summaryrefslogtreecommitdiff
path: root/drivers/brcm/emmc/emmc_chal_sd.c
blob: 34d761c73079bfbcaeaa2302792ad2facea1af17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
/*
 * Copyright (c) 2016 - 2020, Broadcom
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <assert.h>
#include <string.h>

#include <lib/mmio.h>

#include <platform_def.h>

#include "bcm_emmc.h"
#include "emmc_chal_types.h"
#include "emmc_chal_sd.h"
#include "emmc_pboot_hal_memory_drv.h"

extern void emmc_soft_reset(void);

#define SD_VDD_WINDOW_1_6_TO_1_7        0x00000010	// 1.6 V to 1.7 Volts
#define SD_VDD_WINDOW_1_7_TO_1_8        0x00000020	// 1.7 V to 1.8 Volts
#define SD_VDD_WINDOW_1_8_TO_1_9        0x00000040	// 1.8 V to 1.9 Volts
#define SD_VDD_WINDOW_1_9_TO_2_0        0x00000080	// 1.9 V to 2.0 Volts
#define SD_VDD_WINDOW_2_0_TO_2_1        0x00000100	// 2.0 V to 2.1 Volts
#define SD_VDD_WINDOW_2_1_TO_2_2        0x00000200	// 2.1 V to 2.2 Volts
#define SD_VDD_WINDOW_2_2_TO_2_3        0x00000400	// 2.2 V to 2.3 Volts
#define SD_VDD_WINDOW_2_3_TO_2_4        0x00000800	// 2.3 V to 2.4 Volts
#define SD_VDD_WINDOW_2_4_TO_2_5        0x00001000	// 2.4 V to 2.5 Volts
#define SD_VDD_WINDOW_2_5_TO_2_6        0x00002000	// 2.5 V to 2.6 Volts
#define SD_VDD_WINDOW_2_6_TO_2_7        0x00004000	// 2.6 V to 2.7 Volts
#define SD_VDD_WINDOW_2_7_TO_2_8        0x00008000	// 2.7 V to 2.8 Volts
#define SD_VDD_WINDOW_2_8_TO_2_9        0x00010000	// 2.8 V to 2.9 Volts
#define SD_VDD_WINDOW_2_9_TO_3_0        0x00020000	// 2.9 V to 3.0 Volts
#define SD_VDD_WINDOW_3_0_TO_3_1        0x00040000	// 3.0 V to 3.1 Volts
#define SD_VDD_WINDOW_3_1_TO_3_2        0x00080000	// 3.1 V to 3.2 Volts
#define SD_VDD_WINDOW_3_2_TO_3_3        0x00100000	// 3.2 V to 3.3 Volts
#define SD_VDD_WINDOW_3_3_TO_3_4        0x00200000	// 3.3 V to 3.4 Volts
#define SD_VDD_WINDOW_3_4_TO_3_5        0x00400000	// 3.4 V to 3.5 Volts
#define SD_VDD_WINDOW_3_5_TO_3_6        0x00800000	// 3.5 V to 3.6 Volts

#define SD_VDD_WINDOW_1_6_TO_2_6        (SD_VDD_WINDOW_1_6_TO_1_7 |	\
					 SD_VDD_WINDOW_1_7_TO_1_8 |	\
					 SD_VDD_WINDOW_1_8_TO_1_9 |	\
					 SD_VDD_WINDOW_1_9_TO_2_0 |	\
					 SD_VDD_WINDOW_2_0_TO_2_1 |	\
					 SD_VDD_WINDOW_2_1_TO_2_2 |	\
					 SD_VDD_WINDOW_2_2_TO_2_3 |	\
					 SD_VDD_WINDOW_2_3_TO_2_4 |	\
					 SD_VDD_WINDOW_2_4_TO_2_5 |	\
					 SD_VDD_WINDOW_2_5_TO_2_6)

#define SD_VDD_WINDOW_2_6_TO_3_2        (SD_VDD_WINDOW_2_6_TO_2_7 |	\
					 SD_VDD_WINDOW_2_7_TO_2_8 |	\
					 SD_VDD_WINDOW_2_8_TO_2_9 |	\
					 SD_VDD_WINDOW_2_9_TO_3_0 |	\
					 SD_VDD_WINDOW_3_0_TO_3_1 |	\
					 SD_VDD_WINDOW_3_1_TO_3_2)

