summaryrefslogtreecommitdiff
path: root/lib/scudo/standalone/combined.h
blob: b2dc25f78b5944c4c797dd8b0d7b36c54ccebe7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
//===-- combined.h ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef SCUDO_COMBINED_H_
#define SCUDO_COMBINED_H_

#include "chunk.h"
#include "common.h"
#include "flags.h"
#include "flags_parser.h"
#include "interface.h"
#include "local_cache.h"
#include "quarantine.h"
#include "report.h"
#include "secondary.h"
#include "tsd.h"

namespace scudo {

template <class Params> class Allocator {
public:
  using PrimaryT = typename Params::Primary;
  using CacheT = typename PrimaryT::CacheT;
  typedef Allocator<Params> ThisT;
  typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT;

  struct QuarantineCallback {
    explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
        : Allocator(Instance), Cache(LocalCache) {}

    // Chunk recycling function, returns a quarantined chunk to the backend,
    // first making sure it hasn't been tampered with.
    void recycle(void *Ptr) {
      Chunk::UnpackedHeader Header;
      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
      if (UNLIKELY(Header.State != Chunk::State::Quarantined))
        reportInvalidChunkState(AllocatorAction::Recycling, Ptr);

      Chunk::UnpackedHeader NewHeader = Header;
      NewHeader.State = Chunk::State::Available;
      Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);

      void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader);
      const uptr ClassId = NewHeader.ClassId;
      if (LIKELY(ClassId))
        Cache.deallocate(ClassId, BlockBegin);
      else
        Allocator.Secondary.deallocate(BlockBegin);
    }

    // We take a shortcut when allocating a quarantine batch by working with the
    // appropriate class ID instead of using Size. The compiler should optimize
    // the class ID computation and work with the associated cache directly.
    void *allocate(UNUSED uptr Size) {
      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
      void *Ptr = Cache.allocate(QuarantineClassId);
      // Quarantine batch allocation failure is fatal.
      if (UNLIKELY(!Ptr))
        reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));

      Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
                                     Chunk::getHeaderSize());
      Chunk::UnpackedHeader Header = {};
      Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
      Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
      Header.State = Chunk::State::Allocated;
      Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);

      return Ptr;
    }

    void deallocate(void *Ptr) {
      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
      Chunk::UnpackedHeader Header;
      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);

      if (UNLIKELY(Header.State != Chunk::State::Allocated))
        reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
      DCHECK_EQ(Header.ClassId, QuarantineClassId);
      DCHECK_EQ(Header.Offset, 0);
      DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));

      Chunk::UnpackedHeader NewHeader = Header;
      NewHeader.State = Chunk::State::Available;
      Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
      Cache.deallocate(QuarantineClassId,
                       reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
                                                Chunk::getHeaderSize()));
    }

  private:
    ThisT &Allocator;
    CacheT &Cache;
  };

  typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
  typedef typename QuarantineT::CacheT QuarantineCacheT;

  void initLinkerInitialized() {
    performSanityChecks();

    // Check if hardware CRC32 is supported in the binary and by the platform,
    // if so, opt for the CRC32 hardware version of the checksum.
    if (&computeHardwareCRC32 && hasHardwareCRC32())
      HashAlgorithm = Checksum::HardwareCRC32;

    if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
      Cookie = static_cast<u32>(getMonotonicTime() ^
                                (reinterpret_cast<uptr>(this) >> 4));

    initFlags();
    reportUnrecognizedFlags();

    // Store some flags locally.
    Options.MayReturnNull = getFlags()->may_return_null;
    Options.ZeroContents = getFlags()->zero_contents;
    Options.DeallocTypeMismatch = getFlags()->dealloc_type_mismatch;
    Options.DeleteSizeMismatch = getFlags()->delete_size_mismatch;
    Options.QuarantineMaxChunkSize =
        static_cast<u32>(getFlags()->quarantine_max_chunk_size);

