ret != EC_SUCCESS)
+ return ret;
+
+ /* deassert async reset for proper INT pin operation */
+ ret = icm_field_update8(s, ICM426XX_REG_INT_CONFIG1,
+ ICM426XX_INT_ASYNC_RESET, 0);
+ if (ret != EC_SUCCESS)
+ return ret;
+
+#ifdef CONFIG_ACCEL_FIFO
+ /*
+ * configure FIFO:
+ * - enable FIFO partial read
+ * - enable continuous watermark interrupt
+ * - disable all FIFO en bits
+ */
+ val = ICM426XX_FIFO_PARTIAL_READ | ICM426XX_FIFO_WM_GT_TH;
+ ret = icm_field_update8(s, ICM426XX_REG_FIFO_CONFIG1,
+ GENMASK(6, 5) | ICM426XX_FIFO_EN_MASK,
+ val);
+ if (ret != EC_SUCCESS)
+ return ret;
+
+ /* clear internal FIFO enable bits tracking */
+ st->fifo_en = 0;
+
+ /* set FIFO watermark to 1 data packet (8 bytes) */
+ ret = icm_write16(s, ICM426XX_REG_FIFO_WATERMARK, 8);
+ if (ret != EC_SUCCESS)
+ return ret;
+#endif /* CONFIG_ACCEL_FIFO */
+
+ return ret;
+}
+
+#endif /* CONFIG_ACCEL_INTERRUPTS */
+
+static int icm426xx_enable_sensor(const struct motion_sensor_t *s, int enable)
+{
+ uint32_t delay, stop_delay;
+ int32_t rem;
+ uint8_t mask, val;
+ int ret;
+
+ switch (s->type) {
+ case MOTIONSENSE_TYPE_ACCEL:
+ mask = ICM426XX_ACCEL_MODE_MASK;
+ if (enable) {
+ delay = ICM426XX_ACCEL_START_TIME;
+ stop_delay = ICM426XX_ACCEL_STOP_TIME;
+ val = ICM426XX_ACCEL_MODE(ICM426XX_MODE_LOW_POWER);
+ } else {
+ delay = ICM426XX_ACCEL_STOP_TIME;
+ val = ICM426XX_ACCEL_MODE(ICM426XX_MODE_OFF);
+ }
+ break;
+ case MOTIONSENSE_TYPE_GYRO:
+ mask = ICM426XX_GYRO_MODE_MASK;
+ if (enable) {
+ delay = ICM426XX_GYRO_START_TIME;
+ stop_delay = ICM426XX_GYRO_STOP_TIME;
+ val = ICM426XX_GYRO_MODE(ICM426XX_MODE_LOW_NOISE);
+ } else {
+ delay = ICM426XX_GYRO_STOP_TIME;
+ val = ICM426XX_GYRO_MODE(ICM426XX_MODE_OFF);
+ }
+ break;
+ default:
+ return EC_ERROR_INVAL;
+ }
+
+ /* check stop delay and sleep if required */
+ if (enable) {
+ rem = icm_get_sensor_stabilized(s, __hw_clock_source_read());
+ /* rem > stop_delay means counter rollover */
+ if (rem > 0 && rem <= stop_delay)
+ usleep(rem);
+ }
+
+ mutex_lock(s->mutex);
+
+ ret = icm_field_update8(s, ICM426XX_REG_PWR_MGMT0, mask, val);
+ if (ret == EC_SUCCESS) {
+ icm_set_stabilize_ts(s, delay);
+ /* when turning sensor on block any register write for 200 us */
+ if (enable)
+ usleep(200);
+ }
+
+ mutex_unlock(s->mutex);
+
+ return ret;
+}
+
+static int icm426xx_set_data_rate(const struct motion_sensor_t *s, int rate,
+ int rnd)
+{
+ struct accelgyro_saved_data_t *data = ICM_GET_SAVED_DATA(s);
+ int reg, ret, reg_val;
+ int normalized_rate;