#define SD_VDD_WINDOW_3_2_TO_3_6        (SD_VDD_WINDOW_3_2_TO_3_3 |	\
					 SD_VDD_WINDOW_3_3_TO_3_4 |	\
					 SD_VDD_WINDOW_3_4_TO_3_5 |	\
					 SD_VDD_WINDOW_3_5_TO_3_6)


static int32_t chal_sd_set_power(struct sd_dev *handle,
				 uint32_t voltage, uint32_t state);

static void chal_sd_set_dma_boundary(struct sd_dev *handle, uint32_t boundary);

static int32_t chal_sd_setup_handler(struct sd_dev *handle,
				     uint32_t sdBbase, uint32_t hostBase);

/*
 * Configure host controller pwr settings,
 * to match voltage requirements by SD Card
 */
static int32_t chal_sd_set_power(struct sd_dev *handle,
				 uint32_t voltage, uint32_t state)
{
	int32_t rc, rval = SD_FAIL;
	uint32_t time = 0;

	if (handle == NULL)
		return SD_INVALID_HANDLE;

	mmio_clrsetbits_32(handle->ctrl.sdRegBaseAddr +
			   SD4_EMMC_TOP_CTRL_OFFSET,
			   (SD4_EMMC_TOP_CTRL_SDVSELVDD1_MASK |
			    SD4_EMMC_TOP_CTRL_SDPWR_MASK),
			   (voltage << 9));

	/*
	 * Long delay is required here in emulation.  Without this, the initial
	 * commands sent to the eMMC card timeout.  We don't know if this
	 * delay is necessary with silicon, leaving in for safety.
	 * It is observed that 403ms on emulation system and as per the clock
	 * calculations it is expected to complete with in 1ms on chip
	 */
	do {
		rc =  mmio_read_32(handle->ctrl.sdRegBaseAddr +
				   SD4_EMMC_TOP_INTR_OFFSET);

		if ((rc & SD4_EMMC_TOP_INTR_CRDINS_MASK) ==
				SD4_EMMC_TOP_INTR_CRDINS_MASK)
			break;

		mdelay(1);
	} while (time++ < EMMC_CARD_DETECT_TIMEOUT_MS);

	if (time >= EMMC_CARD_DETECT_TIMEOUT_MS) {
		ERROR("EMMC: Card insert event detection timeout\n");
		return rval;
	}

	VERBOSE("EMMC: Card detection delay: %dms\n", time);

	if (state)
		mmio_setbits_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL_OFFSET,
				SD4_EMMC_TOP_CTRL_SDPWR_MASK);

	/* dummy write & ack to verify if the sdio is ready to send commads */
	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_ARG_OFFSET, 0);
	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CMD_OFFSET, 0);

	/*
	 * 63ms observed on emulation system, As per clock calculations
	 * it will complete  < 1ms on chip.
	 */
	time = 0;
	do {
		rc = mmio_read_32(handle->ctrl.sdRegBaseAddr +
				  SD4_EMMC_TOP_INTR_OFFSET);

		if (rc & SD4_EMMC_TOP_INTR_ERRIRQ_MASK)
			break;

		if ((rc & SD4_EMMC_TOP_INTR_CMDDONE_MASK) ==
				SD4_EMMC_TOP_INTR_CMDDONE_MASK)
			break;

		mdelay(1);
	} while (time++ < EMMC_CMD_TIMEOUT_MS);

	if (time >= EMMC_CMD_TIMEOUT_MS) {
		WARN("%s %d Initial dummy command timeout is happened\n",
		      __func__, __LINE__);
		return rval;
	}

	VERBOSE("EMMC: Dummy Command delay: %dms\n", time);

	return SD_OK;
}

/*
 * Configure DMA Boundaries
 */
static void chal_sd_set_dma_boundary(struct sd_dev *handle, uint32_t boundary)
{
	if (handle == NULL)
		return;

	mmio_clrsetbits_32(handle->ctrl.sdRegBaseAddr +
			   SD4_EMMC_TOP_BLOCK_OFFSET,
			   SD4_EMMC_TOP_BLOCK_HSBS_MASK, boundary);
}

static int32_t chal_sd_setup_handler(struct sd_dev *handle, uint32_t sdBase,
				     uint32_t hostBase)
{
	if (handle == NULL)
		return SD_INVALID_HANDLE;

	handle->ctrl.sdRegBaseAddr = sdBase;
	handle->ctrl.hostRegBaseAddr = hostBase;
	handle->ctrl.present = 0;
	handle->ctrl.rca = 0;
	handle->ctrl.blkGapEnable = 0;
	handle->ctrl.cmdStatus = 0;

	return SD_OK;
}

/*
 * Initialize SD Host controller
 */
int32_t chal_sd_init(CHAL_HANDLE *sd_handle)
{
	uint32_t cap_val_l = 0;
	uint32_t ctl_val, voltage;
	uint32_t timeout_val;
	struct sd_dev *handle;
	uint32_t reg_val;
	int32_t rval = SD_FAIL;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *)sd_handle;

