summaryrefslogtreecommitdiff
path: root/lib/el3_runtime/aarch64/context_mgmt.c
blob: 3ddf5fa2fdbb0adfb54f949073f873e925b0e991 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
/*
 * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
 * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <assert.h>
#include <stdbool.h>
#include <string.h>

#include <platform_def.h>

#include <arch.h>
#include <arch_helpers.h>
#include <arch_features.h>
#include <bl31/interrupt_mgmt.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <context.h>
#include <drivers/arm/gicv3.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <lib/extensions/amu.h>
#include <lib/extensions/brbe.h>
#include <lib/extensions/mpam.h>
#include <lib/extensions/sme.h>
#include <lib/extensions/spe.h>
#include <lib/extensions/sve.h>
#include <lib/extensions/sys_reg_trace.h>
#include <lib/extensions/trbe.h>
#include <lib/extensions/trf.h>
#include <lib/utils.h>

#if ENABLE_FEAT_TWED
/* Make sure delay value fits within the range(0-15) */
CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
#endif /* ENABLE_FEAT_TWED */

static void manage_extensions_secure(cpu_context_t *ctx);

static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
{
	u_register_t sctlr_elx, actlr_elx;

	/*
	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
	 * execution state setting all fields rather than relying on the hw.
	 * Some fields have architecturally UNKNOWN reset values and these are
	 * set to zero.
	 *
	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
	 *
	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
	 * required by PSCI specification)
	 */
	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
	if (GET_RW(ep->spsr) == MODE_RW_64) {
		sctlr_elx |= SCTLR_EL1_RES1;
	} else {
		/*
		 * If the target execution state is AArch32 then the following
		 * fields need to be set.
		 *
		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
		 */
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
	}

#if ERRATA_A75_764081
	/*
	 * If workaround of errata 764081 for Cortex-A75 is used then set
	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
	 */
	sctlr_elx |= SCTLR_IESB_BIT;
#endif
	/* Store the initialised SCTLR_EL1 value in the cpu_context */
	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

	/*
	 * Base the context ACTLR_EL1 on the current value, as it is
	 * implementation defined. The context restore process will write
	 * the value from the context to the actual register and can cause
	 * problems for processor cores that don't expect certain bits to
	 * be zero.
	 */
	actlr_elx = read_actlr_el1();
	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
}

/******************************************************************************
 * This function performs initializations that are specific to SECURE state
 * and updates the cpu context specified by 'ctx'.
 *****************************************************************************/
static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
{
	u_register_t scr_el3;
	el3_state_t *state;

	state = get_el3state_ctx(ctx);
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);

#if defined(IMAGE_BL31) && !defined(SPD_spmd)
	/*
	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
	 * indicated by the interrupt routing model for BL31.
	 */
	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
#endif

#if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
	/* Get Memory Tagging Extension support level */
	unsigned int mte = get_armv8_5_mte_support();
#endif
	/*
	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
	 * is set, or when MTE is only implemented at EL0.
	 */
#if CTX_INCLUDE_MTE_REGS
	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
	scr_el3 |= SCR_ATA_BIT;
#else
	if (mte == MTE_IMPLEMENTED_EL0) {
		scr_el3 |= SCR_ATA_BIT;
	}
#endif /* CTX_INCLUDE_MTE_REGS */

	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
	if ((GET_EL(ep->spsr) == MODE_EL2) && is_feat_sel2_supported()) {
		if (GET_RW(ep->spsr) != MODE_RW_64) {
			ERROR("S-EL2 can not be used in AArch32\n.");
			panic();
		}

		scr_el3 |= SCR_EEL2_BIT;
	}

	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);

	/*
	 * Initialize EL1 context registers unless SPMC is running
	 * at S-EL2.
	 */
#if !SPMD_SPM_AT_SEL2
	setup_el1_context(ctx, ep);
#endif

	manage_extensions_secure(ctx);
}

#if ENABLE_RME
/******************************************************************************
 * This function performs initializations that are specific to REALM state
 * and updates the cpu context specified by 'ctx'.
 *****************************************************************************/
static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
{
	u_register_t scr_el3;
	el3_state_t *state;

	state = get_el3state_ctx(ctx);
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);