+ int max_rate, min_rate;
+
+ switch (s->type) {
+ case MOTIONSENSE_TYPE_ACCEL:
+ reg = ICM426XX_REG_ACCEL_CONFIG0;
+ min_rate = ICM426XX_ACCEL_MIN_FREQ;
+ max_rate = ICM426XX_ACCEL_MAX_FREQ;
+ break;
+ case MOTIONSENSE_TYPE_GYRO:
+ reg = ICM426XX_REG_GYRO_CONFIG0;
+ min_rate = ICM426XX_GYRO_MIN_FREQ;
+ max_rate = ICM426XX_GYRO_MAX_FREQ;
+ break;
+ default:
+ return EC_RES_INVALID_PARAM;
+ }
+
+ /* normalize the rate */
+ reg_val = ICM426XX_ODR_TO_REG(rate);
+ normalized_rate = ICM426XX_REG_TO_ODR(reg_val);
+
+ /* round up the rate */
+ if (rnd && (normalized_rate < rate)) {
+ reg_val = ICM426XX_ODR_REG_UP(reg_val);
+ normalized_rate = ICM426XX_REG_TO_ODR(reg_val);
+ }
+
+ if (rate > 0) {
+ if ((normalized_rate < min_rate) ||
+ (normalized_rate > max_rate))
+ return EC_RES_INVALID_PARAM;
+ }
+
+ if (rate == 0) {
+#ifdef CONFIG_ACCEL_FIFO
+ /* disable data in FIFO */
+ icm426xx_config_fifo(s, 0);
+#endif /* CONFIG_ACCEL_FIFO */
+ /* disable sensor */
+ ret = icm426xx_enable_sensor(s, 0);
+ data->odr = 0;
+ return ret;
+ }
+
+ mutex_lock(s->mutex);
+
+ ret = icm_field_update8(s, reg, ICM426XX_ODR_MASK,
+ ICM426XX_ODR(reg_val));
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+
+ mutex_unlock(s->mutex);
+
+ if (data->odr == 0) {
+ /* enable sensor */
+ ret = icm426xx_enable_sensor(s, 1);
+ if (ret)
+ return ret;
+#ifdef CONFIG_ACCEL_FIFO
+ /* enable data in FIFO */
+ icm426xx_config_fifo(s, 1);
+#endif /* CONFIG_ACCEL_FIFO */
+ }
+
+ data->odr = normalized_rate;
+ return EC_SUCCESS;
+
+out_unlock:
+ mutex_unlock(s->mutex);
+ return ret;
+}
+
+static int icm426xx_set_range(const struct motion_sensor_t *s, int range,
+ int rnd)
+{
+ struct accelgyro_saved_data_t *data = ICM_GET_SAVED_DATA(s);
+ int reg, ret, reg_val;
+ int newrange;
+
+ switch (s->type) {
+ case MOTIONSENSE_TYPE_ACCEL:
+ reg = ICM426XX_REG_ACCEL_CONFIG0;
+
+ reg_val = ICM426XX_ACCEL_FS_TO_REG(range);
+ newrange = ICM426XX_ACCEL_REG_TO_FS(reg_val);
+
+ if (rnd && (newrange < range) && (reg_val > 0)) {
+ reg_val--;
+ newrange = ICM426XX_ACCEL_REG_TO_FS(reg_val);
+ }
+
+ if (newrange > ICM426XX_ACCEL_FS_MAX_VAL) {
+ newrange = ICM426XX_ACCEL_FS_MAX_VAL;
+ reg_val = ICM426XX_ACCEL_FS_TO_REG(range);
+ }
+
+ break;
+ case MOTIONSENSE_TYPE_GYRO:
+ reg = ICM426XX_REG_GYRO_CONFIG0;
+
+ reg_val = ICM426XX_GYRO_FS_TO_REG(range);
+ newrange = ICM426XX_GYRO_REG_TO_FS(reg_val);
+
+ if (rnd && (newrange < range) && (reg_val > 0)) {
+ reg_val--;
+ newrange = ICM426XX_GYRO_REG_TO_FS(reg_val);
+ }
+
+ if (newrange > ICM426XX_GYRO_FS_MAX_VAL) {