	/*
	 * Set SDIO Host Controller capabilities register
	 */
	EMMC_TRACE("Set Host Controller Capabilities register\n");

	reg_val = 0;
	reg_val |= (1 << ICFG_SDIO0_CAP0__SLOT_TYPE_R);
	reg_val |= (0 << ICFG_SDIO0_CAP0__INT_MODE_R);
	reg_val |= (0 << ICFG_SDIO0_CAP0__SYS_BUS_64BIT_R);
	reg_val |= (1 << ICFG_SDIO0_CAP0__VOLTAGE_1P8V_R);
	reg_val |= (1 << ICFG_SDIO0_CAP0__VOLTAGE_3P0V_R);
	reg_val |= (1 << ICFG_SDIO0_CAP0__VOLTAGE_3P3V_R);
	reg_val |= (1 << ICFG_SDIO0_CAP0__SUSPEND_RESUME_R);
	reg_val |= (1 << ICFG_SDIO0_CAP0__SDMA_R);
	reg_val |= (1 << ICFG_SDIO0_CAP0__HIGH_SPEED_R);
	reg_val |= (1 << ICFG_SDIO0_CAP0__ADMA2_R);
	reg_val |= (1 << ICFG_SDIO0_CAP0__EXTENDED_MEDIA_R);
	reg_val |= (2 << ICFG_SDIO0_CAP0__MAX_BLOCK_LEN_R);
	reg_val |= (0xd0 << ICFG_SDIO0_CAP0__BASE_CLK_FREQ_R);
	reg_val |= (1 << ICFG_SDIO0_CAP0__TIMEOUT_UNIT_R);
	reg_val |= (0x30 << ICFG_SDIO0_CAP0__TIMEOUT_CLK_FREQ_R);

	mmio_write_32(ICFG_SDIO0_CAP0, reg_val);

	reg_val = 0;
	reg_val |= (1 << ICFG_SDIO0_CAP1__SPI_BLOCK_MODE_R);
	reg_val |= (1 << ICFG_SDIO0_CAP1__SPI_MODE_R);
	reg_val |= (0 << ICFG_SDIO0_CAP1__CLK_MULT_R);
	reg_val |= (0 << ICFG_SDIO0_CAP1__RETUNING_MODE_R);
	reg_val |= (1 << ICFG_SDIO0_CAP1__TUNE_SDR50_R);
	reg_val |= (1 << ICFG_SDIO0_CAP1__TIME_RETUNE_R);
	reg_val |= (1 << ICFG_SDIO0_CAP1__DRIVER_D_R);
	reg_val |= (1 << ICFG_SDIO0_CAP1__DRIVER_C_R);
	reg_val |= (1 << ICFG_SDIO0_CAP1__DRIVER_A_R);
	reg_val |= (1 << ICFG_SDIO0_CAP1__DDR50_R);
	reg_val |= (1 << ICFG_SDIO0_CAP1__SDR104_R);
	reg_val |= (1 << ICFG_SDIO0_CAP1__SDR50_R);

	mmio_write_32(ICFG_SDIO0_CAP1, reg_val);

	/* Reset the SDIO controller */
	chal_sd_stop();

	/* Turn on SD clock */
	chal_sd_set_clock(sd_handle,
			  chal_sd_freq_2_div_ctrl_setting(INIT_CLK_FREQ), 1);

	/* program data time out value to the max */
	timeout_val = SD_HOST_CORE_TIMEOUT;

	ctl_val = mmio_read_32(handle->ctrl.sdRegBaseAddr +
			       SD4_EMMC_TOP_CTRL1_OFFSET);
	ctl_val |= ((timeout_val & 0xf) << SD4_EMMC_TOP_CTRL1_DTCNT_SHIFT);

	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL1_OFFSET,
		      ctl_val);

	/* enable all interrupt status */
	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_INTREN1_OFFSET,
		      0);
	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_INTREN2_OFFSET,
		      0);

	SD_US_DELAY(100);

	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_INTREN1_OFFSET,
		      SD_NOR_INTERRUPTS | SD_ERR_INTERRUPTS);
	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_INTREN2_OFFSET,
		      SD_NOR_INTERRUPTS | SD_ERR_INTERRUPTS);