	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;

	if (is_feat_csv2_2_supported()) {
		/* Enable access to the SCXTNUM_ELx registers. */
		scr_el3 |= SCR_EnSCXT_BIT;
	}

	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}
#endif /* ENABLE_RME */

/******************************************************************************
 * This function performs initializations that are specific to NON-SECURE state
 * and updates the cpu context specified by 'ctx'.
 *****************************************************************************/
static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
{
	u_register_t scr_el3;
	el3_state_t *state;

	state = get_el3state_ctx(ctx);
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);

	/* SCR_NS: Set the NS bit */
	scr_el3 |= SCR_NS_BIT;

#if !CTX_INCLUDE_PAUTH_REGS
	/*
	 * If the pointer authentication registers aren't saved during world
	 * switches the value of the registers can be leaked from the Secure to
	 * the Non-secure world. To prevent this, rather than enabling pointer
	 * authentication everywhere, we only enable it in the Non-secure world.
	 *
	 * If the Secure world wants to use pointer authentication,
	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
	 */
	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
#endif /* !CTX_INCLUDE_PAUTH_REGS */

	/* Allow access to Allocation Tags when MTE is implemented. */
	scr_el3 |= SCR_ATA_BIT;

#if HANDLE_EA_EL3_FIRST_NS
	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
	scr_el3 |= SCR_EA_BIT;
#endif

#if RAS_TRAP_NS_ERR_REC_ACCESS
	/*
	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
	 * and RAS ERX registers from EL1 and EL2(from any security state)
	 * are trapped to EL3.
	 * Set here to trap only for NS EL1/EL2
	 *
	 */
	scr_el3 |= SCR_TERR_BIT;
#endif

	if (is_feat_csv2_2_supported()) {
		/* Enable access to the SCXTNUM_ELx registers. */
		scr_el3 |= SCR_EnSCXT_BIT;
	}

#ifdef IMAGE_BL31
	/*
	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
	 *  indicated by the interrupt routing model for BL31.
	 */
	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
#endif
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);

	/* Initialize EL1 context registers */
	setup_el1_context(ctx, ep);

	/* Initialize EL2 context registers */
#if CTX_INCLUDE_EL2_REGS

	/*
	 * Initialize SCTLR_EL2 context register using Endianness value
	 * taken from the entrypoint attribute.
	 */
	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
	sctlr_el2 |= SCTLR_EL2_RES1;
	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
			sctlr_el2);

	/*
	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
	 * when restoring NS context.
	 */
	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
			icc_sre_el2);

	/*
	 * Initialize MDCR_EL2.HPMN to its hardware reset value so we don't
	 * throw anyone off who expects this to be sensible.
	 * TODO: A similar thing happens in cm_prepare_el3_exit. They should be
	 * unified with the proper PMU implementation
	 */
	u_register_t mdcr_el2 = ((read_pmcr_el0() >> PMCR_EL0_N_SHIFT) &
			PMCR_EL0_N_MASK);
	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_MDCR_EL2, mdcr_el2);

	if (is_feat_hcx_supported()) {
		/*
		 * Initialize register HCRX_EL2 with its init value.
		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
		 * chance that this can lead to unexpected behavior in lower
		 * ELs that have not been updated since the introduction of
		 * this feature if not properly initialized, especially when
		 * it comes to those bits that enable/disable traps.
		 */
		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
			HCRX_EL2_INIT_VAL);
	}
#endif /* CTX_INCLUDE_EL2_REGS */
}

/*******************************************************************************
 * The following function performs initialization of the cpu_context 'ctx'
 * for first use that is common to all security states, and sets the
 * initial entrypoint state as specified by the entry_point_info structure.
 *
 * The EE and ST attributes are used to configure the endianness and secure
 * timer availability for the new execution context.
 ******************************************************************************/
static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
{
	u_register_t scr_el3;
	el3_state_t *state;
	gp_regs_t *gp_regs;

	/* Clear any residual register values from the context */
	zeromem(ctx, sizeof(*ctx));

	/*
	 * SCR_EL3 was initialised during reset sequence in macro
	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
	 * affect the next EL.
	 *
	 * The following fields are initially set to zero and then updated to
	 * the required value depending on the state of the SPSR_EL3 and the
	 * Security state and entrypoint attributes of the next EL.
	 */
	scr_el3 = read_scr();
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);