+ newrange = ICM426XX_GYRO_FS_MAX_VAL;
+ reg_val = ICM426XX_GYRO_FS_TO_REG(newrange);
+ }
+
+ break;
+ default:
+ return EC_RES_INVALID_PARAM;
+ }
+
+ mutex_lock(s->mutex);
+
+ ret = icm_field_update8(s, reg, ICM426XX_FS_MASK,
+ ICM426XX_FS_SEL(reg_val));
+ if (ret == EC_SUCCESS)
+ data->range = newrange;
+
+ mutex_unlock(s->mutex);
+
+ return ret;
+}
+
+static int icm426xx_get_hw_offset(const struct motion_sensor_t *s,
+ intv3_t offset)
+{
+ uint8_t raw[5];
+ int i, ret;
+
+ switch (s->type) {
+ case MOTIONSENSE_TYPE_ACCEL:
+ mutex_lock(s->mutex);
+ ret = icm_read_n(s, ICM426XX_REG_OFFSET_USER4,
+ raw, sizeof(raw));
+ mutex_unlock(s->mutex);
+ if (ret != EC_SUCCESS)
+ return ret;
+ /*
+ * raw[0]: Accel X[11:8] | gyro Z[11:8]
+ * raw[1]: Accel X[0:7]
+ * raw[2]: Accel Y[7:0]
+ * raw[3]: Accel Z[11:8] | Accel Y[11:8]
+ * raw[4]: Accel Z[7:0]
+ */
+ offset[X] = (((int)raw[0] << 4) & ~GENMASK(7, 0)) | raw[1];
+ offset[Y] = (((int)raw[3] << 8) & ~GENMASK(7, 0)) | raw[2];
+ offset[Z] = (((int)raw[3] << 4) & ~GENMASK(7, 0)) | raw[4];
+ break;
+ case MOTIONSENSE_TYPE_GYRO:
+ mutex_lock(s->mutex);
+ ret = icm_read_n(s, ICM426XX_REG_OFFSET_USER0,
+ raw, sizeof(raw));
+ mutex_unlock(s->mutex);
+ if (ret != EC_SUCCESS)
+ return ret;
+ /*
+ * raw[0]: Gyro X[7:0]
+ * raw[1]: Gyro Y[11:8] | Gyro X[11:8]
+ * raw[2]: Gyro Y[7:0]
+ * raw[3]: Gyro Z[7:0]
+ * raw[4]: Accel X[11:8] | gyro Z[11:8]
+ */
+ offset[X] = (((int)raw[1] << 8) & ~GENMASK(7, 0)) | raw[0];
+ offset[Y] = (((int)raw[1] << 4) & ~GENMASK(7, 0)) | raw[2];
+ offset[Z] = (((int)raw[4] << 8) & ~GENMASK(7, 0)) | raw[3];
+ break;
+ default:
+ return EC_ERROR_INVAL;
+ }
+
+ /* Extend sign-bit of 12 bits signed values */
+ for (i = X; i <= Z; ++i)
+ offset[i] = sign_extend(offset[i], 11);
+
+ return EC_SUCCESS;
+}
+
+static int icm426xx_set_hw_offset(const struct motion_sensor_t *s,
+ intv3_t offset)
+{
+ int i, val, ret;
+
+ /* value is 12 bits signed maximum */
+ for (i = X; i <= Z; ++i) {
+ if (offset[i] > 2047)
+ offset[i] = 2047;
+ else if (offset[i] < -2048)
+ offset[i] = -2048;
+ }
+
+ mutex_lock(s->mutex);
+
+ switch (s->type) {
+ case MOTIONSENSE_TYPE_ACCEL:
+ /* Accel X[11:8] | gyro Z[11:8] */
+ val = (offset[X] >> 4) & GENMASK(7, 4);
+ ret = icm_field_update8(s, ICM426XX_REG_OFFSET_USER4,
+ GENMASK(7, 4), val);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+
+ /* Accel X[7:0] */
+ val = offset[X] & GENMASK(7, 0);
+ ret = icm_write8(s, ICM426XX_REG_OFFSET_USER5, val);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+