    Stats.initLinkerInitialized();
    Primary.initLinkerInitialized(getFlags()->release_to_os_interval_ms);
    Secondary.initLinkerInitialized(&Stats);

    Quarantine.init(
        static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
        static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
  }

  void reset() { memset(this, 0, sizeof(*this)); }

  void unmapTestOnly() {
    TSDRegistry.unmapTestOnly();
    Primary.unmapTestOnly();
  }

  TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }

  void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); }

  // Release the resources used by a TSD, which involves:
  // - draining the local quarantine cache to the global quarantine;
  // - releasing the cached pointers back to the Primary;
  // - unlinking the local stats from the global ones (destroying the cache does
  //   the last two items).
  void commitBack(TSD<ThisT> *TSD) {
    Quarantine.drain(&TSD->QuarantineCache,
                     QuarantineCallback(*this, TSD->Cache));
    TSD->Cache.destroy(&Stats);
  }

  NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
                          uptr Alignment = MinAlignment,
                          bool ZeroContents = false) {
    initThreadMaybe();

    if (UNLIKELY(Alignment > MaxAlignment)) {
      if (Options.MayReturnNull)
        return nullptr;
      reportAlignmentTooBig(Alignment, MaxAlignment);
    }
    if (Alignment < MinAlignment)
      Alignment = MinAlignment;

    // If the requested size happens to be 0 (more common than you might think),
    // allocate MinAlignment bytes on top of the header. Then add the extra
    // bytes required to fulfill the alignment requirements: we allocate enough
    // to be sure that there will be an address in the block that will satisfy
    // the alignment.
    const uptr NeededSize =
        roundUpTo(Size, MinAlignment) +
        ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());

    // Takes care of extravagantly large sizes as well as integer overflows.
    if (UNLIKELY(Size >= MaxAllowedMallocSize ||
                 NeededSize >= MaxAllowedMallocSize)) {
      if (Options.MayReturnNull)
        return nullptr;
      reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
    }

    void *Block;
    uptr ClassId;
    uptr BlockEnd;
    if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
      ClassId = SizeClassMap::getClassIdBySize(NeededSize);
      DCHECK_NE(ClassId, 0U);
      bool UnlockRequired;
      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
      Block = TSD->Cache.allocate(ClassId);
      if (UnlockRequired)
        TSD->unlock();
    } else {
      ClassId = 0;
      Block = Secondary.allocate(NeededSize, Alignment, &BlockEnd);
    }

    if (UNLIKELY(!Block)) {
      if (Options.MayReturnNull)
        return nullptr;
      reportOutOfMemory(NeededSize);
    }

    // We only need to zero the contents for Primary backed allocations. This
    // condition is not necessarily unlikely, but since memset is costly, we
    // might as well mark it as such.
    if (UNLIKELY((ZeroContents || Options.ZeroContents) && ClassId))
      memset(Block, 0, PrimaryT::getSizeByClassId(ClassId));

    Chunk::UnpackedHeader Header = {};
    uptr UserPtr = reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize();
    if (UNLIKELY(!isAligned(UserPtr, Alignment))) {
      const uptr AlignedUserPtr = roundUpTo(UserPtr, Alignment);
      const uptr Offset = AlignedUserPtr - UserPtr;
      DCHECK_GT(Offset, 2 * sizeof(u32));
      // The BlockMarker has no security purpose, but is specifically meant for
      // the chunk iteration function that can be used in debugging situations.
      // It is the only situation where we have to locate the start of a chunk
      // based on its block address.
      reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
      reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
      UserPtr = AlignedUserPtr;
      Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
    }
    Header.ClassId = ClassId & Chunk::ClassIdMask;
    Header.State = Chunk::State::Allocated;
    Header.Origin = Origin & Chunk::OriginMask;
    Header.SizeOrUnusedBytes = (ClassId ? Size : BlockEnd - (UserPtr + Size)) &
                               Chunk::SizeOrUnusedBytesMask;
    void *Ptr = reinterpret_cast<void *>(UserPtr);
    Chunk::storeHeader(Cookie, Ptr, &Header);