	/*
	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
	 *  Exception level as specified by SPSR.
	 */
	if (GET_RW(ep->spsr) == MODE_RW_64) {
		scr_el3 |= SCR_RW_BIT;
	}

	/*
	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
	 * Secure timer registers to EL3, from AArch64 state only, if specified
	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
	 * bit always behaves as 1 (i.e. secure physical timer register access
	 * is not trapped)
	 */
	if (EP_GET_ST(ep->h.attr) != 0U) {
		scr_el3 |= SCR_ST_BIT;
	}

	/*
	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
	 * SCR_EL3.HXEn.
	 */
	if (is_feat_hcx_supported()) {
		scr_el3 |= SCR_HXEn_BIT;
	}

	/*
	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
	 * registers are trapped to EL3.
	 */
#if ENABLE_FEAT_RNG_TRAP
	scr_el3 |= SCR_TRNDR_BIT;
#endif

#if FAULT_INJECTION_SUPPORT
	/* Enable fault injection from lower ELs */
	scr_el3 |= SCR_FIEN_BIT;
#endif

	/*
	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
	 */
	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
		scr_el3 |= SCR_TCR2EN_BIT;
	}

	/*
	 * SCR_EL3.PIEN: Enable permission indirection and overlay
	 * registers for AArch64 if present.
	 */
	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
		scr_el3 |= SCR_PIEN_BIT;
	}

	/*
	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
	 */
	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
		scr_el3 |= SCR_GCSEn_BIT;
	}

	/*
	 * CPTR_EL3 was initialized out of reset, copy that value to the
	 * context register.
	 */
	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());

	/*
	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
	 * next mode is Hyp.
	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
	 * same conditions as HVC instructions and when the processor supports
	 * ARMv8.6-FGT.
	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
	 * and when the processor supports ECV.
	 */
	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
	    || ((GET_RW(ep->spsr) != MODE_RW_64)
		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
		scr_el3 |= SCR_HCE_BIT;

		if (is_feat_fgt_supported()) {
			scr_el3 |= SCR_FGTEN_BIT;
		}

		if (is_feat_ecv_supported()) {
			scr_el3 |= SCR_ECVEN_BIT;
		}
	}

	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
	if (is_feat_twed_supported()) {
		/* Set delay in SCR_EL3 */
		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
				<< SCR_TWEDEL_SHIFT);

		/* Enable WFE delay */
		scr_el3 |= SCR_TWEDEn_BIT;
	}

	/*
	 * Populate EL3 state so that we've the right context
	 * before doing ERET
	 */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

/*******************************************************************************
 * Context management library initialization routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for secure
 * non-secure and realm states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the API to make SP_EL3 point to the cpu context
 * which will be used for programming an entry into a lower EL. The same context
 * will be used to save state upon exception entry from that EL.
 ******************************************************************************/
void __init cm_init(void)
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out.
	 */
}

/*******************************************************************************
 * This is the high-level function used to initialize the cpu_context 'ctx' for
 * first use. It performs initializations that are common to all security states
 * and initializations specific to the security state specified in 'ep'
 ******************************************************************************/
void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
{
	unsigned int security_state;

	assert(ctx != NULL);

	/*
	 * Perform initializations that are common
	 * to all security states
	 */
	setup_context_common(ctx, ep);

	security_state = GET_SECURITY_STATE(ep->h.attr);

	/* Perform security state specific initializations */
	switch (security_state) {
	case SECURE:
		setup_secure_context(ctx, ep);
		break;
#if ENABLE_RME
	case REALM:
		setup_realm_context(ctx, ep);
		break;
#endif
	case NON_SECURE:
		setup_ns_context(ctx, ep);
		break;
	default:
		ERROR("Invalid security state\n");
		panic();
		break;
	}
}

