summaryrefslogtreecommitdiff
path: root/lib/sanitizer_common/sanitizer_procmaps_mac.cc
blob: 3b98ff0957863265a00e6cb4c3e060a38294ca65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
//===-- sanitizer_procmaps_mac.cc -----------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Information about the process mappings (Mac-specific parts).
//===----------------------------------------------------------------------===//

#include "sanitizer_platform.h"
#if SANITIZER_MAC
#include "sanitizer_common.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_procmaps.h"

#include <mach-o/dyld.h>
#include <mach-o/loader.h>
#include <mach/mach.h>

// These are not available in older macOS SDKs.
#ifndef CPU_SUBTYPE_X86_64_H
#define CPU_SUBTYPE_X86_64_H  ((cpu_subtype_t)8)   /* Haswell */
#endif
#ifndef CPU_SUBTYPE_ARM_V7S
#define CPU_SUBTYPE_ARM_V7S   ((cpu_subtype_t)11)  /* Swift */
#endif
#ifndef CPU_SUBTYPE_ARM_V7K
#define CPU_SUBTYPE_ARM_V7K   ((cpu_subtype_t)12)
#endif
#ifndef CPU_TYPE_ARM64
#define CPU_TYPE_ARM64        (CPU_TYPE_ARM | CPU_ARCH_ABI64)
#endif

namespace __sanitizer {

// Contains information used to iterate through sections.
struct MemoryMappedSegmentData {
  char name[kMaxSegName];
  uptr nsects;
  char *current_load_cmd_addr;
  u32 lc_type;
  uptr base_virt_addr;
  uptr addr_mask;
};

template <typename Section>
static void NextSectionLoad(LoadedModule *module, MemoryMappedSegmentData *data,
                            bool isWritable) {
  const Section *sc = (const Section *)data->current_load_cmd_addr;
  data->current_load_cmd_addr += sizeof(Section);

  uptr sec_start = (sc->addr & data->addr_mask) + data->base_virt_addr;
  uptr sec_end = sec_start + sc->size;
  module->addAddressRange(sec_start, sec_end, /*executable=*/false, isWritable,
                          sc->sectname);
}

void MemoryMappedSegment::AddAddressRanges(LoadedModule *module) {
  // Don't iterate over sections when the caller hasn't set up the
  // data pointer, when there are no sections, or when the segment
  // is executable. Avoid iterating over executable sections because
  // it will confuse libignore, and because the extra granularity
  // of information is not needed by any sanitizers.
  if (!data_ || !data_->nsects || IsExecutable()) {
    module->addAddressRange(start, end, IsExecutable(), IsWritable(),
                            data_ ? data_->name : nullptr);
    return;
  }

  do {
    if (data_->lc_type == LC_SEGMENT) {
      NextSectionLoad<struct section>(module, data_, IsWritable());
#ifdef MH_MAGIC_64
    } else if (data_->lc_type == LC_SEGMENT_64) {
      NextSectionLoad<struct section_64>(module, data_, IsWritable());
#endif
    }
  } while (--data_->nsects);
}

MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) {
  Reset();
}

MemoryMappingLayout::~MemoryMappingLayout() {
}

// More information about Mach-O headers can be found in mach-o/loader.h
// Each Mach-O image has a header (mach_header or mach_header_64) starting with
// a magic number, and a list of linker load commands directly following the
// header.
// A load command is at least two 32-bit words: the command type and the
// command size in bytes. We're interested only in segment load commands
// (LC_SEGMENT and LC_SEGMENT_64), which tell that a part of the file is mapped
// into the task's address space.
// The |vmaddr|, |vmsize| and |fileoff| fields of segment_command or
// segment_command_64 correspond to the memory address, memory size and the
// file offset of the current memory segment.
// Because these fields are taken from the images as is, one needs to add
// _dyld_get_image_vmaddr_slide() to get the actual addresses at runtime.

void MemoryMappingLayout::Reset() {
  // Count down from the top.
  // TODO(glider): as per man 3 dyld, iterating over the headers with
  // _dyld_image_count is thread-unsafe. We need to register callbacks for
  // adding and removing images which will invalidate the MemoryMappingLayout
  // state.
  data_.current_image = _dyld_image_count();
  data_.current_load_cmd_count = -1;
  data_.current_load_cmd_addr = 0;
  data_.current_magic = 0;
  data_.current_filetype = 0;
  data_.current_arch = kModuleArchUnknown;
  internal_memset(data_.current_uuid, 0, kModuleUUIDSize);
}

// The dyld load address should be unchanged throughout process execution,
// and it is expensive to compute once many libraries have been loaded,
// so cache it here and do not reset.
static mach_header *dyld_hdr = 0;
static const char kDyldPath[] = "/usr/lib/dyld";
static const int kDyldImageIdx = -1;