+ /* Accel Y[7:0] */
+ val = offset[Y] & GENMASK(7, 0);
+ ret = icm_write8(s, ICM426XX_REG_OFFSET_USER6, val);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+
+ /* Accel Z[11:8] | Accel Y[11:8] */
+ val = ((offset[Z] >> 4) & GENMASK(7, 4)) |
+ ((offset[Y] >> 8) & GENMASK(3, 0));
+ ret = icm_write8(s, ICM426XX_REG_OFFSET_USER7, val);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+
+ /* Accel Z[7:0] */
+ val = offset[Z] & GENMASK(7, 0);
+ ret = icm_write8(s, ICM426XX_REG_OFFSET_USER8, val);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+ break;
+
+ case MOTIONSENSE_TYPE_GYRO:
+ /* Gyro X[7:0] */
+ val = offset[X] & GENMASK(7, 0);
+ ret = icm_write8(s, ICM426XX_REG_OFFSET_USER0, val);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+
+ /* Gyro Y[11:8] | Gyro X[11:8] */
+ val = ((offset[Y] >> 4) & GENMASK(7, 4)) |
+ ((offset[X] >> 8) & GENMASK(3, 0));
+ ret = icm_write8(s, ICM426XX_REG_OFFSET_USER1, val);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+
+ /* Gyro Y[7:0] */
+ val = offset[Y] & GENMASK(7, 0);
+ ret = icm_write8(s, ICM426XX_REG_OFFSET_USER2, val);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+
+ /* Gyro Z[7:0] */
+ val = offset[Z] & GENMASK(7, 0);
+ ret = icm_write8(s, ICM426XX_REG_OFFSET_USER3, val);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+
+ /* Accel X[11:8] | gyro Z[11:8] */
+ val = (offset[Z] >> 8) & GENMASK(3, 0);
+ ret = icm_field_update8(s, ICM426XX_REG_OFFSET_USER4,
+ GENMASK(3, 0), val);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+ break;
+
+ default:
+ ret = EC_ERROR_INVAL;
+ break;
+ }
+
+out_unlock:
+ mutex_unlock(s->mutex);
+ return ret;
+}
+
+static int icm426xx_set_offset(const struct motion_sensor_t *s,
+ const int16_t *offset, int16_t temp)
+{
+ intv3_t v = { offset[X], offset[Y], offset[Z] };
+ int div1, div2;
+ int i;
+
+ /* rotate back to chip frame */
+ rotate_inv(v, *s->rot_standard_ref, v);
+
+ /* convert raw data to hardware offset units */
+ switch (s->type) {
+ case MOTIONSENSE_TYPE_ACCEL:
+ /* hardware offset is 1/2048g /LSB, EC offset 1/1024g /LSB. */
+ div1 = 2;
+ div2 = 1;
+ break;
+ case MOTIONSENSE_TYPE_GYRO:
+ /* hardware offset is 1/32dps /LSB, EC offset 1/1024dps /LSB. */
+ div1 = 1;
+ div2 = 32;
+ break;
+ default:
+ return EC_ERROR_INVAL;
+ }
+ for (i = X; i <= Z; ++i)
+ v[i] = round_divide(v[i] * div1, div2);
+
+ return icm426xx_set_hw_offset(s, v);
+}
+
+static int icm426xx_get_offset(const struct motion_sensor_t *s, int16_t *offset,
