summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPetr Hosek <phosek@chromium.org>2019-04-28 21:53:32 +0000
committerPetr Hosek <phosek@chromium.org>2019-04-28 21:53:32 +0000
commitdb42a0ccf35e49df3a801d4a7964fce06f587542 (patch)
tree0d27482aeab3a9552c59f06f5ecb9d6fc35e06b7
parenteb2e734bb4c993ee5eff03580fc0bd8e2850e11b (diff)
downloadcompiler-rt-db42a0ccf35e49df3a801d4a7964fce06f587542.tar.gz
[builtins] Reformat builtins with clang-format
Update formatting to use the LLVM style. This is part of the cleanup proposed in "[RFC] compiler-rt builtins cleanup and refactoring". Differential Revision: https://reviews.llvm.org/D60351 git-svn-id: https://llvm.org/svn/llvm-project/compiler-rt/trunk@359410 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/builtins/absvdi2.c14
-rw-r--r--lib/builtins/absvsi2.c14
-rw-r--r--lib/builtins/absvti2.c15
-rw-r--r--lib/builtins/adddf3.c8
-rw-r--r--lib/builtins/addsf3.c8
-rw-r--r--lib/builtins/addtf3.c4
-rw-r--r--lib/builtins/addvdi3.c25
-rw-r--r--lib/builtins/addvsi3.c25
-rw-r--r--lib/builtins/addvti3.c25
-rw-r--r--lib/builtins/apple_versioning.c94
-rw-r--r--lib/builtins/arm/aeabi_cdcmpeq_check_nan.c8
-rw-r--r--lib/builtins/arm/aeabi_cfcmpeq_check_nan.c8
-rw-r--r--lib/builtins/arm/aeabi_div0.c5
-rw-r--r--lib/builtins/arm/aeabi_drsub.c8
-rw-r--r--lib/builtins/arm/aeabi_frsub.c8
-rw-r--r--lib/builtins/arm/sync-ops.h86
-rw-r--r--lib/builtins/ashldi3.c40
-rw-r--r--lib/builtins/ashlti3.c37
-rw-r--r--lib/builtins/ashrdi3.c42
-rw-r--r--lib/builtins/ashrti3.c39
-rw-r--r--lib/builtins/atomic.c269
-rw-r--r--lib/builtins/bswapsi2.c9
-rw-r--r--lib/builtins/clear_cache.c215
-rw-r--r--lib/builtins/clzdi2.c17
-rw-r--r--lib/builtins/clzsi2.c62
-rw-r--r--lib/builtins/clzti2.c14
-rw-r--r--lib/builtins/cmpdi2.c49
-rw-r--r--lib/builtins/cmpti2.c30
-rw-r--r--lib/builtins/comparedf2.c162
-rw-r--r--lib/builtins/comparesf2.c162
-rw-r--r--lib/builtins/comparetf2.c138
-rw-r--r--lib/builtins/cpu_model.c46
-rw-r--r--lib/builtins/ctzdi2.c17
-rw-r--r--lib/builtins/ctzsi2.c69
-rw-r--r--lib/builtins/ctzti2.c14
-rw-r--r--lib/builtins/divdc3.c71
-rw-r--r--lib/builtins/divdf3.c348
-rw-r--r--lib/builtins/divdi3.c19
-rw-r--r--lib/builtins/divmoddi4.c8
-rw-r--r--lib/builtins/divmodsi4.c12
-rw-r--r--lib/builtins/divsc3.c72
-rw-r--r--lib/builtins/divsf3.c314
-rw-r--r--lib/builtins/divsi3.c30
-rw-r--r--lib/builtins/divtc3.c73
-rw-r--r--lib/builtins/divtf3.c373
-rw-r--r--lib/builtins/divti3.c19
-rw-r--r--lib/builtins/divxc3.c71
-rw-r--r--lib/builtins/emutls.c414
-rw-r--r--lib/builtins/enable_execute_stack.c43
-rw-r--r--lib/builtins/eprintf.c14
-rw-r--r--lib/builtins/extenddftf2.c2
-rw-r--r--lib/builtins/extendhfsf2.c10
-rw-r--r--lib/builtins/extendsfdf2.c8
-rw-r--r--lib/builtins/extendsftf2.c2
-rw-r--r--lib/builtins/ffsdi2.c21
-rw-r--r--lib/builtins/ffssi2.c13
-rw-r--r--lib/builtins/ffsti2.c21
-rw-r--r--lib/builtins/fixdfdi.c21
-rw-r--r--lib/builtins/fixdfsi.c9
-rw-r--r--lib/builtins/fixdfti.c5
-rw-r--r--lib/builtins/fixsfdi.c21
-rw-r--r--lib/builtins/fixsfsi.c9
-rw-r--r--lib/builtins/fixsfti.c5
-rw-r--r--lib/builtins/fixtfdi.c5
-rw-r--r--lib/builtins/fixtfsi.c5
-rw-r--r--lib/builtins/fixtfti.c5
-rw-r--r--lib/builtins/fixunsdfdi.c22
-rw-r--r--lib/builtins/fixunsdfsi.c9
-rw-r--r--lib/builtins/fixunsdfti.c5
-rw-r--r--lib/builtins/fixunssfdi.c24
-rw-r--r--lib/builtins/fixunssfsi.c9
-rw-r--r--lib/builtins/fixunssfti.c5
-rw-r--r--lib/builtins/fixunstfdi.c5
-rw-r--r--lib/builtins/fixunstfsi.c5
-rw-r--r--lib/builtins/fixunstfti.c5
-rw-r--r--lib/builtins/fixunsxfdi.c32
-rw-r--r--lib/builtins/fixunsxfsi.c31
-rw-r--r--lib/builtins/fixunsxfti.c41
-rw-r--r--lib/builtins/fixxfdi.c41
-rw-r--r--lib/builtins/fixxfti.c47
-rw-r--r--lib/builtins/floatdidf.c136
-rw-r--r--lib/builtins/floatdisf.c105
-rw-r--r--lib/builtins/floatditf.c52
-rw-r--r--lib/builtins/floatdixf.c39
-rw-r--r--lib/builtins/floatsidf.c63
-rw-r--r--lib/builtins/floatsisf.c77
-rw-r--r--lib/builtins/floatsitf.c52
-rw-r--r--lib/builtins/floattidf.c100
-rw-r--r--lib/builtins/floattisf.c99
-rw-r--r--lib/builtins/floattitf.c98
-rw-r--r--lib/builtins/floattixf.c106
-rw-r--r--lib/builtins/floatundidf.c138
-rw-r--r--lib/builtins/floatundisf.c97
-rw-r--r--lib/builtins/floatunditf.c25
-rw-r--r--lib/builtins/floatundixf.c31
-rw-r--r--lib/builtins/floatunsidf.c42
-rw-r--r--lib/builtins/floatunsisf.c60
-rw-r--r--lib/builtins/floatunsitf.c25
-rw-r--r--lib/builtins/floatuntidf.c94
-rw-r--r--lib/builtins/floatuntisf.c93
-rw-r--r--lib/builtins/floatuntitf.c92
-rw-r--r--lib/builtins/floatuntixf.c100
-rw-r--r--lib/builtins/fp_add_impl.inc251
-rw-r--r--lib/builtins/fp_extend.h33
-rw-r--r--lib/builtins/fp_extend_impl.inc114
-rw-r--r--lib/builtins/fp_fixint_impl.inc40
-rw-r--r--lib/builtins/fp_fixuint_impl.inc36
-rw-r--r--lib/builtins/fp_lib.h281
-rw-r--r--lib/builtins/fp_mul_impl.inc204
-rw-r--r--lib/builtins/fp_trunc.h18
-rw-r--r--lib/builtins/fp_trunc_impl.inc160
-rw-r--r--lib/builtins/gcc_personality_v0.c345
-rw-r--r--lib/builtins/int_endianness.h26
-rw-r--r--lib/builtins/int_lib.h40
-rw-r--r--lib/builtins/int_math.h16
-rw-r--r--lib/builtins/int_types.h145
-rw-r--r--lib/builtins/int_util.c1
-rw-r--r--lib/builtins/lshrdi3.c40
-rw-r--r--lib/builtins/lshrti3.c37
-rw-r--r--lib/builtins/moddi3.c20
-rw-r--r--lib/builtins/modsi3.c6
-rw-r--r--lib/builtins/modti3.c20
-rw-r--r--lib/builtins/muldc3.c98
-rw-r--r--lib/builtins/muldf3.c8
-rw-r--r--lib/builtins/muldi3.c57
-rw-r--r--lib/builtins/mulodi4.c65
-rw-r--r--lib/builtins/mulosi4.c65
-rw-r--r--lib/builtins/muloti4.c65
-rw-r--r--lib/builtins/mulsc3.c97
-rw-r--r--lib/builtins/mulsf3.c8
-rw-r--r--lib/builtins/multc3.c93
-rw-r--r--lib/builtins/multf3.c4
-rw-r--r--lib/builtins/multi3.c57
-rw-r--r--lib/builtins/mulvdi3.c61
-rw-r--r--lib/builtins/mulvsi3.c61
-rw-r--r--lib/builtins/mulvti3.c61
-rw-r--r--lib/builtins/mulxc3.c98
-rw-r--r--lib/builtins/negdf2.c9
-rw-r--r--lib/builtins/negdi2.c12
-rw-r--r--lib/builtins/negsf2.c9
-rw-r--r--lib/builtins/negti2.c12
-rw-r--r--lib/builtins/negvdi2.c12
-rw-r--r--lib/builtins/negvsi2.c12
-rw-r--r--lib/builtins/negvti2.c12
-rw-r--r--lib/builtins/os_version_check.c6
-rw-r--r--lib/builtins/paritydi2.c10
-rw-r--r--lib/builtins/paritysi2.c14
-rw-r--r--lib/builtins/parityti2.c12
-rw-r--r--lib/builtins/popcountdi2.c34
-rw-r--r--lib/builtins/popcountsi2.c26
-rw-r--r--lib/builtins/popcountti2.c46
-rw-r--r--lib/builtins/powidf2.c27
-rw-r--r--lib/builtins/powisf2.c27
-rw-r--r--lib/builtins/powitf2.c27
-rw-r--r--lib/builtins/powixf2.c27
-rw-r--r--lib/builtins/ppc/DD.h20
-rw-r--r--lib/builtins/ppc/divtc3.c157
-rw-r--r--lib/builtins/ppc/fixtfdi.c185
-rw-r--r--lib/builtins/ppc/fixunstfdi.c101
-rw-r--r--lib/builtins/ppc/floatditf.c49
-rw-r--r--lib/builtins/ppc/floatunditf.c62
-rw-r--r--lib/builtins/ppc/gcc_qadd.c127
-rw-r--r--lib/builtins/ppc/gcc_qdiv.c82
-rw-r--r--lib/builtins/ppc/gcc_qmul.c78
-rw-r--r--lib/builtins/ppc/gcc_qsub.c127
-rw-r--r--lib/builtins/ppc/multc3.c153
-rw-r--r--lib/builtins/subdf3.c9
-rw-r--r--lib/builtins/subsf3.c9
-rw-r--r--lib/builtins/subtf3.c5
-rw-r--r--lib/builtins/subvdi3.c25
-rw-r--r--lib/builtins/subvsi3.c25
-rw-r--r--lib/builtins/subvti3.c25
-rw-r--r--lib/builtins/trampoline_setup.c51
-rw-r--r--lib/builtins/truncdfhf2.c8
-rw-r--r--lib/builtins/truncdfsf2.c8
-rw-r--r--lib/builtins/truncsfhf2.c10
-rw-r--r--lib/builtins/trunctfdf2.c4
-rw-r--r--lib/builtins/trunctfsf2.c4
-rw-r--r--lib/builtins/ucmpdi2.c43
-rw-r--r--lib/builtins/ucmpti2.c30
-rw-r--r--lib/builtins/udivdi3.c6
-rw-r--r--lib/builtins/udivmoddi4.c378
-rw-r--r--lib/builtins/udivmodsi4.c10
-rw-r--r--lib/builtins/udivmodti4.c390
-rw-r--r--lib/builtins/udivsi3.c82
-rw-r--r--lib/builtins/udivti3.c6
-rw-r--r--lib/builtins/umoddi3.c10
-rw-r--r--lib/builtins/umodsi3.c6
-rw-r--r--lib/builtins/umodti3.c10
-rw-r--r--lib/builtins/unwind-ehabi-helpers.h5
-rw-r--r--lib/builtins/x86_64/floatdidf.c5
-rw-r--r--lib/builtins/x86_64/floatdisf.c5
-rw-r--r--lib/builtins/x86_64/floatdixf.c5
193 files changed, 5341 insertions, 5873 deletions
diff --git a/lib/builtins/absvdi2.c b/lib/builtins/absvdi2.c
index 6a1119c14..f979f1408 100644
--- a/lib/builtins/absvdi2.c
+++ b/lib/builtins/absvdi2.c
@@ -17,12 +17,10 @@
/* Effects: aborts if abs(x) < 0 */
-COMPILER_RT_ABI di_int
-__absvdi2(di_int a)
-{
- const int N = (int)(sizeof(di_int) * CHAR_BIT);
- if (a == ((di_int)1 << (N-1)))
- compilerrt_abort();
- const di_int t = a >> (N - 1);
- return (a ^ t) - t;
+COMPILER_RT_ABI di_int __absvdi2(di_int a) {
+ const int N = (int)(sizeof(di_int) * CHAR_BIT);
+ if (a == ((di_int)1 << (N - 1)))
+ compilerrt_abort();
+ const di_int t = a >> (N - 1);
+ return (a ^ t) - t;
}
diff --git a/lib/builtins/absvsi2.c b/lib/builtins/absvsi2.c
index cf0390071..e46bd5627 100644
--- a/lib/builtins/absvsi2.c
+++ b/lib/builtins/absvsi2.c
@@ -17,12 +17,10 @@
/* Effects: aborts if abs(x) < 0 */
-COMPILER_RT_ABI si_int
-__absvsi2(si_int a)
-{
- const int N = (int)(sizeof(si_int) * CHAR_BIT);
- if (a == (1 << (N-1)))
- compilerrt_abort();
- const si_int t = a >> (N - 1);
- return (a ^ t) - t;
+COMPILER_RT_ABI si_int __absvsi2(si_int a) {
+ const int N = (int)(sizeof(si_int) * CHAR_BIT);
+ if (a == (1 << (N - 1)))
+ compilerrt_abort();
+ const si_int t = a >> (N - 1);
+ return (a ^ t) - t;
}
diff --git a/lib/builtins/absvti2.c b/lib/builtins/absvti2.c
index 065525f71..b41a8ffac 100644
--- a/lib/builtins/absvti2.c
+++ b/lib/builtins/absvti2.c
@@ -19,15 +19,12 @@
/* Effects: aborts if abs(x) < 0 */
-COMPILER_RT_ABI ti_int
-__absvti2(ti_int a)
-{
- const int N = (int)(sizeof(ti_int) * CHAR_BIT);
- if (a == ((ti_int)1 << (N-1)))
- compilerrt_abort();
- const ti_int s = a >> (N - 1);
- return (a ^ s) - s;
+COMPILER_RT_ABI ti_int __absvti2(ti_int a) {
+ const int N = (int)(sizeof(ti_int) * CHAR_BIT);
+ if (a == ((ti_int)1 << (N - 1)))
+ compilerrt_abort();
+ const ti_int s = a >> (N - 1);
+ return (a ^ s) - s;
}
#endif /* CRT_HAS_128BIT */
-
diff --git a/lib/builtins/adddf3.c b/lib/builtins/adddf3.c
index 73ad61500..565c9423c 100644
--- a/lib/builtins/adddf3.c
+++ b/lib/builtins/adddf3.c
@@ -14,15 +14,11 @@
#define DOUBLE_PRECISION
#include "fp_add_impl.inc"
-COMPILER_RT_ABI double __adddf3(double a, double b){
- return __addXf3__(a, b);
-}
+COMPILER_RT_ABI double __adddf3(double a, double b) { return __addXf3__(a, b); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI double __aeabi_dadd(double a, double b) {
- return __adddf3(a, b);
-}
+AEABI_RTABI double __aeabi_dadd(double a, double b) { return __adddf3(a, b); }
#else
AEABI_RTABI double __aeabi_dadd(double a, double b) COMPILER_RT_ALIAS(__adddf3);
#endif
diff --git a/lib/builtins/addsf3.c b/lib/builtins/addsf3.c
index a48d53723..6fe88f1b1 100644
--- a/lib/builtins/addsf3.c
+++ b/lib/builtins/addsf3.c
@@ -14,15 +14,11 @@
#define SINGLE_PRECISION
#include "fp_add_impl.inc"
-COMPILER_RT_ABI float __addsf3(float a, float b) {
- return __addXf3__(a, b);
-}
+COMPILER_RT_ABI float __addsf3(float a, float b) { return __addXf3__(a, b); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI float __aeabi_fadd(float a, float b) {
- return __addsf3(a, b);
-}
+AEABI_RTABI float __aeabi_fadd(float a, float b) { return __addsf3(a, b); }
#else
AEABI_RTABI float __aeabi_fadd(float a, float b) COMPILER_RT_ALIAS(__addsf3);
#endif
diff --git a/lib/builtins/addtf3.c b/lib/builtins/addtf3.c
index 1dc303b70..570472a14 100644
--- a/lib/builtins/addtf3.c
+++ b/lib/builtins/addtf3.c
@@ -17,8 +17,8 @@
#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
#include "fp_add_impl.inc"
-COMPILER_RT_ABI long double __addtf3(long double a, long double b){
- return __addXf3__(a, b);
+COMPILER_RT_ABI long double __addtf3(long double a, long double b) {
+ return __addXf3__(a, b);
}
#endif
diff --git a/lib/builtins/addvdi3.c b/lib/builtins/addvdi3.c
index c186ecb20..bdba1f572 100644
--- a/lib/builtins/addvdi3.c
+++ b/lib/builtins/addvdi3.c
@@ -17,19 +17,14 @@
/* Effects: aborts if a + b overflows */
-COMPILER_RT_ABI di_int
-__addvdi3(di_int a, di_int b)
-{
- di_int s = (du_int) a + (du_int) b;
- if (b >= 0)
- {
- if (s < a)
- compilerrt_abort();
- }
- else
- {
- if (s >= a)
- compilerrt_abort();
- }
- return s;
+COMPILER_RT_ABI di_int __addvdi3(di_int a, di_int b) {
+ di_int s = (du_int)a + (du_int)b;
+ if (b >= 0) {
+ if (s < a)
+ compilerrt_abort();
+ } else {
+ if (s >= a)
+ compilerrt_abort();
+ }
+ return s;
}
diff --git a/lib/builtins/addvsi3.c b/lib/builtins/addvsi3.c
index 50df64fe3..1a043b2ab 100644
--- a/lib/builtins/addvsi3.c
+++ b/lib/builtins/addvsi3.c
@@ -17,19 +17,14 @@
/* Effects: aborts if a + b overflows */
-COMPILER_RT_ABI si_int
-__addvsi3(si_int a, si_int b)
-{
- si_int s = (su_int) a + (su_int) b;
- if (b >= 0)
- {
- if (s < a)
- compilerrt_abort();
- }
- else
- {
- if (s >= a)
- compilerrt_abort();
- }
- return s;
+COMPILER_RT_ABI si_int __addvsi3(si_int a, si_int b) {
+ si_int s = (su_int)a + (su_int)b;
+ if (b >= 0) {
+ if (s < a)
+ compilerrt_abort();
+ } else {
+ if (s >= a)
+ compilerrt_abort();
+ }
+ return s;
}
diff --git a/lib/builtins/addvti3.c b/lib/builtins/addvti3.c
index d0ee07a38..72697fd95 100644
--- a/lib/builtins/addvti3.c
+++ b/lib/builtins/addvti3.c
@@ -19,21 +19,16 @@
/* Effects: aborts if a + b overflows */
-COMPILER_RT_ABI ti_int
-__addvti3(ti_int a, ti_int b)
-{
- ti_int s = (tu_int) a + (tu_int) b;
- if (b >= 0)
- {
- if (s < a)
- compilerrt_abort();
- }
- else
- {
- if (s >= a)
- compilerrt_abort();
- }
- return s;
+COMPILER_RT_ABI ti_int __addvti3(ti_int a, ti_int b) {
+ ti_int s = (tu_int)a + (tu_int)b;
+ if (b >= 0) {
+ if (s < a)
+ compilerrt_abort();
+ } else {
+ if (s >= a)
+ compilerrt_abort();
+ }
+ return s;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/apple_versioning.c b/lib/builtins/apple_versioning.c
index edb29cd2a..9f7df6f3b 100644
--- a/lib/builtins/apple_versioning.c
+++ b/lib/builtins/apple_versioning.c
@@ -7,38 +7,36 @@
* ===----------------------------------------------------------------------===
*/
-
#if __APPLE__
- #include <Availability.h>
-
- #if __IPHONE_OS_VERSION_MIN_REQUIRED
- #define NOT_HERE_BEFORE_10_6(sym)
- #define NOT_HERE_IN_10_8_AND_EARLIER(sym) \
- extern const char sym##_tmp61 __asm("$ld$hide$os6.1$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp61 = 0; \
- extern const char sym##_tmp60 __asm("$ld$hide$os6.0$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp60 = 0; \
- extern const char sym##_tmp51 __asm("$ld$hide$os5.1$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp51 = 0; \
- extern const char sym##_tmp50 __asm("$ld$hide$os5.0$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp50 = 0;
- #else
- #define NOT_HERE_BEFORE_10_6(sym) \
- extern const char sym##_tmp4 __asm("$ld$hide$os10.4$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp4 = 0; \
- extern const char sym##_tmp5 __asm("$ld$hide$os10.5$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp5 = 0;
- #define NOT_HERE_IN_10_8_AND_EARLIER(sym) \
- extern const char sym##_tmp8 __asm("$ld$hide$os10.8$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp8 = 0; \
- extern const char sym##_tmp7 __asm("$ld$hide$os10.7$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp7 = 0; \
- extern const char sym##_tmp6 __asm("$ld$hide$os10.6$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp6 = 0;
- #endif
+#include <Availability.h>
+#if __IPHONE_OS_VERSION_MIN_REQUIRED
+#define NOT_HERE_BEFORE_10_6(sym)
+#define NOT_HERE_IN_10_8_AND_EARLIER(sym) \
+ extern const char sym##_tmp61 __asm("$ld$hide$os6.1$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp61 = 0; \
+ extern const char sym##_tmp60 __asm("$ld$hide$os6.0$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp60 = 0; \
+ extern const char sym##_tmp51 __asm("$ld$hide$os5.1$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp51 = 0; \
+ extern const char sym##_tmp50 __asm("$ld$hide$os5.0$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp50 = 0;
+#else
+#define NOT_HERE_BEFORE_10_6(sym) \
+ extern const char sym##_tmp4 __asm("$ld$hide$os10.4$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp4 = 0; \
+ extern const char sym##_tmp5 __asm("$ld$hide$os10.5$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp5 = 0;
+#define NOT_HERE_IN_10_8_AND_EARLIER(sym) \
+ extern const char sym##_tmp8 __asm("$ld$hide$os10.8$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp8 = 0; \
+ extern const char sym##_tmp7 __asm("$ld$hide$os10.7$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp7 = 0; \
+ extern const char sym##_tmp6 __asm("$ld$hide$os10.6$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp6 = 0;
+#endif
-/* Symbols in libSystem.dylib in 10.6 and later,
+/* Symbols in libSystem.dylib in 10.6 and later,
* but are in libgcc_s.dylib in earlier versions
*/
@@ -142,7 +140,6 @@ NOT_HERE_BEFORE_10_6(__udivti3)
NOT_HERE_BEFORE_10_6(__umoddi3)
NOT_HERE_BEFORE_10_6(__umodti3)
-
#if __ppc__
NOT_HERE_BEFORE_10_6(__gcc_qadd)
NOT_HERE_BEFORE_10_6(__gcc_qdiv)
@@ -200,24 +197,23 @@ NOT_HERE_IN_10_8_AND_EARLIER(__atomic_store_2)
NOT_HERE_IN_10_8_AND_EARLIER(__atomic_store_4)
NOT_HERE_IN_10_8_AND_EARLIER(__atomic_store_8)
-
#if __arm__ && __DYNAMIC__
- #define NOT_HERE_UNTIL_AFTER_4_3(sym) \
- extern const char sym##_tmp1 __asm("$ld$hide$os3.0$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp1 = 0; \
- extern const char sym##_tmp2 __asm("$ld$hide$os3.1$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp2 = 0; \
- extern const char sym##_tmp3 __asm("$ld$hide$os3.2$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp3 = 0; \
- extern const char sym##_tmp4 __asm("$ld$hide$os4.0$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp4 = 0; \
- extern const char sym##_tmp5 __asm("$ld$hide$os4.1$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp5 = 0; \
- extern const char sym##_tmp6 __asm("$ld$hide$os4.2$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp6 = 0; \
- extern const char sym##_tmp7 __asm("$ld$hide$os4.3$_" #sym ); \
- __attribute__((visibility("default"))) const char sym##_tmp7 = 0;
-
+#define NOT_HERE_UNTIL_AFTER_4_3(sym) \
+ extern const char sym##_tmp1 __asm("$ld$hide$os3.0$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp1 = 0; \
+ extern const char sym##_tmp2 __asm("$ld$hide$os3.1$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp2 = 0; \
+ extern const char sym##_tmp3 __asm("$ld$hide$os3.2$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp3 = 0; \
+ extern const char sym##_tmp4 __asm("$ld$hide$os4.0$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp4 = 0; \
+ extern const char sym##_tmp5 __asm("$ld$hide$os4.1$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp5 = 0; \
+ extern const char sym##_tmp6 __asm("$ld$hide$os4.2$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp6 = 0; \
+ extern const char sym##_tmp7 __asm("$ld$hide$os4.3$_" #sym); \
+ __attribute__((visibility("default"))) const char sym##_tmp7 = 0;
+
NOT_HERE_UNTIL_AFTER_4_3(__absvdi2)
NOT_HERE_UNTIL_AFTER_4_3(__absvsi2)
NOT_HERE_UNTIL_AFTER_4_3(__adddf3)
@@ -338,10 +334,6 @@ NOT_HERE_UNTIL_AFTER_4_3(__divmodsi4)
NOT_HERE_UNTIL_AFTER_4_3(__udivmodsi4)
#endif // __arm__ && __DYNAMIC__
-
-
-
-
#else /* !__APPLE__ */
extern int avoid_empty_file;
diff --git a/lib/builtins/arm/aeabi_cdcmpeq_check_nan.c b/lib/builtins/arm/aeabi_cdcmpeq_check_nan.c
index cff6c2050..7bae8743f 100644
--- a/lib/builtins/arm/aeabi_cdcmpeq_check_nan.c
+++ b/lib/builtins/arm/aeabi_cdcmpeq_check_nan.c
@@ -6,10 +6,10 @@
//
//===----------------------------------------------------------------------===//
-#include <stdint.h>
#include "../int_lib.h"
+#include <stdint.h>
-AEABI_RTABI __attribute__((visibility("hidden")))
-int __aeabi_cdcmpeq_check_nan(double a, double b) {
- return __builtin_isnan(a) || __builtin_isnan(b);
+AEABI_RTABI __attribute__((visibility("hidden"))) int
+__aeabi_cdcmpeq_check_nan(double a, double b) {
+ return __builtin_isnan(a) || __builtin_isnan(b);
}
diff --git a/lib/builtins/arm/aeabi_cfcmpeq_check_nan.c b/lib/builtins/arm/aeabi_cfcmpeq_check_nan.c
index fd944b71a..25407337d 100644
--- a/lib/builtins/arm/aeabi_cfcmpeq_check_nan.c
+++ b/lib/builtins/arm/aeabi_cfcmpeq_check_nan.c
@@ -6,10 +6,10 @@
//
//===----------------------------------------------------------------------===//
-#include <stdint.h>
#include "../int_lib.h"
+#include <stdint.h>
-AEABI_RTABI __attribute__((visibility("hidden")))
-int __aeabi_cfcmpeq_check_nan(float a, float b) {
- return __builtin_isnan(a) || __builtin_isnan(b);
+AEABI_RTABI __attribute__((visibility("hidden"))) int
+__aeabi_cfcmpeq_check_nan(float a, float b) {
+ return __builtin_isnan(a) || __builtin_isnan(b);
}
diff --git a/lib/builtins/arm/aeabi_div0.c b/lib/builtins/arm/aeabi_div0.c
index 69b3657af..ddd9e2498 100644
--- a/lib/builtins/arm/aeabi_div0.c
+++ b/lib/builtins/arm/aeabi_div0.c
@@ -36,9 +36,8 @@ __aeabi_idiv0(int return_value) {
return return_value;
}
-AEABI_RTABI long long __attribute__((weak)) __attribute__((visibility("hidden")))
-__aeabi_ldiv0(long long return_value) {
+AEABI_RTABI long long __attribute__((weak))
+__attribute__((visibility("hidden"))) __aeabi_ldiv0(long long return_value) {
return return_value;
}
#endif
-
diff --git a/lib/builtins/arm/aeabi_drsub.c b/lib/builtins/arm/aeabi_drsub.c
index 410c13380..e4e8dc051 100644
--- a/lib/builtins/arm/aeabi_drsub.c
+++ b/lib/builtins/arm/aeabi_drsub.c
@@ -9,10 +9,6 @@
#define DOUBLE_PRECISION
#include "../fp_lib.h"
-AEABI_RTABI fp_t
-__aeabi_dsub(fp_t, fp_t);
+AEABI_RTABI fp_t __aeabi_dsub(fp_t, fp_t);
-AEABI_RTABI fp_t
-__aeabi_drsub(fp_t a, fp_t b) {
- return __aeabi_dsub(b, a);
-}
+AEABI_RTABI fp_t __aeabi_drsub(fp_t a, fp_t b) { return __aeabi_dsub(b, a); }
diff --git a/lib/builtins/arm/aeabi_frsub.c b/lib/builtins/arm/aeabi_frsub.c
index 397a8a7f7..9a363248f 100644
--- a/lib/builtins/arm/aeabi_frsub.c
+++ b/lib/builtins/arm/aeabi_frsub.c
@@ -9,10 +9,6 @@
#define SINGLE_PRECISION
#include "../fp_lib.h"
-AEABI_RTABI fp_t
-__aeabi_fsub(fp_t, fp_t);
+AEABI_RTABI fp_t __aeabi_fsub(fp_t, fp_t);
-AEABI_RTABI fp_t
-__aeabi_frsub(fp_t a, fp_t b) {
- return __aeabi_fsub(b, a);
-}
+AEABI_RTABI fp_t __aeabi_frsub(fp_t a, fp_t b) { return __aeabi_fsub(b, a); }
diff --git a/lib/builtins/arm/sync-ops.h b/lib/builtins/arm/sync-ops.h
index 4924d17b9..d86f25a31 100644
--- a/lib/builtins/arm/sync-ops.h
+++ b/lib/builtins/arm/sync-ops.h
@@ -14,50 +14,48 @@
#include "../assembly.h"
-#define SYNC_OP_4(op) \
- .p2align 2 ; \
- .thumb ; \
- .syntax unified ; \
- DEFINE_COMPILERRT_THUMB_FUNCTION(__sync_fetch_and_ ## op) \
- dmb ; \
- mov r12, r0 ; \
- LOCAL_LABEL(tryatomic_ ## op): \
- ldrex r0, [r12] ; \
- op(r2, r0, r1) ; \
- strex r3, r2, [r12] ; \
- cmp r3, #0 ; \
- bne LOCAL_LABEL(tryatomic_ ## op) ; \
- dmb ; \
- bx lr
+#define SYNC_OP_4(op) \
+ .p2align 2; \
+ .thumb; \
+ .syntax unified; \
+ DEFINE_COMPILERRT_THUMB_FUNCTION(__sync_fetch_and_##op) \
+ dmb; \
+ mov r12, r0; \
+ LOCAL_LABEL(tryatomic_##op) : ldrex r0, [r12]; \
+ op(r2, r0, r1); \
+ strex r3, r2, [r12]; \
+ cmp r3, #0; \
+ bne LOCAL_LABEL(tryatomic_##op); \
+ dmb; \
+ bx lr
-#define SYNC_OP_8(op) \
- .p2align 2 ; \
- .thumb ; \
- .syntax unified ; \
- DEFINE_COMPILERRT_THUMB_FUNCTION(__sync_fetch_and_ ## op) \
- push {r4, r5, r6, lr} ; \
- dmb ; \
- mov r12, r0 ; \
- LOCAL_LABEL(tryatomic_ ## op): \
- ldrexd r0, r1, [r12] ; \
- op(r4, r5, r0, r1, r2, r3) ; \
- strexd r6, r4, r5, [r12] ; \
- cmp r6, #0 ; \
- bne LOCAL_LABEL(tryatomic_ ## op) ; \
- dmb ; \
- pop {r4, r5, r6, pc}
+#define SYNC_OP_8(op) \
+ .p2align 2; \
+ .thumb; \
+ .syntax unified; \
+ DEFINE_COMPILERRT_THUMB_FUNCTION(__sync_fetch_and_##op) \
+ push{r4, r5, r6, lr}; \
+ dmb; \
+ mov r12, r0; \
+ LOCAL_LABEL(tryatomic_##op) : ldrexd r0, r1, [r12]; \
+ op(r4, r5, r0, r1, r2, r3); \
+ strexd r6, r4, r5, [r12]; \
+ cmp r6, #0; \
+ bne LOCAL_LABEL(tryatomic_##op); \
+ dmb; \
+ pop { r4, r5, r6, pc }
-#define MINMAX_4(rD, rN, rM, cmp_kind) \
- cmp rN, rM ; \
- mov rD, rM ; \
- it cmp_kind ; \
- mov##cmp_kind rD, rN
+#define MINMAX_4(rD, rN, rM, cmp_kind) \
+ cmp rN, rM; \
+ mov rD, rM; \
+ it cmp_kind; \
+ mov##cmp_kind rD, rN
-#define MINMAX_8(rD_LO, rD_HI, rN_LO, rN_HI, rM_LO, rM_HI, cmp_kind) \
- cmp rN_LO, rM_LO ; \
- sbcs rN_HI, rM_HI ; \
- mov rD_LO, rM_LO ; \
- mov rD_HI, rM_HI ; \
- itt cmp_kind ; \
- mov##cmp_kind rD_LO, rN_LO ; \
- mov##cmp_kind rD_HI, rN_HI
+#define MINMAX_8(rD_LO, rD_HI, rN_LO, rN_HI, rM_LO, rM_HI, cmp_kind) \
+ cmp rN_LO, rM_LO; \
+ sbcs rN_HI, rM_HI; \
+ mov rD_LO, rM_LO; \
+ mov rD_HI, rM_HI; \
+ itt cmp_kind; \
+ mov##cmp_kind rD_LO, rN_LO; \
+ mov##cmp_kind rD_HI, rN_HI
diff --git a/lib/builtins/ashldi3.c b/lib/builtins/ashldi3.c
index c199b12b8..8fd06740d 100644
--- a/lib/builtins/ashldi3.c
+++ b/lib/builtins/ashldi3.c
@@ -17,28 +17,26 @@
/* Precondition: 0 <= b < bits_in_dword */
-COMPILER_RT_ABI di_int
-__ashldi3(di_int a, si_int b)
-{
- const int bits_in_word = (int)(sizeof(si_int) * CHAR_BIT);
- dwords input;
- dwords result;
- input.all = a;
- if (b & bits_in_word) /* bits_in_word <= b < bits_in_dword */
- {
- result.s.low = 0;
- result.s.high = input.s.low << (b - bits_in_word);
- }
- else /* 0 <= b < bits_in_word */
- {
- if (b == 0)
- return a;
- result.s.low = input.s.low << b;
- result.s.high = (input.s.high << b) | (input.s.low >> (bits_in_word - b));
- }
- return result.all;
+COMPILER_RT_ABI di_int __ashldi3(di_int a, si_int b) {
+ const int bits_in_word = (int)(sizeof(si_int) * CHAR_BIT);
+ dwords input;
+ dwords result;
+ input.all = a;
+ if (b & bits_in_word) /* bits_in_word <= b < bits_in_dword */
+ {
+ result.s.low = 0;
+ result.s.high = input.s.low << (b - bits_in_word);
+ } else /* 0 <= b < bits_in_word */
+ {
+ if (b == 0)
+ return a;
+ result.s.low = input.s.low << b;
+ result.s.high = (input.s.high << b) | (input.s.low >> (bits_in_word - b));
+ }
+ return result.all;
}
#if defined(__ARM_EABI__)
-AEABI_RTABI di_int __aeabi_llsl(di_int a, si_int b) COMPILER_RT_ALIAS(__ashldi3);
+AEABI_RTABI di_int __aeabi_llsl(di_int a, si_int b)
+ COMPILER_RT_ALIAS(__ashldi3);
#endif
diff --git a/lib/builtins/ashlti3.c b/lib/builtins/ashlti3.c
index d5530fb43..fd63785c5 100644
--- a/lib/builtins/ashlti3.c
+++ b/lib/builtins/ashlti3.c
@@ -19,26 +19,23 @@
/* Precondition: 0 <= b < bits_in_tword */
-COMPILER_RT_ABI ti_int
-__ashlti3(ti_int a, si_int b)
-{
- const int bits_in_dword = (int)(sizeof(di_int) * CHAR_BIT);
- twords input;
- twords result;
- input.all = a;
- if (b & bits_in_dword) /* bits_in_dword <= b < bits_in_tword */
- {
- result.s.low = 0;
- result.s.high = input.s.low << (b - bits_in_dword);
- }
- else /* 0 <= b < bits_in_dword */
- {
- if (b == 0)
- return a;
- result.s.low = input.s.low << b;
- result.s.high = (input.s.high << b) | (input.s.low >> (bits_in_dword - b));
- }
- return result.all;
+COMPILER_RT_ABI ti_int __ashlti3(ti_int a, si_int b) {
+ const int bits_in_dword = (int)(sizeof(di_int) * CHAR_BIT);
+ twords input;
+ twords result;
+ input.all = a;
+ if (b & bits_in_dword) /* bits_in_dword <= b < bits_in_tword */
+ {
+ result.s.low = 0;
+ result.s.high = input.s.low << (b - bits_in_dword);
+ } else /* 0 <= b < bits_in_dword */
+ {
+ if (b == 0)
+ return a;
+ result.s.low = input.s.low << b;
+ result.s.high = (input.s.high << b) | (input.s.low >> (bits_in_dword - b));
+ }
+ return result.all;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/ashrdi3.c b/lib/builtins/ashrdi3.c
index fe97245e5..3f2c2ff86 100644
--- a/lib/builtins/ashrdi3.c
+++ b/lib/builtins/ashrdi3.c
@@ -17,29 +17,27 @@
/* Precondition: 0 <= b < bits_in_dword */
-COMPILER_RT_ABI di_int
-__ashrdi3(di_int a, si_int b)
-{
- const int bits_in_word = (int)(sizeof(si_int) * CHAR_BIT);
- dwords input;
- dwords result;
- input.all = a;
- if (b & bits_in_word) /* bits_in_word <= b < bits_in_dword */
- {
- /* result.s.high = input.s.high < 0 ? -1 : 0 */
- result.s.high = input.s.high >> (bits_in_word - 1);
- result.s.low = input.s.high >> (b - bits_in_word);
- }
- else /* 0 <= b < bits_in_word */
- {
- if (b == 0)
- return a;
- result.s.high = input.s.high >> b;
- result.s.low = (input.s.high << (bits_in_word - b)) | (input.s.low >> b);
- }
- return result.all;
+COMPILER_RT_ABI di_int __ashrdi3(di_int a, si_int b) {
+ const int bits_in_word = (int)(sizeof(si_int) * CHAR_BIT);
+ dwords input;
+ dwords result;
+ input.all = a;
+ if (b & bits_in_word) /* bits_in_word <= b < bits_in_dword */
+ {
+ /* result.s.high = input.s.high < 0 ? -1 : 0 */
+ result.s.high = input.s.high >> (bits_in_word - 1);
+ result.s.low = input.s.high >> (b - bits_in_word);
+ } else /* 0 <= b < bits_in_word */
+ {
+ if (b == 0)
+ return a;
+ result.s.high = input.s.high >> b;
+ result.s.low = (input.s.high << (bits_in_word - b)) | (input.s.low >> b);
+ }
+ return result.all;
}
#if defined(__ARM_EABI__)
-AEABI_RTABI di_int __aeabi_lasr(di_int a, si_int b) COMPILER_RT_ALIAS(__ashrdi3);
+AEABI_RTABI di_int __aeabi_lasr(di_int a, si_int b)
+ COMPILER_RT_ALIAS(__ashrdi3);
#endif
diff --git a/lib/builtins/ashrti3.c b/lib/builtins/ashrti3.c
index 5a497ed1e..98ffefb01 100644
--- a/lib/builtins/ashrti3.c
+++ b/lib/builtins/ashrti3.c
@@ -19,27 +19,24 @@
/* Precondition: 0 <= b < bits_in_tword */
-COMPILER_RT_ABI ti_int
-__ashrti3(ti_int a, si_int b)
-{
- const int bits_in_dword = (int)(sizeof(di_int) * CHAR_BIT);
- twords input;
- twords result;
- input.all = a;
- if (b & bits_in_dword) /* bits_in_dword <= b < bits_in_tword */
- {
- /* result.s.high = input.s.high < 0 ? -1 : 0 */
- result.s.high = input.s.high >> (bits_in_dword - 1);
- result.s.low = input.s.high >> (b - bits_in_dword);
- }
- else /* 0 <= b < bits_in_dword */
- {
- if (b == 0)
- return a;
- result.s.high = input.s.high >> b;
- result.s.low = (input.s.high << (bits_in_dword - b)) | (input.s.low >> b);
- }
- return result.all;
+COMPILER_RT_ABI ti_int __ashrti3(ti_int a, si_int b) {
+ const int bits_in_dword = (int)(sizeof(di_int) * CHAR_BIT);
+ twords input;
+ twords result;
+ input.all = a;
+ if (b & bits_in_dword) /* bits_in_dword <= b < bits_in_tword */
+ {
+ /* result.s.high = input.s.high < 0 ? -1 : 0 */
+ result.s.high = input.s.high >> (bits_in_dword - 1);
+ result.s.low = input.s.high >> (b - bits_in_dword);
+ } else /* 0 <= b < bits_in_dword */
+ {
+ if (b == 0)
+ return a;
+ result.s.high = input.s.high >> b;
+ result.s.low = (input.s.high << (bits_in_dword - b)) | (input.s.low >> b);
+ }
+ return result.all;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/atomic.c b/lib/builtins/atomic.c
index 1bca01c82..b273f0c4c 100644
--- a/lib/builtins/atomic.c
+++ b/lib/builtins/atomic.c
@@ -9,13 +9,13 @@
* atomic.c defines a set of functions for performing atomic accesses on
* arbitrary-sized memory locations. This design uses locks that should
* be fast in the uncontended case, for two reasons:
- *
+ *
* 1) This code must work with C programs that do not link to anything
* (including pthreads) and so it should not depend on any pthread
* functions.