	/* Select SD bus voltage */
	cap_val_l = mmio_read_32(handle->ctrl.sdRegBaseAddr +
				 SD4_EMMC_TOP_CAPABILITIES1_OFFSET);
	handle->cfg.voltage = 0;
	voltage = 0x7;

	if (cap_val_l & SD4_EMMC_TOP_CAPABILITIES1_V33_MASK) {
		handle->cfg.voltage |= SD_VDD_WINDOW_3_3_TO_3_4;
		voltage = 0x7;
	} else if (cap_val_l & SD4_EMMC_TOP_CAPABILITIES1_V3_MASK) {
		handle->cfg.voltage |= SD_VDD_WINDOW_3_0_TO_3_1;
		voltage = 0x6;
	} else if (cap_val_l & SD4_EMMC_TOP_CAPABILITIES1_V18_MASK) {
		handle->cfg.voltage |= SD_VDD_WINDOW_1_8_TO_1_9;
		voltage = 0x5;
	}

	rval = chal_sd_set_power(handle, voltage, SD4_EMMC_TOP_CTRL_SDPWR_MASK);

	ctl_val = mmio_read_32(handle->ctrl.sdRegBaseAddr +
			       SD4_EMMC_TOP_HCVERSIRQ_OFFSET);
	handle->ctrl.version = ((ctl_val >> 16) & 0xFF);

	return rval;
}

void chal_sd_set_speed(CHAL_HANDLE *sd_handle, uint32_t speed)
{
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return;

	handle = (struct sd_dev *) sd_handle;

	if (speed) {
		EMMC_TRACE("enable HighSpeed\n");
		mmio_setbits_32(handle->ctrl.sdRegBaseAddr +
				SD4_EMMC_TOP_CTRL_OFFSET,
				SD4_EMMC_TOP_CTRL_HSEN_MASK);
	} else {
		EMMC_TRACE("disable HighSpeed\n");
		mmio_clrbits_32(handle->ctrl.sdRegBaseAddr +
				SD4_EMMC_TOP_CTRL_OFFSET,
				SD4_EMMC_TOP_CTRL_HSEN_MASK);
	}
}

int32_t chal_sd_stop(void)
{
	uintptr_t idm_rst_ctrl_addr = EMMC_IDM_RESET_CTRL_ADDR;

	/* Configure IO pins */
	emmc_soft_reset();

	/* Reset the SDIO controller */
	mmio_write_32(idm_rst_ctrl_addr, 1);
	SD_US_DELAY(100);
	mmio_write_32(idm_rst_ctrl_addr, 0);
	SD_US_DELAY(100);

	return SD_OK;
}

/*
 * Check if host supports specified capability
 * returns -ve val on error, 0 if capability not supported else 1.
 */
int32_t chal_sd_check_cap(CHAL_HANDLE *sd_handle, uint32_t caps)
{
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	if (caps & mmio_read_32(handle->ctrl.sdRegBaseAddr +
				SD4_EMMC_TOP_CAPABILITIES1_OFFSET))
		return 1;
	else
		return 0;
}

int32_t chal_sd_start(CHAL_HANDLE *sd_handle,
		      uint32_t mode, uint32_t sd_base, uint32_t host_base)
{

	struct sd_dev *handle;
	int32_t rval = SD_FAIL;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	handle->cfg.mode = SD_PIO_MODE;	/* set to PIO mode first for init */
	handle->cfg.dma = SD_DMA_OFF;

	chal_sd_setup_handler(handle, sd_base, host_base);

	/* init and start hw */
	rval = chal_sd_init(sd_handle);
	if (rval != SD_OK)
		return rval;

	chal_sd_clear_pending_irq(sd_handle);

	handle->ctrl.eventList = 0;
	handle->cfg.mode = mode;

	return SD_OK;
}

/*
 * Function to check 8bits of err generated from auto CMD12
 */
int32_t chal_sd_get_atuo12_error(CHAL_HANDLE *sd_handle)
{
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	return (mmio_read_32(handle->ctrl.sdRegBaseAddr +
			     SD4_EMMC_TOP_ERRSTAT_OFFSET) & 0xFF);
}

/*
 * Read present state register
 */
uint32_t chal_sd_get_present_status(CHAL_HANDLE *sd_handle)
{
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	return mmio_read_32(handle->ctrl.sdRegBaseAddr +
			    SD4_EMMC_TOP_PSTATE_OFFSET);
}