+ int16_t *temp)
+{
+ intv3_t v;
+ int div1, div2;
+ int i, ret;
+
+ ret = icm426xx_get_hw_offset(s, v);
+ if (ret != EC_SUCCESS)
+ return ret;
+
+ /* transform offset to raw data */
+ switch (s->type) {
+ case MOTIONSENSE_TYPE_ACCEL:
+ /* hardware offset is 1/2048g /LSB, EC offset 1/1024g /LSB. */
+ div1 = 1;
+ div2 = 2;
+ break;
+ case MOTIONSENSE_TYPE_GYRO:
+ /* hardware offset is 1/32dps /LSB, EC offset 1/1024dps /LSB. */
+ div1 = 32;
+ div2 = 1;
+ break;
+ default:
+ return EC_ERROR_INVAL;
+ }
+ for (i = X; i <= Z; ++i)
+ v[i] = round_divide(v[i] * div1, div2);
+
+ rotate(v, *s->rot_standard_ref, v);
+ offset[X] = v[X];
+ offset[Y] = v[Y];
+ offset[Z] = v[Z];
+ *temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP;
+ return EC_SUCCESS;
+}
+
+static int icm426xx_read(const struct motion_sensor_t *s, intv3_t v)
+{
+ uint8_t raw[6];
+ int reg, ret;
+
+ switch (s->type) {
+ case MOTIONSENSE_TYPE_ACCEL:
+ reg = ICM426XX_REG_ACCEL_DATA_XYZ;
+ break;
+ case MOTIONSENSE_TYPE_GYRO:
+ reg = ICM426XX_REG_GYRO_DATA_XYZ;
+ break;
+ default:
+ return EC_ERROR_INVAL;
+ }
+
+ /* read data registers if sensor is stabilized */
+ mutex_lock(s->mutex);
+
+ ret = icm426xx_check_sensor_stabilized(s, __hw_clock_source_read());
+ if (ret == EC_SUCCESS)
+ ret = icm_read_n(s, reg, raw, sizeof(raw));
+
+ mutex_unlock(s->mutex);
+ if (ret != EC_SUCCESS)
+ return ret;
+
+ ret = icm426xx_normalize(s, v, raw);
+ /* if data is invalid return the previous read data */
+ if (ret != EC_SUCCESS) {
+ if (v != s->raw_xyz)
+ memcpy(v, s->raw_xyz, sizeof(s->raw_xyz));
+ }
+
+ return EC_SUCCESS;
+}
+
+static int icm426xx_init_config(const struct motion_sensor_t *s)
+{
+ uint8_t mask, val;
+ int ret;
+
+ /*
+ * serial bus setup (i2c or spi)
+ *
+ * Do not check result for INTF_CONFIG6, since it can induce
+ * interferences on the bus.
+ */
+
+ ret = 0;
+#ifdef I2C_PORT_ACCEL
+ icm_field_update8(s, ICM426XX_REG_INTF_CONFIG6,
+ ICM426XX_INTF_CONFIG6_MASK,
+ ICM426XX_I3C_EN);
+ ret = icm_field_update8(s, ICM426XX_REG_INTF_CONFIG4,
+ ICM426XX_I3C_BUS_MODE,
+ 0);
+#endif
+ if (ret)
+ return ret;
+
+ ret = 0;
+#ifdef I2C_PORT_ACCEL
+ ret = icm_field_update8(s, ICM426XX_REG_DRIVE_CONFIG,
+ ICM426XX_DRIVE_CONFIG_MASK,
+ ICM426XX_I2C_SLEW_RATE(ICM426XX_SLEW_RATE_12NS_36NS) |
+ ICM426XX_SPI_SLEW_RATE(ICM426XX_SLEW_RATE_12NS_36NS));
+#endif
+ if (ret)
+ return ret;
+
+ /*
+ * Use invalid value in registers and FIFO.
+ * Data registers in little-endian format.
+ * Disable unused serial interface.