* 2) Atomic operations, rather than explicit mutexes, are most commonly used
* on code where contended operations are rate.
- *
+ *
* To avoid needing a per-object lock, this code allocates an array of
* locks and hashes the object pointers to find the one that it should use.
* For operations that must be atomic on two locations, the lower lock is
@@ -34,13 +34,14 @@
#pragma redefine_extname __atomic_load_c SYMBOL_NAME(__atomic_load)
#pragma redefine_extname __atomic_store_c SYMBOL_NAME(__atomic_store)
#pragma redefine_extname __atomic_exchange_c SYMBOL_NAME(__atomic_exchange)
-#pragma redefine_extname __atomic_compare_exchange_c SYMBOL_NAME(__atomic_compare_exchange)
+#pragma redefine_extname __atomic_compare_exchange_c SYMBOL_NAME( \
+ __atomic_compare_exchange)
/// Number of locks. This allocates one page on 32-bit platforms, two on
/// 64-bit. This can be specified externally if a different trade between
/// memory usage and contention probability is required for a given platform.
#ifndef SPINLOCK_COUNT
-#define SPINLOCK_COUNT (1<<10)
+#define SPINLOCK_COUNT (1 << 10)
#endif
static const long SPINLOCK_MASK = SPINLOCK_COUNT - 1;
@@ -51,38 +52,35 @@ static const long SPINLOCK_MASK = SPINLOCK_COUNT - 1;
////////////////////////////////////////////////////////////////////////////////
#ifdef __FreeBSD__
#include <errno.h>
-#include <sys/types.h>
#include <machine/atomic.h>
+#include <sys/types.h>
#include <sys/umtx.h>
typedef struct _usem Lock;
__inline static void unlock(Lock *l) {
- __c11_atomic_store((_Atomic(uint32_t)*)&l->_count, 1, __ATOMIC_RELEASE);
+ __c11_atomic_store((_Atomic(uint32_t) *)&l->_count, 1, __ATOMIC_RELEASE);
__c11_atomic_thread_fence(__ATOMIC_SEQ_CST);
if (l->_has_waiters)
- _umtx_op(l, UMTX_OP_SEM_WAKE, 1, 0, 0);
+ _umtx_op(l, UMTX_OP_SEM_WAKE, 1, 0, 0);
}
__inline static void lock(Lock *l) {
uint32_t old = 1;
- while (!__c11_atomic_compare_exchange_weak((_Atomic(uint32_t)*)&l->_count, &old,
- 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) {
+ while (!__c11_atomic_compare_exchange_weak((_Atomic(uint32_t) *)&l->_count,
+ &old, 0, __ATOMIC_ACQUIRE,
+ __ATOMIC_RELAXED)) {
_umtx_op(l, UMTX_OP_SEM_WAIT, 0, 0, 0);
old = 1;
}
}
/// locks for atomic operations
-static Lock locks[SPINLOCK_COUNT] = { [0 ... SPINLOCK_COUNT-1] = {0,1,0} };
+static Lock locks[SPINLOCK_COUNT] = {[0 ... SPINLOCK_COUNT - 1] = {0, 1, 0}};
#elif defined(__APPLE__)
#include <libkern/OSAtomic.h>
typedef OSSpinLock Lock;
-__inline static void unlock(Lock *l) {
- OSSpinLockUnlock(l);
-}
+__inline static void unlock(Lock *l) { OSSpinLockUnlock(l); }
/// Locks a lock. In the current implementation, this is potentially
/// unbounded in the contended case.
-__inline static void lock(Lock *l) {
- OSSpinLockLock(l);
-}
+__inline static void lock(Lock *l) { OSSpinLockLock(l); }
static Lock locks[SPINLOCK_COUNT]; // initialized to OS_SPINLOCK_INIT which is 0
#else
@@ -96,20 +94,19 @@ __inline static void unlock(Lock *l) {
__inline static void lock(Lock *l) {
uintptr_t old = 0;
while (!__c11_atomic_compare_exchange_weak(l, &old, 1, __ATOMIC_ACQUIRE,
- __ATOMIC_RELAXED))
+ __ATOMIC_RELAXED))
old = 0;
}
/// locks for atomic operations
static Lock locks[SPINLOCK_COUNT];
#endif
-
-/// Returns a lock to use for a given pointer.
+/// Returns a lock to use for a given pointer.
static __inline Lock *lock_for_pointer(void *ptr) {
intptr_t hash = (intptr_t)ptr;
// Disregard the lowest 4 bits. We want all values that may be part of the
// same memory operation to hash to the same value and therefore use the same
- // lock.
+ // lock.
hash >>= 4;
// Use the next bits as the basis for the hash
intptr_t low = hash & SPINLOCK_MASK;
@@ -132,45 +129,44 @@ static __inline Lock *lock_for_pointer(void *ptr) {
/// Macro that calls the compiler-generated lock-free versions of functions
/// when they exist.
-#define LOCK_FREE_CASES() \
- do {\
- switch (size) {\
- case 1:\
- if (IS_LOCK_FREE_1) {\
- LOCK_FREE_ACTION(uint8_t);\
- }\
- break; \
- case 2:\
- if (IS_LOCK_FREE_2) {\
- LOCK_FREE_ACTION(uint16_t);\
- }\
- break; \
- case 4:\
- if (IS_LOCK_FREE_4) {\
- LOCK_FREE_ACTION(uint32_t);\
- }\
- break; \
- case 8:\
- if (IS_LOCK_FREE_8) {\
- LOCK_FREE_ACTION(uint64_t);\
- }\
- break; \
- case 16:\
- if (IS_LOCK_FREE_16) {\
- /* FIXME: __uint128_t isn't available on 32 bit platforms.
- LOCK_FREE_ACTION(__uint128_t);*/\
- }\
- break; \
- }\
+#define LOCK_FREE_CASES() \
+ do { \
+ switch (size) { \
+ case 1: \
+ if (IS_LOCK_FREE_1) { \
+ LOCK_FREE_ACTION(uint8_t); \
+ } \
+ break; \
+ case 2: \
+ if (IS_LOCK_FREE_2) { \
+ LOCK_FREE_ACTION(uint16_t); \
+ } \
+ break; \
+ case 4: \
+ if (IS_LOCK_FREE_4) { \
+ LOCK_FREE_ACTION(uint32_t); \
+ } \
+ break; \
+ case 8: \
+ if (IS_LOCK_FREE_8) { \
+ LOCK_FREE_ACTION(uint64_t); \
+ } \
+ break; \
+ case 16: \
+ if (IS_LOCK_FREE_16) { \
+ /* FIXME: __uint128_t isn't available on 32 bit platforms. \
+ LOCK_FREE_ACTION(__uint128_t);*/ \
+ } \
+ break; \
+ } \
} while (0)
-
/// An atomic load operation. This is atomic with respect to the source
/// pointer only.
void __atomic_load_c(int size, void *src, void *dest, int model) {
-#define LOCK_FREE_ACTION(type) \
- *((type*)dest) = __c11_atomic_load((_Atomic(type)*)src, model);\
- return;
+#define LOCK_FREE_ACTION(type) \
+ *((type *)dest) = __c11_atomic_load((_Atomic(type) *)src, model); \
+ return;
LOCK_FREE_CASES();
#undef LOCK_FREE_ACTION
Lock *l = lock_for_pointer(src);
@@ -182,9 +178,9 @@ void __atomic_load_c(int size, void *src, void *dest, int model) {
/// An atomic store operation. This is atomic with respect to the destination
/// pointer only.
void __atomic_store_c(int size, void *dest, void *src, int model) {
-#define LOCK_FREE_ACTION(type) \
- __c11_atomic_store((_Atomic(type)*)dest, *(type*)src, model);\
- return;
+#define LOCK_FREE_ACTION(type) \
+ __c11_atomic_store((_Atomic(type) *)dest, *(type *)src, model); \
+ return;
LOCK_FREE_CASES();
#undef LOCK_FREE_ACTION
Lock *l = lock_for_pointer(dest);
@@ -197,12 +193,13 @@ void __atomic_store_c(int size, void *dest, void *src, int model) {
/// to the value at *expected, then this copies value at *desired to *ptr. If
/// they are not, then this stores the current value from *ptr in *expected.
///
-/// This function returns 1 if the exchange takes place or 0 if it fails.
+/// This function returns 1 if the exchange takes place or 0 if it fails.
int __atomic_compare_exchange_c(int size, void *ptr, void *expected,
- void *desired, int success, int failure) {
-#define LOCK_FREE_ACTION(type) \
- return __c11_atomic_compare_exchange_strong((_Atomic(type)*)ptr, (type*)expected,\
- *(type*)desired, success, failure)
+ void *desired, int success, int failure) {
+#define LOCK_FREE_ACTION(type) \
+ return __c11_atomic_compare_exchange_strong( \
+ (_Atomic(type) *)ptr, (type *)expected, *(type *)desired, success, \
+ failure)
LOCK_FREE_CASES();
#undef LOCK_FREE_ACTION
Lock *l = lock_for_pointer(ptr);
@@ -220,10 +217,10 @@ int __atomic_compare_exchange_c(int size, void *ptr, void *expected,
/// Performs an atomic exchange operation between two pointers. This is atomic
/// with respect to the target address.
void __atomic_exchange_c(int size, void *ptr, void *val, void *old, int model) {
-#define LOCK_FREE_ACTION(type) \
- *(type*)old = __c11_atomic_exchange((_Atomic(type)*)ptr, *(type*)val,\
- model);\
- return;
+#define LOCK_FREE_ACTION(type) \
+ *(type *)old = \
+ __c11_atomic_exchange((_Atomic(type) *)ptr, *(type *)val, model); \
+ return;
LOCK_FREE_CASES();
#undef LOCK_FREE_ACTION
Lock *l = lock_for_pointer(ptr);
@@ -238,96 +235,96 @@ void __atomic_exchange_c(int size, void *ptr, void *val, void *old, int model) {
// specialised versions of the above functions.
////////////////////////////////////////////////////////////////////////////////
#ifdef __SIZEOF_INT128__
-#define OPTIMISED_CASES\
- OPTIMISED_CASE(1, IS_LOCK_FREE_1, uint8_t)\
- OPTIMISED_CASE(2, IS_LOCK_FREE_2, uint16_t)\
- OPTIMISED_CASE(4, IS_LOCK_FREE_4, uint32_t)\
- OPTIMISED_CASE(8, IS_LOCK_FREE_8, uint64_t)\
+#define OPTIMISED_CASES \
+ OPTIMISED_CASE(1, IS_LOCK_FREE_1, uint8_t) \
+ OPTIMISED_CASE(2, IS_LOCK_FREE_2, uint16_t) \
+ OPTIMISED_CASE(4, IS_LOCK_FREE_4, uint32_t) \
+ OPTIMISED_CASE(8, IS_LOCK_FREE_8, uint64_t) \
OPTIMISED_CASE(16, IS_LOCK_FREE_16, __uint128_t)
#else
-#define OPTIMISED_CASES\
- OPTIMISED_CASE(1, IS_LOCK_FREE_1, uint8_t)\
- OPTIMISED_CASE(2, IS_LOCK_FREE_2, uint16_t)\
- OPTIMISED_CASE(4, IS_LOCK_FREE_4, uint32_t)\
+#define OPTIMISED_CASES \
+ OPTIMISED_CASE(1, IS_LOCK_FREE_1, uint8_t) \
+ OPTIMISED_CASE(2, IS_LOCK_FREE_2, uint16_t) \
+ OPTIMISED_CASE(4, IS_LOCK_FREE_4, uint32_t) \
OPTIMISED_CASE(8, IS_LOCK_FREE_8, uint64_t)
#endif
-#define OPTIMISED_CASE(n, lockfree, type)\
-type __atomic_load_##n(type *src, int model) {\
- if (lockfree)\
- return __c11_atomic_load((_Atomic(type)*)src, model);\
- Lock *l = lock_for_pointer(src);\
- lock(l);\
- type val = *src;\
- unlock(l);\
- return val;\
-}
+#define OPTIMISED_CASE(n, lockfree, type) \
+ type __atomic_load_##n(type *src, int model) { \
+ if (lockfree) \
+ return __c11_atomic_load((_Atomic(type) *)src, model); \
+ Lock *l = lock_for_pointer(src); \
+ lock(l); \
+ type val = *src; \
+ unlock(l); \
+ return val; \
+ }
OPTIMISED_CASES
#undef OPTIMISED_CASE
-#define OPTIMISED_CASE(n, lockfree, type)\
-void __atomic_store_##n(type *dest, type val, int model) {\
- if (lockfree) {\
- __c11_atomic_store((_Atomic(type)*)dest, val, model);\
- return;\
- }\
- Lock *l = lock_for_pointer(dest);\
- lock(l);\
- *dest = val;\
- unlock(l);\
- return;\
-}
+#define OPTIMISED_CASE(n, lockfree, type) \
+ void __atomic_store_##n(type *dest, type val, int model) { \
+ if (lockfree) { \
+ __c11_atomic_store((_Atomic(type) *)dest, val, model); \
+ return; \
+ } \
+ Lock *l = lock_for_pointer(dest); \
+ lock(l); \
+ *dest = val; \
+ unlock(l); \
+ return; \
+ }
OPTIMISED_CASES
#undef OPTIMISED_CASE
-#define OPTIMISED_CASE(n, lockfree, type)\
-type __atomic_exchange_##n(type *dest, type val, int model) {\
- if (lockfree)\
- return __c11_atomic_exchange((_Atomic(type)*)dest, val, model);\
- Lock *l = lock_for_pointer(dest);\
- lock(l);\
- type tmp = *dest;\
- *dest = val;\
- unlock(l);\
- return tmp;\
-}
+#define OPTIMISED_CASE(n, lockfree, type) \
+ type __atomic_exchange_##n(type *dest, type val, int model) { \
+ if (lockfree) \
+ return __c11_atomic_exchange((_Atomic(type) *)dest, val, model); \
+ Lock *l = lock_for_pointer(dest); \
+ lock(l); \
+ type tmp = *dest; \
+ *dest = val; \
+ unlock(l); \
+ return tmp; \
+ }
OPTIMISED_CASES
#undef OPTIMISED_CASE
-#define OPTIMISED_CASE(n, lockfree, type)\
-int __atomic_compare_exchange_##n(type *ptr, type *expected, type desired,\
- int success, int failure) {\
- if (lockfree)\
- return __c11_atomic_compare_exchange_strong((_Atomic(type)*)ptr, expected, desired,\
- success, failure);\
- Lock *l = lock_for_pointer(ptr);\
- lock(l);\
- if (*ptr == *expected) {\
- *ptr = desired;\
- unlock(l);\
- return 1;\
- }\
- *expected = *ptr;\
- unlock(l);\
- return 0;\
-}
+#define OPTIMISED_CASE(n, lockfree, type) \
+ int __atomic_compare_exchange_##n(type *ptr, type *expected, type desired, \
+ int success, int failure) { \
+ if (lockfree) \
+ return __c11_atomic_compare_exchange_strong( \
+ (_Atomic(type) *)ptr, expected, desired, success, failure); \
+ Lock *l = lock_for_pointer(ptr); \
+ lock(l); \
+ if (*ptr == *expected) { \
+ *ptr = desired; \
+ unlock(l); \
+ return 1; \
+ } \
+ *expected = *ptr; \
+ unlock(l); \
+ return 0; \
+ }
OPTIMISED_CASES
#undef OPTIMISED_CASE
////////////////////////////////////////////////////////////////////////////////
// Atomic read-modify-write operations for integers of various sizes.
////////////////////////////////////////////////////////////////////////////////
-#define ATOMIC_RMW(n, lockfree, type, opname, op) \
-type __atomic_fetch_##opname##_##n(type *ptr, type val, int model) {\
- if (lockfree) \
- return __c11_atomic_fetch_##opname((_Atomic(type)*)ptr, val, model);\
- Lock *l = lock_for_pointer(ptr);\
- lock(l);\
- type tmp = *ptr;\
- *ptr = tmp op val;\
- unlock(l);\
- return tmp;\
-}
+#define ATOMIC_RMW(n, lockfree, type, opname, op) \
+ type __atomic_fetch_##opname##_##n(type *ptr, type val, int model) { \
+ if (lockfree) \
+ return __c11_atomic_fetch_##opname((_Atomic(type) *)ptr, val, model); \
+ Lock *l = lock_for_pointer(ptr); \
+ lock(l); \
+ type tmp = *ptr; \
+ *ptr = tmp op val; \
+ unlock(l); \
+ return tmp; \
+ }
#define OPTIMISED_CASE(n, lockfree, type) ATOMIC_RMW(n, lockfree, type, add, +)
OPTIMISED_CASES
diff --git a/lib/builtins/bswapsi2.c b/lib/builtins/bswapsi2.c
index dbac45771..78edf5f52 100644
--- a/lib/builtins/bswapsi2.c
+++ b/lib/builtins/bswapsi2.c
@@ -14,9 +14,8 @@
#include "int_lib.h"
COMPILER_RT_ABI uint32_t __bswapsi2(uint32_t u) {
- return (
- (((u)&0xff000000) >> 24) |
- (((u)&0x00ff0000) >> 8) |
- (((u)&0x0000ff00) << 8) |
- (((u)&0x000000ff) << 24));
+ return ((((u)&0xff000000) >> 24) |
+ (((u)&0x00ff0000) >> 8) |
+ (((u)&0x0000ff00) << 8) |
+ (((u)&0x000000ff) << 24));
}
diff --git a/lib/builtins/clear_cache.c b/lib/builtins/clear_cache.c
index 4dabe4626..8e4f35ea9 100644
--- a/lib/builtins/clear_cache.c
+++ b/lib/builtins/clear_cache.c
@@ -12,7 +12,7 @@
#include <stddef.h>
#if __APPLE__
- #include <libkern/OSCacheControl.h>
+#include <libkern/OSCacheControl.h>
#endif
#if defined(_WIN32)
@@ -24,73 +24,71 @@ uintptr_t GetCurrentProcess(void);
#endif
#if defined(__FreeBSD__) && defined(__arm__)
- #include <sys/types.h>
- #include <machine/sysarch.h>
+#include <machine/sysarch.h>
+#include <sys/types.h>
#endif
#if defined(__NetBSD__) && defined(__arm__)
- #include <machine/sysarch.h>
+#include <machine/sysarch.h>
#endif
#if defined(__OpenBSD__) && defined(__mips__)
- #include <sys/types.h>
- #include <machine/sysarch.h>
+#include <machine/sysarch.h>
+#include <sys/types.h>
#endif
#if defined(__linux__) && defined(__mips__)
- #include <sys/cachectl.h>
- #include <sys/syscall.h>
- #include <unistd.h>
- #if defined(__ANDROID__) && defined(__LP64__)
- /*
- * clear_mips_cache - Invalidates instruction cache for Mips.
- */
- static void clear_mips_cache(const void* Addr, size_t Size) {
- __asm__ volatile (
- ".set push\n"
- ".set noreorder\n"
- ".set noat\n"
- "beq %[Size], $zero, 20f\n" /* If size == 0, branch around. */
- "nop\n"
- "daddu %[Size], %[Addr], %[Size]\n" /* Calculate end address + 1 */
- "rdhwr $v0, $1\n" /* Get step size for SYNCI.
- $1 is $HW_SYNCI_Step */
- "beq $v0, $zero, 20f\n" /* If no caches require
- synchronization, branch
- around. */
- "nop\n"
- "10:\n"
- "synci 0(%[Addr])\n" /* Synchronize all caches around
- address. */
- "daddu %[Addr], %[Addr], $v0\n" /* Add step size. */
- "sltu $at, %[Addr], %[Size]\n" /* Compare current with end
- address. */
- "bne $at, $zero, 10b\n" /* Branch if more to do. */
- "nop\n"
- "sync\n" /* Clear memory hazards. */
- "20:\n"
- "bal 30f\n"
- "nop\n"
- "30:\n"
- "daddiu $ra, $ra, 12\n" /* $ra has a value of $pc here.
- Add offset of 12 to point to the
- instruction after the last nop.
- */
- "jr.hb $ra\n" /* Return, clearing instruction
- hazards. */
- "nop\n"
- ".set pop\n"
- : [Addr] "+r"(Addr), [Size] "+r"(Size)
- :: "at", "ra", "v0", "memory"
- );
- }
- #endif
+#include <sys/cachectl.h>
+#include <sys/syscall.h>
+#include <unistd.h>
+#if defined(__ANDROID__) && defined(__LP64__)
+/*
+ * clear_mips_cache - Invalidates instruction cache for Mips.
+ */
+static void clear_mips_cache(const void *Addr, size_t Size) {
+ __asm__ volatile(
+ ".set push\n"
+ ".set noreorder\n"
+ ".set noat\n"
+ "beq %[Size], $zero, 20f\n" /* If size == 0, branch around. */
+ "nop\n"
+ "daddu %[Size], %[Addr], %[Size]\n" /* Calculate end address + 1 */
+ "rdhwr $v0, $1\n" /* Get step size for SYNCI.
+ $1 is $HW_SYNCI_Step */
+ "beq $v0, $zero, 20f\n" /* If no caches require
+ synchronization, branch
+ around. */
+ "nop\n"
+ "10:\n"
+ "synci 0(%[Addr])\n" /* Synchronize all caches around
+ address. */
+ "daddu %[Addr], %[Addr], $v0\n" /* Add step size. */
+ "sltu $at, %[Addr], %[Size]\n" /* Compare current with end
+ address. */
+ "bne $at, $zero, 10b\n" /* Branch if more to do. */
+ "nop\n"
+ "sync\n" /* Clear memory hazards. */
+ "20:\n"
+ "bal 30f\n"
+ "nop\n"
+ "30:\n"
+ "daddiu $ra, $ra, 12\n" /* $ra has a value of $pc here.
+ Add offset of 12 to point to the
+ instruction after the last nop.
+ */
+ "jr.hb $ra\n" /* Return, clearing instruction
+ hazards. */
+ "nop\n"
+ ".set pop\n"
+ : [ Addr ] "+r"(Addr), [ Size ] "+r"(Size)::"at", "ra", "v0", "memory");
+}
+#endif
#endif
/*
- * The compiler generates calls to __clear_cache() when creating
+ * The compiler generates calls to __clear_cache() when creating
* trampoline functions on the stack for use with nested functions.
- * It is expected to invalidate the instruction cache for the
+ * It is expected to invalidate the instruction cache for the
* specified range.
*/
@@ -101,56 +99,55 @@ void __clear_cache(void *start, void *end) {
* so there is nothing to do
*/
#elif defined(_WIN32) && (defined(__arm__) || defined(__aarch64__))
- FlushInstructionCache(GetCurrentProcess(), start, end - start);
+ FlushInstructionCache(GetCurrentProcess(), start, end - start);
#elif defined(__arm__) && !defined(__APPLE__)
- #if defined(__FreeBSD__) || defined(__NetBSD__)
- struct arm_sync_icache_args arg;
-
- arg.addr = (uintptr_t)start;
- arg.len = (uintptr_t)end - (uintptr_t)start;
-
- sysarch(ARM_SYNC_ICACHE, &arg);
- #elif defined(__linux__)
- /*
- * We used to include asm/unistd.h for the __ARM_NR_cacheflush define, but
- * it also brought many other unused defines, as well as a dependency on
- * kernel headers to be installed.
- *
- * This value is stable at least since Linux 3.13 and should remain so for
- * compatibility reasons, warranting it's re-definition here.
- */
- #define __ARM_NR_cacheflush 0x0f0002
- register int start_reg __asm("r0") = (int) (intptr_t) start;
- const register int end_reg __asm("r1") = (int) (intptr_t) end;
- const register int flags __asm("r2") = 0;
- const register int syscall_nr __asm("r7") = __ARM_NR_cacheflush;
- __asm __volatile("svc 0x0"
- : "=r"(start_reg)
- : "r"(syscall_nr), "r"(start_reg), "r"(end_reg),
- "r"(flags));
- assert(start_reg == 0 && "Cache flush syscall failed.");
- #else
- compilerrt_abort();
- #endif
+#if defined(__FreeBSD__) || defined(__NetBSD__)
+ struct arm_sync_icache_args arg;
+
+ arg.addr = (uintptr_t)start;
+ arg.len = (uintptr_t)end - (uintptr_t)start;
+
+ sysarch(ARM_SYNC_ICACHE, &arg);
+#elif defined(__linux__)
+/*
+ * We used to include asm/unistd.h for the __ARM_NR_cacheflush define, but
+ * it also brought many other unused defines, as well as a dependency on
+ * kernel headers to be installed.
+ *
+ * This value is stable at least since Linux 3.13 and should remain so for
+ * compatibility reasons, warranting it's re-definition here.
+ */
+#define __ARM_NR_cacheflush 0x0f0002
+ register int start_reg __asm("r0") = (int)(intptr_t)start;
+ const register int end_reg __asm("r1") = (int)(intptr_t)end;
+ const register int flags __asm("r2") = 0;
+ const register int syscall_nr __asm("r7") = __ARM_NR_cacheflush;
+ __asm __volatile("svc 0x0"
+ : "=r"(start_reg)
+ : "r"(syscall_nr), "r"(start_reg), "r"(end_reg), "r"(flags));
+ assert(start_reg == 0 && "Cache flush syscall failed.");
+#else
+ compilerrt_abort();
+#endif
#elif defined(__linux__) && defined(__mips__)
- const uintptr_t start_int = (uintptr_t) start;
- const uintptr_t end_int = (uintptr_t) end;
- #if defined(__ANDROID__) && defined(__LP64__)
- // Call synci implementation for short address range.
- const uintptr_t address_range_limit = 256;
- if ((end_int - start_int) <= address_range_limit) {
- clear_mips_cache(start, (end_int - start_int));
- } else {
- syscall(__NR_cacheflush, start, (end_int - start_int), BCACHE);
- }
- #else
- syscall(__NR_cacheflush, start, (end_int - start_int), BCACHE);
- #endif
+ const uintptr_t start_int = (uintptr_t)start;
+ const uintptr_t end_int = (uintptr_t)end;
+#if defined(__ANDROID__) && defined(__LP64__)
+ // Call synci implementation for short address range.
+ const uintptr_t address_range_limit = 256;
+ if ((end_int - start_int) <= address_range_limit) {
+ clear_mips_cache(start, (end_int - start_int));
+ } else {
+ syscall(__NR_cacheflush, start, (end_int - start_int), BCACHE);
+ }
+#else
+ syscall(__NR_cacheflush, start, (end_int - start_int), BCACHE);
+#endif
#elif defined(__mips__) && defined(__OpenBSD__)
cacheflush(start, (uintptr_t)end - (uintptr_t)start, BCACHE);
#elif defined(__aarch64__) && !defined(__APPLE__)
- uint64_t xstart = (uint64_t)(uintptr_t) start;
- uint64_t xend = (uint64_t)(uintptr_t) end;
+ uint64_t xstart = (uint64_t)(uintptr_t)start;
+ uint64_t xend = (uint64_t)(uintptr_t)end;
uint64_t addr;
// Get Cache Type Info
@@ -164,15 +161,15 @@ void __clear_cache(void *start, void *end) {
const size_t dcache_line_size = 4 << ((ctr_el0 >> 16) & 15);
for (addr = xstart & ~(dcache_line_size - 1); addr < xend;
addr += dcache_line_size)
- __asm __volatile("dc cvau, %0" :: "r"(addr));
+ __asm __volatile("dc cvau, %0" ::"r"(addr));
__asm __volatile("dsb ish");
const size_t icache_line_size = 4 << ((ctr_el0 >> 0) & 15);
for (addr = xstart & ~(icache_line_size - 1); addr < xend;
addr += icache_line_size)
- __asm __volatile("ic ivau, %0" :: "r"(addr));
+ __asm __volatile("ic ivau, %0" ::"r"(addr));
__asm __volatile("isb sy");
-#elif defined (__powerpc64__)
+#elif defined(__powerpc64__)
const size_t line_size = 32;
const size_t len = (uintptr_t)end - (uintptr_t)start;
@@ -188,11 +185,11 @@ void __clear_cache(void *start, void *end) {
__asm__ volatile("icbi 0, %0" : : "r"(line));
__asm__ volatile("isync");
#else
- #if __APPLE__
- /* On Darwin, sys_icache_invalidate() provides this functionality */
- sys_icache_invalidate(start, end-start);
- #else
- compilerrt_abort();
- #endif
+#if __APPLE__
+ /* On Darwin, sys_icache_invalidate() provides this functionality */
+ sys_icache_invalidate(start, end - start);
+#else
+ compilerrt_abort();
+#endif
#endif
}
diff --git a/lib/builtins/clzdi2.c b/lib/builtins/clzdi2.c
index cc8c96fe4..0ad2abc09 100644
--- a/lib/builtins/clzdi2.c
+++ b/lib/builtins/clzdi2.c
@@ -16,8 +16,7 @@
/* Returns: the number of leading 0-bits */
#if !defined(__clang__) && \
- ((defined(__sparc__) && defined(__arch64__)) || \
- defined(__mips64) || \
+ ((defined(__sparc__) && defined(__arch64__)) || defined(__mips64) || \
(defined(__riscv) && __SIZEOF_POINTER__ >= 8))
/* On 64-bit architectures with neither a native clz instruction nor a native
* ctz instruction, gcc resolves __builtin_clz to __clzdi2 rather than
@@ -28,12 +27,10 @@ extern si_int __clzsi2(si_int);
/* Precondition: a != 0 */
-COMPILER_RT_ABI si_int
-__clzdi2(di_int a)
-{
- dwords x;
- x.all = a;
- const si_int f = -(x.s.high == 0);
- return __builtin_clz((x.s.high & ~f) | (x.s.low & f)) +
- (f & ((si_int)(sizeof(si_int) * CHAR_BIT)));
+COMPILER_RT_ABI si_int __clzdi2(di_int a) {
+ dwords x;
+ x.all = a;
+ const si_int f = -(x.s.high == 0);
+ return __builtin_clz((x.s.high & ~f) | (x.s.low & f)) +
+ (f & ((si_int)(sizeof(si_int) * CHAR_BIT)));
}
diff --git a/lib/builtins/clzsi2.c b/lib/builtins/clzsi2.c
index fe06f065b..90dc82d08 100644
--- a/lib/builtins/clzsi2.c
+++ b/lib/builtins/clzsi2.c
@@ -17,36 +17,34 @@
/* Precondition: a != 0 */
-COMPILER_RT_ABI si_int
-__clzsi2(si_int a)
-{
- su_int x = (su_int)a;
- si_int t = ((x & 0xFFFF0000) == 0) << 4; /* if (x is small) t = 16 else 0 */
- x >>= 16 - t; /* x = [0 - 0xFFFF] */
- su_int r = t; /* r = [0, 16] */
- /* return r + clz(x) */
- t = ((x & 0xFF00) == 0) << 3;
- x >>= 8 - t; /* x = [0 - 0xFF] */
- r += t; /* r = [0, 8, 16, 24] */
- /* return r + clz(x) */
- t = ((x & 0xF0) == 0) << 2;
- x >>= 4 - t; /* x = [0 - 0xF] */
- r += t; /* r = [0, 4, 8, 12, 16, 20, 24, 28] */
- /* return r + clz(x) */
- t = ((x & 0xC) == 0) << 1;
- x >>= 2 - t; /* x = [0 - 3] */
- r += t; /* r = [0 - 30] and is even */
- /* return r + clz(x) */
-/* switch (x)
- * {
- * case 0:
- * return r + 2;
- * case 1:
- * return r + 1;
- * case 2:
- * case 3:
- * return r;
- * }
- */
- return r + ((2 - x) & -((x & 2) == 0));
+COMPILER_RT_ABI si_int __clzsi2(si_int a) {
+ su_int x = (su_int)a;
+ si_int t = ((x & 0xFFFF0000) == 0) << 4; /* if (x is small) t = 16 else 0 */
+ x >>= 16 - t; /* x = [0 - 0xFFFF] */
+ su_int r = t; /* r = [0, 16] */
+ /* return r + clz(x) */
+ t = ((x & 0xFF00) == 0) << 3;
+ x >>= 8 - t; /* x = [0 - 0xFF] */
+ r += t; /* r = [0, 8, 16, 24] */
+ /* return r + clz(x) */
+ t = ((x & 0xF0) == 0) << 2;
+ x >>= 4 - t; /* x = [0 - 0xF] */
+ r += t; /* r = [0, 4, 8, 12, 16, 20, 24, 28] */
+ /* return r + clz(x) */
+ t = ((x & 0xC) == 0) << 1;
+ x >>= 2 - t; /* x = [0 - 3] */
+ r += t; /* r = [0 - 30] and is even */
+ /* return r + clz(x) */
+ /* switch (x)
+ * {
+ * case 0:
+ * return r + 2;
+ * case 1:
+ * return r + 1;
+ * case 2:
+ * case 3:
+ * return r;
+ * }
+ */
+ return r + ((2 - x) & -((x & 2) == 0));
}
diff --git a/lib/builtins/clzti2.c b/lib/builtins/clzti2.c
index 77da65c93..7db2566d8 100644
--- a/lib/builtins/clzti2.c
+++ b/lib/builtins/clzti2.c
@@ -19,14 +19,12 @@
/* Precondition: a != 0 */
-COMPILER_RT_ABI si_int
-__clzti2(ti_int a)
-{
- twords x;
- x.all = a;
- const di_int f = -(x.s.high == 0);
- return __builtin_clzll((x.s.high & ~f) | (x.s.low & f)) +
- ((si_int)f & ((si_int)(sizeof(di_int) * CHAR_BIT)));
+COMPILER_RT_ABI si_int __clzti2(ti_int a) {
+ twords x;
+ x.all = a;
+ const di_int f = -(x.s.high == 0);
+ return __builtin_clzll((x.s.high & ~f) | (x.s.low & f)) +
+ ((si_int)f & ((si_int)(sizeof(di_int) * CHAR_BIT)));
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/cmpdi2.c b/lib/builtins/cmpdi2.c
index c1ea9eefb..67c611195 100644
--- a/lib/builtins/cmpdi2.c
+++ b/lib/builtins/cmpdi2.c
@@ -14,37 +14,32 @@
#include "int_lib.h"
/* Returns: if (a < b) returns 0
-* if (a == b) returns 1
-* if (a > b) returns 2
-*/
+ * if (a == b) returns 1
+ * if (a > b) returns 2
+ */
-COMPILER_RT_ABI si_int
-__cmpdi2(di_int a, di_int b)
-{
- dwords x;
- x.all = a;
- dwords y;
- y.all = b;
- if (x.s.high < y.s.high)
- return 0;
- if (x.s.high > y.s.high)
- return 2;
- if (x.s.low < y.s.low)
- return 0;
- if (x.s.low > y.s.low)
- return 2;
- return 1;
+COMPILER_RT_ABI si_int __cmpdi2(di_int a, di_int b) {
+ dwords x;
+ x.all = a;
+ dwords y;
+ y.all = b;
+ if (x.s.high < y.s.high)
+ return 0;
+ if (x.s.high > y.s.high)
+ return 2;
+ if (x.s.low < y.s.low)
+ return 0;
+ if (x.s.low > y.s.low)
+ return 2;
+ return 1;
}
#ifdef __ARM_EABI__
/* Returns: if (a < b) returns -1
-* if (a == b) returns 0
-* if (a > b) returns 1
-*/
-COMPILER_RT_ABI si_int
-__aeabi_lcmp(di_int a, di_int b)
-{
- return __cmpdi2(a, b) - 1;
+ * if (a == b) returns 0
+ * if (a > b) returns 1
+ */
+COMPILER_RT_ABI si_int __aeabi_lcmp(di_int a, di_int b) {
+ return __cmpdi2(a, b) - 1;
}
#endif
-
diff --git a/lib/builtins/cmpti2.c b/lib/builtins/cmpti2.c
index 04bcaac1c..14a5b391f 100644
--- a/lib/builtins/cmpti2.c
+++ b/lib/builtins/cmpti2.c
@@ -20,22 +20,20 @@
* if (a > b) returns 2
*/
-COMPILER_RT_ABI si_int
-__cmpti2(ti_int a, ti_int b)
-{
- twords x;
- x.all = a;
- twords y;
- y.all = b;
- if (x.s.high < y.s.high)
- return 0;
- if (x.s.high > y.s.high)
- return 2;
- if (x.s.low < y.s.low)
- return 0;
- if (x.s.low > y.s.low)
- return 2;
- return 1;
+COMPILER_RT_ABI si_int __cmpti2(ti_int a, ti_int b) {
+ twords x;
+ x.all = a;
+ twords y;
+ y.all = b;
+ if (x.s.high < y.s.high)
+ return 0;
+ if (x.s.high > y.s.high)
+ return 2;
+ if (x.s.low < y.s.low)
+ return 0;
+ if (x.s.low > y.s.low)
+ return 2;
+ return 1;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/comparedf2.c b/lib/builtins/comparedf2.c
index 56825e4a8..a03b4b130 100644
--- a/lib/builtins/comparedf2.c
+++ b/lib/builtins/comparedf2.c
@@ -39,44 +39,46 @@
#define DOUBLE_PRECISION
#include "fp_lib.h"
-enum LE_RESULT {
- LE_LESS = -1,
- LE_EQUAL = 0,
- LE_GREATER = 1,
- LE_UNORDERED = 1
-};
+enum LE_RESULT { LE_LESS = -1, LE_EQUAL = 0, LE_GREATER = 1, LE_UNORDERED = 1 };
+
+COMPILER_RT_ABI enum LE_RESULT __ledf2(fp_t a, fp_t b) {
+
+ const srep_t aInt = toRep(a);
+ const srep_t bInt = toRep(b);
+ const rep_t aAbs = aInt & absMask;
+ const rep_t bAbs = bInt & absMask;
+
+ // If either a or b is NaN, they are unordered.