/*
 * Set SD bus width
 */
int32_t chal_sd_config_bus_width(CHAL_HANDLE *sd_handle, int32_t width)
{
	uint32_t ctl_val;
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *)sd_handle;

	ctl_val = mmio_read_32(handle->ctrl.sdRegBaseAddr +
			       SD4_EMMC_TOP_CTRL_OFFSET);

	switch (width) {
#ifdef DRIVER_EMMC_ENABLE_DATA_WIDTH_8BIT
	case SD_BUS_DATA_WIDTH_8BIT:
		ctl_val &= ~SD_BUS_DATA_WIDTH_4BIT;
		ctl_val |= SD_BUS_DATA_WIDTH_8BIT;
		break;
#endif
	case SD_BUS_DATA_WIDTH_4BIT:
		ctl_val &= ~SD_BUS_DATA_WIDTH_8BIT;
		ctl_val |= SD_BUS_DATA_WIDTH_4BIT;
		break;
	case SD_BUS_DATA_WIDTH_1BIT:
		ctl_val &= ~(SD_BUS_DATA_WIDTH_4BIT | SD_BUS_DATA_WIDTH_8BIT);
		break;
	default:
		return SD_INV_DATA_WIDTH;
	};

	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL_OFFSET,
		      ctl_val);

	return SD_OK;
}

/*
 * Function to enable or disable DMA control.
 */
int32_t chal_sd_set_dma(CHAL_HANDLE *sd_handle, uint32_t mode)
{
	uint32_t val;
	struct sd_dev *handle;
	int32_t rc;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *)sd_handle;

	if (mode) {
		rc = chal_sd_check_cap(sd_handle,
				       SD4_EMMC_TOP_CAPABILITIES1_SDMA_MASK |
				       SD4_EMMC_TOP_CAPABILITIES1_ADMA2_MASK);
		if (rc < 0)
			return rc;

		if (rc) {

			handle->cfg.dma = mode;
			val = mmio_read_32(handle->ctrl.sdRegBaseAddr +
					   SD4_EMMC_TOP_CTRL_OFFSET);
			val &= ~(SD4_EMMC_TOP_CTRL_DMASEL_MASK);
			val |= handle->cfg.dma - 1;
			mmio_write_32(handle->ctrl.sdRegBaseAddr +
				      SD4_EMMC_TOP_CTRL_OFFSET, val);
			return SD_OK;
		}
	}
	handle->cfg.dma = 0;

	return SD_FAIL;
}

/*
 * Get current DMA address.
 * Called only when there is no data transaction activity.
 */
uintptr_t chal_sd_get_dma_addr(CHAL_HANDLE *sd_handle)
{
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	if (handle->cfg.dma == SD_DMA_OFF)
		return 0;

	return (uintptr_t)mmio_read_32(handle->ctrl.sdRegBaseAddr +
				       SD4_EMMC_TOP_SYSADDR_OFFSET);
}

int32_t chal_sd_send_cmd(CHAL_HANDLE *sd_handle, uint32_t cmd_idx,
			 uint32_t argument, uint32_t options)
{
	uint32_t cmd_mode_reg = 0;
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	EMMC_TRACE("%s %d cmd:%d argReg:%x options:%x\n",
		   __func__, __LINE__, cmd_idx, argument, options);

	/* Configure the value for command and mode registers */
	cmd_mode_reg = (cmd_idx << 24) | options;

	/*
	 * 1. Write block size reg & block count reg,
	 * this is done in the tx or rx setup
	 */
	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_BLOCK_OFFSET,
		      handle->ctrl.blkReg);

	/* 2. Write argument reg */
	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_ARG_OFFSET,
		      argument);
	handle->ctrl.argReg = argument;

	/*
	 * 3. Write transfer mode reg & command reg, check the DMA bit which is
	 *    set before this function call if it is selected.
	 */
	if (cmd_idx == 24 || cmd_idx == 25 || cmd_idx == 18 || cmd_idx == 17 ||
	    cmd_idx == 42 || cmd_idx == 51 || cmd_idx == 53)
		cmd_mode_reg |= ((handle->cfg.dma) ? 1 : 0);

	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CMD_OFFSET,
		      cmd_mode_reg);

	handle->ctrl.cmdIndex = cmd_idx;

	return SD_OK;
}

int32_t chal_sd_set_dma_addr(CHAL_HANDLE *sd_handle, uintptr_t address)
{
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	if (handle->cfg.dma == SD_DMA_OFF)
		return SD_FAIL;