+ */
+ mask = ICM426XX_DATA_CONF_MASK | ICM426XX_UI_SIFS_CFG_MASK;
+ val = 0;
+#ifdef I2C_PORT_ACCEL
+ val |= ICM426XX_UI_SIFS_CFG_SPI_DIS;
+#endif
+
+ ret = icm_field_update8(s, ICM426XX_REG_INTF_CONFIG0, mask, val);
+ if (ret)
+ return ret;
+
+ /* set accel oscillator to RC clock to avoid bad transition with PLL */
+ return icm_field_update8(s, ICM426XX_REG_INTF_CONFIG1,
+ ICM426XX_ACCEL_LP_CLK_SEL,
+ ICM426XX_ACCEL_LP_CLK_SEL);
+}
+
+static int icm426xx_init(const struct motion_sensor_t *s)
+{
+ struct accelgyro_saved_data_t *saved_data = ICM_GET_SAVED_DATA(s);
+ struct icm_drv_data_t *st = ICM_GET_DATA(s);
+ int mask, val;
+ int ret;
+
+ mutex_lock(s->mutex);
+
+ /* manually force register bank to 0 */
+ st->bank = 0;
+ ret = icm_write8(s, ICM426XX_REG_BANK_SEL, ICM426XX_BANK_SEL(0));
+ if (ret)
+ goto out_unlock;
+
+ /* detect chip using whoami */
+ ret = icm_read8(s, ICM426XX_REG_WHO_AM_I, &val);
+ if (ret)
+ goto out_unlock;
+
+ if (val != ICM426XX_CHIP_ICM40608 && val != ICM426XX_CHIP_ICM42605) {
+ CPRINTS("Unknown WHO_AM_I: 0x%02x", val);
+ ret = EC_ERROR_ACCESS_DENIED;
+ goto out_unlock;
+ }
+
+ /* first time init done only for 1st sensor (accel) */
+ if (s->type == MOTIONSENSE_TYPE_ACCEL) {
+ /* reset the chip and verify it is ready */
+ ret = icm_write8(s, ICM426XX_REG_DEVICE_CONFIG,
+ ICM426XX_SOFT_RESET_CONFIG);
+ if (ret)
+ goto out_unlock;
+ msleep(1);
+
+ ret = icm_read8(s, ICM426XX_REG_INT_STATUS, &val);
+ if (ret)
+ goto out_unlock;
+ if (!(val & ICM426XX_RESET_DONE_INT)) {
+ ret = EC_ERROR_ACCESS_DENIED;
+ goto out_unlock;
+ }
+
+ /* configure sensor */
+ ret = icm426xx_init_config(s);
+ if (ret)
+ goto out_unlock;
+
+#ifdef CONFIG_ACCEL_INTERRUPTS
+ ret = icm426xx_config_interrupt(s);
+ if (ret)
+ goto out_unlock;
+#endif
+ }
+
+ saved_data->odr = 0;
+
+ /* set sensor filter */
+ switch (s->type) {
+ case MOTIONSENSE_TYPE_ACCEL:
+ mask = ICM426XX_ACCEL_UI_FILT_MASK;
+ val = ICM426XX_ACCEL_UI_FILT_BW(ICM426XX_FILTER_BW_AVG_16X);
+#ifdef CONFIG_ACCEL_FIFO
+ st->accel = (struct motion_sensor_t *)s;
+#endif /* CONFIG_ACCEL_FIFO */
+ break;
+ case MOTIONSENSE_TYPE_GYRO:
+ mask = ICM426XX_GYRO_UI_FILT_MASK;
+ val = ICM426XX_GYRO_UI_FILT_BW(ICM426XX_FILTER_BW_ODR_DIV_2);
+#ifdef CONFIG_ACCEL_FIFO
+ st->gyro = (struct motion_sensor_t *)s;
+#endif /* CONFIG_ACCEL_FIFO */
+ break;
+ default:
+ ret = EC_ERROR_INVAL;
+ goto out_unlock;
+ }
+ ret = icm_field_update8(s, ICM426XX_REG_GYRO_ACCEL_CONFIG0, mask, val);
+ if (ret != EC_SUCCESS)
+ goto out_unlock;
+
+ mutex_unlock(s->mutex);
+
+ return sensor_init_done(s);
+
+out_unlock:
+ mutex_unlock(s->mutex);
+ return ret;
+}
+
+const struct accelgyro_drv icm426xx_drv = {
+ .init = icm426xx_init,
+ .read = icm426xx_read,
+ .set_range = icm426xx_set_range,
+ .get_range = icm_get_range,
+ .get_resolution = icm_get_resolution,
+ .set_data_rate = icm426xx_set_data_rate,
+ .get_data_rate = icm_get_data_rate,
+ .set_offset = icm426xx_set_offset,
+ .get_offset = icm426xx_get_offset,
+#ifdef CONFIG_ACCEL_INTERRUPTS
+ .irq_handler = icm426xx_irq_handler,
+#endif
+};