+ if (aAbs > infRep || bAbs > infRep)
+ return LE_UNORDERED;
-COMPILER_RT_ABI enum LE_RESULT
-__ledf2(fp_t a, fp_t b) {
-
- const srep_t aInt = toRep(a);
- const srep_t bInt = toRep(b);
- const rep_t aAbs = aInt & absMask;
- const rep_t bAbs = bInt & absMask;
-
- // If either a or b is NaN, they are unordered.
- if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
-
- // If a and b are both zeros, they are equal.
- if ((aAbs | bAbs) == 0) return LE_EQUAL;
-
- // If at least one of a and b is positive, we get the same result comparing
- // a and b as signed integers as we would with a floating-point compare.
- if ((aInt & bInt) >= 0) {
- if (aInt < bInt) return LE_LESS;
- else if (aInt == bInt) return LE_EQUAL;
- else return LE_GREATER;
- }
-
- // Otherwise, both are negative, so we need to flip the sense of the
- // comparison to get the correct result. (This assumes a twos- or ones-
- // complement integer representation; if integers are represented in a
- // sign-magnitude representation, then this flip is incorrect).
- else {
- if (aInt > bInt) return LE_LESS;
- else if (aInt == bInt) return LE_EQUAL;
- else return LE_GREATER;
- }
+ // If a and b are both zeros, they are equal.
+ if ((aAbs | bAbs) == 0)
+ return LE_EQUAL;
+
+ // If at least one of a and b is positive, we get the same result comparing
+ // a and b as signed integers as we would with a floating-point compare.
+ if ((aInt & bInt) >= 0) {
+ if (aInt < bInt)
+ return LE_LESS;
+ else if (aInt == bInt)
+ return LE_EQUAL;
+ else
+ return LE_GREATER;
+ }
+
+ // Otherwise, both are negative, so we need to flip the sense of the
+ // comparison to get the correct result. (This assumes a twos- or ones-
+ // complement integer representation; if integers are represented in a
+ // sign-magnitude representation, then this flip is incorrect).
+ else {
+ if (aInt > bInt)
+ return LE_LESS;
+ else if (aInt == bInt)
+ return LE_EQUAL;
+ else
+ return LE_GREATER;
+ }
}
#if defined(__ELF__)
@@ -85,67 +87,59 @@ FNALIAS(__cmpdf2, __ledf2);
#endif
enum GE_RESULT {
- GE_LESS = -1,
- GE_EQUAL = 0,
- GE_GREATER = 1,
- GE_UNORDERED = -1 // Note: different from LE_UNORDERED
+ GE_LESS = -1,
+ GE_EQUAL = 0,
+ GE_GREATER = 1,
+ GE_UNORDERED = -1 // Note: different from LE_UNORDERED
};
-COMPILER_RT_ABI enum GE_RESULT
-__gedf2(fp_t a, fp_t b) {
-
- const srep_t aInt = toRep(a);
- const srep_t bInt = toRep(b);
- const rep_t aAbs = aInt & absMask;
- const rep_t bAbs = bInt & absMask;
-
- if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
- if ((aAbs | bAbs) == 0) return GE_EQUAL;
- if ((aInt & bInt) >= 0) {
- if (aInt < bInt) return GE_LESS;
- else if (aInt == bInt) return GE_EQUAL;
- else return GE_GREATER;
- } else {
- if (aInt > bInt) return GE_LESS;
- else if (aInt == bInt) return GE_EQUAL;
- else return GE_GREATER;
- }
+COMPILER_RT_ABI enum GE_RESULT __gedf2(fp_t a, fp_t b) {
+
+ const srep_t aInt = toRep(a);
+ const srep_t bInt = toRep(b);
+ const rep_t aAbs = aInt & absMask;
+ const rep_t bAbs = bInt & absMask;
+
+ if (aAbs > infRep || bAbs > infRep)
+ return GE_UNORDERED;
+ if ((aAbs | bAbs) == 0)
+ return GE_EQUAL;
+ if ((aInt & bInt) >= 0) {
+ if (aInt < bInt)
+ return GE_LESS;
+ else if (aInt == bInt)
+ return GE_EQUAL;
+ else
+ return GE_GREATER;
+ } else {
+ if (aInt > bInt)
+ return GE_LESS;
+ else if (aInt == bInt)
+ return GE_EQUAL;
+ else
+ return GE_GREATER;
+ }
}
-COMPILER_RT_ABI int
-__unorddf2(fp_t a, fp_t b) {
- const rep_t aAbs = toRep(a) & absMask;
- const rep_t bAbs = toRep(b) & absMask;
- return aAbs > infRep || bAbs > infRep;
+COMPILER_RT_ABI int __unorddf2(fp_t a, fp_t b) {
+ const rep_t aAbs = toRep(a) & absMask;
+ const rep_t bAbs = toRep(b) & absMask;
+ return aAbs > infRep || bAbs > infRep;
}
// The following are alternative names for the preceding routines.
-COMPILER_RT_ABI enum LE_RESULT
-__eqdf2(fp_t a, fp_t b) {
- return __ledf2(a, b);
-}
+COMPILER_RT_ABI enum LE_RESULT __eqdf2(fp_t a, fp_t b) { return __ledf2(a, b); }
-COMPILER_RT_ABI enum LE_RESULT
-__ltdf2(fp_t a, fp_t b) {
- return __ledf2(a, b);
-}
+COMPILER_RT_ABI enum LE_RESULT __ltdf2(fp_t a, fp_t b) { return __ledf2(a, b); }
-COMPILER_RT_ABI enum LE_RESULT
-__nedf2(fp_t a, fp_t b) {
- return __ledf2(a, b);
-}
+COMPILER_RT_ABI enum LE_RESULT __nedf2(fp_t a, fp_t b) { return __ledf2(a, b); }
-COMPILER_RT_ABI enum GE_RESULT
-__gtdf2(fp_t a, fp_t b) {
- return __gedf2(a, b);
-}
+COMPILER_RT_ABI enum GE_RESULT __gtdf2(fp_t a, fp_t b) { return __gedf2(a, b); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI int __aeabi_dcmpun(fp_t a, fp_t b) {
- return __unorddf2(a, b);
-}
+AEABI_RTABI int __aeabi_dcmpun(fp_t a, fp_t b) { return __unorddf2(a, b); }
#else
AEABI_RTABI int __aeabi_dcmpun(fp_t a, fp_t b) COMPILER_RT_ALIAS(__unorddf2);
#endif
diff --git a/lib/builtins/comparesf2.c b/lib/builtins/comparesf2.c
index 4c3e39a14..74ab0fa45 100644
--- a/lib/builtins/comparesf2.c
+++ b/lib/builtins/comparesf2.c
@@ -39,44 +39,46 @@
#define SINGLE_PRECISION
#include "fp_lib.h"
-enum LE_RESULT {
- LE_LESS = -1,
- LE_EQUAL = 0,
- LE_GREATER = 1,
- LE_UNORDERED = 1
-};
+enum LE_RESULT { LE_LESS = -1, LE_EQUAL = 0, LE_GREATER = 1, LE_UNORDERED = 1 };
+
+COMPILER_RT_ABI enum LE_RESULT __lesf2(fp_t a, fp_t b) {
+
+ const srep_t aInt = toRep(a);
+ const srep_t bInt = toRep(b);
+ const rep_t aAbs = aInt & absMask;
+ const rep_t bAbs = bInt & absMask;
+
+ // If either a or b is NaN, they are unordered.
+ if (aAbs > infRep || bAbs > infRep)
+ return LE_UNORDERED;
-COMPILER_RT_ABI enum LE_RESULT
-__lesf2(fp_t a, fp_t b) {
-
- const srep_t aInt = toRep(a);
- const srep_t bInt = toRep(b);
- const rep_t aAbs = aInt & absMask;
- const rep_t bAbs = bInt & absMask;
-
- // If either a or b is NaN, they are unordered.
- if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
-
- // If a and b are both zeros, they are equal.
- if ((aAbs | bAbs) == 0) return LE_EQUAL;
-
- // If at least one of a and b is positive, we get the same result comparing
- // a and b as signed integers as we would with a fp_ting-point compare.
- if ((aInt & bInt) >= 0) {
- if (aInt < bInt) return LE_LESS;
- else if (aInt == bInt) return LE_EQUAL;
- else return LE_GREATER;
- }
-
- // Otherwise, both are negative, so we need to flip the sense of the
- // comparison to get the correct result. (This assumes a twos- or ones-
- // complement integer representation; if integers are represented in a
- // sign-magnitude representation, then this flip is incorrect).
- else {
- if (aInt > bInt) return LE_LESS;
- else if (aInt == bInt) return LE_EQUAL;
- else return LE_GREATER;
- }
+ // If a and b are both zeros, they are equal.
+ if ((aAbs | bAbs) == 0)
+ return LE_EQUAL;
+
+ // If at least one of a and b is positive, we get the same result comparing
+ // a and b as signed integers as we would with a fp_ting-point compare.
+ if ((aInt & bInt) >= 0) {
+ if (aInt < bInt)
+ return LE_LESS;
+ else if (aInt == bInt)
+ return LE_EQUAL;
+ else
+ return LE_GREATER;
+ }
+
+ // Otherwise, both are negative, so we need to flip the sense of the
+ // comparison to get the correct result. (This assumes a twos- or ones-
+ // complement integer representation; if integers are represented in a
+ // sign-magnitude representation, then this flip is incorrect).
+ else {
+ if (aInt > bInt)
+ return LE_LESS;
+ else if (aInt == bInt)
+ return LE_EQUAL;
+ else
+ return LE_GREATER;
+ }
}
#if defined(__ELF__)
@@ -85,67 +87,59 @@ FNALIAS(__cmpsf2, __lesf2);
#endif
enum GE_RESULT {
- GE_LESS = -1,
- GE_EQUAL = 0,
- GE_GREATER = 1,
- GE_UNORDERED = -1 // Note: different from LE_UNORDERED
+ GE_LESS = -1,
+ GE_EQUAL = 0,
+ GE_GREATER = 1,
+ GE_UNORDERED = -1 // Note: different from LE_UNORDERED
};
-COMPILER_RT_ABI enum GE_RESULT
-__gesf2(fp_t a, fp_t b) {
-
- const srep_t aInt = toRep(a);
- const srep_t bInt = toRep(b);
- const rep_t aAbs = aInt & absMask;
- const rep_t bAbs = bInt & absMask;
-
- if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
- if ((aAbs | bAbs) == 0) return GE_EQUAL;
- if ((aInt & bInt) >= 0) {
- if (aInt < bInt) return GE_LESS;
- else if (aInt == bInt) return GE_EQUAL;
- else return GE_GREATER;
- } else {
- if (aInt > bInt) return GE_LESS;
- else if (aInt == bInt) return GE_EQUAL;
- else return GE_GREATER;
- }
+COMPILER_RT_ABI enum GE_RESULT __gesf2(fp_t a, fp_t b) {
+
+ const srep_t aInt = toRep(a);
+ const srep_t bInt = toRep(b);
+ const rep_t aAbs = aInt & absMask;
+ const rep_t bAbs = bInt & absMask;
+
+ if (aAbs > infRep || bAbs > infRep)
+ return GE_UNORDERED;
+ if ((aAbs | bAbs) == 0)
+ return GE_EQUAL;
+ if ((aInt & bInt) >= 0) {
+ if (aInt < bInt)
+ return GE_LESS;
+ else if (aInt == bInt)
+ return GE_EQUAL;
+ else
+ return GE_GREATER;
+ } else {
+ if (aInt > bInt)
+ return GE_LESS;
+ else if (aInt == bInt)
+ return GE_EQUAL;
+ else
+ return GE_GREATER;
+ }
}
-COMPILER_RT_ABI int
-__unordsf2(fp_t a, fp_t b) {
- const rep_t aAbs = toRep(a) & absMask;
- const rep_t bAbs = toRep(b) & absMask;
- return aAbs > infRep || bAbs > infRep;
+COMPILER_RT_ABI int __unordsf2(fp_t a, fp_t b) {
+ const rep_t aAbs = toRep(a) & absMask;
+ const rep_t bAbs = toRep(b) & absMask;
+ return aAbs > infRep || bAbs > infRep;
}
// The following are alternative names for the preceding routines.
-COMPILER_RT_ABI enum LE_RESULT
-__eqsf2(fp_t a, fp_t b) {
- return __lesf2(a, b);
-}
+COMPILER_RT_ABI enum LE_RESULT __eqsf2(fp_t a, fp_t b) { return __lesf2(a, b); }
-COMPILER_RT_ABI enum LE_RESULT
-__ltsf2(fp_t a, fp_t b) {
- return __lesf2(a, b);
-}
+COMPILER_RT_ABI enum LE_RESULT __ltsf2(fp_t a, fp_t b) { return __lesf2(a, b); }
-COMPILER_RT_ABI enum LE_RESULT
-__nesf2(fp_t a, fp_t b) {
- return __lesf2(a, b);
-}
+COMPILER_RT_ABI enum LE_RESULT __nesf2(fp_t a, fp_t b) { return __lesf2(a, b); }
-COMPILER_RT_ABI enum GE_RESULT
-__gtsf2(fp_t a, fp_t b) {
- return __gesf2(a, b);
-}
+COMPILER_RT_ABI enum GE_RESULT __gtsf2(fp_t a, fp_t b) { return __gesf2(a, b); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI int __aeabi_fcmpun(fp_t a, fp_t b) {
- return __unordsf2(a, b);
-}
+AEABI_RTABI int __aeabi_fcmpun(fp_t a, fp_t b) { return __unordsf2(a, b); }
#else
AEABI_RTABI int __aeabi_fcmpun(fp_t a, fp_t b) COMPILER_RT_ALIAS(__unordsf2);
#endif
diff --git a/lib/builtins/comparetf2.c b/lib/builtins/comparetf2.c
index f3fb22ade..b82f5cbe4 100644
--- a/lib/builtins/comparetf2.c
+++ b/lib/builtins/comparetf2.c
@@ -40,42 +40,44 @@
#include "fp_lib.h"
#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
-enum LE_RESULT {
- LE_LESS = -1,
- LE_EQUAL = 0,
- LE_GREATER = 1,
- LE_UNORDERED = 1
-};
+enum LE_RESULT { LE_LESS = -1, LE_EQUAL = 0, LE_GREATER = 1, LE_UNORDERED = 1 };
COMPILER_RT_ABI enum LE_RESULT __letf2(fp_t a, fp_t b) {
- const srep_t aInt = toRep(a);
- const srep_t bInt = toRep(b);
- const rep_t aAbs = aInt & absMask;
- const rep_t bAbs = bInt & absMask;
-
- // If either a or b is NaN, they are unordered.
- if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
-
- // If a and b are both zeros, they are equal.
- if ((aAbs | bAbs) == 0) return LE_EQUAL;
-
- // If at least one of a and b is positive, we get the same result comparing
- // a and b as signed integers as we would with a floating-point compare.
- if ((aInt & bInt) >= 0) {
- if (aInt < bInt) return LE_LESS;
- else if (aInt == bInt) return LE_EQUAL;
- else return LE_GREATER;
- }
- else {
- // Otherwise, both are negative, so we need to flip the sense of the
- // comparison to get the correct result. (This assumes a twos- or ones-
- // complement integer representation; if integers are represented in a
- // sign-magnitude representation, then this flip is incorrect).
- if (aInt > bInt) return LE_LESS;
- else if (aInt == bInt) return LE_EQUAL;
- else return LE_GREATER;
- }
+ const srep_t aInt = toRep(a);
+ const srep_t bInt = toRep(b);
+ const rep_t aAbs = aInt & absMask;
+ const rep_t bAbs = bInt & absMask;
+
+ // If either a or b is NaN, they are unordered.
+ if (aAbs > infRep || bAbs > infRep)
+ return LE_UNORDERED;
+
+ // If a and b are both zeros, they are equal.
+ if ((aAbs | bAbs) == 0)
+ return LE_EQUAL;
+
+ // If at least one of a and b is positive, we get the same result comparing
+ // a and b as signed integers as we would with a floating-point compare.
+ if ((aInt & bInt) >= 0) {
+ if (aInt < bInt)
+ return LE_LESS;
+ else if (aInt == bInt)
+ return LE_EQUAL;
+ else
+ return LE_GREATER;
+ } else {
+ // Otherwise, both are negative, so we need to flip the sense of the
+ // comparison to get the correct result. (This assumes a twos- or ones-
+ // complement integer representation; if integers are represented in a
+ // sign-magnitude representation, then this flip is incorrect).
+ if (aInt > bInt)
+ return LE_LESS;
+ else if (aInt == bInt)
+ return LE_EQUAL;
+ else
+ return LE_GREATER;
+ }
}
#if defined(__ELF__)
@@ -84,54 +86,54 @@ FNALIAS(__cmptf2, __letf2);
#endif
enum GE_RESULT {
- GE_LESS = -1,
- GE_EQUAL = 0,
- GE_GREATER = 1,
- GE_UNORDERED = -1 // Note: different from LE_UNORDERED
+ GE_LESS = -1,
+ GE_EQUAL = 0,
+ GE_GREATER = 1,
+ GE_UNORDERED = -1 // Note: different from LE_UNORDERED
};
COMPILER_RT_ABI enum GE_RESULT __getf2(fp_t a, fp_t b) {
- const srep_t aInt = toRep(a);
- const srep_t bInt = toRep(b);
- const rep_t aAbs = aInt & absMask;
- const rep_t bAbs = bInt & absMask;
-
- if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
- if ((aAbs | bAbs) == 0) return GE_EQUAL;
- if ((aInt & bInt) >= 0) {
- if (aInt < bInt) return GE_LESS;
- else if (aInt == bInt) return GE_EQUAL;
- else return GE_GREATER;
- } else {
- if (aInt > bInt) return GE_LESS;
- else if (aInt == bInt) return GE_EQUAL;
- else return GE_GREATER;
- }
+ const srep_t aInt = toRep(a);
+ const srep_t bInt = toRep(b);
+ const rep_t aAbs = aInt & absMask;
+ const rep_t bAbs = bInt & absMask;
+
+ if (aAbs > infRep || bAbs > infRep)
+ return GE_UNORDERED;
+ if ((aAbs | bAbs) == 0)
+ return GE_EQUAL;
+ if ((aInt & bInt) >= 0) {
+ if (aInt < bInt)
+ return GE_LESS;
+ else if (aInt == bInt)
+ return GE_EQUAL;
+ else
+ return GE_GREATER;
+ } else {
+ if (aInt > bInt)
+ return GE_LESS;
+ else if (aInt == bInt)
+ return GE_EQUAL;
+ else
+ return GE_GREATER;
+ }
}
COMPILER_RT_ABI int __unordtf2(fp_t a, fp_t b) {
- const rep_t aAbs = toRep(a) & absMask;
- const rep_t bAbs = toRep(b) & absMask;
- return aAbs > infRep || bAbs > infRep;
+ const rep_t aAbs = toRep(a) & absMask;
+ const rep_t bAbs = toRep(b) & absMask;
+ return aAbs > infRep || bAbs > infRep;
}
// The following are alternative names for the preceding routines.
-COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) {
- return __letf2(a, b);
-}
+COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) { return __letf2(a, b); }
-COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) {
- return __letf2(a, b);
-}
+COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) { return __letf2(a, b); }
-COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) {
- return __letf2(a, b);
-}
+COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) { return __letf2(a, b); }
-COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) {
- return __getf2(a, b);
-}
+COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) { return __getf2(a, b); }
#endif
diff --git a/lib/builtins/cpu_model.c b/lib/builtins/cpu_model.c
index 5bcc386f4..dcaf91429 100644
--- a/lib/builtins/cpu_model.c
+++ b/lib/builtins/cpu_model.c
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#if (defined(__i386__) || defined(_M_IX86) || \
- defined(__x86_64__) || defined(_M_X64)) && \
+#if (defined(__i386__) || defined(_M_IX86) || defined(__x86_64__) || \
+ defined(_M_X64)) && \
(defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER))
#include <assert.h>
@@ -267,11 +267,11 @@ static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
}
}
-static void
-getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
- unsigned Brand_id, unsigned Features,
- unsigned Features2, unsigned *Type,
- unsigned *Subtype) {
+static void getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
+ unsigned Brand_id,
+ unsigned Features,
+ unsigned Features2, unsigned *Type,
+ unsigned *Subtype) {
if (Brand_id != 0)
return;
switch (Family) {
@@ -297,7 +297,7 @@ getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
// As found in a Summer 2010 model iMac.
case 0x1f:
- case 0x2e: // Nehalem EX
+ case 0x2e: // Nehalem EX
*Type = INTEL_COREI7; // "nehalem"
*Subtype = INTEL_COREI7_NEHALEM;
break;
@@ -315,7 +315,7 @@ getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
*Subtype = INTEL_COREI7_SANDYBRIDGE;
break;
case 0x3a:
- case 0x3e: // Ivy Bridge EP
+ case 0x3e: // Ivy Bridge EP
*Type = INTEL_COREI7; // "ivybridge"
*Subtype = INTEL_COREI7_IVYBRIDGE;
break;
@@ -339,10 +339,10 @@ getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
break;
// Skylake:
- case 0x4e: // Skylake mobile
- case 0x5e: // Skylake desktop
- case 0x8e: // Kaby Lake mobile
- case 0x9e: // Kaby Lake desktop
+ case 0x4e: // Skylake mobile
+ case 0x5e: // Skylake desktop
+ case 0x8e: // Kaby Lake mobile
+ case 0x9e: // Kaby Lake desktop
*Type = INTEL_COREI7; // "skylake"
*Subtype = INTEL_COREI7_SKYLAKE;
break;
@@ -398,7 +398,7 @@ getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
default: // Unknown family 6 CPU.
break;
- break;
+ break;
}
default:
break; // Unknown.
@@ -474,12 +474,12 @@ static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
unsigned Features2 = 0;
unsigned EAX, EBX;
-#define setFeature(F) \
- do { \
- if (F < 32) \
- Features |= 1U << (F & 0x1f); \
- else if (F < 64) \
- Features2 |= 1U << ((F - 32) & 0x1f); \
+#define setFeature(F) \
+ do { \
+ if (F < 32) \
+ Features |= 1U << (F & 0x1f); \
+ else if (F < 64) \
+ Features2 |= 1U << ((F - 32) & 0x1f); \
} while (0)
if ((EDX >> 15) & 1)
@@ -618,8 +618,7 @@ unsigned int __cpu_features2;
the priority set. However, it still runs after ifunc initializers and
needs to be called explicitly there. */
-int CONSTRUCTOR_ATTRIBUTE
-__cpu_indicator_init(void) {
+int CONSTRUCTOR_ATTRIBUTE __cpu_indicator_init(void) {
unsigned EAX, EBX, ECX, EDX;
unsigned MaxLeaf = 5;
unsigned Vendor;
@@ -651,8 +650,7 @@ __cpu_indicator_init(void) {
if (Vendor == SIG_INTEL) {
/* Get CPU type. */
getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features,
- Features2,
- &(__cpu_model.__cpu_type),
+ Features2, &(__cpu_model.__cpu_type),
&(__cpu_model.__cpu_subtype));
__cpu_model.__cpu_vendor = VENDOR_INTEL;
} else if (Vendor == SIG_AMD) {
diff --git a/lib/builtins/ctzdi2.c b/lib/builtins/ctzdi2.c
index a25fde157..3df3e2cf7 100644
--- a/lib/builtins/ctzdi2.c
+++ b/lib/builtins/ctzdi2.c
@@ -16,8 +16,7 @@
/* Returns: the number of trailing 0-bits */
#if !defined(__clang__) && \
- ((defined(__sparc__) && defined(__arch64__)) || \
- defined(__mips64) || \
+ ((defined(__sparc__) && defined(__arch64__)) || defined(__mips64) || \
(defined(__riscv) && __SIZEOF_POINTER__ >= 8))
/* On 64-bit architectures with neither a native clz instruction nor a native
* ctz instruction, gcc resolves __builtin_ctz to __ctzdi2 rather than
@@ -28,12 +27,10 @@ extern si_int __ctzsi2(si_int);
/* Precondition: a != 0 */
-COMPILER_RT_ABI si_int
-__ctzdi2(di_int a)
-{
- dwords x;
- x.all = a;
- const si_int f = -(x.s.low == 0);
- return __builtin_ctz((x.s.high & f) | (x.s.low & ~f)) +
- (f & ((si_int)(sizeof(si_int) * CHAR_BIT)));
+COMPILER_RT_ABI si_int __ctzdi2(di_int a) {
+ dwords x;
+ x.all = a;
+ const si_int f = -(x.s.low == 0);
+ return __builtin_ctz((x.s.high & f) | (x.s.low & ~f)) +
+ (f & ((si_int)(sizeof(si_int) * CHAR_BIT)));
}
diff --git a/lib/builtins/ctzsi2.c b/lib/builtins/ctzsi2.c
index d5dfe2568..405b2f771 100644
--- a/lib/builtins/ctzsi2.c
+++ b/lib/builtins/ctzsi2.c
@@ -17,40 +17,39 @@
/* Precondition: a != 0 */
-COMPILER_RT_ABI si_int
-__ctzsi2(si_int a)
-{
- su_int x = (su_int)a;
- si_int t = ((x & 0x0000FFFF) == 0) << 4; /* if (x has no small bits) t = 16 else 0 */
- x >>= t; /* x = [0 - 0xFFFF] + higher garbage bits */
- su_int r = t; /* r = [0, 16] */
- /* return r + ctz(x) */
- t = ((x & 0x00FF) == 0) << 3;
- x >>= t; /* x = [0 - 0xFF] + higher garbage bits */
- r += t; /* r = [0, 8, 16, 24] */
- /* return r + ctz(x) */
- t = ((x & 0x0F) == 0) << 2;
- x >>= t; /* x = [0 - 0xF] + higher garbage bits */
- r += t; /* r = [0, 4, 8, 12, 16, 20, 24, 28] */
- /* return r + ctz(x) */
- t = ((x & 0x3) == 0) << 1;
- x >>= t;
- x &= 3; /* x = [0 - 3] */
- r += t; /* r = [0 - 30] and is even */
- /* return r + ctz(x) */
+COMPILER_RT_ABI si_int __ctzsi2(si_int a) {
+ su_int x = (su_int)a;
+ si_int t = ((x & 0x0000FFFF) == 0)
+ << 4; /* if (x has no small bits) t = 16 else 0 */
+ x >>= t; /* x = [0 - 0xFFFF] + higher garbage bits */
+ su_int r = t; /* r = [0, 16] */
+ /* return r + ctz(x) */
+ t = ((x & 0x00FF) == 0) << 3;
+ x >>= t; /* x = [0 - 0xFF] + higher garbage bits */
+ r += t; /* r = [0, 8, 16, 24] */
+ /* return r + ctz(x) */
+ t = ((x & 0x0F) == 0) << 2;
+ x >>= t; /* x = [0 - 0xF] + higher garbage bits */
+ r += t; /* r = [0, 4, 8, 12, 16, 20, 24, 28] */
+ /* return r + ctz(x) */
+ t = ((x & 0x3) == 0) << 1;
+ x >>= t;
+ x &= 3; /* x = [0 - 3] */
+ r += t; /* r = [0 - 30] and is even */
+ /* return r + ctz(x) */
-/* The branch-less return statement below is equivalent
- * to the following switch statement:
- * switch (x)
- * {
- * case 0:
- * return r + 2;
- * case 2:
- * return r + 1;
- * case 1:
- * case 3:
- * return r;
- * }
- */
- return r + ((2 - (x >> 1)) & -((x & 1) == 0));
+ /* The branch-less return statement below is equivalent
+ * to the following switch statement:
+ * switch (x)
+ * {
+ * case 0:
+ * return r + 2;
+ * case 2:
+ * return r + 1;
+ * case 1:
+ * case 3:
+ * return r;
+ * }
+ */
+ return r + ((2 - (x >> 1)) & -((x & 1) == 0));
}
diff --git a/lib/builtins/ctzti2.c b/lib/builtins/ctzti2.c
index aa243794f..d65035b38 100644
--- a/lib/builtins/ctzti2.c
+++ b/lib/builtins/ctzti2.c
@@ -19,14 +19,12 @@
/* Precondition: a != 0 */
-COMPILER_RT_ABI si_int
-__ctzti2(ti_int a)
-{
- twords x;
- x.all = a;
- const di_int f = -(x.s.low == 0);
- return __builtin_ctzll((x.s.high & f) | (x.s.low & ~f)) +
- ((si_int)f & ((si_int)(sizeof(di_int) * CHAR_BIT)));
+COMPILER_RT_ABI si_int __ctzti2(ti_int a) {
+ twords x;
+ x.all = a;
+ const di_int f = -(x.s.low == 0);
+ return __builtin_ctzll((x.s.high & f) | (x.s.low & ~f)) +
+ ((si_int)f & ((si_int)(sizeof(di_int) * CHAR_BIT)));
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/divdc3.c b/lib/builtins/divdc3.c
index 122aba280..d12ad837b 100644
--- a/lib/builtins/divdc3.c
+++ b/lib/builtins/divdc3.c
@@ -18,44 +18,37 @@
/* Returns: the quotient of (a + ib) / (c + id) */
-COMPILER_RT_ABI Dcomplex
-__divdc3(double __a, double __b, double __c, double __d)
-{
- int __ilogbw = 0;
- double __logbw = __compiler_rt_logb(crt_fmax(crt_fabs(__c), crt_fabs(__d)));
- if (crt_isfinite(__logbw))
- {
- __ilogbw = (int)__logbw;
- __c = crt_scalbn(__c, -__ilogbw);
- __d = crt_scalbn(__d, -__ilogbw);
+COMPILER_RT_ABI Dcomplex __divdc3(double __a, double __b, double __c,
+ double __d) {
+ int __ilogbw = 0;
+ double __logbw = __compiler_rt_logb(crt_fmax(crt_fabs(__c), crt_fabs(__d)));
+ if (crt_isfinite(__logbw)) {
+ __ilogbw = (int)__logbw;
+ __c = crt_scalbn(__c, -__ilogbw);
+ __d = crt_scalbn(__d, -__ilogbw);
+ }
+ double __denom = __c * __c + __d * __d;
+ Dcomplex z;
+ COMPLEX_REAL(z) = crt_scalbn((__a * __c + __b * __d) / __denom, -__ilogbw);
+ COMPLEX_IMAGINARY(z) =
+ crt_scalbn((__b * __c - __a * __d) / __denom, -__ilogbw);
+ if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) {
+ if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b))) {
+ COMPLEX_REAL(z) = crt_copysign(CRT_INFINITY, __c) * __a;
+ COMPLEX_IMAGINARY(z) = crt_copysign(CRT_INFINITY, __c) * __b;
+ } else if ((crt_isinf(__a) || crt_isinf(__b)) && crt_isfinite(__c) &&
+ crt_isfinite(__d)) {
+ __a = crt_copysign(crt_isinf(__a) ? 1.0 : 0.0, __a);
+ __b = crt_copysign(crt_isinf(__b) ? 1.0 : 0.0, __b);
+ COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
+ COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
+ } else if (crt_isinf(__logbw) && __logbw > 0.0 && crt_isfinite(__a) &&
+ crt_isfinite(__b)) {
+ __c = crt_copysign(crt_isinf(__c) ? 1.0 : 0.0, __c);
+ __d = crt_copysign(crt_isinf(__d) ? 1.0 : 0.0, __d);
+ COMPLEX_REAL(z) = 0.0 * (__a * __c + __b * __d);
+ COMPLEX_IMAGINARY(z) = 0.0 * (__b * __c - __a * __d);
}
- double __denom = __c * __c + __d * __d;
- Dcomplex z;
- COMPLEX_REAL(z) = crt_scalbn((__a * __c + __b * __d) / __denom, -__ilogbw);
- COMPLEX_IMAGINARY(z) = crt_scalbn((__b * __c - __a * __d) / __denom, -__ilogbw);
- if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
- {
- if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b)))
- {
- COMPLEX_REAL(z) = crt_copysign(CRT_INFINITY, __c) * __a;
- COMPLEX_IMAGINARY(z) = crt_copysign(CRT_INFINITY, __c) * __b;
- }
- else if ((crt_isinf(__a) || crt_isinf(__b)) &&
- crt_isfinite(__c) && crt_isfinite(__d))
- {
- __a = crt_copysign(crt_isinf(__a) ? 1.0 : 0.0, __a);
- __b = crt_copysign(crt_isinf(__b) ? 1.0 : 0.0, __b);
- COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
- COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
- }
- else if (crt_isinf(__logbw) && __logbw > 0.0 &&
- crt_isfinite(__a) && crt_isfinite(__b))
- {
- __c = crt_copysign(crt_isinf(__c) ? 1.0 : 0.0, __c);
- __d = crt_copysign(crt_isinf(__d) ? 1.0 : 0.0, __d);
- COMPLEX_REAL(z) = 0.0 * (__a * __c + __b * __d);
- COMPLEX_IMAGINARY(z) = 0.0 * (__b * __c - __a * __d);
- }
- }
- return z;
+ }
+ return z;
}
diff --git a/lib/builtins/divdf3.c b/lib/builtins/divdf3.c
index 9132f8381..455d71be9 100644
--- a/lib/builtins/divdf3.c
+++ b/lib/builtins/divdf3.c
@@ -18,186 +18,194 @@
#define DOUBLE_PRECISION
#include "fp_lib.h"
-COMPILER_RT_ABI fp_t
-__divdf3(fp_t a, fp_t b) {
-
- const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
- const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
- const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
-
- rep_t aSignificand = toRep(a) & significandMask;
- rep_t bSignificand = toRep(b) & significandMask;
- int scale = 0;
-
- // Detect if a or b is zero, denormal, infinity, or NaN.