	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_SYSADDR_OFFSET,
		      address);
	return SD_OK;
}

uint32_t chal_sd_freq_2_div_ctrl_setting(uint32_t desired_freq)
{
	/*
	 * Divider control setting represents 1/2 of the actual divider value.
	 *
	 * DesiredFreq = BaseClockFreq / (2 * div_ctrl_setting)
	 *
	 * ==> div_ctrl_setting = BaseClockFreq / (2 * DesiredFreq)
	 */
	uint32_t div_ctrl_setting;
	uint32_t actual_freq;

	assert(desired_freq != 0);

	/* Special case, 0 = divider of 1. */
	if (desired_freq >= BASE_CLK_FREQ)
		return 0;

	/* Normal case, desired_freq < BASE_CLK_FREQ */
	div_ctrl_setting = BASE_CLK_FREQ / (2 * desired_freq);

	actual_freq = BASE_CLK_FREQ / (2 * div_ctrl_setting);

	if (actual_freq > desired_freq) {
		/*
		 * Division does not result in exact freqency match.
		 * Make sure resulting frequency does not exceed requested freq.
		 */
		div_ctrl_setting++;
	}

	return div_ctrl_setting;
}

int32_t chal_sd_set_clock(CHAL_HANDLE *sd_handle, uint32_t div_ctrl_setting,
			  uint32_t on)
{
	uint32_t value;
	struct sd_dev *handle;
	uint32_t time;
	uint32_t clk_sel_high_byte = 0xFF & (div_ctrl_setting >> 8);
	uint32_t clk_sel_low_byte = 0xFF & div_ctrl_setting;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	EMMC_TRACE("set_clock(div_ctrl_setting=%d,on=%d)\n",
		   div_ctrl_setting, on);

	handle = (struct sd_dev *) sd_handle;

	/* Read control register content. */
	value = mmio_read_32(handle->ctrl.sdRegBaseAddr +
			     SD4_EMMC_TOP_CTRL1_OFFSET);

	/* Disable Clock */
	value &= ~(SD4_EMMC_TOP_CTRL1_SDCLKEN_MASK);

	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL1_OFFSET,
		      value);

	/* Clear bits of interest. */
	value &= ~(SD4_EMMC_TOP_CTRL1_SDCLKSEL_MASK |
		   SD4_EMMC_TOP_CTRL1_SDCLKSEL_UP_MASK);

	/* Set bits of interest to new value. */
	value |= (SD4_EMMC_TOP_CTRL1_SDCLKSEL_MASK &
		  (clk_sel_low_byte << SD4_EMMC_TOP_CTRL1_SDCLKSEL_SHIFT));
	value |= (SD4_EMMC_TOP_CTRL1_SDCLKSEL_UP_MASK &
		  (clk_sel_high_byte << SD4_EMMC_TOP_CTRL1_SDCLKSEL_UP_SHIFT));
	value |= SD4_EMMC_TOP_CTRL1_ICLKEN_MASK;

	/* Write updated value back to control register. */
	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL1_OFFSET,
		      value);

	time = 0;
	do {
		value = mmio_read_32(handle->ctrl.sdRegBaseAddr +
				     SD4_EMMC_TOP_CTRL1_OFFSET);

		if ((value & SD4_EMMC_TOP_CTRL1_ICLKSTB_MASK) ==
				SD4_EMMC_TOP_CTRL1_ICLKSTB_MASK)
			break;

		mdelay(1);
	} while (time++ < EMMC_CLOCK_SETTING_TIMEOUT_MS);

	if (time >= EMMC_CLOCK_SETTING_TIMEOUT_MS)
		WARN("%s %d clock settings timeout happenedi (%dms)\n",
			 __func__, __LINE__, time);

	VERBOSE("EMMC: clock settings delay: %dms\n", time);

	value = mmio_read_32(handle->ctrl.sdRegBaseAddr +
			     SD4_EMMC_TOP_CTRL1_OFFSET);

	if (on)
		value |= SD4_EMMC_TOP_CTRL1_SDCLKEN_MASK;