    if (&__scudo_allocate_hook)
      __scudo_allocate_hook(Ptr, Size);

    return Ptr;
  }

  NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
                           UNUSED uptr Alignment = MinAlignment) {
    // For a deallocation, we only ensure minimal initialization, meaning thread
    // local data will be left uninitialized for now (when using ELF TLS). The
    // fallback cache will be used instead. This is a workaround for a situation
    // where the only heap operation performed in a thread would be a free past
    // the TLS destructors, ending up in initialized thread specific data never
    // being destroyed properly. Any other heap operation will do a full init.
    initThreadMaybe(/*MinimalInit=*/true);

    if (&__scudo_deallocate_hook)
      __scudo_deallocate_hook(Ptr);

    if (UNLIKELY(!Ptr))
      return;
    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
      reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);

    Chunk::UnpackedHeader Header;
    Chunk::loadHeader(Cookie, Ptr, &Header);

    if (UNLIKELY(Header.State != Chunk::State::Allocated))
      reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
    if (Options.DeallocTypeMismatch) {
      if (Header.Origin != Origin) {
        // With the exception of memalign'd chunks, that can be still be free'd.
        if (UNLIKELY(Header.Origin != Chunk::Origin::Memalign ||
                     Origin != Chunk::Origin::Malloc))
          reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
                                    Header.Origin, Origin);
      }
    }

    const uptr Size = getSize(Ptr, &Header);
    if (DeleteSize && Options.DeleteSizeMismatch) {
      if (UNLIKELY(DeleteSize != Size))
        reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
    }

    quarantineOrDeallocateChunk(Ptr, &Header, Size);
  }

  void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
    initThreadMaybe();

    // The following cases are handled by the C wrappers.
    DCHECK_NE(OldPtr, nullptr);
    DCHECK_NE(NewSize, 0);

    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
      reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);

    Chunk::UnpackedHeader OldHeader;
    Chunk::loadHeader(Cookie, OldPtr, &OldHeader);

    if (UNLIKELY(OldHeader.State != Chunk::State::Allocated))
      reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);

    // Pointer has to be allocated with a malloc-type function. Some
    // applications think that it is OK to realloc a memalign'ed pointer, which
    // will trigger this check. It really isn't.
    if (Options.DeallocTypeMismatch) {
      if (UNLIKELY(OldHeader.Origin != Chunk::Origin::Malloc))
        reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
                                  OldHeader.Origin, Chunk::Origin::Malloc);
    }

    void *BlockBegin = getBlockBegin(OldPtr, &OldHeader);
    uptr BlockEnd;
    uptr OldSize;
    const uptr ClassId = OldHeader.ClassId;
    if (LIKELY(ClassId)) {
      BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
                 SizeClassMap::getSizeByClassId(ClassId);
      OldSize = OldHeader.SizeOrUnusedBytes;
    } else {
      BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
      OldSize = BlockEnd -
                (reinterpret_cast<uptr>(OldPtr) + OldHeader.SizeOrUnusedBytes);
    }
    // If the new chunk still fits in the previously allocated block (with a
    // reasonable delta), we just keep the old block, and update the chunk
    // header to reflect the size change.
    if (reinterpret_cast<uptr>(OldPtr) + NewSize <= BlockEnd) {
      const uptr Delta =
          OldSize < NewSize ? NewSize - OldSize : OldSize - NewSize;
      if (Delta <= SizeClassMap::MaxSize / 2) {
        Chunk::UnpackedHeader NewHeader = OldHeader;
        NewHeader.SizeOrUnusedBytes =
            (ClassId ? NewSize
                     : BlockEnd - (reinterpret_cast<uptr>(OldPtr) + NewSize)) &
            Chunk::SizeOrUnusedBytesMask;
        Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader);
        return OldPtr;
      }
    }