- if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
-
- const rep_t aAbs = toRep(a) & absMask;
- const rep_t bAbs = toRep(b) & absMask;
-
- // NaN / anything = qNaN
- if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
- // anything / NaN = qNaN
- if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
-
- if (aAbs == infRep) {
- // infinity / infinity = NaN
- if (bAbs == infRep) return fromRep(qnanRep);
- // infinity / anything else = +/- infinity
- else return fromRep(aAbs | quotientSign);
- }
-
- // anything else / infinity = +/- 0
- if (bAbs == infRep) return fromRep(quotientSign);
-
- if (!aAbs) {
- // zero / zero = NaN
- if (!bAbs) return fromRep(qnanRep);
- // zero / anything else = +/- zero
- else return fromRep(quotientSign);
- }
- // anything else / zero = +/- infinity
- if (!bAbs) return fromRep(infRep | quotientSign);
-
- // one or both of a or b is denormal, the other (if applicable) is a
- // normal number. Renormalize one or both of a and b, and set scale to
- // include the necessary exponent adjustment.
- if (aAbs < implicitBit) scale += normalize(&aSignificand);
- if (bAbs < implicitBit) scale -= normalize(&bSignificand);
+COMPILER_RT_ABI fp_t __divdf3(fp_t a, fp_t b) {
+
+ const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
+ const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
+ const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
+
+ rep_t aSignificand = toRep(a) & significandMask;
+ rep_t bSignificand = toRep(b) & significandMask;
+ int scale = 0;
+
+ // Detect if a or b is zero, denormal, infinity, or NaN.
+ if (aExponent - 1U >= maxExponent - 1U ||
+ bExponent - 1U >= maxExponent - 1U) {
+
+ const rep_t aAbs = toRep(a) & absMask;
+ const rep_t bAbs = toRep(b) & absMask;
+
+ // NaN / anything = qNaN
+ if (aAbs > infRep)
+ return fromRep(toRep(a) | quietBit);
+ // anything / NaN = qNaN
+ if (bAbs > infRep)
+ return fromRep(toRep(b) | quietBit);
+
+ if (aAbs == infRep) {
+ // infinity / infinity = NaN
+ if (bAbs == infRep)
+ return fromRep(qnanRep);
+ // infinity / anything else = +/- infinity
+ else
+ return fromRep(aAbs | quotientSign);
}
- // Or in the implicit significand bit. (If we fell through from the
- // denormal path it was already set by normalize( ), but setting it twice
- // won't hurt anything.)
- aSignificand |= implicitBit;
- bSignificand |= implicitBit;
- int quotientExponent = aExponent - bExponent + scale;
-
- // Align the significand of b as a Q31 fixed-point number in the range
- // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
- // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
- // is accurate to about 3.5 binary digits.
- const uint32_t q31b = bSignificand >> 21;
- uint32_t recip32 = UINT32_C(0x7504f333) - q31b;
-
- // Now refine the reciprocal estimate using a Newton-Raphson iteration:
- //
- // x1 = x0 * (2 - x0 * b)
- //
- // This doubles the number of correct binary digits in the approximation
- // with each iteration, so after three iterations, we have about 28 binary
- // digits of accuracy.
- uint32_t correction32;
- correction32 = -((uint64_t)recip32 * q31b >> 32);
- recip32 = (uint64_t)recip32 * correction32 >> 31;
- correction32 = -((uint64_t)recip32 * q31b >> 32);
- recip32 = (uint64_t)recip32 * correction32 >> 31;
- correction32 = -((uint64_t)recip32 * q31b >> 32);
- recip32 = (uint64_t)recip32 * correction32 >> 31;
-
- // recip32 might have overflowed to exactly zero in the preceding
- // computation if the high word of b is exactly 1.0. This would sabotage
- // the full-width final stage of the computation that follows, so we adjust
- // recip32 downward by one bit.
- recip32--;
-
- // We need to perform one more iteration to get us to 56 binary digits;
- // The last iteration needs to happen with extra precision.
- const uint32_t q63blo = bSignificand << 11;
- uint64_t correction, reciprocal;
- correction = -((uint64_t)recip32*q31b + ((uint64_t)recip32*q63blo >> 32));
- uint32_t cHi = correction >> 32;
- uint32_t cLo = correction;
- reciprocal = (uint64_t)recip32*cHi + ((uint64_t)recip32*cLo >> 32);
-
- // We already adjusted the 32-bit estimate, now we need to adjust the final
- // 64-bit reciprocal estimate downward to ensure that it is strictly smaller
- // than the infinitely precise exact reciprocal. Because the computation
- // of the Newton-Raphson step is truncating at every step, this adjustment
- // is small; most of the work is already done.
- reciprocal -= 2;
-
- // The numerical reciprocal is accurate to within 2^-56, lies in the
- // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
- // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
- // in Q53 with the following properties:
- //
- // 1. q < a/b
- // 2. q is in the interval [0.5, 2.0)
- // 3. the error in q is bounded away from 2^-53 (actually, we have a
- // couple of bits to spare, but this is all we need).
-
- // We need a 64 x 64 multiply high to compute q, which isn't a basic
- // operation in C, so we need to be a little bit fussy.
- rep_t quotient, quotientLo;
- wideMultiply(aSignificand << 2, reciprocal, &quotient, &quotientLo);
-
- // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
- // In either case, we are going to compute a residual of the form
- //
- // r = a - q*b
- //
- // We know from the construction of q that r satisfies:
- //
- // 0 <= r < ulp(q)*b
- //
- // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
- // already have the correct result. The exact halfway case cannot occur.
- // We also take this time to right shift quotient if it falls in the [1,2)
- // range and adjust the exponent accordingly.
- rep_t residual;
- if (quotient < (implicitBit << 1)) {
- residual = (aSignificand << 53) - quotient * bSignificand;
- quotientExponent--;
- } else {
- quotient >>= 1;
- residual = (aSignificand << 52) - quotient * bSignificand;
- }
-
- const int writtenExponent = quotientExponent + exponentBias;
-
- if (writtenExponent >= maxExponent) {
- // If we have overflowed the exponent, return infinity.
- return fromRep(infRep | quotientSign);
- }
+ // anything else / infinity = +/- 0
+ if (bAbs == infRep)
+ return fromRep(quotientSign);
- else if (writtenExponent < 1) {
- if (writtenExponent == 0) {
- // Check whether the rounded result is normal.
- const bool round = (residual << 1) > bSignificand;
- // Clear the implicit bit.
- rep_t absResult = quotient & significandMask;
- // Round.
- absResult += round;
- if (absResult & ~significandMask) {
- // The rounded result is normal; return it.
- return fromRep(absResult | quotientSign);
- }
- }
- // Flush denormals to zero. In the future, it would be nice to add
- // code to round them correctly.
+ if (!aAbs) {
+ // zero / zero = NaN
+ if (!bAbs)
+ return fromRep(qnanRep);
+ // zero / anything else = +/- zero
+ else
return fromRep(quotientSign);
}
-
- else {
- const bool round = (residual << 1) > bSignificand;
- // Clear the implicit bit
- rep_t absResult = quotient & significandMask;
- // Insert the exponent
- absResult |= (rep_t)writtenExponent << significandBits;
- // Round
- absResult += round;
- // Insert the sign and return
- const double result = fromRep(absResult | quotientSign);
- return result;
+ // anything else / zero = +/- infinity
+ if (!bAbs)
+ return fromRep(infRep | quotientSign);
+
+ // one or both of a or b is denormal, the other (if applicable) is a
+ // normal number. Renormalize one or both of a and b, and set scale to
+ // include the necessary exponent adjustment.
+ if (aAbs < implicitBit)
+ scale += normalize(&aSignificand);
+ if (bAbs < implicitBit)
+ scale -= normalize(&bSignificand);
+ }
+
+ // Or in the implicit significand bit. (If we fell through from the
+ // denormal path it was already set by normalize( ), but setting it twice
+ // won't hurt anything.)
+ aSignificand |= implicitBit;
+ bSignificand |= implicitBit;
+ int quotientExponent = aExponent - bExponent + scale;
+
+ // Align the significand of b as a Q31 fixed-point number in the range
+ // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
+ // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
+ // is accurate to about 3.5 binary digits.
+ const uint32_t q31b = bSignificand >> 21;
+ uint32_t recip32 = UINT32_C(0x7504f333) - q31b;
+
+ // Now refine the reciprocal estimate using a Newton-Raphson iteration:
+ //
+ // x1 = x0 * (2 - x0 * b)
+ //
+ // This doubles the number of correct binary digits in the approximation
+ // with each iteration, so after three iterations, we have about 28 binary
+ // digits of accuracy.
+ uint32_t correction32;
+ correction32 = -((uint64_t)recip32 * q31b >> 32);
+ recip32 = (uint64_t)recip32 * correction32 >> 31;
+ correction32 = -((uint64_t)recip32 * q31b >> 32);
+ recip32 = (uint64_t)recip32 * correction32 >> 31;
+ correction32 = -((uint64_t)recip32 * q31b >> 32);
+ recip32 = (uint64_t)recip32 * correction32 >> 31;
+
+ // recip32 might have overflowed to exactly zero in the preceding
+ // computation if the high word of b is exactly 1.0. This would sabotage
+ // the full-width final stage of the computation that follows, so we adjust
+ // recip32 downward by one bit.
+ recip32--;
+
+ // We need to perform one more iteration to get us to 56 binary digits;
+ // The last iteration needs to happen with extra precision.
+ const uint32_t q63blo = bSignificand << 11;
+ uint64_t correction, reciprocal;
+ correction = -((uint64_t)recip32 * q31b + ((uint64_t)recip32 * q63blo >> 32));
+ uint32_t cHi = correction >> 32;
+ uint32_t cLo = correction;
+ reciprocal = (uint64_t)recip32 * cHi + ((uint64_t)recip32 * cLo >> 32);
+
+ // We already adjusted the 32-bit estimate, now we need to adjust the final
+ // 64-bit reciprocal estimate downward to ensure that it is strictly smaller
+ // than the infinitely precise exact reciprocal. Because the computation
+ // of the Newton-Raphson step is truncating at every step, this adjustment
+ // is small; most of the work is already done.
+ reciprocal -= 2;
+
+ // The numerical reciprocal is accurate to within 2^-56, lies in the
+ // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
+ // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
+ // in Q53 with the following properties:
+ //
+ // 1. q < a/b
+ // 2. q is in the interval [0.5, 2.0)
+ // 3. the error in q is bounded away from 2^-53 (actually, we have a
+ // couple of bits to spare, but this is all we need).
+
+ // We need a 64 x 64 multiply high to compute q, which isn't a basic
+ // operation in C, so we need to be a little bit fussy.
+ rep_t quotient, quotientLo;
+ wideMultiply(aSignificand << 2, reciprocal, &quotient, &quotientLo);
+
+ // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
+ // In either case, we are going to compute a residual of the form
+ //
+ // r = a - q*b
+ //
+ // We know from the construction of q that r satisfies:
+ //
+ // 0 <= r < ulp(q)*b
+ //
+ // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
+ // already have the correct result. The exact halfway case cannot occur.
+ // We also take this time to right shift quotient if it falls in the [1,2)
+ // range and adjust the exponent accordingly.
+ rep_t residual;
+ if (quotient < (implicitBit << 1)) {
+ residual = (aSignificand << 53) - quotient * bSignificand;
+ quotientExponent--;
+ } else {
+ quotient >>= 1;
+ residual = (aSignificand << 52) - quotient * bSignificand;
+ }
+
+ const int writtenExponent = quotientExponent + exponentBias;
+
+ if (writtenExponent >= maxExponent) {
+ // If we have overflowed the exponent, return infinity.
+ return fromRep(infRep | quotientSign);
+ }
+
+ else if (writtenExponent < 1) {
+ if (writtenExponent == 0) {
+ // Check whether the rounded result is normal.
+ const bool round = (residual << 1) > bSignificand;
+ // Clear the implicit bit.
+ rep_t absResult = quotient & significandMask;
+ // Round.
+ absResult += round;
+ if (absResult & ~significandMask) {
+ // The rounded result is normal; return it.
+ return fromRep(absResult | quotientSign);
+ }
}
+ // Flush denormals to zero. In the future, it would be nice to add
+ // code to round them correctly.
+ return fromRep(quotientSign);
+ }
+
+ else {
+ const bool round = (residual << 1) > bSignificand;
+ // Clear the implicit bit
+ rep_t absResult = quotient & significandMask;
+ // Insert the exponent
+ absResult |= (rep_t)writtenExponent << significandBits;
+ // Round
+ absResult += round;
+ // Insert the sign and return
+ const double result = fromRep(absResult | quotientSign);
+ return result;
+ }
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI fp_t __aeabi_ddiv(fp_t a, fp_t b) {
- return __divdf3(a, b);
-}
+AEABI_RTABI fp_t __aeabi_ddiv(fp_t a, fp_t b) { return __divdf3(a, b); }
#else
AEABI_RTABI fp_t __aeabi_ddiv(fp_t a, fp_t b) COMPILER_RT_ALIAS(__divdf3);
#endif
diff --git a/lib/builtins/divdi3.c b/lib/builtins/divdi3.c
index 24608ee15..0639c3840 100644
--- a/lib/builtins/divdi3.c
+++ b/lib/builtins/divdi3.c
@@ -15,14 +15,13 @@
/* Returns: a / b */
-COMPILER_RT_ABI di_int
-__divdi3(di_int a, di_int b)
-{
- const int bits_in_dword_m1 = (int)(sizeof(di_int) * CHAR_BIT) - 1;
- di_int s_a = a >> bits_in_dword_m1; /* s_a = a < 0 ? -1 : 0 */
- di_int s_b = b >> bits_in_dword_m1; /* s_b = b < 0 ? -1 : 0 */
- a = (a ^ s_a) - s_a; /* negate if s_a == -1 */
- b = (b ^ s_b) - s_b; /* negate if s_b == -1 */
- s_a ^= s_b; /*sign of quotient */
- return (__udivmoddi4(a, b, (du_int*)0) ^ s_a) - s_a; /* negate if s_a == -1 */
+COMPILER_RT_ABI di_int __divdi3(di_int a, di_int b) {
+ const int bits_in_dword_m1 = (int)(sizeof(di_int) * CHAR_BIT) - 1;
+ di_int s_a = a >> bits_in_dword_m1; /* s_a = a < 0 ? -1 : 0 */
+ di_int s_b = b >> bits_in_dword_m1; /* s_b = b < 0 ? -1 : 0 */
+ a = (a ^ s_a) - s_a; /* negate if s_a == -1 */
+ b = (b ^ s_b) - s_b; /* negate if s_b == -1 */
+ s_a ^= s_b; /*sign of quotient */
+ return (__udivmoddi4(a, b, (du_int *)0) ^ s_a) -
+ s_a; /* negate if s_a == -1 */
}
diff --git a/lib/builtins/divmoddi4.c b/lib/builtins/divmoddi4.c
index a5e129d9d..a7139e38e 100644
--- a/lib/builtins/divmoddi4.c
+++ b/lib/builtins/divmoddi4.c
@@ -15,10 +15,8 @@
/* Returns: a / b, *rem = a % b */
-COMPILER_RT_ABI di_int
-__divmoddi4(di_int a, di_int b, di_int* rem)
-{
- di_int d = __divdi3(a,b);
- *rem = a - (d*b);
+COMPILER_RT_ABI di_int __divmoddi4(di_int a, di_int b, di_int *rem) {
+ di_int d = __divdi3(a, b);
+ *rem = a - (d * b);
return d;
}
diff --git a/lib/builtins/divmodsi4.c b/lib/builtins/divmodsi4.c
index 397710847..4c1d456c9 100644
--- a/lib/builtins/divmodsi4.c
+++ b/lib/builtins/divmodsi4.c
@@ -15,12 +15,8 @@
/* Returns: a / b, *rem = a % b */
-COMPILER_RT_ABI si_int
-__divmodsi4(si_int a, si_int b, si_int* rem)
-{
- si_int d = __divsi3(a,b);
- *rem = a - (d*b);
- return d;
+COMPILER_RT_ABI si_int __divmodsi4(si_int a, si_int b, si_int *rem) {
+ si_int d = __divsi3(a, b);
+ *rem = a - (d * b);
+ return d;
}
-
-
diff --git a/lib/builtins/divsc3.c b/lib/builtins/divsc3.c
index 43b098142..b4b57eaa3 100644
--- a/lib/builtins/divsc3.c
+++ b/lib/builtins/divsc3.c
@@ -18,45 +18,37 @@
/* Returns: the quotient of (a + ib) / (c + id) */
-COMPILER_RT_ABI Fcomplex
-__divsc3(float __a, float __b, float __c, float __d)
-{
- int __ilogbw = 0;
- float __logbw =
- __compiler_rt_logbf(crt_fmaxf(crt_fabsf(__c), crt_fabsf(__d)));
- if (crt_isfinite(__logbw))
- {
- __ilogbw = (int)__logbw;
- __c = crt_scalbnf(__c, -__ilogbw);
- __d = crt_scalbnf(__d, -__ilogbw);
+COMPILER_RT_ABI Fcomplex __divsc3(float __a, float __b, float __c, float __d) {
+ int __ilogbw = 0;
+ float __logbw =
+ __compiler_rt_logbf(crt_fmaxf(crt_fabsf(__c), crt_fabsf(__d)));
+ if (crt_isfinite(__logbw)) {
+ __ilogbw = (int)__logbw;
+ __c = crt_scalbnf(__c, -__ilogbw);
+ __d = crt_scalbnf(__d, -__ilogbw);
+ }
+ float __denom = __c * __c + __d * __d;
+ Fcomplex z;
+ COMPLEX_REAL(z) = crt_scalbnf((__a * __c + __b * __d) / __denom, -__ilogbw);
+ COMPLEX_IMAGINARY(z) =
+ crt_scalbnf((__b * __c - __a * __d) / __denom, -__ilogbw);
+ if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) {
+ if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b))) {
+ COMPLEX_REAL(z) = crt_copysignf(CRT_INFINITY, __c) * __a;
+ COMPLEX_IMAGINARY(z) = crt_copysignf(CRT_INFINITY, __c) * __b;
+ } else if ((crt_isinf(__a) || crt_isinf(__b)) && crt_isfinite(__c) &&
+ crt_isfinite(__d)) {
+ __a = crt_copysignf(crt_isinf(__a) ? 1 : 0, __a);
+ __b = crt_copysignf(crt_isinf(__b) ? 1 : 0, __b);
+ COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
+ COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
+ } else if (crt_isinf(__logbw) && __logbw > 0 && crt_isfinite(__a) &&
+ crt_isfinite(__b)) {
+ __c = crt_copysignf(crt_isinf(__c) ? 1 : 0, __c);
+ __d = crt_copysignf(crt_isinf(__d) ? 1 : 0, __d);
+ COMPLEX_REAL(z) = 0 * (__a * __c + __b * __d);
+ COMPLEX_IMAGINARY(z) = 0 * (__b * __c - __a * __d);
}
- float __denom = __c * __c + __d * __d;
- Fcomplex z;
- COMPLEX_REAL(z) = crt_scalbnf((__a * __c + __b * __d) / __denom, -__ilogbw);
- COMPLEX_IMAGINARY(z) = crt_scalbnf((__b * __c - __a * __d) / __denom, -__ilogbw);
- if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
- {
- if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b)))
- {
- COMPLEX_REAL(z) = crt_copysignf(CRT_INFINITY, __c) * __a;
- COMPLEX_IMAGINARY(z) = crt_copysignf(CRT_INFINITY, __c) * __b;
- }
- else if ((crt_isinf(__a) || crt_isinf(__b)) &&
- crt_isfinite(__c) && crt_isfinite(__d))
- {
- __a = crt_copysignf(crt_isinf(__a) ? 1 : 0, __a);
- __b = crt_copysignf(crt_isinf(__b) ? 1 : 0, __b);
- COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
- COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
- }
- else if (crt_isinf(__logbw) && __logbw > 0 &&
- crt_isfinite(__a) && crt_isfinite(__b))
- {
- __c = crt_copysignf(crt_isinf(__c) ? 1 : 0, __c);
- __d = crt_copysignf(crt_isinf(__d) ? 1 : 0, __d);
- COMPLEX_REAL(z) = 0 * (__a * __c + __b * __d);
- COMPLEX_IMAGINARY(z) = 0 * (__b * __c - __a * __d);
- }
- }
- return z;
+ }
+ return z;
}
diff --git a/lib/builtins/divsf3.c b/lib/builtins/divsf3.c
index 944524749..f28de0a88 100644
--- a/lib/builtins/divsf3.c
+++ b/lib/builtins/divsf3.c
@@ -18,170 +18,178 @@
#define SINGLE_PRECISION
#include "fp_lib.h"
-COMPILER_RT_ABI fp_t
-__divsf3(fp_t a, fp_t b) {
-
- const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
- const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
- const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
-
- rep_t aSignificand = toRep(a) & significandMask;
- rep_t bSignificand = toRep(b) & significandMask;
- int scale = 0;
-
- // Detect if a or b is zero, denormal, infinity, or NaN.
- if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
-
- const rep_t aAbs = toRep(a) & absMask;
- const rep_t bAbs = toRep(b) & absMask;
-
- // NaN / anything = qNaN
- if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
- // anything / NaN = qNaN
- if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
-
- if (aAbs == infRep) {
- // infinity / infinity = NaN
- if (bAbs == infRep) return fromRep(qnanRep);
- // infinity / anything else = +/- infinity
- else return fromRep(aAbs | quotientSign);
- }
-
- // anything else / infinity = +/- 0
- if (bAbs == infRep) return fromRep(quotientSign);
-
- if (!aAbs) {
- // zero / zero = NaN
- if (!bAbs) return fromRep(qnanRep);
- // zero / anything else = +/- zero
- else return fromRep(quotientSign);
- }
- // anything else / zero = +/- infinity
- if (!bAbs) return fromRep(infRep | quotientSign);
-
- // one or both of a or b is denormal, the other (if applicable) is a
- // normal number. Renormalize one or both of a and b, and set scale to
- // include the necessary exponent adjustment.
- if (aAbs < implicitBit) scale += normalize(&aSignificand);
- if (bAbs < implicitBit) scale -= normalize(&bSignificand);
+COMPILER_RT_ABI fp_t __divsf3(fp_t a, fp_t b) {
+
+ const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
+ const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
+ const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
+
+ rep_t aSignificand = toRep(a) & significandMask;
+ rep_t bSignificand = toRep(b) & significandMask;
+ int scale = 0;
+
+ // Detect if a or b is zero, denormal, infinity, or NaN.
+ if (aExponent - 1U >= maxExponent - 1U ||
+ bExponent - 1U >= maxExponent - 1U) {
+
+ const rep_t aAbs = toRep(a) & absMask;
+ const rep_t bAbs = toRep(b) & absMask;
+
+ // NaN / anything = qNaN
+ if (aAbs > infRep)
+ return fromRep(toRep(a) | quietBit);
+ // anything / NaN = qNaN
+ if (bAbs > infRep)
+ return fromRep(toRep(b) | quietBit);
+
+ if (aAbs == infRep) {
+ // infinity / infinity = NaN
+ if (bAbs == infRep)
+ return fromRep(qnanRep);
+ // infinity / anything else = +/- infinity
+ else
+ return fromRep(aAbs | quotientSign);
}
- // Or in the implicit significand bit. (If we fell through from the
- // denormal path it was already set by normalize( ), but setting it twice
- // won't hurt anything.)
- aSignificand |= implicitBit;
- bSignificand |= implicitBit;
- int quotientExponent = aExponent - bExponent + scale;
-
- // Align the significand of b as a Q31 fixed-point number in the range
- // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
- // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
- // is accurate to about 3.5 binary digits.
- uint32_t q31b = bSignificand << 8;
- uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
-
- // Now refine the reciprocal estimate using a Newton-Raphson iteration:
- //
- // x1 = x0 * (2 - x0 * b)
- //
- // This doubles the number of correct binary digits in the approximation
- // with each iteration, so after three iterations, we have about 28 binary
- // digits of accuracy.
- uint32_t correction;
- correction = -((uint64_t)reciprocal * q31b >> 32);
- reciprocal = (uint64_t)reciprocal * correction >> 31;
- correction = -((uint64_t)reciprocal * q31b >> 32);
- reciprocal = (uint64_t)reciprocal * correction >> 31;
- correction = -((uint64_t)reciprocal * q31b >> 32);
- reciprocal = (uint64_t)reciprocal * correction >> 31;
-
- // Exhaustive testing shows that the error in reciprocal after three steps
- // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
- // expectations. We bump the reciprocal by a tiny value to force the error
- // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
- // be specific). This also causes 1/1 to give a sensible approximation
- // instead of zero (due to overflow).
- reciprocal -= 2;
-
- // The numerical reciprocal is accurate to within 2^-28, lies in the
- // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
- // than the true reciprocal of b. Multiplying a by this reciprocal thus
- // gives a numerical q = a/b in Q24 with the following properties:
- //
- // 1. q < a/b
- // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
- // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
- // from the fact that we truncate the product, and the 2^27 term
- // is the error in the reciprocal of b scaled by the maximum
- // possible value of a. As a consequence of this error bound,
- // either q or nextafter(q) is the correctly rounded
- rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
-
- // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
- // In either case, we are going to compute a residual of the form
- //
- // r = a - q*b
- //
- // We know from the construction of q that r satisfies:
- //
- // 0 <= r < ulp(q)*b
- //
- // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
- // already have the correct result. The exact halfway case cannot occur.
- // We also take this time to right shift quotient if it falls in the [1,2)
- // range and adjust the exponent accordingly.
- rep_t residual;
- if (quotient < (implicitBit << 1)) {
- residual = (aSignificand << 24) - quotient * bSignificand;
- quotientExponent--;
- } else {
- quotient >>= 1;
- residual = (aSignificand << 23) - quotient * bSignificand;
- }
-
- const int writtenExponent = quotientExponent + exponentBias;
-
- if (writtenExponent >= maxExponent) {
- // If we have overflowed the exponent, return infinity.
- return fromRep(infRep | quotientSign);
- }
+ // anything else / infinity = +/- 0
+ if (bAbs == infRep)
+ return fromRep(quotientSign);
- else if (writtenExponent < 1) {
- if (writtenExponent == 0) {
- // Check whether the rounded result is normal.
- const bool round = (residual << 1) > bSignificand;
- // Clear the implicit bit.
- rep_t absResult = quotient & significandMask;
- // Round.
- absResult += round;
- if (absResult & ~significandMask) {
- // The rounded result is normal; return it.
- return fromRep(absResult | quotientSign);
- }
- }
- // Flush denormals to zero. In the future, it would be nice to add
- // code to round them correctly.
+ if (!aAbs) {
+ // zero / zero = NaN
+ if (!bAbs)
+ return fromRep(qnanRep);
+ // zero / anything else = +/- zero
+ else
return fromRep(quotientSign);
}
-
- else {
- const bool round = (residual << 1) > bSignificand;
- // Clear the implicit bit
- rep_t absResult = quotient & significandMask;
- // Insert the exponent
- absResult |= (rep_t)writtenExponent << significandBits;
- // Round
- absResult += round;
- // Insert the sign and return
+ // anything else / zero = +/- infinity
+ if (!bAbs)
+ return fromRep(infRep | quotientSign);
+
+ // one or both of a or b is denormal, the other (if applicable) is a
+ // normal number. Renormalize one or both of a and b, and set scale to
+ // include the necessary exponent adjustment.
+ if (aAbs < implicitBit)
+ scale += normalize(&aSignificand);
+ if (bAbs < implicitBit)
+ scale -= normalize(&bSignificand);
+ }
+
+ // Or in the implicit significand bit. (If we fell through from the
+ // denormal path it was already set by normalize( ), but setting it twice
+ // won't hurt anything.)
+ aSignificand |= implicitBit;
+ bSignificand |= implicitBit;
+ int quotientExponent = aExponent - bExponent + scale;
+
+ // Align the significand of b as a Q31 fixed-point number in the range
+ // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
+ // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
+ // is accurate to about 3.5 binary digits.
+ uint32_t q31b = bSignificand << 8;
+ uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
+
+ // Now refine the reciprocal estimate using a Newton-Raphson iteration:
+ //
+ // x1 = x0 * (2 - x0 * b)
+ //
+ // This doubles the number of correct binary digits in the approximation
+ // with each iteration, so after three iterations, we have about 28 binary
+ // digits of accuracy.
+ uint32_t correction;
+ correction = -((uint64_t)reciprocal * q31b >> 32);
+ reciprocal = (uint64_t)reciprocal * correction >> 31;
+ correction = -((uint64_t)reciprocal * q31b >> 32);
+ reciprocal = (uint64_t)reciprocal * correction >> 31;
+ correction = -((uint64_t)reciprocal * q31b >> 32);
+ reciprocal = (uint64_t)reciprocal * correction >> 31;
+
+ // Exhaustive testing shows that the error in reciprocal after three steps
+ // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
+ // expectations. We bump the reciprocal by a tiny value to force the error
+ // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
+ // be specific). This also causes 1/1 to give a sensible approximation
+ // instead of zero (due to overflow).
+ reciprocal -= 2;
+
+ // The numerical reciprocal is accurate to within 2^-28, lies in the
+ // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
+ // than the true reciprocal of b. Multiplying a by this reciprocal thus
+ // gives a numerical q = a/b in Q24 with the following properties:
+ //
+ // 1. q < a/b
+ // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
+ // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
+ // from the fact that we truncate the product, and the 2^27 term
+ // is the error in the reciprocal of b scaled by the maximum
+ // possible value of a. As a consequence of this error bound,
+ // either q or nextafter(q) is the correctly rounded
+ rep_t quotient = (uint64_t)reciprocal * (aSignificand << 1) >> 32;
+
+ // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
+ // In either case, we are going to compute a residual of the form
+ //
+ // r = a - q*b
+ //
+ // We know from the construction of q that r satisfies:
+ //
+ // 0 <= r < ulp(q)*b
+ //
+ // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
+ // already have the correct result. The exact halfway case cannot occur.
+ // We also take this time to right shift quotient if it falls in the [1,2)
+ // range and adjust the exponent accordingly.
+ rep_t residual;
+ if (quotient < (implicitBit << 1)) {
+ residual = (aSignificand << 24) - quotient * bSignificand;
+ quotientExponent--;
+ } else {
+ quotient >>= 1;
+ residual = (aSignificand << 23) - quotient * bSignificand;
+ }
+
+ const int writtenExponent = quotientExponent + exponentBias;
+
+ if (writtenExponent >= maxExponent) {
+ // If we have overflowed the exponent, return infinity.
+ return fromRep(infRep | quotientSign);
+ }
+
+ else if (writtenExponent < 1) {
+ if (writtenExponent == 0) {
+ // Check whether the rounded result is normal.
+ const bool round = (residual << 1) > bSignificand;
+ // Clear the implicit bit.
+ rep_t absResult = quotient & significandMask;
+ // Round.
+ absResult += round;
+ if (absResult & ~significandMask) {
+ // The rounded result is normal; return it.
return fromRep(absResult | quotientSign);
+ }
}
+ // Flush denormals to zero. In the future, it would be nice to add
+ // code to round them correctly.
+ return fromRep(quotientSign);
+ }
+
+ else {
+ const bool round = (residual << 1) > bSignificand;
+ // Clear the implicit bit
+ rep_t absResult = quotient & significandMask;
+ // Insert the exponent
+ absResult |= (rep_t)writtenExponent << significandBits;
+ // Round
+ absResult += round;
+ // Insert the sign and return
+ return fromRep(absResult | quotientSign);
+ }
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) {
- return __divsf3(a, b);
-}
+AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) { return __divsf3(a, b); }
#else
AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) COMPILER_RT_ALIAS(__divsf3);
#endif
diff --git a/lib/builtins/divsi3.c b/lib/builtins/divsi3.c
index dac7aa534..775cdccf9 100644
--- a/lib/builtins/divsi3.c
+++ b/lib/builtins/divsi3.c
@@ -15,22 +15,20 @@
/* Returns: a / b */
-COMPILER_RT_ABI si_int
-__divsi3(si_int a, si_int b)
-{
- const int bits_in_word_m1 = (int)(sizeof(si_int) * CHAR_BIT) - 1;
- si_int s_a = a >> bits_in_word_m1; /* s_a = a < 0 ? -1 : 0 */
- si_int s_b = b >> bits_in_word_m1; /* s_b = b < 0 ? -1 : 0 */
- a = (a ^ s_a) - s_a; /* negate if s_a == -1 */
- b = (b ^ s_b) - s_b; /* negate if s_b == -1 */
- s_a ^= s_b; /* sign of quotient */
- /*
- * On CPUs without unsigned hardware division support,
- * this calls __udivsi3 (notice the cast to su_int).
- * On CPUs with unsigned hardware division support,
- * this uses the unsigned division instruction.
- */
- return ((su_int)a/(su_int)b ^ s_a) - s_a; /* negate if s_a == -1 */
+COMPILER_RT_ABI si_int __divsi3(si_int a, si_int b) {
+ const int bits_in_word_m1 = (int)(sizeof(si_int) * CHAR_BIT) - 1;
+ si_int s_a = a >> bits_in_word_m1; /* s_a = a < 0 ? -1 : 0 */
+ si_int s_b = b >> bits_in_word_m1; /* s_b = b < 0 ? -1 : 0 */
+ a = (a ^ s_a) - s_a; /* negate if s_a == -1 */
+ b = (b ^ s_b) - s_b; /* negate if s_b == -1 */
+ s_a ^= s_b; /* sign of quotient */
+ /*
+ * On CPUs without unsigned hardware division support,
+ * this calls __udivsi3 (notice the cast to su_int).
+ * On CPUs with unsigned hardware division support,
+ * this uses the unsigned division instruction.
+ */
+ return ((su_int)a / (su_int)b ^ s_a) - s_a; /* negate if s_a == -1 */
}
#if defined(__ARM_EABI__)
diff --git a/lib/builtins/divtc3.c b/lib/builtins/divtc3.c
index 9c06a7091..9aa7a84ab 100644
--- a/lib/builtins/divtc3.c
+++ b/lib/builtins/divtc3.c
@@ -18,45 +18,38 @@
/* Returns: the quotient of (a + ib) / (c + id) */
-COMPILER_RT_ABI Lcomplex
-__divtc3(long double __a, long double __b, long double __c, long double __d)
-{
- int __ilogbw = 0;
- long double __logbw =
- __compiler_rt_logbl(crt_fmaxl(crt_fabsl(__c), crt_fabsl(__d)));
- if (crt_isfinite(__logbw))
- {
- __ilogbw = (int)__logbw;
- __c = crt_scalbnl(__c, -__ilogbw);
- __d = crt_scalbnl(__d, -__ilogbw);
+COMPILER_RT_ABI Lcomplex __divtc3(long double __a, long double __b,
+ long double __c, long double __d) {
+ int __ilogbw = 0;
+ long double __logbw =
+ __compiler_rt_logbl(crt_fmaxl(crt_fabsl(__c), crt_fabsl(__d)));
+ if (crt_isfinite(__logbw)) {
+ __ilogbw = (int)__logbw;
+ __c = crt_scalbnl(__c, -__ilogbw);
+ __d = crt_scalbnl(__d, -__ilogbw);
+ }
+ long double __denom = __c * __c + __d * __d;
+ Lcomplex z;
+ COMPLEX_REAL(z) = crt_scalbnl((__a * __c + __b * __d) / __denom, -__ilogbw);
+ COMPLEX_IMAGINARY(z) =
+ crt_scalbnl((__b * __c - __a * __d) / __denom, -__ilogbw);
+ if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) {
+ if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b))) {
+ COMPLEX_REAL(z) = crt_copysignl(CRT_INFINITY, __c) * __a;
+ COMPLEX_IMAGINARY(z) = crt_copysignl(CRT_INFINITY, __c) * __b;
+ } else if ((crt_isinf(__a) || crt_isinf(__b)) && crt_isfinite(__c) &&
+ crt_isfinite(__d)) {
+ __a = crt_copysignl(crt_isinf(__a) ? 1.0 : 0.0, __a);
+ __b = crt_copysignl(crt_isinf(__b) ? 1.0 : 0.0, __b);
+ COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
+ COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
+ } else if (crt_isinf(__logbw) && __logbw > 0.0 && crt_isfinite(__a) &&
+ crt_isfinite(__b)) {
+ __c = crt_copysignl(crt_isinf(__c) ? 1.0 : 0.0, __c);
+ __d = crt_copysignl(crt_isinf(__d) ? 1.0 : 0.0, __d);
+ COMPLEX_REAL(z) = 0.0 * (__a * __c + __b * __d);
+ COMPLEX_IMAGINARY(z) = 0.0 * (__b * __c - __a * __d);
}
- long double __denom = __c * __c + __d * __d;
- Lcomplex z;
- COMPLEX_REAL(z) = crt_scalbnl((__a * __c + __b * __d) / __denom, -__ilogbw);
- COMPLEX_IMAGINARY(z) = crt_scalbnl((__b * __c - __a * __d) / __denom, -__ilogbw);
- if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
- {
- if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b)))
- {
- COMPLEX_REAL(z) = crt_copysignl(CRT_INFINITY, __c) * __a;
- COMPLEX_IMAGINARY(z) = crt_copysignl(CRT_INFINITY, __c) * __b;
- }
- else if ((crt_isinf(__a) || crt_isinf(__b)) &&
- crt_isfinite(__c) && crt_isfinite(__d))
- {
- __a = crt_copysignl(crt_isinf(__a) ? 1.0 : 0.0, __a);
- __b = crt_copysignl(crt_isinf(__b) ? 1.0 : 0.0, __b);
- COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
- COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
- }
- else if (crt_isinf(__logbw) && __logbw > 0.0 &&
- crt_isfinite(__a) && crt_isfinite(__b))
- {
- __c = crt_copysignl(crt_isinf(__c) ? 1.0 : 0.0, __c);
- __d = crt_copysignl(crt_isinf(__d) ? 1.0 : 0.0, __d);
- COMPLEX_REAL(z) = 0.0 * (__a * __c + __b * __d);
- COMPLEX_IMAGINARY(z) = 0.0 * (__b * __c - __a * __d);
- }
- }
- return z;
+ }
+ return z;
}
diff --git a/lib/builtins/divtf3.c b/lib/builtins/divtf3.c
index ba5de99f9..35e193192 100644
--- a/lib/builtins/divtf3.c
+++ b/lib/builtins/divtf3.c
@@ -21,194 +21,203 @@
#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
COMPILER_RT_ABI fp_t __divtf3(fp_t a, fp_t b) {
- const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
- const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
- const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
-
- rep_t aSignificand = toRep(a) & significandMask;
- rep_t bSignificand = toRep(b) & significandMask;
- int scale = 0;
-
- // Detect if a or b is zero, denormal, infinity, or NaN.