	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL1_OFFSET,
		      value);

	return SD_OK;
}

/*
 * function to setup DMA buffer and data length, calculates block
 * size and the number of blocks to be transferred and return
 * the DMA buffer address.
 */
int32_t chal_sd_setup_xfer(CHAL_HANDLE *sd_handle,
			   uint8_t *data, uint32_t length, int32_t dir)
{
	uint32_t blocks = 0;
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	if (length <= handle->cfg.blockSize) {
		handle->ctrl.blkReg = length | handle->cfg.dmaBoundary;
	} else {
		blocks = length / handle->cfg.blockSize;
		handle->ctrl.blkReg = (blocks << 16) | handle->cfg.blockSize |
					handle->cfg.dmaBoundary;
	}

	if (handle->cfg.dma != SD_DMA_OFF) {
		/* For DMA target address setting, physical address should be used */
		mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_SYSADDR_OFFSET,
				(uintptr_t)data);
	}

	return SD_OK;
}

#ifdef INCLUDE_EMMC_DRIVER_WRITE_CODE
/*
 * function to write one block data directly to the
 * host controller's FIFO which is 1K uint8_t or
 * 2K uint8_t in size.
 * It is used in Non-DMA mode for data transmission.
 */
int32_t chal_sd_write_buffer(CHAL_HANDLE *sd_handle, uint32_t length,
			     uint8_t *data)
{
	uint32_t i, leftOver = 0, blockSize, size, value = 0;
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	blockSize = handle->cfg.blockSize;

	if (length == 0)
		return SD_OK;

	/* PIO mode, push into fifo word by word */
	if (length >= blockSize) {
		size = blockSize;
	} else {
		size = ((length >> 2) << 2);
		leftOver = length % 4;
	}

	for (i = 0; i < size; i += 4) {
		value = *(uint32_t *)(data + i);
		mmio_write_32(handle->ctrl.sdRegBaseAddr +
			      SD4_EMMC_TOP_BUFDAT_OFFSET, value);
	}
/*
 * BUG ALERT:
 *    This implementation has TWO issues that must be addressed before you
 *    can safely INCLUDE_EMMC_DRIVER_WRITE_CODE.
 *
 *    (1) For the last leftOver bytes, driver writes full word, which means
 *        some of the eMMC content (i.e. "4 - leftOver" will be erroneously
 *        overwritten).
 *    (2) eMMC is a block device. What happens when less than a full block of
 *        data is submitted???
 */
	if (leftOver > 0) {
		value = ((*(uint32_t *)(data + i)) << (4 - leftOver));
		mmio_write_32(handle->ctrl.sdRegBaseAddr +
			      SD4_EMMC_TOP_BUFDAT_OFFSET, value);
	}

	return SD_OK;
}
#endif /* INCLUDE_EMMC_DRIVER_WRITE_CODE */

/*
 * Function to read maximal one block data directly
 * from the data port of the host controller (FIFO). It is used
 * in Non-DMA mode for data transmission.
 */
int32_t chal_sd_read_buffer(CHAL_HANDLE *sd_handle, uint32_t length,
			    uint8_t *data)
{
	uint32_t i, size, leftOver, blockSize, value;
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *)sd_handle;

	value = 0;

	blockSize = handle->cfg.blockSize;

	/* PIO mode, extract fifo word by word */
	if (length >= blockSize) {
		size = blockSize;
		leftOver = 0;
	} else {
		leftOver = length % 4;
		size = ((length >> 2) << 2);
	}

	for (i = 0; i < size; i += 4) {
		value =
		    mmio_read_32(handle->ctrl.sdRegBaseAddr +
				    SD4_EMMC_TOP_BUFDAT_OFFSET);
		memcpy((void *)(data + i), &value, sizeof(uint32_t));
	}

	if (leftOver > 0) {
		value = mmio_read_32(handle->ctrl.sdRegBaseAddr +
				     SD4_EMMC_TOP_BUFDAT_OFFSET);

		/*
		 * Copy remaining non-full word bytes.
		 * (We run ARM as Little Endian)
		 */
		uint8_t j = 0;

		for (j = 0; j < leftOver; j++) {
			data[i + j] = (value >> (j * 8)) & 0xFF;
		}
	}

	return SD_OK;
}

/*
 * Resets both DAT or CMD line.
 */
int32_t chal_sd_reset_line(CHAL_HANDLE *sd_handle, uint32_t line)
{
	uint32_t control, flag;
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	flag = SD4_EMMC_TOP_CTRL1_CMDRST_MASK | SD4_EMMC_TOP_CTRL1_DATRST_MASK;

	if (flag != (line | flag))
		return SD_FAIL;

	control = mmio_read_32(handle->ctrl.sdRegBaseAddr +
			       SD4_EMMC_TOP_CTRL1_OFFSET);
	control |= line;
	mmio_write_32(handle->ctrl.sdRegBaseAddr + SD4_EMMC_TOP_CTRL1_OFFSET,
		      control);