/*******************************************************************************
 * Enable architecture extensions on first entry to Non-secure world.
 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
 * it is zero.
 ******************************************************************************/
static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
{
#if IMAGE_BL31
	if (is_feat_spe_supported()) {
		spe_enable(el2_unused);
	}

	if (is_feat_amu_supported()) {
		amu_enable(el2_unused, ctx);
	}

	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
	if (is_feat_sme_supported()) {
		sme_enable(ctx);
	} else if (is_feat_sve_supported()) {
		/* Enable SVE and FPU/SIMD for non-secure world. */
		sve_enable(ctx);
	}

	if (is_feat_mpam_supported()) {
		mpam_enable(el2_unused);
	}

	if (is_feat_trbe_supported()) {
		trbe_enable();
	}

	if (is_feat_brbe_supported()) {
		brbe_enable();
	}

	if (is_feat_sys_reg_trace_supported()) {
		sys_reg_trace_enable(ctx);
	}

	if (is_feat_trf_supported()) {
		trf_enable();
	}
#endif
}

/*******************************************************************************
 * Enable architecture extensions on first entry to Secure world.
 ******************************************************************************/
static void manage_extensions_secure(cpu_context_t *ctx)
{
#if IMAGE_BL31

	if (is_feat_sme_supported()) {
		if (ENABLE_SME_FOR_SWD) {
		/*
		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
		 */
			sme_enable(ctx);
		} else {
		/*
		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
		 * world can safely use the associated registers.
		 */
			sme_disable(ctx);
		}
	} else if (is_feat_sve_supported()) {
		if (ENABLE_SVE_FOR_SWD) {
		/*
		 * Enable SVE and FPU in secure context, secure manager must
		 * ensure that the SVE and FPU register contexts are properly
		 * managed.
		 */
			sve_enable(ctx);
		} else {
		/*
		 * Disable SVE and FPU in secure context so non-secure world
		 * can safely use them.
		 */
			sve_disable(ctx);
		}
	}

#endif /* IMAGE_BL31 */
}

/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
	cm_setup_context(ctx, ep);
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
	cm_setup_context(ctx, ep);
}

/*******************************************************************************
 * Prepare the CPU system registers for first entry into realm, secure, or
 * normal world.
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
	u_register_t sctlr_elx, scr_el3, mdcr_el2;
	cpu_context_t *ctx = cm_get_context(security_state);
	bool el2_unused = false;
	uint64_t hcr_el2 = 0U;

	assert(ctx != NULL);

	if (security_state == NON_SECURE) {
		uint64_t el2_implemented = el_implemented(2);

		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
						 CTX_SCR_EL3);

		if (((scr_el3 & SCR_HCE_BIT) != 0U)
			|| (el2_implemented != EL_IMPL_NONE)) {
			/*
			 * If context is not being used for EL2, initialize
			 * HCRX_EL2 with its init value here.
			 */
			if (is_feat_hcx_supported()) {
				write_hcrx_el2(HCRX_EL2_INIT_VAL);
			}
		}

		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
							   CTX_SCTLR_EL1);
			sctlr_elx &= SCTLR_EE_BIT;
			sctlr_elx |= SCTLR_EL2_RES1;
#if ERRATA_A75_764081
			/*
			 * If workaround of errata 764081 for Cortex-A75 is used
			 * then set SCTLR_EL2.IESB to enable Implicit Error
			 * Synchronization Barrier.
			 */
			sctlr_elx |= SCTLR_IESB_BIT;
#endif
			write_sctlr_el2(sctlr_elx);
		} else if (el2_implemented != EL_IMPL_NONE) {
			el2_unused = true;

			/*
			 * EL2 present but unused, need to disable safely.
			 * SCTLR_EL2 can be ignored in this case.
			 *
			 * Set EL2 register width appropriately: Set HCR_EL2
			 * field to match SCR_EL3.RW.
			 */
			if ((scr_el3 & SCR_RW_BIT) != 0U)
				hcr_el2 |= HCR_RW_BIT;

			/*
			 * For Armv8.3 pointer authentication feature, disable
			 * traps to EL2 when accessing key registers or using
			 * pointer authentication instructions from lower ELs.
			 */
			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);

			write_hcr_el2(hcr_el2);

			/*
			 * Initialise CPTR_EL2 setting all fields rather than
			 * relying on the hw. All fields have architecturally
			 * UNKNOWN reset values.
			 *
			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
			 *  accesses to the CPACR_EL1 or CPACR from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
			 *  register accesses to the trace registers from both
			 *  Execution states do not trap to EL2.
			 *  If PE trace unit System registers are not implemented
			 *  then this bit is reserved, and must be set to zero.
			 *
			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
			 *  to SIMD and floating-point functionality from both
			 *  Execution states do not trap to EL2.
			 */
			write_cptr_el2(CPTR_EL2_RESET_VAL &
					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
					| CPTR_EL2_TFP_BIT));