- if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
-
- const rep_t aAbs = toRep(a) & absMask;
- const rep_t bAbs = toRep(b) & absMask;
-
- // NaN / anything = qNaN
- if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
- // anything / NaN = qNaN
- if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
-
- if (aAbs == infRep) {
- // infinity / infinity = NaN
- if (bAbs == infRep) return fromRep(qnanRep);
- // infinity / anything else = +/- infinity
- else return fromRep(aAbs | quotientSign);
- }
-
- // anything else / infinity = +/- 0
- if (bAbs == infRep) return fromRep(quotientSign);
-
- if (!aAbs) {
- // zero / zero = NaN
- if (!bAbs) return fromRep(qnanRep);
- // zero / anything else = +/- zero
- else return fromRep(quotientSign);
- }
- // anything else / zero = +/- infinity
- if (!bAbs) return fromRep(infRep | quotientSign);
-
- // one or both of a or b is denormal, the other (if applicable) is a
- // normal number. Renormalize one or both of a and b, and set scale to
- // include the necessary exponent adjustment.
- if (aAbs < implicitBit) scale += normalize(&aSignificand);
- if (bAbs < implicitBit) scale -= normalize(&bSignificand);
+ const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
+ const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
+ const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
+
+ rep_t aSignificand = toRep(a) & significandMask;
+ rep_t bSignificand = toRep(b) & significandMask;
+ int scale = 0;
+
+ // Detect if a or b is zero, denormal, infinity, or NaN.
+ if (aExponent - 1U >= maxExponent - 1U ||
+ bExponent - 1U >= maxExponent - 1U) {
+
+ const rep_t aAbs = toRep(a) & absMask;
+ const rep_t bAbs = toRep(b) & absMask;
+
+ // NaN / anything = qNaN
+ if (aAbs > infRep)
+ return fromRep(toRep(a) | quietBit);
+ // anything / NaN = qNaN
+ if (bAbs > infRep)
+ return fromRep(toRep(b) | quietBit);
+
+ if (aAbs == infRep) {
+ // infinity / infinity = NaN
+ if (bAbs == infRep)
+ return fromRep(qnanRep);
+ // infinity / anything else = +/- infinity
+ else
+ return fromRep(aAbs | quotientSign);
}
- // Or in the implicit significand bit. (If we fell through from the
- // denormal path it was already set by normalize( ), but setting it twice
- // won't hurt anything.)
- aSignificand |= implicitBit;
- bSignificand |= implicitBit;
- int quotientExponent = aExponent - bExponent + scale;
-
- // Align the significand of b as a Q63 fixed-point number in the range
- // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax
- // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
- // is accurate to about 3.5 binary digits.
- const uint64_t q63b = bSignificand >> 49;
- uint64_t recip64 = UINT64_C(0x7504f333F9DE6484) - q63b;
- // 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2)
-
- // Now refine the reciprocal estimate using a Newton-Raphson iteration:
- //
- // x1 = x0 * (2 - x0 * b)
- //
- // This doubles the number of correct binary digits in the approximation
- // with each iteration.
- uint64_t correction64;
- correction64 = -((rep_t)recip64 * q63b >> 64);
- recip64 = (rep_t)recip64 * correction64 >> 63;
- correction64 = -((rep_t)recip64 * q63b >> 64);
- recip64 = (rep_t)recip64 * correction64 >> 63;
- correction64 = -((rep_t)recip64 * q63b >> 64);
- recip64 = (rep_t)recip64 * correction64 >> 63;
- correction64 = -((rep_t)recip64 * q63b >> 64);
- recip64 = (rep_t)recip64 * correction64 >> 63;
- correction64 = -((rep_t)recip64 * q63b >> 64);
- recip64 = (rep_t)recip64 * correction64 >> 63;
-
- // recip64 might have overflowed to exactly zero in the preceeding
- // computation if the high word of b is exactly 1.0. This would sabotage
- // the full-width final stage of the computation that follows, so we adjust
- // recip64 downward by one bit.
- recip64--;
-
- // We need to perform one more iteration to get us to 112 binary digits;
- // The last iteration needs to happen with extra precision.
- const uint64_t q127blo = bSignificand << 15;
- rep_t correction, reciprocal;
-
- // NOTE: This operation is equivalent to __multi3, which is not implemented
- // in some architechure
- rep_t r64q63, r64q127, r64cH, r64cL, dummy;
- wideMultiply((rep_t)recip64, (rep_t)q63b, &dummy, &r64q63);
- wideMultiply((rep_t)recip64, (rep_t)q127blo, &dummy, &r64q127);
-
- correction = -(r64q63 + (r64q127 >> 64));
-
- uint64_t cHi = correction >> 64;
- uint64_t cLo = correction;
-
- wideMultiply((rep_t)recip64, (rep_t)cHi, &dummy, &r64cH);
- wideMultiply((rep_t)recip64, (rep_t)cLo, &dummy, &r64cL);
-
- reciprocal = r64cH + (r64cL >> 64);
-
- // We already adjusted the 64-bit estimate, now we need to adjust the final
- // 128-bit reciprocal estimate downward to ensure that it is strictly smaller
- // than the infinitely precise exact reciprocal. Because the computation
- // of the Newton-Raphson step is truncating at every step, this adjustment
- // is small; most of the work is already done.
- reciprocal -= 2;
-
- // The numerical reciprocal is accurate to within 2^-112, lies in the
- // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
- // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
- // in Q127 with the following properties:
- //
- // 1. q < a/b
- // 2. q is in the interval [0.5, 2.0)
- // 3. the error in q is bounded away from 2^-113 (actually, we have a
- // couple of bits to spare, but this is all we need).
-
- // We need a 128 x 128 multiply high to compute q, which isn't a basic
- // operation in C, so we need to be a little bit fussy.
- rep_t quotient, quotientLo;
- wideMultiply(aSignificand << 2, reciprocal, &quotient, &quotientLo);
-
- // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
- // In either case, we are going to compute a residual of the form
- //
- // r = a - q*b
- //
- // We know from the construction of q that r satisfies:
- //
- // 0 <= r < ulp(q)*b
- //
- // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
- // already have the correct result. The exact halfway case cannot occur.
- // We also take this time to right shift quotient if it falls in the [1,2)
- // range and adjust the exponent accordingly.
- rep_t residual;
- rep_t qb;
-
- if (quotient < (implicitBit << 1)) {
- wideMultiply(quotient, bSignificand, &dummy, &qb);
- residual = (aSignificand << 113) - qb;
- quotientExponent--;
- } else {
- quotient >>= 1;
- wideMultiply(quotient, bSignificand, &dummy, &qb);
- residual = (aSignificand << 112) - qb;
- }
-
- const int writtenExponent = quotientExponent + exponentBias;
+ // anything else / infinity = +/- 0
+ if (bAbs == infRep)
+ return fromRep(quotientSign);
- if (writtenExponent >= maxExponent) {
- // If we have overflowed the exponent, return infinity.
- return fromRep(infRep | quotientSign);
- }
- else if (writtenExponent < 1) {
- if (writtenExponent == 0) {
- // Check whether the rounded result is normal.
- const bool round = (residual << 1) > bSignificand;
- // Clear the implicit bit.
- rep_t absResult = quotient & significandMask;
- // Round.
- absResult += round;
- if (absResult & ~significandMask) {
- // The rounded result is normal; return it.
- return fromRep(absResult | quotientSign);
- }
- }
- // Flush denormals to zero. In the future, it would be nice to add
- // code to round them correctly.
+ if (!aAbs) {
+ // zero / zero = NaN
+ if (!bAbs)
+ return fromRep(qnanRep);
+ // zero / anything else = +/- zero
+ else
return fromRep(quotientSign);
}
- else {
- const bool round = (residual << 1) >= bSignificand;
- // Clear the implicit bit
- rep_t absResult = quotient & significandMask;
- // Insert the exponent
- absResult |= (rep_t)writtenExponent << significandBits;
- // Round
- absResult += round;
- // Insert the sign and return
- const long double result = fromRep(absResult | quotientSign);
- return result;
+ // anything else / zero = +/- infinity
+ if (!bAbs)
+ return fromRep(infRep | quotientSign);
+
+ // one or both of a or b is denormal, the other (if applicable) is a
+ // normal number. Renormalize one or both of a and b, and set scale to
+ // include the necessary exponent adjustment.
+ if (aAbs < implicitBit)
+ scale += normalize(&aSignificand);
+ if (bAbs < implicitBit)
+ scale -= normalize(&bSignificand);
+ }
+
+ // Or in the implicit significand bit. (If we fell through from the
+ // denormal path it was already set by normalize( ), but setting it twice
+ // won't hurt anything.)
+ aSignificand |= implicitBit;
+ bSignificand |= implicitBit;
+ int quotientExponent = aExponent - bExponent + scale;
+
+ // Align the significand of b as a Q63 fixed-point number in the range
+ // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax
+ // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
+ // is accurate to about 3.5 binary digits.
+ const uint64_t q63b = bSignificand >> 49;
+ uint64_t recip64 = UINT64_C(0x7504f333F9DE6484) - q63b;
+ // 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2)
+
+ // Now refine the reciprocal estimate using a Newton-Raphson iteration:
+ //
+ // x1 = x0 * (2 - x0 * b)
+ //
+ // This doubles the number of correct binary digits in the approximation
+ // with each iteration.
+ uint64_t correction64;
+ correction64 = -((rep_t)recip64 * q63b >> 64);
+ recip64 = (rep_t)recip64 * correction64 >> 63;
+ correction64 = -((rep_t)recip64 * q63b >> 64);
+ recip64 = (rep_t)recip64 * correction64 >> 63;
+ correction64 = -((rep_t)recip64 * q63b >> 64);
+ recip64 = (rep_t)recip64 * correction64 >> 63;
+ correction64 = -((rep_t)recip64 * q63b >> 64);
+ recip64 = (rep_t)recip64 * correction64 >> 63;
+ correction64 = -((rep_t)recip64 * q63b >> 64);
+ recip64 = (rep_t)recip64 * correction64 >> 63;
+
+ // recip64 might have overflowed to exactly zero in the preceeding
+ // computation if the high word of b is exactly 1.0. This would sabotage
+ // the full-width final stage of the computation that follows, so we adjust
+ // recip64 downward by one bit.
+ recip64--;
+
+ // We need to perform one more iteration to get us to 112 binary digits;
+ // The last iteration needs to happen with extra precision.
+ const uint64_t q127blo = bSignificand << 15;
+ rep_t correction, reciprocal;
+
+ // NOTE: This operation is equivalent to __multi3, which is not implemented
+ // in some architechure
+ rep_t r64q63, r64q127, r64cH, r64cL, dummy;
+ wideMultiply((rep_t)recip64, (rep_t)q63b, &dummy, &r64q63);
+ wideMultiply((rep_t)recip64, (rep_t)q127blo, &dummy, &r64q127);
+
+ correction = -(r64q63 + (r64q127 >> 64));
+
+ uint64_t cHi = correction >> 64;
+ uint64_t cLo = correction;
+
+ wideMultiply((rep_t)recip64, (rep_t)cHi, &dummy, &r64cH);
+ wideMultiply((rep_t)recip64, (rep_t)cLo, &dummy, &r64cL);
+
+ reciprocal = r64cH + (r64cL >> 64);
+
+ // We already adjusted the 64-bit estimate, now we need to adjust the final
+ // 128-bit reciprocal estimate downward to ensure that it is strictly smaller
+ // than the infinitely precise exact reciprocal. Because the computation
+ // of the Newton-Raphson step is truncating at every step, this adjustment
+ // is small; most of the work is already done.
+ reciprocal -= 2;
+
+ // The numerical reciprocal is accurate to within 2^-112, lies in the
+ // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
+ // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
+ // in Q127 with the following properties:
+ //
+ // 1. q < a/b
+ // 2. q is in the interval [0.5, 2.0)
+ // 3. the error in q is bounded away from 2^-113 (actually, we have a
+ // couple of bits to spare, but this is all we need).
+
+ // We need a 128 x 128 multiply high to compute q, which isn't a basic
+ // operation in C, so we need to be a little bit fussy.
+ rep_t quotient, quotientLo;
+ wideMultiply(aSignificand << 2, reciprocal, &quotient, &quotientLo);
+
+ // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
+ // In either case, we are going to compute a residual of the form
+ //
+ // r = a - q*b
+ //
+ // We know from the construction of q that r satisfies:
+ //
+ // 0 <= r < ulp(q)*b
+ //
+ // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
+ // already have the correct result. The exact halfway case cannot occur.
+ // We also take this time to right shift quotient if it falls in the [1,2)
+ // range and adjust the exponent accordingly.
+ rep_t residual;
+ rep_t qb;
+
+ if (quotient < (implicitBit << 1)) {
+ wideMultiply(quotient, bSignificand, &dummy, &qb);
+ residual = (aSignificand << 113) - qb;
+ quotientExponent--;
+ } else {
+ quotient >>= 1;
+ wideMultiply(quotient, bSignificand, &dummy, &qb);
+ residual = (aSignificand << 112) - qb;
+ }
+
+ const int writtenExponent = quotientExponent + exponentBias;
+
+ if (writtenExponent >= maxExponent) {
+ // If we have overflowed the exponent, return infinity.
+ return fromRep(infRep | quotientSign);
+ } else if (writtenExponent < 1) {
+ if (writtenExponent == 0) {
+ // Check whether the rounded result is normal.
+ const bool round = (residual << 1) > bSignificand;
+ // Clear the implicit bit.
+ rep_t absResult = quotient & significandMask;
+ // Round.
+ absResult += round;
+ if (absResult & ~significandMask) {
+ // The rounded result is normal; return it.
+ return fromRep(absResult | quotientSign);
+ }
}
+ // Flush denormals to zero. In the future, it would be nice to add
+ // code to round them correctly.
+ return fromRep(quotientSign);
+ } else {
+ const bool round = (residual << 1) >= bSignificand;
+ // Clear the implicit bit
+ rep_t absResult = quotient & significandMask;
+ // Insert the exponent
+ absResult |= (rep_t)writtenExponent << significandBits;
+ // Round
+ absResult += round;
+ // Insert the sign and return
+ const long double result = fromRep(absResult | quotientSign);
+ return result;
+ }
}
#endif
diff --git a/lib/builtins/divti3.c b/lib/builtins/divti3.c
index 7c8f11668..59786fa6e 100644
--- a/lib/builtins/divti3.c
+++ b/lib/builtins/divti3.c
@@ -17,16 +17,15 @@
/* Returns: a / b */
-COMPILER_RT_ABI ti_int
-__divti3(ti_int a, ti_int b)
-{
- const int bits_in_tword_m1 = (int)(sizeof(ti_int) * CHAR_BIT) - 1;
- ti_int s_a = a >> bits_in_tword_m1; /* s_a = a < 0 ? -1 : 0 */
- ti_int s_b = b >> bits_in_tword_m1; /* s_b = b < 0 ? -1 : 0 */
- a = (a ^ s_a) - s_a; /* negate if s_a == -1 */
- b = (b ^ s_b) - s_b; /* negate if s_b == -1 */
- s_a ^= s_b; /* sign of quotient */
- return (__udivmodti4(a, b, (tu_int*)0) ^ s_a) - s_a; /* negate if s_a == -1 */
+COMPILER_RT_ABI ti_int __divti3(ti_int a, ti_int b) {
+ const int bits_in_tword_m1 = (int)(sizeof(ti_int) * CHAR_BIT) - 1;
+ ti_int s_a = a >> bits_in_tword_m1; /* s_a = a < 0 ? -1 : 0 */
+ ti_int s_b = b >> bits_in_tword_m1; /* s_b = b < 0 ? -1 : 0 */
+ a = (a ^ s_a) - s_a; /* negate if s_a == -1 */
+ b = (b ^ s_b) - s_b; /* negate if s_b == -1 */
+ s_a ^= s_b; /* sign of quotient */
+ return (__udivmodti4(a, b, (tu_int *)0) ^ s_a) -
+ s_a; /* negate if s_a == -1 */
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/divxc3.c b/lib/builtins/divxc3.c
index 8ded346f5..522f817a0 100644
--- a/lib/builtins/divxc3.c
+++ b/lib/builtins/divxc3.c
@@ -17,46 +17,39 @@
/* Returns: the quotient of (a + ib) / (c + id) */
-COMPILER_RT_ABI Lcomplex
-__divxc3(long double __a, long double __b, long double __c, long double __d)
-{
- int __ilogbw = 0;
- long double __logbw = crt_logbl(crt_fmaxl(crt_fabsl(__c), crt_fabsl(__d)));
- if (crt_isfinite(__logbw))
- {
- __ilogbw = (int)__logbw;
- __c = crt_scalbnl(__c, -__ilogbw);
- __d = crt_scalbnl(__d, -__ilogbw);
+COMPILER_RT_ABI Lcomplex __divxc3(long double __a, long double __b,
+ long double __c, long double __d) {
+ int __ilogbw = 0;
+ long double __logbw = crt_logbl(crt_fmaxl(crt_fabsl(__c), crt_fabsl(__d)));
+ if (crt_isfinite(__logbw)) {
+ __ilogbw = (int)__logbw;
+ __c = crt_scalbnl(__c, -__ilogbw);
+ __d = crt_scalbnl(__d, -__ilogbw);
+ }
+ long double __denom = __c * __c + __d * __d;
+ Lcomplex z;
+ COMPLEX_REAL(z) = crt_scalbnl((__a * __c + __b * __d) / __denom, -__ilogbw);
+ COMPLEX_IMAGINARY(z) =
+ crt_scalbnl((__b * __c - __a * __d) / __denom, -__ilogbw);
+ if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) {
+ if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b))) {
+ COMPLEX_REAL(z) = crt_copysignl(CRT_INFINITY, __c) * __a;
+ COMPLEX_IMAGINARY(z) = crt_copysignl(CRT_INFINITY, __c) * __b;
+ } else if ((crt_isinf(__a) || crt_isinf(__b)) && crt_isfinite(__c) &&
+ crt_isfinite(__d)) {
+ __a = crt_copysignl(crt_isinf(__a) ? 1 : 0, __a);
+ __b = crt_copysignl(crt_isinf(__b) ? 1 : 0, __b);
+ COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
+ COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
+ } else if (crt_isinf(__logbw) && __logbw > 0 && crt_isfinite(__a) &&
+ crt_isfinite(__b)) {
+ __c = crt_copysignl(crt_isinf(__c) ? 1 : 0, __c);
+ __d = crt_copysignl(crt_isinf(__d) ? 1 : 0, __d);
+ COMPLEX_REAL(z) = 0 * (__a * __c + __b * __d);
+ COMPLEX_IMAGINARY(z) = 0 * (__b * __c - __a * __d);
}
- long double __denom = __c * __c + __d * __d;
- Lcomplex z;
- COMPLEX_REAL(z) = crt_scalbnl((__a * __c + __b * __d) / __denom, -__ilogbw);
- COMPLEX_IMAGINARY(z) = crt_scalbnl((__b * __c - __a * __d) / __denom, -__ilogbw);
- if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
- {
- if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b)))
- {
- COMPLEX_REAL(z) = crt_copysignl(CRT_INFINITY, __c) * __a;
- COMPLEX_IMAGINARY(z) = crt_copysignl(CRT_INFINITY, __c) * __b;
- }
- else if ((crt_isinf(__a) || crt_isinf(__b)) &&
- crt_isfinite(__c) && crt_isfinite(__d))
- {
- __a = crt_copysignl(crt_isinf(__a) ? 1 : 0, __a);
- __b = crt_copysignl(crt_isinf(__b) ? 1 : 0, __b);
- COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
- COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
- }
- else if (crt_isinf(__logbw) && __logbw > 0 &&
- crt_isfinite(__a) && crt_isfinite(__b))
- {
- __c = crt_copysignl(crt_isinf(__c) ? 1 : 0, __c);
- __d = crt_copysignl(crt_isinf(__d) ? 1 : 0, __d);
- COMPLEX_REAL(z) = 0 * (__a * __c + __b * __d);
- COMPLEX_IMAGINARY(z) = 0 * (__b * __c - __a * __d);
- }
- }
- return z;
+ }
+ return z;
}
#endif
diff --git a/lib/builtins/emutls.c b/lib/builtins/emutls.c
index 974bfb084..3cee97f2c 100644
--- a/lib/builtins/emutls.c
+++ b/lib/builtins/emutls.c
@@ -11,7 +11,6 @@
#include <string.h>
#include "int_lib.h"
-#include "int_util.h"
#ifdef __BIONIC__
/* There are 4 pthread key cleanup rounds on Bionic. Delay emutls deallocation
@@ -28,9 +27,9 @@
#endif
typedef struct emutls_address_array {
- uintptr_t skip_destructor_rounds;
- uintptr_t size; /* number of elements in the 'data' array */
- void* data[];
+ uintptr_t skip_destructor_rounds;
+ uintptr_t size; /* number of elements in the 'data' array */
+ void *data[];
} emutls_address_array;
static void emutls_shutdown(emutls_address_array *array);
@@ -54,178 +53,169 @@ typedef unsigned int gcc_pointer __attribute__((mode(pointer)));
#endif
static __inline void *emutls_memalign_alloc(size_t align, size_t size) {
- void *base;
+ void *base;
#if EMUTLS_USE_POSIX_MEMALIGN
- if (posix_memalign(&base, align, size) != 0)
- abort();
+ if (posix_memalign(&base, align, size) != 0)
+ abort();
#else
- #define EXTRA_ALIGN_PTR_BYTES (align - 1 + sizeof(void*))
- char* object;
- if ((object = (char*)malloc(EXTRA_ALIGN_PTR_BYTES + size)) == NULL)
- abort();
- base = (void*)(((uintptr_t)(object + EXTRA_ALIGN_PTR_BYTES))
- & ~(uintptr_t)(align - 1));
-
- ((void**)base)[-1] = object;
+#define EXTRA_ALIGN_PTR_BYTES (align - 1 + sizeof(void *))
+ char *object;
+ if ((object = (char *)malloc(EXTRA_ALIGN_PTR_BYTES + size)) == NULL)
+ abort();
+ base = (void *)(((uintptr_t)(object + EXTRA_ALIGN_PTR_BYTES)) &
+ ~(uintptr_t)(align - 1));
+
+ ((void **)base)[-1] = object;
#endif
- return base;
+ return base;
}
static __inline void emutls_memalign_free(void *base) {
#if EMUTLS_USE_POSIX_MEMALIGN
- free(base);
+ free(base);
#else
- /* The mallocated address is in ((void**)base)[-1] */
- free(((void**)base)[-1]);
+ /* The mallocated address is in ((void**)base)[-1] */
+ free(((void **)base)[-1]);
#endif
}
static __inline void emutls_setspecific(emutls_address_array *value) {
- pthread_setspecific(emutls_pthread_key, (void*) value);
+ pthread_setspecific(emutls_pthread_key, (void *)value);
}
-static __inline emutls_address_array* emutls_getspecific() {
- return (emutls_address_array*) pthread_getspecific(emutls_pthread_key);
+static __inline emutls_address_array *emutls_getspecific() {
+ return (emutls_address_array *)pthread_getspecific(emutls_pthread_key);
}
-static void emutls_key_destructor(void* ptr) {
- emutls_address_array *array = (emutls_address_array*)ptr;
- if (array->skip_destructor_rounds > 0) {
- /* emutls is deallocated using a pthread key destructor. These
- * destructors are called in several rounds to accommodate destructor
- * functions that (re)initialize key values with pthread_setspecific.
- * Delay the emutls deallocation to accommodate other end-of-thread
- * cleanup tasks like calling thread_local destructors (e.g. the
- * __cxa_thread_atexit fallback in libc++abi).
- */
- array->skip_destructor_rounds--;
- emutls_setspecific(array);
- } else {
- emutls_shutdown(array);
- free(ptr);
- }
+static void emutls_key_destructor(void *ptr) {
+ emutls_address_array *array = (emutls_address_array *)ptr;
+ if (array->skip_destructor_rounds > 0) {
+ /* emutls is deallocated using a pthread key destructor. These
+ * destructors are called in several rounds to accommodate destructor
+ * functions that (re)initialize key values with pthread_setspecific.
+ * Delay the emutls deallocation to accommodate other end-of-thread
+ * cleanup tasks like calling thread_local destructors (e.g. the
+ * __cxa_thread_atexit fallback in libc++abi).
+ */
+ array->skip_destructor_rounds--;
+ emutls_setspecific(array);
+ } else {
+ emutls_shutdown(array);
+ free(ptr);
+ }
}
static __inline void emutls_init(void) {
- if (pthread_key_create(&emutls_pthread_key, emutls_key_destructor) != 0)
- abort();
- emutls_key_created = true;
+ if (pthread_key_create(&emutls_pthread_key, emutls_key_destructor) != 0)
+ abort();
+ emutls_key_created = true;
}
static __inline void emutls_init_once(void) {
- static pthread_once_t once = PTHREAD_ONCE_INIT;
- pthread_once(&once, emutls_init);
+ static pthread_once_t once = PTHREAD_ONCE_INIT;
+ pthread_once(&once, emutls_init);
}
-static __inline void emutls_lock() {
- pthread_mutex_lock(&emutls_mutex);
-}
+static __inline void emutls_lock() { pthread_mutex_lock(&emutls_mutex); }
-static __inline void emutls_unlock() {
- pthread_mutex_unlock(&emutls_mutex);
-}
+static __inline void emutls_unlock() { pthread_mutex_unlock(&emutls_mutex); }
#else /* _WIN32 */
-#include <windows.h>
+#include <assert.h>
#include <malloc.h>
#include <stdio.h>
-#include <assert.h>
+#include <windows.h>
static LPCRITICAL_SECTION emutls_mutex;
static DWORD emutls_tls_index = TLS_OUT_OF_INDEXES;
typedef uintptr_t gcc_word;
-typedef void * gcc_pointer;
+typedef void *gcc_pointer;
static void win_error(DWORD last_err, const char *hint) {
- char *buffer = NULL;
- if (FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER |
- FORMAT_MESSAGE_FROM_SYSTEM |
- FORMAT_MESSAGE_MAX_WIDTH_MASK,
- NULL, last_err, 0, (LPSTR)&buffer, 1, NULL)) {
- fprintf(stderr, "Windows error: %s\n", buffer);
- } else {
- fprintf(stderr, "Unkown Windows error: %s\n", hint);
- }
- LocalFree(buffer);
+ char *buffer = NULL;
+ if (FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER |
+ FORMAT_MESSAGE_FROM_SYSTEM |
+ FORMAT_MESSAGE_MAX_WIDTH_MASK,
+ NULL, last_err, 0, (LPSTR)&buffer, 1, NULL)) {
+ fprintf(stderr, "Windows error: %s\n", buffer);
+ } else {
+ fprintf(stderr, "Unkown Windows error: %s\n", hint);
+ }
+ LocalFree(buffer);
}
static __inline void win_abort(DWORD last_err, const char *hint) {
- win_error(last_err, hint);
- abort();
+ win_error(last_err, hint);
+ abort();
}
static __inline void *emutls_memalign_alloc(size_t align, size_t size) {
- void *base = _aligned_malloc(size, align);
- if (!base)
- win_abort(GetLastError(), "_aligned_malloc");
- return base;
+ void *base = _aligned_malloc(size, align);
+ if (!base)
+ win_abort(GetLastError(), "_aligned_malloc");
+ return base;
}
-static __inline void emutls_memalign_free(void *base) {
- _aligned_free(base);
-}
+static __inline void emutls_memalign_free(void *base) { _aligned_free(base); }
static void emutls_exit(void) {
- if (emutls_mutex) {
- DeleteCriticalSection(emutls_mutex);
- _aligned_free(emutls_mutex);
- emutls_mutex = NULL;
- }
- if (emutls_tls_index != TLS_OUT_OF_INDEXES) {
- emutls_shutdown((emutls_address_array*)TlsGetValue(emutls_tls_index));
- TlsFree(emutls_tls_index);
- emutls_tls_index = TLS_OUT_OF_INDEXES;
- }
+ if (emutls_mutex) {
+ DeleteCriticalSection(emutls_mutex);
+ _aligned_free(emutls_mutex);
+ emutls_mutex = NULL;
+ }
+ if (emutls_tls_index != TLS_OUT_OF_INDEXES) {
+ emutls_shutdown((emutls_address_array *)TlsGetValue(emutls_tls_index));
+ TlsFree(emutls_tls_index);
+ emutls_tls_index = TLS_OUT_OF_INDEXES;
+ }
}
-#pragma warning (push)
-#pragma warning (disable : 4100)
+#pragma warning(push)
+#pragma warning(disable : 4100)
static BOOL CALLBACK emutls_init(PINIT_ONCE p0, PVOID p1, PVOID *p2) {
- emutls_mutex = (LPCRITICAL_SECTION)_aligned_malloc(sizeof(CRITICAL_SECTION), 16);
- if (!emutls_mutex) {
- win_error(GetLastError(), "_aligned_malloc");
- return FALSE;
- }
- InitializeCriticalSection(emutls_mutex);
-
- emutls_tls_index = TlsAlloc();
- if (emutls_tls_index == TLS_OUT_OF_INDEXES) {
- emutls_exit();
- win_error(GetLastError(), "TlsAlloc");
- return FALSE;
- }
- atexit(&emutls_exit);
- return TRUE;
+ emutls_mutex =
+ (LPCRITICAL_SECTION)_aligned_malloc(sizeof(CRITICAL_SECTION), 16);
+ if (!emutls_mutex) {
+ win_error(GetLastError(), "_aligned_malloc");
+ return FALSE;
+ }
+ InitializeCriticalSection(emutls_mutex);
+
+ emutls_tls_index = TlsAlloc();
+ if (emutls_tls_index == TLS_OUT_OF_INDEXES) {
+ emutls_exit();
+ win_error(GetLastError(), "TlsAlloc");
+ return FALSE;
+ }
+ atexit(&emutls_exit);
+ return TRUE;
}
static __inline void emutls_init_once(void) {
- static INIT_ONCE once;
- InitOnceExecuteOnce(&once, emutls_init, NULL, NULL);
+ static INIT_ONCE once;
+ InitOnceExecuteOnce(&once, emutls_init, NULL, NULL);
}
-static __inline void emutls_lock() {
- EnterCriticalSection(emutls_mutex);
-}
+static __inline void emutls_lock() { EnterCriticalSection(emutls_mutex); }
-static __inline void emutls_unlock() {
- LeaveCriticalSection(emutls_mutex);
-}
+static __inline void emutls_unlock() { LeaveCriticalSection(emutls_mutex); }
static __inline void emutls_setspecific(emutls_address_array *value) {
- if (TlsSetValue(emutls_tls_index, (LPVOID) value) == 0)
- win_abort(GetLastError(), "TlsSetValue");
+ if (TlsSetValue(emutls_tls_index, (LPVOID)value) == 0)
+ win_abort(GetLastError(), "TlsSetValue");
}
-static __inline emutls_address_array* emutls_getspecific() {
- LPVOID value = TlsGetValue(emutls_tls_index);
- if (value == NULL) {
- const DWORD err = GetLastError();
- if (err != ERROR_SUCCESS)
- win_abort(err, "TlsGetValue");
- }
- return (emutls_address_array*) value;
+static __inline emutls_address_array *emutls_getspecific() {
+ LPVOID value = TlsGetValue(emutls_tls_index);
+ if (value == NULL) {
+ const DWORD err = GetLastError();
+ if (err != ERROR_SUCCESS)
+ win_abort(err, "TlsGetValue");
+ }
+ return (emutls_address_array *)value;
}
/* Provide atomic load/store functions for emutls_get_index if built with MSVC.
@@ -236,39 +226,39 @@ static __inline emutls_address_array* emutls_getspecific() {
enum { __ATOMIC_ACQUIRE = 2, __ATOMIC_RELEASE = 3 };
static __inline uintptr_t __atomic_load_n(void *ptr, unsigned type) {
- assert(type == __ATOMIC_ACQUIRE);
- // These return the previous value - but since we do an OR with 0,
- // it's equivalent to a plain load.
+ assert(type == __ATOMIC_ACQUIRE);
+ // These return the previous value - but since we do an OR with 0,
+ // it's equivalent to a plain load.
#ifdef _WIN64
- return InterlockedOr64(ptr, 0);
+ return InterlockedOr64(ptr, 0);
#else
- return InterlockedOr(ptr, 0);
+ return InterlockedOr(ptr, 0);
#endif
}
static __inline void __atomic_store_n(void *ptr, uintptr_t val, unsigned type) {
- assert(type == __ATOMIC_RELEASE);
- InterlockedExchangePointer((void *volatile *)ptr, (void *)val);
+ assert(type == __ATOMIC_RELEASE);
+ InterlockedExchangePointer((void *volatile *)ptr, (void *)val);
}
#endif /* __ATOMIC_RELEASE */
-#pragma warning (pop)
+#pragma warning(pop)
#endif /* _WIN32 */
-static size_t emutls_num_object = 0; /* number of allocated TLS objects */
+static size_t emutls_num_object = 0; /* number of allocated TLS objects */
/* Free the allocated TLS data
*/
static void emutls_shutdown(emutls_address_array *array) {
- if (array) {
- uintptr_t i;
- for (i = 0; i < array->size; ++i) {
- if (array->data[i])
- emutls_memalign_free(array->data[i]);
- }
+ if (array) {
+ uintptr_t i;
+ for (i = 0; i < array->size; ++i) {
+ if (array->data[i])
+ emutls_memalign_free(array->data[i]);
}
+ }
}
/* For every TLS variable xyz,
@@ -277,85 +267,84 @@ static void emutls_shutdown(emutls_address_array *array) {
* will point to __emutls_t.xyz, which has the initial value.
*/
typedef struct __emutls_control {
- /* Must use gcc_word here, instead of size_t, to match GCC. When
- gcc_word is larger than size_t, the upper extra bits are all
- zeros. We can use variables of size_t to operate on size and
- align. */
- gcc_word size; /* size of the object in bytes */
- gcc_word align; /* alignment of the object in bytes */
- union {
- uintptr_t index; /* data[index-1] is the object address */
- void* address; /* object address, when in single thread env */
- } object;
- void* value; /* null or non-zero initial value for the object */
+ /* Must use gcc_word here, instead of size_t, to match GCC. When
+ gcc_word is larger than size_t, the upper extra bits are all
+ zeros. We can use variables of size_t to operate on size and
+ align. */
+ gcc_word size; /* size of the object in bytes */
+ gcc_word align; /* alignment of the object in bytes */
+ union {
+ uintptr_t index; /* data[index-1] is the object address */
+ void *address; /* object address, when in single thread env */
+ } object;
+ void *value; /* null or non-zero initial value for the object */
} __emutls_control;
/* Emulated TLS objects are always allocated at run-time. */
static __inline void *emutls_allocate_object(__emutls_control *control) {
- /* Use standard C types, check with gcc's emutls.o. */
- COMPILE_TIME_ASSERT(sizeof(uintptr_t) == sizeof(gcc_pointer));
- COMPILE_TIME_ASSERT(sizeof(uintptr_t) == sizeof(void*));
-
- size_t size = control->size;
- size_t align = control->align;
- void* base;
- if (align < sizeof(void*))
- align = sizeof(void*);
- /* Make sure that align is power of 2. */
- if ((align & (align - 1)) != 0)
- abort();
-
- base = emutls_memalign_alloc(align, size);
- if (control->value)
- memcpy(base, control->value, size);
- else
- memset(base, 0, size);
- return base;
-}
+ /* Use standard C types, check with gcc's emutls.o. */
+ COMPILE_TIME_ASSERT(sizeof(uintptr_t) == sizeof(gcc_pointer));
+ COMPILE_TIME_ASSERT(sizeof(uintptr_t) == sizeof(void *));
+
+ size_t size = control->size;
+ size_t align = control->align;
+ void *base;
+ if (align < sizeof(void *))
+ align = sizeof(void *);
+ /* Make sure that align is power of 2. */
+ if ((align & (align - 1)) != 0)
+ abort();
+ base = emutls_memalign_alloc(align, size);
+ if (control->value)
+ memcpy(base, control->value, size);
+ else
+ memset(base, 0, size);
+ return base;
+}
/* Returns control->object.index; set index if not allocated yet. */
static __inline uintptr_t emutls_get_index(__emutls_control *control) {
- uintptr_t index = __atomic_load_n(&control->object.index, __ATOMIC_ACQUIRE);
+ uintptr_t index = __atomic_load_n(&control->object.index, __ATOMIC_ACQUIRE);
+ if (!index) {
+ emutls_init_once();
+ emutls_lock();
+ index = control->object.index;
if (!index) {
- emutls_init_once();
- emutls_lock();
- index = control->object.index;
- if (!index) {
- index = ++emutls_num_object;
- __atomic_store_n(&control->object.index, index, __ATOMIC_RELEASE);
- }
- emutls_unlock();
+ index = ++emutls_num_object;
+ __atomic_store_n(&control->object.index, index, __ATOMIC_RELEASE);
}
- return index;
+ emutls_unlock();
+ }
+ return index;
}
/* Updates newly allocated thread local emutls_address_array. */
static __inline void emutls_check_array_set_size(emutls_address_array *array,
uintptr_t size) {
- if (array == NULL)
- abort();
- array->size = size;
- emutls_setspecific(array);
+ if (array == NULL)
+ abort();
+ array->size = size;
+ emutls_setspecific(array);
}
/* Returns the new 'data' array size, number of elements,
* which must be no smaller than the given index.