	/* reset CMD and DATA line should always work, no need to timed out */
	do {
		control = mmio_read_32(handle->ctrl.sdRegBaseAddr +
				       SD4_EMMC_TOP_CTRL1_OFFSET);
	} while (control & line);

	return SD_OK;
}

/*
 * Function to be called once a SD command is done to read
 * back it's response data.
 */
int32_t chal_sd_get_response(CHAL_HANDLE *sd_handle, uint32_t *resp)
{
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;
	resp[0] = mmio_read_32(handle->ctrl.sdRegBaseAddr +
			       SD4_EMMC_TOP_RESP0_OFFSET);
	resp[1] = mmio_read_32(handle->ctrl.sdRegBaseAddr +
			       SD4_EMMC_TOP_RESP2_OFFSET);
	resp[2] = mmio_read_32(handle->ctrl.sdRegBaseAddr +
			       SD4_EMMC_TOP_RESP4_OFFSET);
	resp[3] = mmio_read_32(handle->ctrl.sdRegBaseAddr +
			       SD4_EMMC_TOP_RESP6_OFFSET);

	return SD_OK;
}

/*
 * The function is called to clean all the pending interrupts.
 */
int32_t chal_sd_clear_pending_irq(CHAL_HANDLE *sd_handle)
{
	uint32_t status = SD_OK;
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *)sd_handle;

	/* Make sure clean all interrupts */
	do {
		mmio_write_32(handle->ctrl.sdRegBaseAddr +
			      SD4_EMMC_TOP_INTR_OFFSET, 0xFFFFFFFF);
		SD_US_DELAY(10);
	} while (mmio_read_32(handle->ctrl.sdRegBaseAddr +
			      SD4_EMMC_TOP_INTR_OFFSET));

	return status;
}

/*
 * The function returns interrupt status register value.
 */
int32_t chal_sd_get_irq_status(CHAL_HANDLE *sd_handle)
{
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	return (mmio_read_32(handle->ctrl.sdRegBaseAddr +
			     SD4_EMMC_TOP_INTR_OFFSET));
}

/*
 * The function clears interrupt(s) specified in the mask.
 */
int32_t chal_sd_clear_irq(CHAL_HANDLE *sd_handle, uint32_t mask)
{
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	/* Make sure clean masked interrupts */
	do {
		mmio_write_32(handle->ctrl.sdRegBaseAddr +
			      SD4_EMMC_TOP_INTR_OFFSET, mask);
		SD_US_DELAY(10);
	} while (mask &
		 mmio_read_32(handle->ctrl.sdRegBaseAddr +
			      SD4_EMMC_TOP_INTR_OFFSET));

	return SD_OK;
}

/*
 * Description: The function configures the SD host controller.
 */
int32_t chal_sd_config(CHAL_HANDLE *sd_handle, uint32_t speed, uint32_t retry,
		       uint32_t boundary, uint32_t blkSize, uint32_t dma)
{
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return SD_INVALID_HANDLE;

	handle = (struct sd_dev *) sd_handle;

	handle->cfg.speedMode = speed;
	handle->cfg.retryLimit = retry;
	handle->cfg.dmaBoundary = boundary;
	handle->cfg.blockSize = blkSize;

	chal_sd_set_dma(sd_handle, dma);
	SD_US_DELAY(100);
	chal_sd_set_dma_boundary(handle, boundary);
	SD_US_DELAY(100);

	chal_sd_set_speed(sd_handle, speed);

	SD_US_DELAY(100);
	return SD_OK;
}

/*
 * Cleans up HC FIFO.
 */
void chal_sd_dump_fifo(CHAL_HANDLE *sd_handle)
{
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return;

	handle = (struct sd_dev *)sd_handle;

	/* in case there still data in the host buffer */
	while (mmio_read_32(handle->ctrl.sdRegBaseAddr +
			    SD4_EMMC_TOP_PSTATE_OFFSET) & 0x800) {
		mmio_read_32(handle->ctrl.sdRegBaseAddr +
			     SD4_EMMC_TOP_BUFDAT_OFFSET);
	};
}

/*
 * Enable or disable a SD interrupt signal.
 */
void chal_sd_set_irq_signal(CHAL_HANDLE *sd_handle, uint32_t mask,
			    uint32_t state)
{
	struct sd_dev *handle;

	if (sd_handle == NULL)
		return;

	handle = (struct sd_dev *)sd_handle;

	if (state)
		mmio_setbits_32(handle->ctrl.sdRegBaseAddr +
				SD4_EMMC_TOP_INTREN2_OFFSET, mask);
	else
		mmio_clrbits_32(handle->ctrl.sdRegBaseAddr +
				SD4_EMMC_TOP_INTREN2_OFFSET, mask);
}