    // Otherwise we allocate a new one, and deallocate the old one. Some
    // allocators will allocate an even larger chunk (by a fixed factor) to
    // allow for potential further in-place realloc. The gains of such a trick
    // are currently unclear.
    void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
    if (NewPtr) {
      const uptr OldSize = getSize(OldPtr, &OldHeader);
      memcpy(NewPtr, OldPtr, Min(NewSize, OldSize));
      quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
    }
    return NewPtr;
  }

  // TODO(kostyak): while this locks the Primary & Secondary, it still allows
  //                pointers to be fetched from the TSD. We ultimately want to
  //                lock the registry as well. For now, it's good enough.
  void disable() {
    initThreadMaybe();
    Primary.disable();
    Secondary.disable();
  }

  void enable() {
    initThreadMaybe();
    Secondary.enable();
    Primary.enable();
  }

  void printStats() {
    disable();
    Primary.printStats();
    Secondary.printStats();
    Quarantine.printStats();
    enable();
  }

  void releaseToOS() { Primary.releaseToOS(); }

  // Iterate over all chunks and call a callback for all busy chunks located
  // within the provided memory range. Said callback must not use this allocator
  // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
  void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
                         void *Arg) {
    initThreadMaybe();
    const uptr From = Base;
    const uptr To = Base + Size;
    auto Lambda = [this, From, To, Callback, Arg](uptr Block) {
      if (Block < From || Block >= To)
        return;
      uptr ChunkSize;
      const uptr ChunkBase = getChunkFromBlock(Block, &ChunkSize);
      if (ChunkBase != InvalidChunk)
        Callback(ChunkBase, ChunkSize, Arg);
    };
    Primary.iterateOverBlocks(Lambda);
    Secondary.iterateOverBlocks(Lambda);
  }

  bool canReturnNull() {
    initThreadMaybe();
    return Options.MayReturnNull;
  }

  // TODO(kostyak): implement this as a "backend" to mallopt.
  bool setOption(UNUSED uptr Option, UNUSED uptr Value) { return false; }

  // Return the usable size for a given chunk. Technically we lie, as we just
  // report the actual size of a chunk. This is done to counteract code actively
  // writing past the end of a chunk (like sqlite3) when the usable size allows
  // for it, which then forces realloc to copy the usable size of a chunk as
  // opposed to its actual size.
  uptr getUsableSize(const void *Ptr) {
    initThreadMaybe();
    if (UNLIKELY(!Ptr))
      return 0;
    Chunk::UnpackedHeader Header;
    Chunk::loadHeader(Cookie, Ptr, &Header);
    // Getting the usable size of a chunk only makes sense if it's allocated.
    if (UNLIKELY(Header.State != Chunk::State::Allocated))
      reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
    return getSize(Ptr, &Header);
  }

  void getStats(StatCounters S) {
    initThreadMaybe();
    Stats.get(S);
  }

private:
  typedef MapAllocator SecondaryT;
  typedef typename PrimaryT::SizeClassMap SizeClassMap;

  static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
  static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
  static const uptr MinAlignment = 1UL << MinAlignmentLog;
  static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
  static const uptr MaxAllowedMallocSize =
      FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);

  // Constants used by the chunk iteration mechanism.
  static const u32 BlockMarker = 0x44554353U;
  static const uptr InvalidChunk = ~static_cast<uptr>(0);

  GlobalStats Stats;
  TSDRegistryT TSDRegistry;
  PrimaryT Primary;
  SecondaryT Secondary;
  QuarantineT Quarantine;

  u32 Cookie;

  struct {
    u8 MayReturnNull : 1;       // may_return_null
    u8 ZeroContents : 1;        // zero_contents
    u8 DeallocTypeMismatch : 1; // dealloc_type_mismatch
    u8 DeleteSizeMismatch : 1;  // delete_size_mismatch
    u32 QuarantineMaxChunkSize; // quarantine_max_chunk_size
  } Options;