			/*
			 * Initialise CNTHCTL_EL2. All fields are
			 * architecturally UNKNOWN on reset and are set to zero
			 * except for field(s) listed below.
			 *
			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
			 *  physical timer registers.
			 *
			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
			 *  physical counter registers.
			 */
			write_cnthctl_el2(CNTHCTL_RESET_VAL |
						EL1PCEN_BIT | EL1PCTEN_BIT);

			/*
			 * Initialise CNTVOFF_EL2 to zero as it resets to an
			 * architecturally UNKNOWN value.
			 */
			write_cntvoff_el2(0);

			/*
			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
			 * MPIDR_EL1 respectively.
			 */
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());

			/*
			 * Initialise VTTBR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
			 *  2 address translation is disabled, cache maintenance
			 *  operations depend on the VMID.
			 *
			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
			 *  translation is disabled.
			 */
			write_vttbr_el2(VTTBR_RESET_VAL &
				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));

			/*
			 * Initialise MDCR_EL2, setting all fields rather than
			 * relying on hw. Some fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * MDCR_EL2.HLP: Set to one so that event counter
			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
			 *  occurs on the increment that changes
			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
			 *  implemented. This bit is RES0 in versions of the
			 *  architecture earlier than ARMv8.5, setting it to 1
			 *  doesn't have any effect on them.
			 *
			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
			 *  Filter Control register TRFCR_EL1 at EL1 is not
			 *  trapped to EL2. This bit is RES0 in versions of
			 *  the architecture earlier than ARMv8.4.
			 *
			 * MDCR_EL2.HPMD: Set to one so that event counting is
			 *  prohibited at EL2. This bit is RES0 in versions of
			 *  the architecture earlier than ARMv8.1, setting it
			 *  to 1 doesn't have any effect on them.
			 *
			 * MDCR_EL2.TPMS: Set to zero so that accesses to
			 *  Statistical Profiling control registers from EL1
			 *  do not trap to EL2. This bit is RES0 when SPE is
			 *  not implemented.
			 *
			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
			 *  EL1 System register accesses to the Debug ROM
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
			 *  System register accesses to the powerdown debug
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDA: Set to zero so that System register
			 *  accesses to the debug registers do not trap to EL2.
			 *
			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
			 *  are not routed to EL2.
			 *
			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
			 *  Monitors.
			 *
			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
			 *  EL1 accesses to all Performance Monitors registers
			 *  are not trapped to EL2.
			 *
			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
			 *  trapped to EL2.
			 *
			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
			 *  architecturally-defined reset value.
			 *
			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
			 *  owning exception level is NS-EL1 and, tracing is
			 *  prohibited at NS-EL2. These bits are RES0 when
			 *  FEAT_TRBE is not implemented.
			 */
			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
				     MDCR_EL2_HPMD) |
				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
				   >> PMCR_EL0_N_SHIFT)) &
				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
				     MDCR_EL2_TPMCR_BIT |
				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));

			write_mdcr_el2(mdcr_el2);

			/*
			 * Initialise HSTR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * HSTR_EL2.T<n>: Set all these fields to zero so that
			 *  Non-secure EL0 or EL1 accesses to System registers
			 *  do not trap to EL2.
			 */
			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
			/*
			 * Initialise CNTHP_CTL_EL2. All fields are
			 * architecturally UNKNOWN on reset.
			 *
			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
			 *  physical timer and prevent timer interrupts.
			 */
			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
						~(CNTHP_CTL_ENABLE_BIT));
		}
		manage_extensions_nonsecure(el2_unused, ctx);
	}

	cm_el1_sysregs_context_restore(security_state);
	cm_set_next_eret_context(security_state);
}

#if CTX_INCLUDE_EL2_REGS

static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
{
	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
	if (is_feat_amu_supported()) {
		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
	}
	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
}

static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
{
	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
	if (is_feat_amu_supported()) {
		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
	}
	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
}

static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
{
	u_register_t mpam_idr = read_mpamidr_el1();

	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());