// static
void MemoryMappingLayout::CacheMemoryMappings() {
  // No-op on Mac for now.
}

void MemoryMappingLayout::LoadFromCache() {
  // No-op on Mac for now.
}

// _dyld_get_image_header() and related APIs don't report dyld itself.
// We work around this by manually recursing through the memory map
// until we hit a Mach header matching dyld instead. These recurse
// calls are expensive, but the first memory map generation occurs
// early in the process, when dyld is one of the only images loaded,
// so it will be hit after only a few iterations.
static mach_header *get_dyld_image_header() {
  mach_port_name_t port;
  if (task_for_pid(mach_task_self(), internal_getpid(), &port) !=
      KERN_SUCCESS) {
    return nullptr;
  }

  unsigned depth = 1;
  vm_size_t size = 0;
  vm_address_t address = 0;
  kern_return_t err = KERN_SUCCESS;
  mach_msg_type_number_t count = VM_REGION_SUBMAP_INFO_COUNT_64;

  while (true) {
    struct vm_region_submap_info_64 info;
    err = vm_region_recurse_64(port, &address, &size, &depth,
                               (vm_region_info_t)&info, &count);
    if (err != KERN_SUCCESS) return nullptr;

    if (size >= sizeof(mach_header) && info.protection & kProtectionRead) {
      mach_header *hdr = (mach_header *)address;
      if ((hdr->magic == MH_MAGIC || hdr->magic == MH_MAGIC_64) &&
          hdr->filetype == MH_DYLINKER) {
        return hdr;
      }
    }
    address += size;
  }
}

const mach_header *get_dyld_hdr() {
  if (!dyld_hdr) dyld_hdr = get_dyld_image_header();

  return dyld_hdr;
}

// Next and NextSegmentLoad were inspired by base/sysinfo.cc in
// Google Perftools, https://github.com/gperftools/gperftools.

// NextSegmentLoad scans the current image for the next segment load command
// and returns the start and end addresses and file offset of the corresponding
// segment.
// Note that the segment addresses are not necessarily sorted.
template <u32 kLCSegment, typename SegmentCommand>
static bool NextSegmentLoad(MemoryMappedSegment *segment,
MemoryMappedSegmentData *seg_data, MemoryMappingLayoutData &layout_data) {
  const char *lc = layout_data.current_load_cmd_addr;
  layout_data.current_load_cmd_addr += ((const load_command *)lc)->cmdsize;
  if (((const load_command *)lc)->cmd == kLCSegment) {
    const SegmentCommand* sc = (const SegmentCommand *)lc;
    uptr base_virt_addr, addr_mask;
    if (layout_data.current_image == kDyldImageIdx) {
      base_virt_addr = (uptr)get_dyld_hdr();
      // vmaddr is masked with 0xfffff because on macOS versions < 10.12,
      // it contains an absolute address rather than an offset for dyld.
      // To make matters even more complicated, this absolute address
      // isn't actually the absolute segment address, but the offset portion
      // of the address is accurate when combined with the dyld base address,
      // and the mask will give just this offset.
      addr_mask = 0xfffff;
    } else {
      base_virt_addr =
          (uptr)_dyld_get_image_vmaddr_slide(layout_data.current_image);
      addr_mask = ~0;
    }

    segment->start = (sc->vmaddr & addr_mask) + base_virt_addr;
    segment->end = segment->start + sc->vmsize;
    // Most callers don't need section information, so only fill this struct
    // when required.
    if (seg_data) {
      seg_data->nsects = sc->nsects;
      seg_data->current_load_cmd_addr =
          (char *)lc + sizeof(SegmentCommand);
      seg_data->lc_type = kLCSegment;
      seg_data->base_virt_addr = base_virt_addr;
      seg_data->addr_mask = addr_mask;
      internal_strncpy(seg_data->name, sc->segname,
                       ARRAY_SIZE(seg_data->name));
    }

    // Return the initial protection.
    segment->protection = sc->initprot;
    segment->offset = (layout_data.current_filetype ==
                       /*MH_EXECUTE*/ 0x2)
                          ? sc->vmaddr
                          : sc->fileoff;
    if (segment->filename) {
      const char *src = (layout_data.current_image == kDyldImageIdx)
                            ? kDyldPath
                            : _dyld_get_image_name(layout_data.current_image);
      internal_strncpy(segment->filename, src, segment->filename_size);
    }
    segment->arch = layout_data.current_arch;
    internal_memcpy(segment->uuid, layout_data.current_uuid, kModuleUUIDSize);
    return true;
  }
  return false;
}