  // The following might get optimized out by the compiler.
  NOINLINE void performSanityChecks() {
    // Verify that the header offset field can hold the maximum offset. In the
    // case of the Secondary allocator, it takes care of alignment and the
    // offset will always be small. In the case of the Primary, the worst case
    // scenario happens in the last size class, when the backend allocation
    // would already be aligned on the requested alignment, which would happen
    // to be the maximum alignment that would fit in that size class. As a
    // result, the maximum offset will be at most the maximum alignment for the
    // last size class minus the header size, in multiples of MinAlignment.
    Chunk::UnpackedHeader Header = {};
    const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
                                         SizeClassMap::MaxSize - MinAlignment);
    const uptr MaxOffset =
        (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
    Header.Offset = MaxOffset & Chunk::OffsetMask;
    if (UNLIKELY(Header.Offset != MaxOffset))
      reportSanityCheckError("offset");

    // Verify that we can fit the maximum size or amount of unused bytes in the
    // header. Given that the Secondary fits the allocation to a page, the worst
    // case scenario happens in the Primary. It will depend on the second to
    // last and last class sizes, as well as the dynamic base for the Primary.
    // The following is an over-approximation that works for our needs.
    const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
    Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
    if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
      reportSanityCheckError("size (or unused bytes)");

    const uptr LargestClassId = SizeClassMap::LargestClassId;
    Header.ClassId = LargestClassId;
    if (UNLIKELY(Header.ClassId != LargestClassId))
      reportSanityCheckError("class ID");
  }

  static INLINE void *getBlockBegin(const void *Ptr,
                                    Chunk::UnpackedHeader *Header) {
    return reinterpret_cast<void *>(
        reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
        (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
  }

  // Return the size of a chunk as requested during its allocation.
  INLINE uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
    const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
    if (LIKELY(Header->ClassId))
      return SizeOrUnusedBytes;
    return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
           reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
  }

  ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
    TSDRegistry.initThreadMaybe(this, MinimalInit);
  }

  void quarantineOrDeallocateChunk(void *Ptr, Chunk::UnpackedHeader *Header,
                                   uptr Size) {
    Chunk::UnpackedHeader NewHeader = *Header;
    // If the quarantine is disabled, the actual size of a chunk is 0 or larger
    // than the maximum allowed, we return a chunk directly to the backend.
    const bool BypassQuarantine = !Quarantine.getCacheSize() || !Size ||
                                  (Size > Options.QuarantineMaxChunkSize);
    if (BypassQuarantine) {
      NewHeader.State = Chunk::State::Available;
      Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
      void *BlockBegin = getBlockBegin(Ptr, &NewHeader);
      const uptr ClassId = NewHeader.ClassId;
      if (LIKELY(ClassId)) {
        bool UnlockRequired;
        auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
        TSD->Cache.deallocate(ClassId, BlockBegin);
        if (UnlockRequired)
          TSD->unlock();
      } else {
        Secondary.deallocate(BlockBegin);
      }
    } else {
      NewHeader.State = Chunk::State::Quarantined;
      Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
      bool UnlockRequired;
      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
      Quarantine.put(&TSD->QuarantineCache,
                     QuarantineCallback(*this, TSD->Cache), Ptr, Size);
      if (UnlockRequired)
        TSD->unlock();
    }
  }

  // This only cares about valid busy chunks. This might change in the future.
  uptr getChunkFromBlock(uptr Block, uptr *Size) {
    u32 Offset = 0;
    if (reinterpret_cast<u32 *>(Block)[0] == BlockMarker)
      Offset = reinterpret_cast<u32 *>(Block)[1];
    const uptr P = Block + Offset + Chunk::getHeaderSize();
    const void *Ptr = reinterpret_cast<const void *>(P);
    Chunk::UnpackedHeader Header;
    if (!Chunk::isValid(Cookie, Ptr, &Header) ||
        Header.State != Chunk::State::Allocated)
      return InvalidChunk;
    if (Size)
      *Size = getSize(Ptr, &Header);
    return P;
  }
};

} // namespace scudo

#endif // SCUDO_COMBINED_H_