	/*
	 * The context registers that we intend to save would be part of the
	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
	 */
	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
		return;
	}

	/*
	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
	 * MPAMIDR_HAS_HCR_BIT == 1.
	 */
	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());

	/*
	 * The number of MPAMVPM registers is implementation defined, their
	 * number is stored in the MPAMIDR_EL1 register.
	 */
	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
	case 7:
		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
		__fallthrough;
	case 6:
		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
		__fallthrough;
	case 5:
		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
		__fallthrough;
	case 4:
		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
		__fallthrough;
	case 3:
		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
		__fallthrough;
	case 2:
		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
		__fallthrough;
	case 1:
		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
		break;
	}
}

static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
{
	u_register_t mpam_idr = read_mpamidr_el1();

	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));

	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
		return;
	}

	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));

	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
	case 7:
		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
		__fallthrough;
	case 6:
		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
		__fallthrough;
	case 5:
		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
		__fallthrough;
	case 4:
		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
		__fallthrough;
	case 3:
		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
		__fallthrough;
	case 2:
		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
		__fallthrough;
	case 1:
		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
		break;
	}
}

/*******************************************************************************
 * Save EL2 sysreg context
 ******************************************************************************/
void cm_el2_sysregs_context_save(uint32_t security_state)
{
	u_register_t scr_el3 = read_scr();

	/*
	 * Always save the non-secure and realm EL2 context, only save the
	 * S-EL2 context if S-EL2 is enabled.
	 */
	if ((security_state != SECURE) ||
	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
		cpu_context_t *ctx;
		el2_sysregs_t *el2_sysregs_ctx;

		ctx = cm_get_context(security_state);
		assert(ctx != NULL);

		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);

		el2_sysregs_context_save_common(el2_sysregs_ctx);
#if CTX_INCLUDE_MTE_REGS
		el2_sysregs_context_save_mte(el2_sysregs_ctx);
#endif
		if (is_feat_mpam_supported()) {
			el2_sysregs_context_save_mpam(el2_sysregs_ctx);
		}

		if (is_feat_fgt_supported()) {
			el2_sysregs_context_save_fgt(el2_sysregs_ctx);
		}

		if (is_feat_ecv_v2_supported()) {
			write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2,
				      read_cntpoff_el2());
		}

		if (is_feat_vhe_supported()) {
			write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2,
				      read_contextidr_el2());
			write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2,
				      read_ttbr1_el2());
		}
#if ENABLE_FEAT_RAS
		el2_sysregs_context_save_ras(el2_sysregs_ctx);
#endif

		if (is_feat_nv2_supported()) {
			write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2,
				      read_vncr_el2());
		}

		if (is_feat_trf_supported()) {
			write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
		}

		if (is_feat_csv2_2_supported()) {
			write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2,
				      read_scxtnum_el2());
		}

		if (is_feat_hcx_supported()) {
			write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
		}
		if (is_feat_tcr2_supported()) {
			write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
		}
		if (is_feat_sxpie_supported()) {
			write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
			write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
		}
		if (is_feat_s2pie_supported()) {
			write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
		}
		if (is_feat_sxpoe_supported()) {
			write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
		}
		if (is_feat_gcs_supported()) {
			write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
			write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
		}
	}
}

/*******************************************************************************
 * Restore EL2 sysreg context
 ******************************************************************************/
void cm_el2_sysregs_context_restore(uint32_t security_state)
{
	u_register_t scr_el3 = read_scr();

	/*
	 * Always restore the non-secure and realm EL2 context, only restore the
	 * S-EL2 context if S-EL2 is enabled.
	 */
	if ((security_state != SECURE) ||
	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
		cpu_context_t *ctx;
		el2_sysregs_t *el2_sysregs_ctx;

		ctx = cm_get_context(security_state);
		assert(ctx != NULL);