*/
static __inline uintptr_t emutls_new_data_array_size(uintptr_t index) {
- /* Need to allocate emutls_address_array with extra slots
- * to store the header.
- * Round up the emutls_address_array size to multiple of 16.
- */
- uintptr_t header_words = sizeof(emutls_address_array) / sizeof(void *);
- return ((index + header_words + 15) & ~((uintptr_t)15)) - header_words;
+ /* Need to allocate emutls_address_array with extra slots
+ * to store the header.
+ * Round up the emutls_address_array size to multiple of 16.
+ */
+ uintptr_t header_words = sizeof(emutls_address_array) / sizeof(void *);
+ return ((index + header_words + 15) & ~((uintptr_t)15)) - header_words;
}
/* Returns the size in bytes required for an emutls_address_array with
* N number of elements for data field.
*/
static __inline uintptr_t emutls_asize(uintptr_t N) {
- return N * sizeof(void *) + sizeof(emutls_address_array);
+ return N * sizeof(void *) + sizeof(emutls_address_array);
}
/* Returns the thread local emutls_address_array.
@@ -363,42 +352,41 @@ static __inline uintptr_t emutls_asize(uintptr_t N) {
*/
static __inline emutls_address_array *
emutls_get_address_array(uintptr_t index) {
- emutls_address_array* array = emutls_getspecific();
- if (array == NULL) {
- uintptr_t new_size = emutls_new_data_array_size(index);
- array = (emutls_address_array*) malloc(emutls_asize(new_size));
- if (array) {
- memset(array->data, 0, new_size * sizeof(void*));
- array->skip_destructor_rounds = EMUTLS_SKIP_DESTRUCTOR_ROUNDS;
- }
- emutls_check_array_set_size(array, new_size);
- } else if (index > array->size) {
- uintptr_t orig_size = array->size;
- uintptr_t new_size = emutls_new_data_array_size(index);
- array = (emutls_address_array*) realloc(array, emutls_asize(new_size));
- if (array)
- memset(array->data + orig_size, 0,
- (new_size - orig_size) * sizeof(void*));
- emutls_check_array_set_size(array, new_size);
+ emutls_address_array *array = emutls_getspecific();
+ if (array == NULL) {
+ uintptr_t new_size = emutls_new_data_array_size(index);
+ array = (emutls_address_array *)malloc(emutls_asize(new_size));
+ if (array) {
+ memset(array->data, 0, new_size * sizeof(void *));
+ array->skip_destructor_rounds = EMUTLS_SKIP_DESTRUCTOR_ROUNDS;
}
- return array;
+ emutls_check_array_set_size(array, new_size);
+ } else if (index > array->size) {
+ uintptr_t orig_size = array->size;
+ uintptr_t new_size = emutls_new_data_array_size(index);
+ array = (emutls_address_array *)realloc(array, emutls_asize(new_size));
+ if (array)
+ memset(array->data + orig_size, 0,
+ (new_size - orig_size) * sizeof(void *));
+ emutls_check_array_set_size(array, new_size);
+ }
+ return array;
}
-void* __emutls_get_address(__emutls_control* control) {
- uintptr_t index = emutls_get_index(control);
- emutls_address_array* array = emutls_get_address_array(index--);
- if (array->data[index] == NULL)
- array->data[index] = emutls_allocate_object(control);
- return array->data[index];
+void *__emutls_get_address(__emutls_control *control) {
+ uintptr_t index = emutls_get_index(control);
+ emutls_address_array *array = emutls_get_address_array(index--);
+ if (array->data[index] == NULL)
+ array->data[index] = emutls_allocate_object(control);
+ return array->data[index];
}
#ifdef __BIONIC__
/* Called by Bionic on dlclose to delete the emutls pthread key. */
-__attribute__((visibility("hidden")))
-void __emutls_unregister_key(void) {
- if (emutls_key_created) {
- pthread_key_delete(emutls_pthread_key);
- emutls_key_created = false;
- }
+__attribute__((visibility("hidden"))) void __emutls_unregister_key(void) {
+ if (emutls_key_created) {
+ pthread_key_delete(emutls_pthread_key);
+ emutls_key_created = false;
+ }
}
#endif
diff --git a/lib/builtins/enable_execute_stack.c b/lib/builtins/enable_execute_stack.c
index 1318ea92c..d1ad90bf9 100644
--- a/lib/builtins/enable_execute_stack.c
+++ b/lib/builtins/enable_execute_stack.c
@@ -29,43 +29,44 @@
#endif /* _WIN32 */
#if __LP64__
- #define TRAMPOLINE_SIZE 48
+#define TRAMPOLINE_SIZE 48
#else
- #define TRAMPOLINE_SIZE 40
+#define TRAMPOLINE_SIZE 40
#endif
/*
- * The compiler generates calls to __enable_execute_stack() when creating
+ * The compiler generates calls to __enable_execute_stack() when creating
* trampoline functions on the stack for use with nested functions.
- * It is expected to mark the page(s) containing the address
+ * It is expected to mark the page(s) containing the address
* and the next 48 bytes as executable. Since the stack is normally rw-
- * that means changing the protection on those page(s) to rwx.
+ * that means changing the protection on those page(s) to rwx.
*/
-COMPILER_RT_ABI void
-__enable_execute_stack(void* addr)
-{
+COMPILER_RT_ABI void __enable_execute_stack(void *addr) {
#if _WIN32
- MEMORY_BASIC_INFORMATION mbi;
- if (!VirtualQuery (addr, &mbi, sizeof(mbi)))
- return; /* We should probably assert here because there is no return value */
- VirtualProtect (mbi.BaseAddress, mbi.RegionSize, PAGE_EXECUTE_READWRITE, &mbi.Protect);
+ MEMORY_BASIC_INFORMATION mbi;
+ if (!VirtualQuery(addr, &mbi, sizeof(mbi)))
+ return; /* We should probably assert here because there is no return value
+ */
+ VirtualProtect(mbi.BaseAddress, mbi.RegionSize, PAGE_EXECUTE_READWRITE,
+ &mbi.Protect);
#else
#if __APPLE__
- /* On Darwin, pagesize is always 4096 bytes */
- const uintptr_t pageSize = 4096;
+ /* On Darwin, pagesize is always 4096 bytes */
+ const uintptr_t pageSize = 4096;
#elif !defined(HAVE_SYSCONF)
#error "HAVE_SYSCONF not defined! See enable_execute_stack.c"
#else
- const uintptr_t pageSize = sysconf(_SC_PAGESIZE);
+ const uintptr_t pageSize = sysconf(_SC_PAGESIZE);
#endif /* __APPLE__ */
- const uintptr_t pageAlignMask = ~(pageSize-1);
- uintptr_t p = (uintptr_t)addr;
- unsigned char* startPage = (unsigned char*)(p & pageAlignMask);
- unsigned char* endPage = (unsigned char*)((p+TRAMPOLINE_SIZE+pageSize) & pageAlignMask);
- size_t length = endPage - startPage;
- (void) mprotect((void *)startPage, length, PROT_READ | PROT_WRITE | PROT_EXEC);
+ const uintptr_t pageAlignMask = ~(pageSize - 1);
+ uintptr_t p = (uintptr_t)addr;
+ unsigned char *startPage = (unsigned char *)(p & pageAlignMask);
+ unsigned char *endPage =
+ (unsigned char *)((p + TRAMPOLINE_SIZE + pageSize) & pageAlignMask);
+ size_t length = endPage - startPage;
+ (void)mprotect((void *)startPage, length, PROT_READ | PROT_WRITE | PROT_EXEC);
#endif
}
diff --git a/lib/builtins/eprintf.c b/lib/builtins/eprintf.c
index 68e73c7d9..50cbd6520 100644
--- a/lib/builtins/eprintf.c
+++ b/lib/builtins/eprintf.c
@@ -7,12 +7,9 @@
* ===----------------------------------------------------------------------===
*/
-
-
#include "int_lib.h"
#include <stdio.h>
-
/*
* __eprintf() was used in an old version of <assert.h>.
* It can eventually go away, but it is needed when linking
@@ -25,10 +22,9 @@
__attribute__((visibility("hidden")))
#endif
COMPILER_RT_ABI void
-__eprintf(const char* format, const char* assertion_expression,
- const char* line, const char* file)
-{
- fprintf(stderr, format, assertion_expression, line, file);
- fflush(stderr);
- compilerrt_abort();
+__eprintf(const char *format, const char *assertion_expression,
+ const char *line, const char *file) {
+ fprintf(stderr, format, assertion_expression, line, file);
+ fflush(stderr);
+ compilerrt_abort();
}
diff --git a/lib/builtins/extenddftf2.c b/lib/builtins/extenddftf2.c
index 1f9b3febc..ff9bb08d8 100644
--- a/lib/builtins/extenddftf2.c
+++ b/lib/builtins/extenddftf2.c
@@ -16,7 +16,7 @@
#include "fp_extend_impl.inc"
COMPILER_RT_ABI long double __extenddftf2(double a) {
- return __extendXfYf2__(a);
+ return __extendXfYf2__(a);
}
#endif
diff --git a/lib/builtins/extendhfsf2.c b/lib/builtins/extendhfsf2.c
index 1a2fbf4b2..d2892cf3f 100644
--- a/lib/builtins/extendhfsf2.c
+++ b/lib/builtins/extendhfsf2.c
@@ -14,18 +14,14 @@
// Use a forwarding definition and noinline to implement a poor man's alias,
// as there isn't a good cross-platform way of defining one.
COMPILER_RT_ABI NOINLINE float __extendhfsf2(uint16_t a) {
- return __extendXfYf2__(a);
+ return __extendXfYf2__(a);
}
-COMPILER_RT_ABI float __gnu_h2f_ieee(uint16_t a) {
- return __extendhfsf2(a);
-}
+COMPILER_RT_ABI float __gnu_h2f_ieee(uint16_t a) { return __extendhfsf2(a); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI float __aeabi_h2f(uint16_t a) {
- return __extendhfsf2(a);
-}
+AEABI_RTABI float __aeabi_h2f(uint16_t a) { return __extendhfsf2(a); }
#else
AEABI_RTABI float __aeabi_h2f(uint16_t a) COMPILER_RT_ALIAS(__extendhfsf2);
#endif
diff --git a/lib/builtins/extendsfdf2.c b/lib/builtins/extendsfdf2.c
index 871f58ef1..a6a957d2f 100644
--- a/lib/builtins/extendsfdf2.c
+++ b/lib/builtins/extendsfdf2.c
@@ -11,15 +11,11 @@
#define DST_DOUBLE
#include "fp_extend_impl.inc"
-COMPILER_RT_ABI double __extendsfdf2(float a) {
- return __extendXfYf2__(a);
-}
+COMPILER_RT_ABI double __extendsfdf2(float a) { return __extendXfYf2__(a); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI double __aeabi_f2d(float a) {
- return __extendsfdf2(a);
-}
+AEABI_RTABI double __aeabi_f2d(float a) { return __extendsfdf2(a); }
#else
AEABI_RTABI double __aeabi_f2d(float a) COMPILER_RT_ALIAS(__extendsfdf2);
#endif
diff --git a/lib/builtins/extendsftf2.c b/lib/builtins/extendsftf2.c
index ee4f3b405..4082e9ecc 100644
--- a/lib/builtins/extendsftf2.c
+++ b/lib/builtins/extendsftf2.c
@@ -16,7 +16,7 @@
#include "fp_extend_impl.inc"
COMPILER_RT_ABI long double __extendsftf2(float a) {
- return __extendXfYf2__(a);
+ return __extendXfYf2__(a);
}
#endif
diff --git a/lib/builtins/ffsdi2.c b/lib/builtins/ffsdi2.c
index 1c1e08282..320703a27 100644
--- a/lib/builtins/ffsdi2.c
+++ b/lib/builtins/ffsdi2.c
@@ -17,16 +17,13 @@
* the value zero if a is zero. The least significant bit is index one.
*/
-COMPILER_RT_ABI si_int
-__ffsdi2(di_int a)
-{
- dwords x;
- x.all = a;
- if (x.s.low == 0)
- {
- if (x.s.high == 0)
- return 0;
- return __builtin_ctz(x.s.high) + (1 + sizeof(si_int) * CHAR_BIT);
- }
- return __builtin_ctz(x.s.low) + 1;
+COMPILER_RT_ABI si_int __ffsdi2(di_int a) {
+ dwords x;
+ x.all = a;
+ if (x.s.low == 0) {
+ if (x.s.high == 0)
+ return 0;
+ return __builtin_ctz(x.s.high) + (1 + sizeof(si_int) * CHAR_BIT);
+ }
+ return __builtin_ctz(x.s.low) + 1;
}
diff --git a/lib/builtins/ffssi2.c b/lib/builtins/ffssi2.c
index 16056e007..0b3449abc 100644
--- a/lib/builtins/ffssi2.c
+++ b/lib/builtins/ffssi2.c
@@ -17,12 +17,9 @@
* the value zero if a is zero. The least significant bit is index one.
*/
-COMPILER_RT_ABI si_int
-__ffssi2(si_int a)
-{
- if (a == 0)
- {
- return 0;
- }
- return __builtin_ctz(a) + 1;
+COMPILER_RT_ABI si_int __ffssi2(si_int a) {
+ if (a == 0) {
+ return 0;
+ }
+ return __builtin_ctz(a) + 1;
}
diff --git a/lib/builtins/ffsti2.c b/lib/builtins/ffsti2.c
index 91beb6177..41e668016 100644
--- a/lib/builtins/ffsti2.c
+++ b/lib/builtins/ffsti2.c
@@ -19,18 +19,15 @@
* the value zero if a is zero. The least significant bit is index one.
*/
-COMPILER_RT_ABI si_int
-__ffsti2(ti_int a)
-{
- twords x;
- x.all = a;
- if (x.s.low == 0)
- {
- if (x.s.high == 0)
- return 0;
- return __builtin_ctzll(x.s.high) + (1 + sizeof(di_int) * CHAR_BIT);
- }
- return __builtin_ctzll(x.s.low) + 1;
+COMPILER_RT_ABI si_int __ffsti2(ti_int a) {
+ twords x;
+ x.all = a;
+ if (x.s.low == 0) {
+ if (x.s.high == 0)
+ return 0;
+ return __builtin_ctzll(x.s.high) + (1 + sizeof(di_int) * CHAR_BIT);
+ }
+ return __builtin_ctzll(x.s.low) + 1;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/fixdfdi.c b/lib/builtins/fixdfdi.c
index 17c73fe36..75ae88a1a 100644
--- a/lib/builtins/fixdfdi.c
+++ b/lib/builtins/fixdfdi.c
@@ -17,13 +17,11 @@
COMPILER_RT_ABI du_int __fixunsdfdi(double a);
-COMPILER_RT_ABI di_int
-__fixdfdi(double a)
-{
- if (a < 0.0) {
- return -__fixunsdfdi(-a);
- }
- return __fixunsdfdi(a);
+COMPILER_RT_ABI di_int __fixdfdi(double a) {
+ if (a < 0.0) {
+ return -__fixunsdfdi(-a);
+ }
+ return __fixunsdfdi(a);
}
#else
@@ -36,18 +34,13 @@ typedef di_int fixint_t;
typedef du_int fixuint_t;
#include "fp_fixint_impl.inc"
-COMPILER_RT_ABI di_int
-__fixdfdi(fp_t a) {
- return __fixint(a);
-}
+COMPILER_RT_ABI di_int __fixdfdi(fp_t a) { return __fixint(a); }
#endif
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI di_int __aeabi_d2lz(fp_t a) {
- return __fixdfdi(a);
-}
+AEABI_RTABI di_int __aeabi_d2lz(fp_t a) { return __fixdfdi(a); }
#else
AEABI_RTABI di_int __aeabi_d2lz(fp_t a) COMPILER_RT_ALIAS(__fixdfdi);
#endif
diff --git a/lib/builtins/fixdfsi.c b/lib/builtins/fixdfsi.c
index e895087af..c2acf79c5 100644
--- a/lib/builtins/fixdfsi.c
+++ b/lib/builtins/fixdfsi.c
@@ -13,16 +13,11 @@ typedef si_int fixint_t;
typedef su_int fixuint_t;
#include "fp_fixint_impl.inc"
-COMPILER_RT_ABI si_int
-__fixdfsi(fp_t a) {
- return __fixint(a);
-}
+COMPILER_RT_ABI si_int __fixdfsi(fp_t a) { return __fixint(a); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI si_int __aeabi_d2iz(fp_t a) {
- return __fixdfsi(a);
-}
+AEABI_RTABI si_int __aeabi_d2iz(fp_t a) { return __fixdfsi(a); }
#else
AEABI_RTABI si_int __aeabi_d2iz(fp_t a) COMPILER_RT_ALIAS(__fixdfsi);
#endif
diff --git a/lib/builtins/fixdfti.c b/lib/builtins/fixdfti.c
index 7d4974015..fa4cf3519 100644
--- a/lib/builtins/fixdfti.c
+++ b/lib/builtins/fixdfti.c
@@ -17,9 +17,6 @@ typedef ti_int fixint_t;
typedef tu_int fixuint_t;
#include "fp_fixint_impl.inc"
-COMPILER_RT_ABI ti_int
-__fixdfti(fp_t a) {
- return __fixint(a);
-}
+COMPILER_RT_ABI ti_int __fixdfti(fp_t a) { return __fixint(a); }
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/fixsfdi.c b/lib/builtins/fixsfdi.c
index 004baa093..0b6cc19b7 100644
--- a/lib/builtins/fixsfdi.c
+++ b/lib/builtins/fixsfdi.c
@@ -17,13 +17,11 @@
COMPILER_RT_ABI du_int __fixunssfdi(float a);
-COMPILER_RT_ABI di_int
-__fixsfdi(float a)
-{
- if (a < 0.0f) {
- return -__fixunssfdi(-a);
- }
- return __fixunssfdi(a);
+COMPILER_RT_ABI di_int __fixsfdi(float a) {
+ if (a < 0.0f) {
+ return -__fixunssfdi(-a);
+ }
+ return __fixunssfdi(a);
}
#else
@@ -36,18 +34,13 @@ typedef di_int fixint_t;
typedef du_int fixuint_t;
#include "fp_fixint_impl.inc"
-COMPILER_RT_ABI di_int
-__fixsfdi(fp_t a) {
- return __fixint(a);
-}
+COMPILER_RT_ABI di_int __fixsfdi(fp_t a) { return __fixint(a); }
#endif
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI di_int __aeabi_f2lz(fp_t a) {
- return __fixsfdi(a);
-}
+AEABI_RTABI di_int __aeabi_f2lz(fp_t a) { return __fixsfdi(a); }
#else
AEABI_RTABI di_int __aeabi_f2lz(fp_t a) COMPILER_RT_ALIAS(__fixsfdi);
#endif
diff --git a/lib/builtins/fixsfsi.c b/lib/builtins/fixsfsi.c
index 961470b33..6d36d9699 100644
--- a/lib/builtins/fixsfsi.c
+++ b/lib/builtins/fixsfsi.c
@@ -13,16 +13,11 @@ typedef si_int fixint_t;
typedef su_int fixuint_t;
#include "fp_fixint_impl.inc"
-COMPILER_RT_ABI si_int
-__fixsfsi(fp_t a) {
- return __fixint(a);
-}
+COMPILER_RT_ABI si_int __fixsfsi(fp_t a) { return __fixint(a); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI si_int __aeabi_f2iz(fp_t a) {
- return __fixsfsi(a);
-}
+AEABI_RTABI si_int __aeabi_f2iz(fp_t a) { return __fixsfsi(a); }
#else
AEABI_RTABI si_int __aeabi_f2iz(fp_t a) COMPILER_RT_ALIAS(__fixsfsi);
#endif
diff --git a/lib/builtins/fixsfti.c b/lib/builtins/fixsfti.c
index c975eeb75..4c7ddffef 100644
--- a/lib/builtins/fixsfti.c
+++ b/lib/builtins/fixsfti.c
@@ -17,9 +17,6 @@ typedef ti_int fixint_t;
typedef tu_int fixuint_t;
#include "fp_fixint_impl.inc"
-COMPILER_RT_ABI ti_int
-__fixsfti(fp_t a) {
- return __fixint(a);
-}
+COMPILER_RT_ABI ti_int __fixsfti(fp_t a) { return __fixint(a); }
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/fixtfdi.c b/lib/builtins/fixtfdi.c
index 9d34f018d..50e4bbf66 100644
--- a/lib/builtins/fixtfdi.c
+++ b/lib/builtins/fixtfdi.c
@@ -15,8 +15,5 @@ typedef di_int fixint_t;
typedef du_int fixuint_t;
#include "fp_fixint_impl.inc"
-COMPILER_RT_ABI di_int
-__fixtfdi(fp_t a) {
- return __fixint(a);
-}
+COMPILER_RT_ABI di_int __fixtfdi(fp_t a) { return __fixint(a); }
#endif
diff --git a/lib/builtins/fixtfsi.c b/lib/builtins/fixtfsi.c
index ca25b0df8..0dadf1b38 100644
--- a/lib/builtins/fixtfsi.c
+++ b/lib/builtins/fixtfsi.c
@@ -15,8 +15,5 @@ typedef si_int fixint_t;
typedef su_int fixuint_t;
#include "fp_fixint_impl.inc"
-COMPILER_RT_ABI si_int
-__fixtfsi(fp_t a) {
- return __fixint(a);
-}
+COMPILER_RT_ABI si_int __fixtfsi(fp_t a) { return __fixint(a); }
#endif
diff --git a/lib/builtins/fixtfti.c b/lib/builtins/fixtfti.c
index dde033180..3102f1290 100644
--- a/lib/builtins/fixtfti.c
+++ b/lib/builtins/fixtfti.c
@@ -15,8 +15,5 @@ typedef ti_int fixint_t;
typedef tu_int fixuint_t;
#include "fp_fixint_impl.inc"
-COMPILER_RT_ABI ti_int
-__fixtfti(fp_t a) {
- return __fixint(a);
-}
+COMPILER_RT_ABI ti_int __fixtfti(fp_t a) { return __fixint(a); }
#endif
diff --git a/lib/builtins/fixunsdfdi.c b/lib/builtins/fixunsdfdi.c
index 799861ec7..6d4bc1f74 100644
--- a/lib/builtins/fixunsdfdi.c
+++ b/lib/builtins/fixunsdfdi.c
@@ -15,13 +15,12 @@
* flag as a side-effect of computation.
*/
-COMPILER_RT_ABI du_int
-__fixunsdfdi(double a)
-{
- if (a <= 0.0) return 0;
- su_int high = a / 4294967296.f; /* a / 0x1p32f; */
- su_int low = a - (double)high * 4294967296.f; /* high * 0x1p32f; */
- return ((du_int)high << 32) | low;
+COMPILER_RT_ABI du_int __fixunsdfdi(double a) {
+ if (a <= 0.0)
+ return 0;
+ su_int high = a / 4294967296.f; /* a / 0x1p32f; */
+ su_int low = a - (double)high * 4294967296.f; /* high * 0x1p32f; */
+ return ((du_int)high << 32) | low;
}
#else
@@ -33,18 +32,13 @@ __fixunsdfdi(double a)
typedef du_int fixuint_t;
#include "fp_fixuint_impl.inc"
-COMPILER_RT_ABI du_int
-__fixunsdfdi(fp_t a) {
- return __fixuint(a);
-}
+COMPILER_RT_ABI du_int __fixunsdfdi(fp_t a) { return __fixuint(a); }
#endif
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI du_int __aeabi_d2ulz(fp_t a) {
- return __fixunsdfdi(a);
-}
+AEABI_RTABI du_int __aeabi_d2ulz(fp_t a) { return __fixunsdfdi(a); }
#else
AEABI_RTABI du_int __aeabi_d2ulz(fp_t a) COMPILER_RT_ALIAS(__fixunsdfdi);
#endif
diff --git a/lib/builtins/fixunsdfsi.c b/lib/builtins/fixunsdfsi.c
index 266fe79cf..5c18a707f 100644
--- a/lib/builtins/fixunsdfsi.c
+++ b/lib/builtins/fixunsdfsi.c
@@ -12,16 +12,11 @@
typedef su_int fixuint_t;
#include "fp_fixuint_impl.inc"
-COMPILER_RT_ABI su_int
-__fixunsdfsi(fp_t a) {
- return __fixuint(a);
-}
+COMPILER_RT_ABI su_int __fixunsdfsi(fp_t a) { return __fixuint(a); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI su_int __aeabi_d2uiz(fp_t a) {
- return __fixunsdfsi(a);
-}
+AEABI_RTABI su_int __aeabi_d2uiz(fp_t a) { return __fixunsdfsi(a); }
#else
AEABI_RTABI su_int __aeabi_d2uiz(fp_t a) COMPILER_RT_ALIAS(__fixunsdfsi);
#endif
diff --git a/lib/builtins/fixunsdfti.c b/lib/builtins/fixunsdfti.c
index fcbbfeb78..8521617f4 100644
--- a/lib/builtins/fixunsdfti.c
+++ b/lib/builtins/fixunsdfti.c
@@ -15,8 +15,5 @@
typedef tu_int fixuint_t;
#include "fp_fixuint_impl.inc"
-COMPILER_RT_ABI tu_int
-__fixunsdfti(fp_t a) {
- return __fixuint(a);
-}
+COMPILER_RT_ABI tu_int __fixunsdfti(fp_t a) { return __fixuint(a); }
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/fixunssfdi.c b/lib/builtins/fixunssfdi.c
index de71e7c2f..7661a9bd5 100644
--- a/lib/builtins/fixunssfdi.c
+++ b/lib/builtins/fixunssfdi.c
@@ -15,14 +15,13 @@
* flag as a side-effect of computation.
*/
-COMPILER_RT_ABI du_int
-__fixunssfdi(float a)
-{
- if (a <= 0.0f) return 0;
- double da = a;
- su_int high = da / 4294967296.f; /* da / 0x1p32f; */
- su_int low = da - (double)high * 4294967296.f; /* high * 0x1p32f; */
- return ((du_int)high << 32) | low;
+COMPILER_RT_ABI du_int __fixunssfdi(float a) {
+ if (a <= 0.0f)
+ return 0;
+ double da = a;
+ su_int high = da / 4294967296.f; /* da / 0x1p32f; */
+ su_int low = da - (double)high * 4294967296.f; /* high * 0x1p32f; */
+ return ((du_int)high << 32) | low;
}
#else
@@ -34,18 +33,13 @@ __fixunssfdi(float a)
typedef du_int fixuint_t;
#include "fp_fixuint_impl.inc"
-COMPILER_RT_ABI du_int
-__fixunssfdi(fp_t a) {
- return __fixuint(a);
-}
+COMPILER_RT_ABI du_int __fixunssfdi(fp_t a) { return __fixuint(a); }
#endif
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI du_int __aeabi_f2ulz(fp_t a) {
- return __fixunssfdi(a);
-}
+AEABI_RTABI du_int __aeabi_f2ulz(fp_t a) { return __fixunssfdi(a); }
#else
AEABI_RTABI du_int __aeabi_f2ulz(fp_t a) COMPILER_RT_ALIAS(__fixunssfdi);
#endif
diff --git a/lib/builtins/fixunssfsi.c b/lib/builtins/fixunssfsi.c
index b44e8c4e6..cca6573e2 100644
--- a/lib/builtins/fixunssfsi.c
+++ b/lib/builtins/fixunssfsi.c
@@ -16,16 +16,11 @@
typedef su_int fixuint_t;
#include "fp_fixuint_impl.inc"
-COMPILER_RT_ABI su_int
-__fixunssfsi(fp_t a) {
- return __fixuint(a);
-}
+COMPILER_RT_ABI su_int __fixunssfsi(fp_t a) { return __fixuint(a); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI su_int __aeabi_f2uiz(fp_t a) {
- return __fixunssfsi(a);
-}
+AEABI_RTABI su_int __aeabi_f2uiz(fp_t a) { return __fixunssfsi(a); }
#else
AEABI_RTABI su_int __aeabi_f2uiz(fp_t a) COMPILER_RT_ALIAS(__fixunssfsi);
#endif
diff --git a/lib/builtins/fixunssfti.c b/lib/builtins/fixunssfti.c
index 6b1784770..58f5919fe 100644
--- a/lib/builtins/fixunssfti.c
+++ b/lib/builtins/fixunssfti.c
@@ -18,8 +18,5 @@
typedef tu_int fixuint_t;
#include "fp_fixuint_impl.inc"
-COMPILER_RT_ABI tu_int
-__fixunssfti(fp_t a) {
- return __fixuint(a);
-}
+COMPILER_RT_ABI tu_int __fixunssfti(fp_t a) { return __fixuint(a); }
#endif
diff --git a/lib/builtins/fixunstfdi.c b/lib/builtins/fixunstfdi.c
index e82f62877..25e1f3873 100644
--- a/lib/builtins/fixunstfdi.c
+++ b/lib/builtins/fixunstfdi.c
@@ -14,8 +14,5 @@
typedef du_int fixuint_t;
#include "fp_fixuint_impl.inc"
-COMPILER_RT_ABI du_int
-__fixunstfdi(fp_t a) {
- return __fixuint(a);
-}
+COMPILER_RT_ABI du_int __fixunstfdi(fp_t a) { return __fixuint(a); }
#endif
diff --git a/lib/builtins/fixunstfsi.c b/lib/builtins/fixunstfsi.c
index b196174f3..522ccbc6f 100644
--- a/lib/builtins/fixunstfsi.c
+++ b/lib/builtins/fixunstfsi.c
@@ -14,8 +14,5 @@
typedef su_int fixuint_t;
#include "fp_fixuint_impl.inc"
-COMPILER_RT_ABI su_int
-__fixunstfsi(fp_t a) {
- return __fixuint(a);
-}
+COMPILER_RT_ABI su_int __fixunstfsi(fp_t a) { return __fixuint(a); }
#endif
diff --git a/lib/builtins/fixunstfti.c b/lib/builtins/fixunstfti.c
index c2b4ffc4c..4292c4c57 100644
--- a/lib/builtins/fixunstfti.c
+++ b/lib/builtins/fixunstfti.c
@@ -14,8 +14,5 @@
typedef tu_int fixuint_t;
#include "fp_fixuint_impl.inc"
-COMPILER_RT_ABI tu_int
-__fixunstfti(fp_t a) {
- return __fixuint(a);
-}
+COMPILER_RT_ABI tu_int __fixunstfti(fp_t a) { return __fixuint(a); }
#endif
diff --git a/lib/builtins/fixunsxfdi.c b/lib/builtins/fixunsxfdi.c
index bd49a4af8..cb735780b 100644
--- a/lib/builtins/fixunsxfdi.c
+++ b/lib/builtins/fixunsxfdi.c
@@ -19,27 +19,25 @@
* Negative values all become zero.
*/
-/* Assumption: long double is an intel 80 bit floating point type padded with 6 bytes
- * du_int is a 64 bit integral type
- * value in long double is representable in du_int or is negative
- * (no range checking performed)
+/* Assumption: long double is an intel 80 bit floating point type padded with 6
+ * bytes du_int is a 64 bit integral type value in long double is representable
+ * in du_int or is negative (no range checking performed)
*/
-/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee eeee |
- * 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee
+ * eeee | 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm
+ * mmmm mmmm mmmm
*/
-COMPILER_RT_ABI du_int
-__fixunsxfdi(long double a)
-{
- long_double_bits fb;
- fb.f = a;
- int e = (fb.u.high.s.low & 0x00007FFF) - 16383;
- if (e < 0 || (fb.u.high.s.low & 0x00008000))
- return 0;
- if ((unsigned)e > sizeof(du_int) * CHAR_BIT)
- return ~(du_int)0;
- return fb.u.low.all >> (63 - e);
+COMPILER_RT_ABI du_int __fixunsxfdi(long double a) {
+ long_double_bits fb;
+ fb.f = a;
+ int e = (fb.u.high.s.low & 0x00007FFF) - 16383;
+ if (e < 0 || (fb.u.high.s.low & 0x00008000))
+ return 0;
+ if ((unsigned)e > sizeof(du_int) * CHAR_BIT)
+ return ~(du_int)0;
+ return fb.u.low.all >> (63 - e);
}
#endif
diff --git a/lib/builtins/fixunsxfsi.c b/lib/builtins/fixunsxfsi.c
index 372d0f682..50632639c 100644
--- a/lib/builtins/fixunsxfsi.c
+++ b/lib/builtins/fixunsxfsi.c
@@ -19,26 +19,25 @@
* Negative values all become zero.
*/
-/* Assumption: long double is an intel 80 bit floating point type padded with 6 bytes
- * su_int is a 32 bit integral type
- * value in long double is representable in su_int or is negative
+/* Assumption: long double is an intel 80 bit floating point type padded with 6
+ * bytes su_int is a 32 bit integral type value in long double is representable
+ * in su_int or is negative
*/
-/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee eeee |
- * 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee
+ * eeee | 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm
+ * mmmm mmmm mmmm
*/
-COMPILER_RT_ABI su_int
-__fixunsxfsi(long double a)
-{
- long_double_bits fb;
- fb.f = a;
- int e = (fb.u.high.s.low & 0x00007FFF) - 16383;
- if (e < 0 || (fb.u.high.s.low & 0x00008000))
- return 0;
- if ((unsigned)e > sizeof(su_int) * CHAR_BIT)
- return ~(su_int)0;
- return fb.u.low.s.high >> (31 - e);
+COMPILER_RT_ABI su_int __fixunsxfsi(long double a) {
+ long_double_bits fb;
+ fb.f = a;
+ int e = (fb.u.high.s.low & 0x00007FFF) - 16383;
+ if (e < 0 || (fb.u.high.s.low & 0x00008000))
+ return 0;
+ if ((unsigned)e > sizeof(su_int) * CHAR_BIT)
+ return ~(su_int)0;
+ return fb.u.low.s.high >> (31 - e);
}
#endif /* !_ARCH_PPC */
diff --git a/lib/builtins/fixunsxfti.c b/lib/builtins/fixunsxfti.c
index 05da75c99..4bfdc598b 100644
--- a/lib/builtins/fixunsxfti.c
+++ b/lib/builtins/fixunsxfti.c
@@ -19,31 +19,30 @@
* Negative values all become zero.