ModuleArch ModuleArchFromCpuType(cpu_type_t cputype, cpu_subtype_t cpusubtype) {
  cpusubtype = cpusubtype & ~CPU_SUBTYPE_MASK;
  switch (cputype) {
    case CPU_TYPE_I386:
      return kModuleArchI386;
    case CPU_TYPE_X86_64:
      if (cpusubtype == CPU_SUBTYPE_X86_64_ALL) return kModuleArchX86_64;
      if (cpusubtype == CPU_SUBTYPE_X86_64_H) return kModuleArchX86_64H;
      CHECK(0 && "Invalid subtype of x86_64");
      return kModuleArchUnknown;
    case CPU_TYPE_ARM:
      if (cpusubtype == CPU_SUBTYPE_ARM_V6) return kModuleArchARMV6;
      if (cpusubtype == CPU_SUBTYPE_ARM_V7) return kModuleArchARMV7;
      if (cpusubtype == CPU_SUBTYPE_ARM_V7S) return kModuleArchARMV7S;
      if (cpusubtype == CPU_SUBTYPE_ARM_V7K) return kModuleArchARMV7K;
      CHECK(0 && "Invalid subtype of ARM");
      return kModuleArchUnknown;
    case CPU_TYPE_ARM64:
      return kModuleArchARM64;
    default:
      CHECK(0 && "Invalid CPU type");
      return kModuleArchUnknown;
  }
}

static const load_command *NextCommand(const load_command *lc) {
  return (const load_command *)((char *)lc + lc->cmdsize);
}

static void FindUUID(const load_command *first_lc, u8 *uuid_output) {
  for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
    if (lc->cmd != LC_UUID) continue;

    const uuid_command *uuid_lc = (const uuid_command *)lc;
    const uint8_t *uuid = &uuid_lc->uuid[0];
    internal_memcpy(uuid_output, uuid, kModuleUUIDSize);
    return;
  }
}

static bool IsModuleInstrumented(const load_command *first_lc) {
  for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
    if (lc->cmd != LC_LOAD_DYLIB) continue;

    const dylib_command *dylib_lc = (const dylib_command *)lc;
    uint32_t dylib_name_offset = dylib_lc->dylib.name.offset;
    const char *dylib_name = ((const char *)dylib_lc) + dylib_name_offset;
    dylib_name = StripModuleName(dylib_name);
    if (dylib_name != 0 && (internal_strstr(dylib_name, "libclang_rt."))) {
      return true;
    }
  }
  return false;
}

bool MemoryMappingLayout::Next(MemoryMappedSegment *segment) {
  for (; data_.current_image >= kDyldImageIdx; data_.current_image--) {
    const mach_header *hdr = (data_.current_image == kDyldImageIdx)
                                 ? get_dyld_hdr()
                                 : _dyld_get_image_header(data_.current_image);
    if (!hdr) continue;
    if (data_.current_load_cmd_count < 0) {
      // Set up for this image;
      data_.current_load_cmd_count = hdr->ncmds;
      data_.current_magic = hdr->magic;
      data_.current_filetype = hdr->filetype;
      data_.current_arch = ModuleArchFromCpuType(hdr->cputype, hdr->cpusubtype);
      switch (data_.current_magic) {
#ifdef MH_MAGIC_64
        case MH_MAGIC_64: {
          data_.current_load_cmd_addr = (char *)hdr + sizeof(mach_header_64);
          break;
        }
#endif
        case MH_MAGIC: {
          data_.current_load_cmd_addr = (char *)hdr + sizeof(mach_header);
          break;
        }
        default: {
          continue;
        }
      }
      FindUUID((const load_command *)data_.current_load_cmd_addr,
               data_.current_uuid);
      data_.current_instrumented = IsModuleInstrumented(
          (const load_command *)data_.current_load_cmd_addr);
    }

    for (; data_.current_load_cmd_count >= 0; data_.current_load_cmd_count--) {
      switch (data_.current_magic) {
        // data_.current_magic may be only one of MH_MAGIC, MH_MAGIC_64.
#ifdef MH_MAGIC_64
        case MH_MAGIC_64: {
          if (NextSegmentLoad<LC_SEGMENT_64, struct segment_command_64>(
          segment, segment->data_, data_))
            return true;
          break;
        }
#endif
        case MH_MAGIC: {
          if (NextSegmentLoad<LC_SEGMENT, struct segment_command>(
          segment, segment->data_, data_))
            return true;
          break;
        }
      }
    }
    // If we get here, no more load_cmd's in this image talk about
    // segments.  Go on to the next image.
  }
  return false;
}

void MemoryMappingLayout::DumpListOfModules(
    InternalMmapVectorNoCtor<LoadedModule> *modules) {
  Reset();
  InternalScopedString module_name(kMaxPathLength);
  MemoryMappedSegment segment(module_name.data(), kMaxPathLength);
  MemoryMappedSegmentData data;
  segment.data_ = &data;
  while (Next(&segment)) {
    if (segment.filename[0] == '\0') continue;
    LoadedModule *cur_module = nullptr;
    if (!modules->empty() &&
        0 == internal_strcmp(segment.filename, modules->back().full_name())) {
      cur_module = &modules->back();
    } else {
      modules->push_back(LoadedModule());
      cur_module = &modules->back();
      cur_module->set(segment.filename, segment.start, segment.arch,
                      segment.uuid, data_.current_instrumented);
    }
    segment.AddAddressRanges(cur_module);
  }
}

}  // namespace __sanitizer

#endif  // SANITIZER_MAC