		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);

		el2_sysregs_context_restore_common(el2_sysregs_ctx);
#if CTX_INCLUDE_MTE_REGS
		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
#endif
		if (is_feat_mpam_supported()) {
			el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
		}

		if (is_feat_fgt_supported()) {
			el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
		}

		if (is_feat_ecv_v2_supported()) {
			write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx,
						       CTX_CNTPOFF_EL2));
		}

		if (is_feat_vhe_supported()) {
			write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
			write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
		}
#if ENABLE_FEAT_RAS
		el2_sysregs_context_restore_ras(el2_sysregs_ctx);
#endif

		if (is_feat_nv2_supported()) {
			write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
		}
		if (is_feat_trf_supported()) {
			write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
		}

		if (is_feat_csv2_2_supported()) {
			write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx,
						       CTX_SCXTNUM_EL2));
		}

		if (is_feat_hcx_supported()) {
			write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
		}
		if (is_feat_tcr2_supported()) {
			write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
		}
		if (is_feat_sxpie_supported()) {
			write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
			write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
		}
		if (is_feat_s2pie_supported()) {
			write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
		}
		if (is_feat_sxpoe_supported()) {
			write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
		}
		if (is_feat_gcs_supported()) {
			write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
			write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
		}
	}
}
#endif /* CTX_INCLUDE_EL2_REGS */

/*******************************************************************************
 * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
 * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
 * updating EL1 and EL2 registers. Otherwise, it calls the generic
 * cm_prepare_el3_exit function.
 ******************************************************************************/
void cm_prepare_el3_exit_ns(void)
{
#if CTX_INCLUDE_EL2_REGS
	cpu_context_t *ctx = cm_get_context(NON_SECURE);
	assert(ctx != NULL);

	/* Assert that EL2 is used. */
#if ENABLE_ASSERTIONS
	el3_state_t *state = get_el3state_ctx(ctx);
	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
#endif
	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
			(el_implemented(2U) != EL_IMPL_NONE));

	/*
	 * Currently some extensions are configured using
	 * direct register updates. Therefore, do this here
	 * instead of when setting up context.
	 */
	manage_extensions_nonsecure(0, ctx);

	/*
	 * Set the NS bit to be able to access the ICC_SRE_EL2
	 * register when restoring context.
	 */
	write_scr_el3(read_scr_el3() | SCR_NS_BIT);

	/*
	 * Ensure the NS bit change is committed before the EL2/EL1
	 * state restoration.
	 */
	isb();

	/* Restore EL2 and EL1 sysreg contexts */
	cm_el2_sysregs_context_restore(NON_SECURE);
	cm_el1_sysregs_context_restore(NON_SECURE);
	cm_set_next_eret_context(NON_SECURE);
#else
	cm_prepare_el3_exit(NON_SECURE);
#endif /* CTX_INCLUDE_EL2_REGS */
}

/*******************************************************************************
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
	cpu_context_t *ctx;

	ctx = cm_get_context(security_state);
	assert(ctx != NULL);

	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_exited_secure_world);
	else
		PUBLISH_EVENT(cm_exited_normal_world);
#endif
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
	cpu_context_t *ctx;

	ctx = cm_get_context(security_state);
	assert(ctx != NULL);

	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_entering_secure_world);
	else
		PUBLISH_EVENT(cm_entering_normal_world);
#endif
}

/*******************************************************************************
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
 ******************************************************************************/
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
{
	cpu_context_t *ctx;
	el3_state_t *state;

	ctx = cm_get_context(security_state);
	assert(ctx != NULL);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

/*******************************************************************************
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
 ******************************************************************************/
void cm_set_elr_spsr_el3(uint32_t security_state,
			uintptr_t entrypoint, uint32_t spsr)
{
	cpu_context_t *ctx;
	el3_state_t *state;

	ctx = cm_get_context(security_state);
	assert(ctx != NULL);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
}

/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
	u_register_t scr_el3;

	ctx = cm_get_context(security_state);
	assert(ctx != NULL);

	/* Ensure that the bit position is a valid one */
	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);

	/* Ensure that the 'value' is only a bit wide */
	assert(value <= 1U);

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
	scr_el3 &= ~(1UL << bit_pos);
	scr_el3 |= (u_register_t)value << bit_pos;
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
u_register_t cm_get_scr_el3(uint32_t security_state)
{
	cpu_context_t *ctx;
	el3_state_t *state;

	ctx = cm_get_context(security_state);
	assert(ctx != NULL);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	return read_ctx_reg(state, CTX_SCR_EL3);
}

/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
	cpu_context_t *ctx;

	ctx = cm_get_context(security_state);
	assert(ctx != NULL);

	cm_set_next_context(ctx);
}