*/
-/* Assumption: long double is an intel 80 bit floating point type padded with 6 bytes
- * tu_int is a 128 bit integral type
- * value in long double is representable in tu_int or is negative
+/* Assumption: long double is an intel 80 bit floating point type padded with 6
+ * bytes tu_int is a 128 bit integral type value in long double is representable
+ * in tu_int or is negative
*/
-/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee eeee |
- * 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee
+ * eeee | 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm
+ * mmmm mmmm mmmm
*/
-COMPILER_RT_ABI tu_int
-__fixunsxfti(long double a)
-{
- long_double_bits fb;
- fb.f = a;
- int e = (fb.u.high.s.low & 0x00007FFF) - 16383;
- if (e < 0 || (fb.u.high.s.low & 0x00008000))
- return 0;
- if ((unsigned)e > sizeof(tu_int) * CHAR_BIT)
- return ~(tu_int)0;
- tu_int r = fb.u.low.all;
- if (e > 63)
- r <<= (e - 63);
- else
- r >>= (63 - e);
- return r;
+COMPILER_RT_ABI tu_int __fixunsxfti(long double a) {
+ long_double_bits fb;
+ fb.f = a;
+ int e = (fb.u.high.s.low & 0x00007FFF) - 16383;
+ if (e < 0 || (fb.u.high.s.low & 0x00008000))
+ return 0;
+ if ((unsigned)e > sizeof(tu_int) * CHAR_BIT)
+ return ~(tu_int)0;
+ tu_int r = fb.u.low.all;
+ if (e > 63)
+ r <<= (e - 63);
+ else
+ r >>= (63 - e);
+ return r;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/fixxfdi.c b/lib/builtins/fixxfdi.c
index 30302e7a1..c535e808b 100644
--- a/lib/builtins/fixxfdi.c
+++ b/lib/builtins/fixxfdi.c
@@ -17,31 +17,30 @@
/* Returns: convert a to a signed long long, rounding toward zero. */
-/* Assumption: long double is an intel 80 bit floating point type padded with 6 bytes
- * di_int is a 64 bit integral type
- * value in long double is representable in di_int (no range checking performed)
+/* Assumption: long double is an intel 80 bit floating point type padded with 6
+ * bytes di_int is a 64 bit integral type value in long double is representable
+ * in di_int (no range checking performed)
*/
-/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee eeee |
- * 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee
+ * eeee | 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm
+ * mmmm mmmm mmmm
*/
-COMPILER_RT_ABI di_int
-__fixxfdi(long double a)
-{
- const di_int di_max = (di_int)((~(du_int)0) / 2);
- const di_int di_min = -di_max - 1;
- long_double_bits fb;
- fb.f = a;
- int e = (fb.u.high.s.low & 0x00007FFF) - 16383;
- if (e < 0)
- return 0;
- if ((unsigned)e >= sizeof(di_int) * CHAR_BIT)
- return a > 0 ? di_max : di_min;
- di_int s = -(si_int)((fb.u.high.s.low & 0x00008000) >> 15);
- di_int r = fb.u.low.all;
- r = (du_int)r >> (63 - e);
- return (r ^ s) - s;
+COMPILER_RT_ABI di_int __fixxfdi(long double a) {
+ const di_int di_max = (di_int)((~(du_int)0) / 2);
+ const di_int di_min = -di_max - 1;
+ long_double_bits fb;
+ fb.f = a;
+ int e = (fb.u.high.s.low & 0x00007FFF) - 16383;
+ if (e < 0)
+ return 0;
+ if ((unsigned)e >= sizeof(di_int) * CHAR_BIT)
+ return a > 0 ? di_max : di_min;
+ di_int s = -(si_int)((fb.u.high.s.low & 0x00008000) >> 15);
+ di_int r = fb.u.low.all;
+ r = (du_int)r >> (63 - e);
+ return (r ^ s) - s;
}
#endif /* !_ARCH_PPC */
diff --git a/lib/builtins/fixxfti.c b/lib/builtins/fixxfti.c
index 780a4f19c..705f39427 100644
--- a/lib/builtins/fixxfti.c
+++ b/lib/builtins/fixxfti.c
@@ -17,34 +17,33 @@
/* Returns: convert a to a signed long long, rounding toward zero. */
-/* Assumption: long double is an intel 80 bit floating point type padded with 6 bytes
- * ti_int is a 128 bit integral type
- * value in long double is representable in ti_int
+/* Assumption: long double is an intel 80 bit floating point type padded with 6
+ * bytes ti_int is a 128 bit integral type value in long double is representable
+ * in ti_int
*/
-/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee eeee |
- * 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee
+ * eeee | 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm
+ * mmmm mmmm mmmm
*/
-COMPILER_RT_ABI ti_int
-__fixxfti(long double a)
-{
- const ti_int ti_max = (ti_int)((~(tu_int)0) / 2);
- const ti_int ti_min = -ti_max - 1;
- long_double_bits fb;
- fb.f = a;
- int e = (fb.u.high.s.low & 0x00007FFF) - 16383;
- if (e < 0)
- return 0;
- ti_int s = -(si_int)((fb.u.high.s.low & 0x00008000) >> 15);
- ti_int r = fb.u.low.all;
- if ((unsigned)e >= sizeof(ti_int) * CHAR_BIT)
- return a > 0 ? ti_max : ti_min;
- if (e > 63)
- r <<= (e - 63);
- else
- r >>= (63 - e);
- return (r ^ s) - s;
+COMPILER_RT_ABI ti_int __fixxfti(long double a) {
+ const ti_int ti_max = (ti_int)((~(tu_int)0) / 2);
+ const ti_int ti_min = -ti_max - 1;
+ long_double_bits fb;
+ fb.f = a;
+ int e = (fb.u.high.s.low & 0x00007FFF) - 16383;
+ if (e < 0)
+ return 0;
+ ti_int s = -(si_int)((fb.u.high.s.low & 0x00008000) >> 15);
+ ti_int r = fb.u.low.all;
+ if ((unsigned)e >= sizeof(ti_int) * CHAR_BIT)
+ return a > 0 ? ti_max : ti_min;
+ if (e > 63)
+ r <<= (e - 63);
+ else
+ r >>= (63 - e);
+ return (r ^ s) - s;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/floatdidf.c b/lib/builtins/floatdidf.c
index 11f80848e..c14d52fd3 100644
--- a/lib/builtins/floatdidf.c
+++ b/lib/builtins/floatdidf.c
@@ -19,95 +19,89 @@
* di_int is a 64 bit integral type
*/
-/* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm */
+/* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+ * mmmm */
#ifndef __SOFT_FP__
-/* Support for systems that have hardware floating-point; we'll set the inexact flag
- * as a side-effect of this computation.
+/* Support for systems that have hardware floating-point; we'll set the inexact
+ * flag as a side-effect of this computation.
*/
-COMPILER_RT_ABI double
-__floatdidf(di_int a)
-{
- static const double twop52 = 4503599627370496.0; // 0x1.0p52
- static const double twop32 = 4294967296.0; // 0x1.0p32
+COMPILER_RT_ABI double __floatdidf(di_int a) {
+ static const double twop52 = 4503599627370496.0; // 0x1.0p52
+ static const double twop32 = 4294967296.0; // 0x1.0p32
- union { int64_t x; double d; } low = { .d = twop52 };
+ union {
+ int64_t x;
+ double d;
+ } low = {.d = twop52};
- const double high = (int32_t)(a >> 32) * twop32;
- low.x |= a & INT64_C(0x00000000ffffffff);
+ const double high = (int32_t)(a >> 32) * twop32;
+ low.x |= a & INT64_C(0x00000000ffffffff);
- const double result = (high - twop52) + low.d;
- return result;
+ const double result = (high - twop52) + low.d;
+ return result;
}
#else
-/* Support for systems that don't have hardware floating-point; there are no flags to
- * set, and we don't want to code-gen to an unknown soft-float implementation.
+/* Support for systems that don't have hardware floating-point; there are no
+ * flags to set, and we don't want to code-gen to an unknown soft-float
+ * implementation.
*/
-COMPILER_RT_ABI double
-__floatdidf(di_int a)
-{
- if (a == 0)
- return 0.0;
- const unsigned N = sizeof(di_int) * CHAR_BIT;
- const di_int s = a >> (N-1);
- a = (a ^ s) - s;
- int sd = N - __builtin_clzll(a); /* number of significant digits */
- int e = sd - 1; /* exponent */
- if (sd > DBL_MANT_DIG)
- {
- /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
- * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
- * 12345678901234567890123456
- * 1 = msb 1 bit
- * P = bit DBL_MANT_DIG-1 bits to the right of 1
- * Q = bit DBL_MANT_DIG bits to the right of 1
- * R = "or" of all bits to the right of Q
- */
- switch (sd)
- {
- case DBL_MANT_DIG + 1:
- a <<= 1;
- break;
- case DBL_MANT_DIG + 2:
- break;
- default:
- a = ((du_int)a >> (sd - (DBL_MANT_DIG+2))) |
- ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0);
- };
- /* finish: */
- a |= (a & 4) != 0; /* Or P into R */
- ++a; /* round - this step may add a significant bit */
- a >>= 2; /* dump Q and R */
- /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
- if (a & ((du_int)1 << DBL_MANT_DIG))
- {
- a >>= 1;
- ++e;
- }
- /* a is now rounded to DBL_MANT_DIG bits */
+COMPILER_RT_ABI double __floatdidf(di_int a) {
+ if (a == 0)
+ return 0.0;
+ const unsigned N = sizeof(di_int) * CHAR_BIT;
+ const di_int s = a >> (N - 1);
+ a = (a ^ s) - s;
+ int sd = N - __builtin_clzll(a); /* number of significant digits */
+ int e = sd - 1; /* exponent */
+ if (sd > DBL_MANT_DIG) {
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
+ * 12345678901234567890123456
+ * 1 = msb 1 bit
+ * P = bit DBL_MANT_DIG-1 bits to the right of 1
+ * Q = bit DBL_MANT_DIG bits to the right of 1
+ * R = "or" of all bits to the right of Q
+ */
+ switch (sd) {
+ case DBL_MANT_DIG + 1:
+ a <<= 1;
+ break;
+ case DBL_MANT_DIG + 2:
+ break;
+ default:
+ a = ((du_int)a >> (sd - (DBL_MANT_DIG + 2))) |
+ ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG + 2) - sd))) != 0);
+ };
+ /* finish: */
+ a |= (a & 4) != 0; /* Or P into R */
+ ++a; /* round - this step may add a significant bit */
+ a >>= 2; /* dump Q and R */
+ /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
+ if (a & ((du_int)1 << DBL_MANT_DIG)) {
+ a >>= 1;
+ ++e;
}
- else
- {
- a <<= (DBL_MANT_DIG - sd);
- /* a is now rounded to DBL_MANT_DIG bits */
- }
- double_bits fb;
- fb.u.s.high = ((su_int)s & 0x80000000) | /* sign */
- ((e + 1023) << 20) | /* exponent */
- ((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */
- fb.u.s.low = (su_int)a; /* mantissa-low */
- return fb.f;
+ /* a is now rounded to DBL_MANT_DIG bits */
+ } else {
+ a <<= (DBL_MANT_DIG - sd);
+ /* a is now rounded to DBL_MANT_DIG bits */
+ }
+ double_bits fb;
+ fb.u.s.high = ((su_int)s & 0x80000000) | /* sign */
+ ((e + 1023) << 20) | /* exponent */
+ ((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */
+ fb.u.s.low = (su_int)a; /* mantissa-low */
+ return fb.f;
}
#endif
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI double __aeabi_l2d(di_int a) {
- return __floatdidf(a);
-}
+AEABI_RTABI double __aeabi_l2d(di_int a) { return __floatdidf(a); }
#else
AEABI_RTABI double __aeabi_l2d(di_int a) COMPILER_RT_ALIAS(__floatdidf);
#endif
diff --git a/lib/builtins/floatdisf.c b/lib/builtins/floatdisf.c
index 88e2e81ac..fa9f29578 100644
--- a/lib/builtins/floatdisf.c
+++ b/lib/builtins/floatdisf.c
@@ -13,74 +13,65 @@
/* Returns: convert a to a float, rounding toward even.*/
-/* Assumption: float is a IEEE 32 bit floating point type
+/* Assumption: float is a IEEE 32 bit floating point type
* di_int is a 64 bit integral type
- */
+ */
/* seee eeee emmm mmmm mmmm mmmm mmmm mmmm */
#include "int_lib.h"
-COMPILER_RT_ABI float
-__floatdisf(di_int a)
-{
- if (a == 0)
- return 0.0F;
- const unsigned N = sizeof(di_int) * CHAR_BIT;
- const di_int s = a >> (N-1);
- a = (a ^ s) - s;
- int sd = N - __builtin_clzll(a); /* number of significant digits */
- int e = sd - 1; /* exponent */
- if (sd > FLT_MANT_DIG)
- {
- /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
- * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
- * 12345678901234567890123456
- * 1 = msb 1 bit
- * P = bit FLT_MANT_DIG-1 bits to the right of 1
- * Q = bit FLT_MANT_DIG bits to the right of 1
- * R = "or" of all bits to the right of Q
- */
- switch (sd)
- {
- case FLT_MANT_DIG + 1:
- a <<= 1;
- break;
- case FLT_MANT_DIG + 2:
- break;
- default:
- a = ((du_int)a >> (sd - (FLT_MANT_DIG+2))) |
- ((a & ((du_int)(-1) >> ((N + FLT_MANT_DIG+2) - sd))) != 0);
- };
- /* finish: */
- a |= (a & 4) != 0; /* Or P into R */
- ++a; /* round - this step may add a significant bit */
- a >>= 2; /* dump Q and R */
- /* a is now rounded to FLT_MANT_DIG or FLT_MANT_DIG+1 bits */
- if (a & ((du_int)1 << FLT_MANT_DIG))
- {
- a >>= 1;
- ++e;
- }
- /* a is now rounded to FLT_MANT_DIG bits */
- }
- else
- {
- a <<= (FLT_MANT_DIG - sd);
- /* a is now rounded to FLT_MANT_DIG bits */
+COMPILER_RT_ABI float __floatdisf(di_int a) {
+ if (a == 0)
+ return 0.0F;
+ const unsigned N = sizeof(di_int) * CHAR_BIT;
+ const di_int s = a >> (N - 1);
+ a = (a ^ s) - s;
+ int sd = N - __builtin_clzll(a); /* number of significant digits */
+ int e = sd - 1; /* exponent */
+ if (sd > FLT_MANT_DIG) {
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
+ * 12345678901234567890123456
+ * 1 = msb 1 bit
+ * P = bit FLT_MANT_DIG-1 bits to the right of 1
+ * Q = bit FLT_MANT_DIG bits to the right of 1
+ * R = "or" of all bits to the right of Q
+ */
+ switch (sd) {
+ case FLT_MANT_DIG + 1:
+ a <<= 1;
+ break;
+ case FLT_MANT_DIG + 2:
+ break;
+ default:
+ a = ((du_int)a >> (sd - (FLT_MANT_DIG + 2))) |
+ ((a & ((du_int)(-1) >> ((N + FLT_MANT_DIG + 2) - sd))) != 0);
+ };
+ /* finish: */
+ a |= (a & 4) != 0; /* Or P into R */
+ ++a; /* round - this step may add a significant bit */
+ a >>= 2; /* dump Q and R */
+ /* a is now rounded to FLT_MANT_DIG or FLT_MANT_DIG+1 bits */
+ if (a & ((du_int)1 << FLT_MANT_DIG)) {
+ a >>= 1;
+ ++e;
}
- float_bits fb;
- fb.u = ((su_int)s & 0x80000000) | /* sign */
- ((e + 127) << 23) | /* exponent */
- ((su_int)a & 0x007FFFFF); /* mantissa */
- return fb.f;
+ /* a is now rounded to FLT_MANT_DIG bits */
+ } else {
+ a <<= (FLT_MANT_DIG - sd);
+ /* a is now rounded to FLT_MANT_DIG bits */
+ }
+ float_bits fb;
+ fb.u = ((su_int)s & 0x80000000) | /* sign */
+ ((e + 127) << 23) | /* exponent */
+ ((su_int)a & 0x007FFFFF); /* mantissa */
+ return fb.f;
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI float __aeabi_l2f(di_int a) {
- return __floatdisf(a);
-}
+AEABI_RTABI float __aeabi_l2f(di_int a) { return __floatdisf(a); }
#else
AEABI_RTABI float __aeabi_l2f(di_int a) COMPILER_RT_ALIAS(__floatdisf);
#endif
diff --git a/lib/builtins/floatditf.c b/lib/builtins/floatditf.c
index d7c252da5..9b07b6582 100644
--- a/lib/builtins/floatditf.c
+++ b/lib/builtins/floatditf.c
@@ -18,32 +18,32 @@
#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
COMPILER_RT_ABI fp_t __floatditf(di_int a) {
- const int aWidth = sizeof a * CHAR_BIT;
-
- // Handle zero as a special case to protect clz
- if (a == 0)
- return fromRep(0);
-
- // All other cases begin by extracting the sign and absolute value of a
- rep_t sign = 0;
- du_int aAbs = (du_int)a;
- if (a < 0) {
- sign = signBit;
- aAbs = ~(du_int)a + 1U;
- }
-
- // Exponent of (fp_t)a is the width of abs(a).
- const int exponent = (aWidth - 1) - __builtin_clzll(aAbs);
- rep_t result;
-
- // Shift a into the significand field, rounding if it is a right-shift
- const int shift = significandBits - exponent;
- result = (rep_t)aAbs << shift ^ implicitBit;
-
- // Insert the exponent
- result += (rep_t)(exponent + exponentBias) << significandBits;
- // Insert the sign bit and return
- return fromRep(result | sign);
+ const int aWidth = sizeof a * CHAR_BIT;
+
+ // Handle zero as a special case to protect clz
+ if (a == 0)
+ return fromRep(0);
+
+ // All other cases begin by extracting the sign and absolute value of a
+ rep_t sign = 0;
+ du_int aAbs = (du_int)a;
+ if (a < 0) {
+ sign = signBit;
+ aAbs = ~(du_int)a + 1U;
+ }
+
+ // Exponent of (fp_t)a is the width of abs(a).
+ const int exponent = (aWidth - 1) - __builtin_clzll(aAbs);
+ rep_t result;
+
+ // Shift a into the significand field, rounding if it is a right-shift
+ const int shift = significandBits - exponent;
+ result = (rep_t)aAbs << shift ^ implicitBit;
+
+ // Insert the exponent
+ result += (rep_t)(exponent + exponentBias) << significandBits;
+ // Insert the sign bit and return
+ return fromRep(result | sign);
}
#endif
diff --git a/lib/builtins/floatdixf.c b/lib/builtins/floatdixf.c
index 140f0463b..d88a9d9d4 100644
--- a/lib/builtins/floatdixf.c
+++ b/lib/builtins/floatdixf.c
@@ -9,7 +9,7 @@
* This file implements __floatdixf for the compiler_rt library.
*
* ===----------------------------------------------------------------------===
- */
+ */
#if !_ARCH_PPC
@@ -17,29 +17,28 @@
/* Returns: convert a to a long double, rounding toward even. */
-/* Assumption: long double is a IEEE 80 bit floating point type padded to 128 bits
- * di_int is a 64 bit integral type
+/* Assumption: long double is a IEEE 80 bit floating point type padded to 128
+ * bits di_int is a 64 bit integral type
*/
-/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee eeee |
- * 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee
+ * eeee | 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm
+ * mmmm mmmm mmmm
*/
-COMPILER_RT_ABI long double
-__floatdixf(di_int a)
-{
- if (a == 0)
- return 0.0;
- const unsigned N = sizeof(di_int) * CHAR_BIT;
- const di_int s = a >> (N-1);
- a = (a ^ s) - s;
- int clz = __builtin_clzll(a);
- int e = (N - 1) - clz ; /* exponent */
- long_double_bits fb;
- fb.u.high.s.low = ((su_int)s & 0x00008000) | /* sign */
- (e + 16383); /* exponent */
- fb.u.low.all = a << clz; /* mantissa */
- return fb.f;
+COMPILER_RT_ABI long double __floatdixf(di_int a) {
+ if (a == 0)
+ return 0.0;
+ const unsigned N = sizeof(di_int) * CHAR_BIT;
+ const di_int s = a >> (N - 1);
+ a = (a ^ s) - s;
+ int clz = __builtin_clzll(a);
+ int e = (N - 1) - clz; /* exponent */
+ long_double_bits fb;
+ fb.u.high.s.low = ((su_int)s & 0x00008000) | /* sign */
+ (e + 16383); /* exponent */
+ fb.u.low.all = a << clz; /* mantissa */
+ return fb.f;
}
#endif /* !_ARCH_PPC */
diff --git a/lib/builtins/floatsidf.c b/lib/builtins/floatsidf.c
index 56ba903a6..ee4f05b8b 100644
--- a/lib/builtins/floatsidf.c
+++ b/lib/builtins/floatsidf.c
@@ -17,43 +17,40 @@
#include "int_lib.h"
-COMPILER_RT_ABI fp_t
-__floatsidf(int a) {
-
- const int aWidth = sizeof a * CHAR_BIT;
-
- // Handle zero as a special case to protect clz
- if (a == 0)
- return fromRep(0);
-
- // All other cases begin by extracting the sign and absolute value of a
- rep_t sign = 0;
- if (a < 0) {
- sign = signBit;
- a = -a;
- }
-
- // Exponent of (fp_t)a is the width of abs(a).
- const int exponent = (aWidth - 1) - __builtin_clz(a);
- rep_t result;
-
- // Shift a into the significand field and clear the implicit bit. Extra
- // cast to unsigned int is necessary to get the correct behavior for
- // the input INT_MIN.
- const int shift = significandBits - exponent;
- result = (rep_t)(unsigned int)a << shift ^ implicitBit;
-
- // Insert the exponent
- result += (rep_t)(exponent + exponentBias) << significandBits;
- // Insert the sign bit and return
- return fromRep(result | sign);
+COMPILER_RT_ABI fp_t __floatsidf(int a) {
+
+ const int aWidth = sizeof a * CHAR_BIT;
+
+ // Handle zero as a special case to protect clz
+ if (a == 0)
+ return fromRep(0);
+
+ // All other cases begin by extracting the sign and absolute value of a
+ rep_t sign = 0;
+ if (a < 0) {
+ sign = signBit;
+ a = -a;
+ }
+
+ // Exponent of (fp_t)a is the width of abs(a).
+ const int exponent = (aWidth - 1) - __builtin_clz(a);
+ rep_t result;
+
+ // Shift a into the significand field and clear the implicit bit. Extra
+ // cast to unsigned int is necessary to get the correct behavior for
+ // the input INT_MIN.
+ const int shift = significandBits - exponent;
+ result = (rep_t)(unsigned int)a << shift ^ implicitBit;
+
+ // Insert the exponent
+ result += (rep_t)(exponent + exponentBias) << significandBits;
+ // Insert the sign bit and return
+ return fromRep(result | sign);
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI fp_t __aeabi_i2d(int a) {
- return __floatsidf(a);
-}
+AEABI_RTABI fp_t __aeabi_i2d(int a) { return __floatsidf(a); }
#else
AEABI_RTABI fp_t __aeabi_i2d(int a) COMPILER_RT_ALIAS(__floatsidf);
#endif
diff --git a/lib/builtins/floatsisf.c b/lib/builtins/floatsisf.c
index dbdaecc42..766551c01 100644
--- a/lib/builtins/floatsisf.c
+++ b/lib/builtins/floatsisf.c
@@ -17,49 +17,48 @@
#include "int_lib.h"
-COMPILER_RT_ABI fp_t
-__floatsisf(int a) {
-
- const int aWidth = sizeof a * CHAR_BIT;
-
- // Handle zero as a special case to protect clz
- if (a == 0)
- return fromRep(0);
-
- // All other cases begin by extracting the sign and absolute value of a
- rep_t sign = 0;
- if (a < 0) {
- sign = signBit;
- a = -a;
- }
-
- // Exponent of (fp_t)a is the width of abs(a).
- const int exponent = (aWidth - 1) - __builtin_clz(a);
- rep_t result;
-
- // Shift a into the significand field, rounding if it is a right-shift
- if (exponent <= significandBits) {
- const int shift = significandBits - exponent;
- result = (rep_t)a << shift ^ implicitBit;
- } else {
- const int shift = exponent - significandBits;
- result = (rep_t)a >> shift ^ implicitBit;
- rep_t round = (rep_t)a << (typeWidth - shift);
- if (round > signBit) result++;
- if (round == signBit) result += result & 1;
- }
-
- // Insert the exponent
- result += (rep_t)(exponent + exponentBias) << significandBits;
- // Insert the sign bit and return
- return fromRep(result | sign);
+COMPILER_RT_ABI fp_t __floatsisf(int a) {
+
+ const int aWidth = sizeof a * CHAR_BIT;
+
+ // Handle zero as a special case to protect clz
+ if (a == 0)
+ return fromRep(0);
+
+ // All other cases begin by extracting the sign and absolute value of a
+ rep_t sign = 0;
+ if (a < 0) {
+ sign = signBit;
+ a = -a;
+ }
+
+ // Exponent of (fp_t)a is the width of abs(a).
+ const int exponent = (aWidth - 1) - __builtin_clz(a);
+ rep_t result;
+
+ // Shift a into the significand field, rounding if it is a right-shift
+ if (exponent <= significandBits) {
+ const int shift = significandBits - exponent;
+ result = (rep_t)a << shift ^ implicitBit;
+ } else {
+ const int shift = exponent - significandBits;
+ result = (rep_t)a >> shift ^ implicitBit;
+ rep_t round = (rep_t)a << (typeWidth - shift);
+ if (round > signBit)
+ result++;
+ if (round == signBit)
+ result += result & 1;
+ }
+
+ // Insert the exponent
+ result += (rep_t)(exponent + exponentBias) << significandBits;
+ // Insert the sign bit and return
+ return fromRep(result | sign);
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI fp_t __aeabi_i2f(int a) {
- return __floatsisf(a);
-}
+AEABI_RTABI fp_t __aeabi_i2f(int a) { return __floatsisf(a); }
#else
AEABI_RTABI fp_t __aeabi_i2f(int a) COMPILER_RT_ALIAS(__floatsisf);
#endif
diff --git a/lib/builtins/floatsitf.c b/lib/builtins/floatsitf.c
index e539945ea..f56063f36 100644
--- a/lib/builtins/floatsitf.c
+++ b/lib/builtins/floatsitf.c
@@ -18,32 +18,32 @@
#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
COMPILER_RT_ABI fp_t __floatsitf(int a) {
- const int aWidth = sizeof a * CHAR_BIT;
-
- // Handle zero as a special case to protect clz
- if (a == 0)
- return fromRep(0);
-
- // All other cases begin by extracting the sign and absolute value of a
- rep_t sign = 0;
- unsigned aAbs = (unsigned)a;
- if (a < 0) {
- sign = signBit;
- aAbs = ~(unsigned)a + 1U;
- }
-
- // Exponent of (fp_t)a is the width of abs(a).
- const int exponent = (aWidth - 1) - __builtin_clz(aAbs);
- rep_t result;
-
- // Shift a into the significand field and clear the implicit bit.
- const int shift = significandBits - exponent;
- result = (rep_t)aAbs << shift ^ implicitBit;
-
- // Insert the exponent
- result += (rep_t)(exponent + exponentBias) << significandBits;
- // Insert the sign bit and return
- return fromRep(result | sign);
+ const int aWidth = sizeof a * CHAR_BIT;
+
+ // Handle zero as a special case to protect clz
+ if (a == 0)
+ return fromRep(0);
+
+ // All other cases begin by extracting the sign and absolute value of a
+ rep_t sign = 0;
+ unsigned aAbs = (unsigned)a;
+ if (a < 0) {
+ sign = signBit;
+ aAbs = ~(unsigned)a + 1U;
+ }
+
+ // Exponent of (fp_t)a is the width of abs(a).
+ const int exponent = (aWidth - 1) - __builtin_clz(aAbs);
+ rep_t result;
+
+ // Shift a into the significand field and clear the implicit bit.
+ const int shift = significandBits - exponent;
+ result = (rep_t)aAbs << shift ^ implicitBit;
+
+ // Insert the exponent
+ result += (rep_t)(exponent + exponentBias) << significandBits;
+ // Insert the sign bit and return
+ return fromRep(result | sign);
}
#endif
diff --git a/lib/builtins/floattidf.c b/lib/builtins/floattidf.c
index 7c87f57be..9fc5783dc 100644
--- a/lib/builtins/floattidf.c
+++ b/lib/builtins/floattidf.c
@@ -21,62 +21,56 @@
* ti_int is a 128 bit integral type
*/
-/* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm */
+/* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+ * mmmm */
-COMPILER_RT_ABI double
-__floattidf(ti_int a)
-{
- if (a == 0)
- return 0.0;
- const unsigned N = sizeof(ti_int) * CHAR_BIT;
- const ti_int s = a >> (N-1);
- a = (a ^ s) - s;
- int sd = N - __clzti2(a); /* number of significant digits */
- int e = sd - 1; /* exponent */
- if (sd > DBL_MANT_DIG)
- {
- /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
- * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
- * 12345678901234567890123456
- * 1 = msb 1 bit
- * P = bit DBL_MANT_DIG-1 bits to the right of 1
- * Q = bit DBL_MANT_DIG bits to the right of 1
- * R = "or" of all bits to the right of Q
- */
- switch (sd)
- {
- case DBL_MANT_DIG + 1:
- a <<= 1;
- break;
- case DBL_MANT_DIG + 2:
- break;
- default:
- a = ((tu_int)a >> (sd - (DBL_MANT_DIG+2))) |
- ((a & ((tu_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0);
- };
- /* finish: */
- a |= (a & 4) != 0; /* Or P into R */
- ++a; /* round - this step may add a significant bit */
- a >>= 2; /* dump Q and R */
- /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
- if (a & ((tu_int)1 << DBL_MANT_DIG))
- {
- a >>= 1;
- ++e;
- }
- /* a is now rounded to DBL_MANT_DIG bits */
+COMPILER_RT_ABI double __floattidf(ti_int a) {
+ if (a == 0)
+ return 0.0;
+ const unsigned N = sizeof(ti_int) * CHAR_BIT;
+ const ti_int s = a >> (N - 1);
+ a = (a ^ s) - s;
+ int sd = N - __clzti2(a); /* number of significant digits */
+ int e = sd - 1; /* exponent */
+ if (sd > DBL_MANT_DIG) {
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
+ * 12345678901234567890123456
+ * 1 = msb 1 bit
+ * P = bit DBL_MANT_DIG-1 bits to the right of 1
+ * Q = bit DBL_MANT_DIG bits to the right of 1
+ * R = "or" of all bits to the right of Q
+ */
+ switch (sd) {
+ case DBL_MANT_DIG + 1:
+ a <<= 1;
+ break;
+ case DBL_MANT_DIG + 2:
+ break;
+ default:
+ a = ((tu_int)a >> (sd - (DBL_MANT_DIG + 2))) |
+ ((a & ((tu_int)(-1) >> ((N + DBL_MANT_DIG + 2) - sd))) != 0);
+ };
+ /* finish: */
+ a |= (a & 4) != 0; /* Or P into R */
+ ++a; /* round - this step may add a significant bit */
+ a >>= 2; /* dump Q and R */
+ /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
+ if (a & ((tu_int)1 << DBL_MANT_DIG)) {
+ a >>= 1;
+ ++e;
}
- else
- {
- a <<= (DBL_MANT_DIG - sd);
- /* a is now rounded to DBL_MANT_DIG bits */
- }
- double_bits fb;
- fb.u.s.high = ((su_int)s & 0x80000000) | /* sign */
- ((e + 1023) << 20) | /* exponent */
+ /* a is now rounded to DBL_MANT_DIG bits */
+ } else {
+ a <<= (DBL_MANT_DIG - sd);
+ /* a is now rounded to DBL_MANT_DIG bits */
+ }
+ double_bits fb;
+ fb.u.s.high = ((su_int)s & 0x80000000) | /* sign */
+ ((e + 1023) << 20) | /* exponent */
((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */
- fb.u.s.low = (su_int)a; /* mantissa-low */
- return fb.f;
+ fb.u.s.low = (su_int)a; /* mantissa-low */
+ return fb.f;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/floattisf.c b/lib/builtins/floattisf.c
index c30b8f85f..a419a7990 100644
--- a/lib/builtins/floattisf.c
+++ b/lib/builtins/floattisf.c
@@ -17,65 +17,58 @@
/* Returns: convert a to a float, rounding toward even. */
-/* Assumption: float is a IEEE 32 bit floating point type
+/* Assumption: float is a IEEE 32 bit floating point type
* ti_int is a 128 bit integral type
*/
/* seee eeee emmm mmmm mmmm mmmm mmmm mmmm */
-COMPILER_RT_ABI float
-__floattisf(ti_int a)
-{
- if (a == 0)
- return 0.0F;
- const unsigned N = sizeof(ti_int) * CHAR_BIT;
- const ti_int s = a >> (N-1);
- a = (a ^ s) - s;
- int sd = N - __clzti2(a); /* number of significant digits */
- int e = sd - 1; /* exponent */
- if (sd > FLT_MANT_DIG)
- {
- /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
- * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
- * 12345678901234567890123456
- * 1 = msb 1 bit
- * P = bit FLT_MANT_DIG-1 bits to the right of 1
- * Q = bit FLT_MANT_DIG bits to the right of 1
- * R = "or" of all bits to the right of Q
- */
- switch (sd)
- {
- case FLT_MANT_DIG + 1:
- a <<= 1;
- break;
- case FLT_MANT_DIG + 2:
- break;
- default:
- a = ((tu_int)a >> (sd - (FLT_MANT_DIG+2))) |
- ((a & ((tu_int)(-1) >> ((N + FLT_MANT_DIG+2) - sd))) != 0);
- };
- /* finish: */
- a |= (a & 4) != 0; /* Or P into R */
- ++a; /* round - this step may add a significant bit */
- a >>= 2; /* dump Q and R */
- /* a is now rounded to FLT_MANT_DIG or FLT_MANT_DIG+1 bits */
- if (a & ((tu_int)1 << FLT_MANT_DIG))
- {
- a >>= 1;
- ++e;
- }
- /* a is now rounded to FLT_MANT_DIG bits */
+COMPILER_RT_ABI float __floattisf(ti_int a) {
+ if (a == 0)
+ return 0.0F;
+ const unsigned N = sizeof(ti_int) * CHAR_BIT;
+ const ti_int s = a >> (N - 1);
+ a = (a ^ s) - s;
+ int sd = N - __clzti2(a); /* number of significant digits */
+ int e = sd - 1; /* exponent */
+ if (sd > FLT_MANT_DIG) {
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
+ * 12345678901234567890123456
+ * 1 = msb 1 bit
+ * P = bit FLT_MANT_DIG-1 bits to the right of 1
+ * Q = bit FLT_MANT_DIG bits to the right of 1
+ * R = "or" of all bits to the right of Q
+ */
+ switch (sd) {
+ case FLT_MANT_DIG + 1:
+ a <<= 1;
+ break;
+ case FLT_MANT_DIG + 2:
+ break;
+ default:
+ a = ((tu_int)a >> (sd - (FLT_MANT_DIG + 2))) |
+ ((a & ((tu_int)(-1) >> ((N + FLT_MANT_DIG + 2) - sd))) != 0);
+ };
+ /* finish: */
+ a |= (a & 4) != 0; /* Or P into R */
+ ++a; /* round - this step may add a significant bit */
+ a >>= 2; /* dump Q and R */
+ /* a is now rounded to FLT_MANT_DIG or FLT_MANT_DIG+1 bits */
+ if (a & ((tu_int)1 << FLT_MANT_DIG)) {
+ a >>= 1;
+ ++e;
}
- else
- {
- a <<= (FLT_MANT_DIG - sd);
- /* a is now rounded to FLT_MANT_DIG bits */
- }
- float_bits fb;
- fb.u = ((su_int)s & 0x80000000) | /* sign */
- ((e + 127) << 23) | /* exponent */
- ((su_int)a & 0x007FFFFF); /* mantissa */
- return fb.f;
+ /* a is now rounded to FLT_MANT_DIG bits */
+ } else {
+ a <<= (FLT_MANT_DIG - sd);
+ /* a is now rounded to FLT_MANT_DIG bits */
+ }
+ float_bits fb;
+ fb.u = ((su_int)s & 0x80000000) | /* sign */
+ ((e + 127) << 23) | /* exponent */
+ ((su_int)a & 0x007FFFFF); /* mantissa */
+ return fb.f;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/floattitf.c b/lib/builtins/floattitf.c
index b5581711f..e9047472e 100644
--- a/lib/builtins/floattitf.c
+++ b/lib/builtins/floattitf.c
@@ -22,60 +22,60 @@
* ti_int is a 128 bit integral type
*/
-/* seee eeee eeee eeee mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm |
- * mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+/* seee eeee eeee eeee mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+ * mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm
+ * mmmm mmmm mmmm
*/
#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
-COMPILER_RT_ABI fp_t
-__floattitf(ti_int a) {
- if (a == 0)
- return 0.0;
- const unsigned N = sizeof(ti_int) * CHAR_BIT;
- const ti_int s = a >> (N-1);
- a = (a ^ s) - s;
- int sd = N - __clzti2(a); /* number of significant digits */
- int e = sd - 1; /* exponent */
- if (sd > LDBL_MANT_DIG) {
- /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
- * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
- * 12345678901234567890123456
- * 1 = msb 1 bit
- * P = bit LDBL_MANT_DIG-1 bits to the right of 1
- * Q = bit LDBL_MANT_DIG bits to the right of 1
- * R = "or" of all bits to the right of Q
- */
- switch (sd) {
- case LDBL_MANT_DIG + 1:
- a <<= 1;
- break;
- case LDBL_MANT_DIG + 2:
- break;
- default:
- a = ((tu_int)a >> (sd - (LDBL_MANT_DIG+2))) |
- ((a & ((tu_int)(-1) >> ((N + LDBL_MANT_DIG+2) - sd))) != 0);
- };
- /* finish: */
- a |= (a & 4) != 0; /* Or P into R */
- ++a; /* round - this step may add a significant bit */
- a >>= 2; /* dump Q and R */
- /* a is now rounded to LDBL_MANT_DIG or LDBL_MANT_DIG+1 bits */
- if (a & ((tu_int)1 << LDBL_MANT_DIG)) {
- a >>= 1;
- ++e;
- }
- /* a is now rounded to LDBL_MANT_DIG bits */
- } else {
- a <<= (LDBL_MANT_DIG - sd);
- /* a is now rounded to LDBL_MANT_DIG bits */
+COMPILER_RT_ABI fp_t __floattitf(ti_int a) {
+ if (a == 0)
+ return 0.0;
+ const unsigned N = sizeof(ti_int) * CHAR_BIT;
+ const ti_int s = a >> (N - 1);
+ a = (a ^ s) - s;
+ int sd = N - __clzti2(a); /* number of significant digits */
+ int e = sd - 1; /* exponent */
+ if (sd > LDBL_MANT_DIG) {
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
+ * 12345678901234567890123456
+ * 1 = msb 1 bit
+ * P = bit LDBL_MANT_DIG-1 bits to the right of 1
+ * Q = bit LDBL_MANT_DIG bits to the right of 1
+ * R = "or" of all bits to the right of Q
+ */
+ switch (sd) {
+ case LDBL_MANT_DIG + 1:
+ a <<= 1;
+ break;
+ case LDBL_MANT_DIG + 2:
+ break;
+ default:
+ a = ((tu_int)a >> (sd - (LDBL_MANT_DIG + 2))) |
+ ((a & ((tu_int)(-1) >> ((N + LDBL_MANT_DIG + 2) - sd))) != 0);
+ };
+ /* finish: */
+ a |= (a & 4) != 0; /* Or P into R */
+ ++a; /* round - this step may add a significant bit */
+ a >>= 2; /* dump Q and R */
+ /* a is now rounded to LDBL_MANT_DIG or LDBL_MANT_DIG+1 bits */
+ if (a & ((tu_int)1 << LDBL_MANT_DIG)) {
+ a >>= 1;
+ ++e;
}
+ /* a is now rounded to LDBL_MANT_DIG bits */
+ } else {
+ a <<= (LDBL_MANT_DIG - sd);
+ /* a is now rounded to LDBL_MANT_DIG bits */
+ }
- long_double_bits fb;
- fb.u.high.all = (s & 0x8000000000000000LL) /* sign */
- | (du_int)(e + 16383) << 48 /* exponent */
- | ((a >> 64) & 0x0000ffffffffffffLL); /* significand */
- fb.u.low.all = (du_int)(a);
- return fb.f;
+ long_double_bits fb;
+ fb.u.high.all = (s & 0x8000000000000000LL) /* sign */
+ | (du_int)(e + 16383) << 48 /* exponent */
+ | ((a >> 64) & 0x0000ffffffffffffLL); /* significand */
+ fb.u.low.all = (du_int)(a);
+ return fb.f;
}
#endif
diff --git a/lib/builtins/floattixf.c b/lib/builtins/floattixf.c
index 09a48ca42..fe145cbc4 100644
--- a/lib/builtins/floattixf.c
+++ b/lib/builtins/floattixf.c
@@ -17,67 +17,61 @@
/* Returns: convert a to a long double, rounding toward even. */
-/* Assumption: long double is a IEEE 80 bit floating point type padded to 128 bits
- * ti_int is a 128 bit integral type
+/* Assumption: long double is a IEEE 80 bit floating point type padded to 128
+ * bits ti_int is a 128 bit integral type
*/
-/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee eeee |
- * 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee
+ * eeee | 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm
+ * mmmm mmmm mmmm
*/
-COMPILER_RT_ABI long double
-__floattixf(ti_int a)
-{
- if (a == 0)
- return 0.0;
- const unsigned N = sizeof(ti_int) * CHAR_BIT;
- const ti_int s = a >> (N-1);
- a = (a ^ s) - s;
- int sd = N - __clzti2(a); /* number of significant digits */
- int e = sd - 1; /* exponent */
- if (sd > LDBL_MANT_DIG)
- {
- /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
- * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
- * 12345678901234567890123456
- * 1 = msb 1 bit
- * P = bit LDBL_MANT_DIG-1 bits to the right of 1
- * Q = bit LDBL_MANT_DIG bits to the right of 1
- * R = "or" of all bits to the right of Q
- */
- switch (sd)
- {
- case LDBL_MANT_DIG + 1:
- a <<= 1;
- break;
- case LDBL_MANT_DIG + 2:
- break;
- default:
- a = ((tu_int)a >> (sd - (LDBL_MANT_DIG+2))) |
- ((a & ((tu_int)(-1) >> ((N + LDBL_MANT_DIG+2) - sd))) != 0);
- };
- /* finish: */
- a |= (a & 4) != 0; /* Or P into R */
- ++a; /* round - this step may add a significant bit */
- a >>= 2; /* dump Q and R */
- /* a is now rounded to LDBL_MANT_DIG or LDBL_MANT_DIG+1 bits */
- if (a & ((tu_int)1 << LDBL_MANT_DIG))
- {
- a >>= 1;
- ++e;
- }
- /* a is now rounded to LDBL_MANT_DIG bits */
+COMPILER_RT_ABI long double __floattixf(ti_int a) {
+ if (a == 0)
+ return 0.0;
+ const unsigned N = sizeof(ti_int) * CHAR_BIT;
+ const ti_int s = a >> (N - 1);
+ a = (a ^ s) - s;
+ int sd = N - __clzti2(a); /* number of significant digits */
+ int e = sd - 1; /* exponent */
+ if (sd > LDBL_MANT_DIG) {
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
+ * 12345678901234567890123456
+ * 1 = msb 1 bit
+ * P = bit LDBL_MANT_DIG-1 bits to the right of 1
+ * Q = bit LDBL_MANT_DIG bits to the right of 1
+ * R = "or" of all bits to the right of Q
+ */
+ switch (sd) {
+ case LDBL_MANT_DIG + 1:
+ a <<= 1;
+ break;
+ case LDBL_MANT_DIG + 2:
+ break;
+ default:
+ a = ((tu_int)a >> (sd - (LDBL_MANT_DIG + 2))) |
+ ((a & ((tu_int)(-1) >> ((N + LDBL_MANT_DIG + 2) - sd))) != 0);
+ };
+ /* finish: */
+ a |= (a & 4) != 0; /* Or P into R */
+ ++a; /* round - this step may add a significant bit */
+ a >>= 2; /* dump Q and R */
+ /* a is now rounded to LDBL_MANT_DIG or LDBL_MANT_DIG+1 bits */
+ if (a & ((tu_int)1 << LDBL_MANT_DIG)) {
+ a >>= 1;
+ ++e;
}
- else
- {
- a <<= (LDBL_MANT_DIG - sd);
- /* a is now rounded to LDBL_MANT_DIG bits */
- }
- long_double_bits fb;
- fb.u.high.s.low = ((su_int)s & 0x8000) | /* sign */
- (e + 16383); /* exponent */
- fb.u.low.all = (du_int)a; /* mantissa */
- return fb.f;
+ /* a is now rounded to LDBL_MANT_DIG bits */
+ } else {
+ a <<= (LDBL_MANT_DIG - sd);
+ /* a is now rounded to LDBL_MANT_DIG bits */
+ }
+ long_double_bits fb;
+ fb.u.high.s.low = ((su_int)s & 0x8000) | /* sign */
+ (e + 16383); /* exponent */
+ fb.u.low.all = (du_int)a; /* mantissa */
+ return fb.f;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/floatundidf.c b/lib/builtins/floatundidf.c
index 2c5c68ea4..6478caef0 100644
--- a/lib/builtins/floatundidf.c
+++ b/lib/builtins/floatundidf.c
@@ -17,96 +17,94 @@
* du_int is a 64 bit integral type
*/
-/* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm */
+/* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+ * mmmm */
#include "int_lib.h"
#ifndef __SOFT_FP__
-/* Support for systems that have hardware floating-point; we'll set the inexact flag
- * as a side-effect of this computation.
+/* Support for systems that have hardware floating-point; we'll set the inexact
+ * flag as a side-effect of this computation.
*/
-COMPILER_RT_ABI double
-__floatundidf(du_int a)
-{
- static const double twop52 = 4503599627370496.0; // 0x1.0p52
- static const double twop84 = 19342813113834066795298816.0; // 0x1.0p84
- static const double twop84_plus_twop52 = 19342813118337666422669312.0; // 0x1.00000001p84
+COMPILER_RT_ABI double __floatundidf(du_int a) {
+ static const double twop52 = 4503599627370496.0; // 0x1.0p52
+ static const double twop84 = 19342813113834066795298816.0; // 0x1.0p84
+ static const double twop84_plus_twop52 =
+ 19342813118337666422669312.0; // 0x1.00000001p84
- union { uint64_t x; double d; } high = { .d = twop84 };
- union { uint64_t x; double d; } low = { .d = twop52 };
+ union {
+ uint64_t x;
+ double d;
+ } high = {.d = twop84};
+ union {
+ uint64_t x;
+ double d;
+ } low = {.d = twop52};
- high.x |= a >> 32;
- low.x |= a & UINT64_C(0x00000000ffffffff);
+ high.x |= a >> 32;
+ low.x |= a & UINT64_C(0x00000000ffffffff);
- const double result = (high.d - twop84_plus_twop52) + low.d;
- return result;
+ const double result = (high.d - twop84_plus_twop52) + low.d;
+ return result;
}
#else
-/* Support for systems that don't have hardware floating-point; there are no flags to
- * set, and we don't want to code-gen to an unknown soft-float implementation.
+/* Support for systems that don't have hardware floating-point; there are no
+ * flags to set, and we don't want to code-gen to an unknown soft-float
+ * implementation.
*/
-COMPILER_RT_ABI double
-__floatundidf(du_int a)
-{
- if (a == 0)
- return 0.0;
- const unsigned N = sizeof(du_int) * CHAR_BIT;
- int sd = N - __builtin_clzll(a); /* number of significant digits */
- int e = sd - 1; /* exponent */
- if (sd > DBL_MANT_DIG)
- {
- /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
- * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
- * 12345678901234567890123456
- * 1 = msb 1 bit
- * P = bit DBL_MANT_DIG-1 bits to the right of 1
- * Q = bit DBL_MANT_DIG bits to the right of 1
- * R = "or" of all bits to the right of Q
- */
- switch (sd)
- {
- case DBL_MANT_DIG + 1:
- a <<= 1;
- break;
- case DBL_MANT_DIG + 2:
- break;
- default:
- a = (a >> (sd - (DBL_MANT_DIG+2))) |
- ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0);
- };
- /* finish: */
- a |= (a & 4) != 0; /* Or P into R */
- ++a; /* round - this step may add a significant bit */
- a >>= 2; /* dump Q and R */
- /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
- if (a & ((du_int)1 << DBL_MANT_DIG))
- {
- a >>= 1;
- ++e;
- }
- /* a is now rounded to DBL_MANT_DIG bits */
+COMPILER_RT_ABI double __floatundidf(du_int a) {
+ if (a == 0)
+ return 0.0;
+ const unsigned N = sizeof(du_int) * CHAR_BIT;
+ int sd = N - __builtin_clzll(a); /* number of significant digits */
+ int e = sd - 1; /* exponent */
+ if (sd > DBL_MANT_DIG) {
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
+ * 12345678901234567890123456
+ * 1 = msb 1 bit
+ * P = bit DBL_MANT_DIG-1 bits to the right of 1
+ * Q = bit DBL_MANT_DIG bits to the right of 1
+ * R = "or" of all bits to the right of Q
+ */
+ switch (sd) {
+ case DBL_MANT_DIG + 1:
+ a <<= 1;
+ break;
+ case DBL_MANT_DIG + 2:
+ break;
+ default:
+ a = (a >> (sd - (DBL_MANT_DIG + 2))) |
+ ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG + 2) - sd))) != 0);
+ };
+ /* finish: */
+ a |= (a & 4) != 0; /* Or P into R */
+ ++a; /* round - this step may add a significant bit */
+ a >>= 2; /* dump Q and R */
+ /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
+ if (a & ((du_int)1 << DBL_MANT_DIG)) {
+ a >>= 1;
+ ++e;
}
- else
- {
- a <<= (DBL_MANT_DIG - sd);
- /* a is now rounded to DBL_MANT_DIG bits */
- }
- double_bits fb;
- fb.u.s.high = ((e + 1023) << 20) | /* exponent */
- ((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */
- fb.u.s.low = (su_int)a; /* mantissa-low */
- return fb.f;
+ /* a is now rounded to DBL_MANT_DIG bits */
+ } else {
+ a <<= (DBL_MANT_DIG - sd);
+ /* a is now rounded to DBL_MANT_DIG bits */
+ }
+ double_bits fb;
+ fb.u.s.high = ((e + 1023) << 20) | /* exponent */
+ ((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */
+ fb.u.s.low = (su_int)a; /* mantissa-low */
+ return fb.f;
}
#endif
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI double __aeabi_ul2d(du_int a) {
- return __floatundidf(a);
-}
+AEABI_RTABI double __aeabi_ul2d(du_int a) { return __floatundidf(a); }
#else
AEABI_RTABI double __aeabi_ul2d(du_int a) COMPILER_RT_ALIAS(__floatundidf);
#endif
diff --git a/lib/builtins/floatundisf.c b/lib/builtins/floatundisf.c
index 62e7458aa..a57dc47dd 100644
--- a/lib/builtins/floatundisf.c
+++ b/lib/builtins/floatundisf.c
@@ -13,7 +13,7 @@
/* Returns: convert a to a float, rounding toward even. */
-/* Assumption: float is a IEEE 32 bit floating point type
+/* Assumption: float is a IEEE 32 bit floating point type
* du_int is a 64 bit integral type
*/
@@ -21,63 +21,54 @@
#include "int_lib.h"
-COMPILER_RT_ABI float
-__floatundisf(du_int a)
-{
- if (a == 0)
- return 0.0F;
- const unsigned N = sizeof(du_int) * CHAR_BIT;
- int sd = N - __builtin_clzll(a); /* number of significant digits */
- int e = sd - 1; /* 8 exponent */
- if (sd > FLT_MANT_DIG)
- {
- /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
- * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
- * 12345678901234567890123456
- * 1 = msb 1 bit
- * P = bit FLT_MANT_DIG-1 bits to the right of 1
- * Q = bit FLT_MANT_DIG bits to the right of 1
- * R = "or" of all bits to the right of Q
- */
- switch (sd)
- {
- case FLT_MANT_DIG + 1:
- a <<= 1;
- break;
- case FLT_MANT_DIG + 2:
- break;
- default:
- a = (a >> (sd - (FLT_MANT_DIG+2))) |
- ((a & ((du_int)(-1) >> ((N + FLT_MANT_DIG+2) - sd))) != 0);
- };
- /* finish: */
- a |= (a & 4) != 0; /* Or P into R */
- ++a; /* round - this step may add a significant bit */
- a >>= 2; /* dump Q and R */
- /* a is now rounded to FLT_MANT_DIG or FLT_MANT_DIG+1 bits */
- if (a & ((du_int)1 << FLT_MANT_DIG))
- {
- a >>= 1;
- ++e;
- }
- /* a is now rounded to FLT_MANT_DIG bits */
+COMPILER_RT_ABI float __floatundisf(du_int a) {
+ if (a == 0)
+ return 0.0F;
+ const unsigned N = sizeof(du_int) * CHAR_BIT;
+ int sd = N - __builtin_clzll(a); /* number of significant digits */
+ int e = sd - 1; /* 8 exponent */
+ if (sd > FLT_MANT_DIG) {
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
+ * 12345678901234567890123456
+ * 1 = msb 1 bit
+ * P = bit FLT_MANT_DIG-1 bits to the right of 1
+ * Q = bit FLT_MANT_DIG bits to the right of 1
+ * R = "or" of all bits to the right of Q
+ */
+ switch (sd) {
+ case FLT_MANT_DIG + 1:
+ a <<= 1;
+ break;
+ case FLT_MANT_DIG + 2:
+ break;
+ default:
+ a = (a >> (sd - (FLT_MANT_DIG + 2))) |
+ ((a & ((du_int)(-1) >> ((N + FLT_MANT_DIG + 2) - sd))) != 0);
+ };
+ /* finish: */
+ a |= (a & 4) != 0; /* Or P into R */
+ ++a; /* round - this step may add a significant bit */
+ a >>= 2; /* dump Q and R */
+ /* a is now rounded to FLT_MANT_DIG or FLT_MANT_DIG+1 bits */
+ if (a & ((du_int)1 << FLT_MANT_DIG)) {
+ a >>= 1;
+ ++e;
}
- else
- {
- a <<= (FLT_MANT_DIG - sd);
- /* a is now rounded to FLT_MANT_DIG bits */
- }
- float_bits fb;
- fb.u = ((e + 127) << 23) | /* exponent */
- ((su_int)a & 0x007FFFFF); /* mantissa */
- return fb.f;
+ /* a is now rounded to FLT_MANT_DIG bits */
+ } else {
+ a <<= (FLT_MANT_DIG - sd);
+ /* a is now rounded to FLT_MANT_DIG bits */
+ }
+ float_bits fb;
+ fb.u = ((e + 127) << 23) | /* exponent */
+ ((su_int)a & 0x007FFFFF); /* mantissa */
+ return fb.f;
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI float __aeabi_ul2f(du_int a) {
- return __floatundisf(a);
-}
+AEABI_RTABI float __aeabi_ul2f(du_int a) { return __floatundisf(a); }
#else
AEABI_RTABI float __aeabi_ul2f(du_int a) COMPILER_RT_ALIAS(__floatundisf);
#endif
diff --git a/lib/builtins/floatunditf.c b/lib/builtins/floatunditf.c
index 2814f57f2..8d310851e 100644
--- a/lib/builtins/floatunditf.c
+++ b/lib/builtins/floatunditf.c
@@ -18,22 +18,23 @@
#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
COMPILER_RT_ABI fp_t __floatunditf(du_int a) {
- const int aWidth = sizeof a * CHAR_BIT;
+ const int aWidth = sizeof a * CHAR_BIT;
- // Handle zero as a special case to protect clz
- if (a == 0) return fromRep(0);
+ // Handle zero as a special case to protect clz
+ if (a == 0)
+ return fromRep(0);
- // Exponent of (fp_t)a is the width of abs(a).
- const int exponent = (aWidth - 1) - __builtin_clzll(a);
- rep_t result;
+ // Exponent of (fp_t)a is the width of abs(a).
+ const int exponent = (aWidth - 1) - __builtin_clzll(a);
+ rep_t result;
- // Shift a into the significand field and clear the implicit bit.
- const int shift = significandBits - exponent;
- result = (rep_t)a << shift ^ implicitBit;
+ // Shift a into the significand field and clear the implicit bit.
+ const int shift = significandBits - exponent;
+ result = (rep_t)a << shift ^ implicitBit;
- // Insert the exponent
- result += (rep_t)(exponent + exponentBias) << significandBits;
- return fromRep(result);
+ // Insert the exponent
+ result += (rep_t)(exponent + exponentBias) << significandBits;
+ return fromRep(result);
}
#endif
diff --git a/lib/builtins/floatundixf.c b/lib/builtins/floatundixf.c
index 5e715b3f9..7c899385e 100644
--- a/lib/builtins/floatundixf.c
+++ b/lib/builtins/floatundixf.c
@@ -17,25 +17,24 @@
/* Returns: convert a to a long double, rounding toward even. */
-/* Assumption: long double is a IEEE 80 bit floating point type padded to 128 bits
- * du_int is a 64 bit integral type
+/* Assumption: long double is a IEEE 80 bit floating point type padded to 128
+ * bits du_int is a 64 bit integral type
*/
-/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee eeee |
- * 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee
+ * eeee | 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm
+ * mmmm mmmm mmmm
*/
-COMPILER_RT_ABI long double
-__floatundixf(du_int a)
-{
- if (a == 0)
- return 0.0;
- const unsigned N = sizeof(du_int) * CHAR_BIT;
- int clz = __builtin_clzll(a);
- int e = (N - 1) - clz ; /* exponent */
- long_double_bits fb;
- fb.u.high.s.low = (e + 16383); /* exponent */
- fb.u.low.all = a << clz; /* mantissa */
- return fb.f;
+COMPILER_RT_ABI long double __floatundixf(du_int a) {
+ if (a == 0)
+ return 0.0;
+ const unsigned N = sizeof(du_int) * CHAR_BIT;
+ int clz = __builtin_clzll(a);
+ int e = (N - 1) - clz; /* exponent */
+ long_double_bits fb;
+ fb.u.high.s.low = (e + 16383); /* exponent */
+ fb.u.low.all = a << clz; /* mantissa */
+ return fb.f;
}
#endif /* _ARCH_PPC */
diff --git a/lib/builtins/floatunsidf.c b/lib/builtins/floatunsidf.c
index 508f33a89..c64db28d1 100644
--- a/lib/builtins/floatunsidf.c
+++ b/lib/builtins/floatunsidf.c
@@ -17,32 +17,30 @@
#include "int_lib.h"
-COMPILER_RT_ABI fp_t
-__floatunsidf(unsigned int a) {
-
- const int aWidth = sizeof a * CHAR_BIT;
-
- // Handle zero as a special case to protect clz
- if (a == 0) return fromRep(0);
-
- // Exponent of (fp_t)a is the width of abs(a).
- const int exponent = (aWidth - 1) - __builtin_clz(a);
- rep_t result;
-
- // Shift a into the significand field and clear the implicit bit.
- const int shift = significandBits - exponent;
- result = (rep_t)a << shift ^ implicitBit;
-
- // Insert the exponent
- result += (rep_t)(exponent + exponentBias) << significandBits;
- return fromRep(result);
+COMPILER_RT_ABI fp_t __floatunsidf(unsigned int a) {
+
+ const int aWidth = sizeof a * CHAR_BIT;
+
+ // Handle zero as a special case to protect clz
+ if (a == 0)
+ return fromRep(0);
+
+ // Exponent of (fp_t)a is the width of abs(a).
+ const int exponent = (aWidth - 1) - __builtin_clz(a);
+ rep_t result;
+
+ // Shift a into the significand field and clear the implicit bit.
+ const int shift = significandBits - exponent;
+ result = (rep_t)a << shift ^ implicitBit;
+
+ // Insert the exponent
+ result += (rep_t)(exponent + exponentBias) << significandBits;
+ return fromRep(result);
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI fp_t __aeabi_ui2d(unsigned int a) {
- return __floatunsidf(a);
-}
+AEABI_RTABI fp_t __aeabi_ui2d(unsigned int a) { return __floatunsidf(a); }
#else
AEABI_RTABI fp_t __aeabi_ui2d(unsigned int a) COMPILER_RT_ALIAS(__floatunsidf);
#endif
diff --git a/lib/builtins/floatunsisf.c b/lib/builtins/floatunsisf.c
index dd4639e66..1999f1b68 100644
--- a/lib/builtins/floatunsisf.c
+++ b/lib/builtins/floatunsisf.c
@@ -17,40 +17,40 @@
#include "int_lib.h"
-COMPILER_RT_ABI fp_t
-__floatunsisf(unsigned int a) {
-
- const int aWidth = sizeof a * CHAR_BIT;
-
- // Handle zero as a special case to protect clz
- if (a == 0) return fromRep(0);
-
- // Exponent of (fp_t)a is the width of abs(a).
- const int exponent = (aWidth - 1) - __builtin_clz(a);
- rep_t result;
-
- // Shift a into the significand field, rounding if it is a right-shift
- if (exponent <= significandBits) {
- const int shift = significandBits - exponent;
- result = (rep_t)a << shift ^ implicitBit;
- } else {
- const int shift = exponent - significandBits;
- result = (rep_t)a >> shift ^ implicitBit;
- rep_t round = (rep_t)a << (typeWidth - shift);
- if (round > signBit) result++;
- if (round == signBit) result += result & 1;
- }
-
- // Insert the exponent
- result += (rep_t)(exponent + exponentBias) << significandBits;
- return fromRep(result);
+COMPILER_RT_ABI fp_t __floatunsisf(unsigned int a) {
+
+ const int aWidth = sizeof a * CHAR_BIT;
+
+ // Handle zero as a special case to protect clz
+ if (a == 0)
+ return fromRep(0);
+
+ // Exponent of (fp_t)a is the width of abs(a).
+ const int exponent = (aWidth - 1) - __builtin_clz(a);
+ rep_t result;
+
+ // Shift a into the significand field, rounding if it is a right-shift
+ if (exponent <= significandBits) {
+ const int shift = significandBits - exponent;
+ result = (rep_t)a << shift ^ implicitBit;
+ } else {
+ const int shift = exponent - significandBits;
+ result = (rep_t)a >> shift ^ implicitBit;
+ rep_t round = (rep_t)a << (typeWidth - shift);
+ if (round > signBit)
+ result++;
+ if (round == signBit)
+ result += result & 1;
+ }
+
+ // Insert the exponent
+ result += (rep_t)(exponent + exponentBias) << significandBits;
+ return fromRep(result);
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI fp_t __aeabi_ui2f(unsigned int a) {
- return __floatunsisf(a);
-}
+AEABI_RTABI fp_t __aeabi_ui2f(unsigned int a) { return __floatunsisf(a); }
#else
AEABI_RTABI fp_t __aeabi_ui2f(unsigned int a) COMPILER_RT_ALIAS(__floatunsisf);
#endif
diff --git a/lib/builtins/floatunsitf.c b/lib/builtins/floatunsitf.c
index 6158233a1..a4bf0f65f 100644
--- a/lib/builtins/floatunsitf.c
+++ b/lib/builtins/floatunsitf.c
@@ -18,22 +18,23 @@
#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
COMPILER_RT_ABI fp_t __floatunsitf(unsigned int a) {
- const int aWidth = sizeof a * CHAR_BIT;
+ const int aWidth = sizeof a * CHAR_BIT;
- // Handle zero as a special case to protect clz
- if (a == 0) return fromRep(0);
+ // Handle zero as a special case to protect clz
+ if (a == 0)
+ return fromRep(0);
- // Exponent of (fp_t)a is the width of abs(a).
- const int exponent = (aWidth - 1) - __builtin_clz(a);
- rep_t result;
+ // Exponent of (fp_t)a is the width of abs(a).
+ const int exponent = (aWidth - 1) - __builtin_clz(a);
+ rep_t result;
- // Shift a into the significand field and clear the implicit bit.
- const int shift = significandBits - exponent;
- result = (rep_t)a << shift ^ implicitBit;
+ // Shift a into the significand field and clear the implicit bit.
+ const int shift = significandBits - exponent;
+ result = (rep_t)a << shift ^ implicitBit;
- // Insert the exponent
- result += (rep_t)(exponent + exponentBias) << significandBits;
- return fromRep(result);
+ // Insert the exponent
+ result += (rep_t)(exponent + exponentBias) << significandBits;
+ return fromRep(result);
}
#endif
diff --git a/lib/builtins/floatuntidf.c b/lib/builtins/floatuntidf.c
index 729048883..0f2f6f279 100644
--- a/lib/builtins/floatuntidf.c
+++ b/lib/builtins/floatuntidf.c
@@ -21,59 +21,53 @@
* tu_int is a 128 bit integral type
*/
-/* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm */
+/* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+ * mmmm */
-COMPILER_RT_ABI double
-__floatuntidf(tu_int a)
-{
- if (a == 0)
- return 0.0;
- const unsigned N = sizeof(tu_int) * CHAR_BIT;
- int sd = N - __clzti2(a); /* number of significant digits */
- int e = sd - 1; /* exponent */
- if (sd > DBL_MANT_DIG)
- {
- /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
- * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
- * 12345678901234567890123456
- * 1 = msb 1 bit
- * P = bit DBL_MANT_DIG-1 bits to the right of 1
- * Q = bit DBL_MANT_DIG bits to the right of 1
- * R = "or" of all bits to the right of Q
- */
- switch (sd)
- {
- case DBL_MANT_DIG + 1:
- a <<= 1;
- break;
- case DBL_MANT_DIG + 2:
- break;
- default:
- a = (a >> (sd - (DBL_MANT_DIG+2))) |
- ((a & ((tu_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0);
- };
- /* finish: */
- a |= (a & 4) != 0; /* Or P into R */
- ++a; /* round - this step may add a significant bit */
- a >>= 2; /* dump Q and R */
- /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
- if (a & ((tu_int)1 << DBL_MANT_DIG))
- {
- a >>= 1;
- ++e;
- }
- /* a is now rounded to DBL_MANT_DIG bits */
+COMPILER_RT_ABI double __floatuntidf(tu_int a) {
+ if (a == 0)
+ return 0.0;
+ const unsigned N = sizeof(tu_int) * CHAR_BIT;
+ int sd = N - __clzti2(a); /* number of significant digits */
+ int e = sd - 1; /* exponent */
+ if (sd > DBL_MANT_DIG) {
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
+ * 12345678901234567890123456
+ * 1 = msb 1 bit
+ * P = bit DBL_MANT_DIG-1 bits to the right of 1
+ * Q = bit DBL_MANT_DIG bits to the right of 1
+ * R = "or" of all bits to the right of Q
+ */
+ switch (sd) {
+ case DBL_MANT_DIG + 1:
+ a <<= 1;
+ break;
+ case DBL_MANT_DIG + 2:
+ break;
+ default:
+ a = (a >> (sd - (DBL_MANT_DIG + 2))) |
+ ((a & ((tu_int)(-1) >> ((N + DBL_MANT_DIG + 2) - sd))) != 0);
+ };
+ /* finish: */
+ a |= (a & 4) != 0; /* Or P into R */
+ ++a; /* round - this step may add a significant bit */
+ a >>= 2; /* dump Q and R */
+ /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
+ if (a & ((tu_int)1 << DBL_MANT_DIG)) {
+ a >>= 1;
+ ++e;
}
- else
- {
- a <<= (DBL_MANT_DIG - sd);
- /* a is now rounded to DBL_MANT_DIG bits */
- }
- double_bits fb;
- fb.u.s.high = ((e + 1023) << 20) | /* exponent */
+ /* a is now rounded to DBL_MANT_DIG bits */
+ } else {
+ a <<= (DBL_MANT_DIG - sd);
+ /* a is now rounded to DBL_MANT_DIG bits */
+ }
+ double_bits fb;
+ fb.u.s.high = ((e + 1023) << 20) | /* exponent */
((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */
- fb.u.s.low = (su_int)a; /* mantissa-low */
- return fb.f;
+ fb.u.s.low = (su_int)a; /* mantissa-low */
+ return fb.f;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/floatuntisf.c b/lib/builtins/floatuntisf.c
index 052c00d14..bf1501daa 100644
--- a/lib/builtins/floatuntisf.c
+++ b/lib/builtins/floatuntisf.c
@@ -17,62 +17,55 @@
/* Returns: convert a to a float, rounding toward even. */
-/* Assumption: float is a IEEE 32 bit floating point type
+/* Assumption: float is a IEEE 32 bit floating point type
* tu_int is a 128 bit integral type
*/
/* seee eeee emmm mmmm mmmm mmmm mmmm mmmm */
-COMPILER_RT_ABI float
-__floatuntisf(tu_int a)
-{
- if (a == 0)
- return 0.0F;
- const unsigned N = sizeof(tu_int) * CHAR_BIT;
- int sd = N - __clzti2(a); /* number of significant digits */
- int e = sd - 1; /* exponent */
- if (sd > FLT_MANT_DIG)
- {
- /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
- * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
- * 12345678901234567890123456
- * 1 = msb 1 bit
- * P = bit FLT_MANT_DIG-1 bits to the right of 1
- * Q = bit FLT_MANT_DIG bits to the right of 1
- * R = "or" of all bits to the right of Q
- */
- switch (sd)
- {
- case FLT_MANT_DIG + 1:
- a <<= 1;
- break;
- case FLT_MANT_DIG + 2:
- break;
- default:
- a = (a >> (sd - (FLT_MANT_DIG+2))) |
- ((a & ((tu_int)(-1) >> ((N + FLT_MANT_DIG+2) - sd))) != 0);
- };
- /* finish: */
- a |= (a & 4) != 0; /* Or P into R */
- ++a; /* round - this step may add a significant bit */
- a >>= 2; /* dump Q and R */
- /* a is now rounded to FLT_MANT_DIG or FLT_MANT_DIG+1 bits */
- if (a & ((tu_int)1 << FLT_MANT_DIG))
- {
- a >>= 1;
- ++e;
- }
- /* a is now rounded to FLT_MANT_DIG bits */
+COMPILER_RT_ABI float __floatuntisf(tu_int a) {
+ if (a == 0)
+ return 0.0F;
+ const unsigned N = sizeof(tu_int) * CHAR_BIT;
+ int sd = N - __clzti2(a); /* number of significant digits */
+ int e = sd - 1; /* exponent */
+ if (sd > FLT_MANT_DIG) {
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
+ * 12345678901234567890123456
+ * 1 = msb 1 bit
+ * P = bit FLT_MANT_DIG-1 bits to the right of 1
+ * Q = bit FLT_MANT_DIG bits to the right of 1
+ * R = "or" of all bits to the right of Q
+ */
+ switch (sd) {
+ case FLT_MANT_DIG + 1:
+ a <<= 1;
+ break;
+ case FLT_MANT_DIG + 2:
+ break;
+ default:
+ a = (a >> (sd - (FLT_MANT_DIG + 2))) |
+ ((a & ((tu_int)(-1) >> ((N + FLT_MANT_DIG + 2) - sd))) != 0);
+ };
+ /* finish: */
+ a |= (a & 4) != 0; /* Or P into R */
+ ++a; /* round - this step may add a significant bit */
+ a >>= 2; /* dump Q and R */
+ /* a is now rounded to FLT_MANT_DIG or FLT_MANT_DIG+1 bits */
+ if (a & ((tu_int)1 << FLT_MANT_DIG)) {
+ a >>= 1;
+ ++e;
}
- else
- {
- a <<= (FLT_MANT_DIG - sd);
- /* a is now rounded to FLT_MANT_DIG bits */
- }
- float_bits fb;
- fb.u = ((e + 127) << 23) | /* exponent */
- ((su_int)a & 0x007FFFFF); /* mantissa */
- return fb.f;
+ /* a is now rounded to FLT_MANT_DIG bits */
+ } else {
+ a <<= (FLT_MANT_DIG - sd);
+ /* a is now rounded to FLT_MANT_DIG bits */
+ }
+ float_bits fb;
+ fb.u = ((e + 127) << 23) | /* exponent */
+ ((su_int)a & 0x007FFFFF); /* mantissa */
+ return fb.f;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/floatuntitf.c b/lib/builtins/floatuntitf.c
index dca071dd2..6528f4379 100644
--- a/lib/builtins/floatuntitf.c
+++ b/lib/builtins/floatuntitf.c
@@ -22,57 +22,57 @@
* tu_int is a 128 bit integral type
*/
-/* seee eeee eeee eeee mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm |
- * mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+/* seee eeee eeee eeee mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+ * mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm
+ * mmmm mmmm mmmm
*/
#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
-COMPILER_RT_ABI fp_t
-__floatuntitf(tu_int a) {
- if (a == 0)
- return 0.0;
- const unsigned N = sizeof(tu_int) * CHAR_BIT;
- int sd = N - __clzti2(a); /* number of significant digits */
- int e = sd - 1; /* exponent */
- if (sd > LDBL_MANT_DIG) {
- /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
- * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
- * 12345678901234567890123456
- * 1 = msb 1 bit
- * P = bit LDBL_MANT_DIG-1 bits to the right of 1
- * Q = bit LDBL_MANT_DIG bits to the right of 1
- * R = "or" of all bits to the right of Q
- */
- switch (sd) {
- case LDBL_MANT_DIG + 1:
- a <<= 1;
- break;
- case LDBL_MANT_DIG + 2:
- break;
- default:
- a = (a >> (sd - (LDBL_MANT_DIG+2))) |
- ((a & ((tu_int)(-1) >> ((N + LDBL_MANT_DIG+2) - sd))) != 0);
- };
- /* finish: */
- a |= (a & 4) != 0; /* Or P into R */
- ++a; /* round - this step may add a significant bit */
- a >>= 2; /* dump Q and R */
- /* a is now rounded to LDBL_MANT_DIG or LDBL_MANT_DIG+1 bits */
- if (a & ((tu_int)1 << LDBL_MANT_DIG)) {
- a >>= 1;
- ++e;
- }
- /* a is now rounded to LDBL_MANT_DIG bits */
- } else {
- a <<= (LDBL_MANT_DIG - sd);
- /* a is now rounded to LDBL_MANT_DIG bits */
+COMPILER_RT_ABI fp_t __floatuntitf(tu_int a) {
+ if (a == 0)
+ return 0.0;
+ const unsigned N = sizeof(tu_int) * CHAR_BIT;
+ int sd = N - __clzti2(a); /* number of significant digits */
+ int e = sd - 1; /* exponent */
+ if (sd > LDBL_MANT_DIG) {
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
+ * 12345678901234567890123456
+ * 1 = msb 1 bit
+ * P = bit LDBL_MANT_DIG-1 bits to the right of 1
+ * Q = bit LDBL_MANT_DIG bits to the right of 1
+ * R = "or" of all bits to the right of Q
+ */
+ switch (sd) {
+ case LDBL_MANT_DIG + 1:
+ a <<= 1;
+ break;
+ case LDBL_MANT_DIG + 2:
+ break;
+ default:
+ a = (a >> (sd - (LDBL_MANT_DIG + 2))) |
+ ((a & ((tu_int)(-1) >> ((N + LDBL_MANT_DIG + 2) - sd))) != 0);
+ };
+ /* finish: */
+ a |= (a & 4) != 0; /* Or P into R */
+ ++a; /* round - this step may add a significant bit */
+ a >>= 2; /* dump Q and R */
+ /* a is now rounded to LDBL_MANT_DIG or LDBL_MANT_DIG+1 bits */
+ if (a & ((tu_int)1 << LDBL_MANT_DIG)) {
+ a >>= 1;
+ ++e;
}
+ /* a is now rounded to LDBL_MANT_DIG bits */
+ } else {
+ a <<= (LDBL_MANT_DIG - sd);
+ /* a is now rounded to LDBL_MANT_DIG bits */
+ }
- long_double_bits fb;
- fb.u.high.all = (du_int)(e + 16383) << 48 /* exponent */
- | ((a >> 64) & 0x0000ffffffffffffLL); /* significand */
- fb.u.low.all = (du_int)(a);
- return fb.f;
+ long_double_bits fb;
+ fb.u.high.all = (du_int)(e + 16383) << 48 /* exponent */
+ | ((a >> 64) & 0x0000ffffffffffffLL); /* significand */
+ fb.u.low.all = (du_int)(a);
+ return fb.f;
}
#endif
diff --git a/lib/builtins/floatuntixf.c b/lib/builtins/floatuntixf.c
index f44919c91..675c3ef41 100644
--- a/lib/builtins/floatuntixf.c
+++ b/lib/builtins/floatuntixf.c
@@ -17,64 +17,58 @@
/* Returns: convert a to a long double, rounding toward even. */
-/* Assumption: long double is a IEEE 80 bit floating point type padded to 128 bits
- * tu_int is a 128 bit integral type
+/* Assumption: long double is a IEEE 80 bit floating point type padded to 128
+ * bits tu_int is a 128 bit integral type
*/
-/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee eeee |
- * 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm
+/* gggg gggg gggg gggg gggg gggg gggg gggg | gggg gggg gggg gggg seee eeee eeee
+ * eeee | 1mmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm
+ * mmmm mmmm mmmm
*/
-COMPILER_RT_ABI long double
-__floatuntixf(tu_int a)
-{
- if (a == 0)
- return 0.0;
- const unsigned N = sizeof(tu_int) * CHAR_BIT;
- int sd = N - __clzti2(a); /* number of significant digits */
- int e = sd - 1; /* exponent */
- if (sd > LDBL_MANT_DIG)
- {
- /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
- * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
- * 12345678901234567890123456
- * 1 = msb 1 bit
- * P = bit LDBL_MANT_DIG-1 bits to the right of 1
- * Q = bit LDBL_MANT_DIG bits to the right of 1
- * R = "or" of all bits to the right of Q
- */
- switch (sd)
- {
- case LDBL_MANT_DIG + 1:
- a <<= 1;
- break;
- case LDBL_MANT_DIG + 2:
- break;
- default:
- a = (a >> (sd - (LDBL_MANT_DIG+2))) |
- ((a & ((tu_int)(-1) >> ((N + LDBL_MANT_DIG+2) - sd))) != 0);
- };
- /* finish: */
- a |= (a & 4) != 0; /* Or P into R */
- ++a; /* round - this step may add a significant bit */
- a >>= 2; /* dump Q and R */
- /* a is now rounded to LDBL_MANT_DIG or LDBL_MANT_DIG+1 bits */
- if (a & ((tu_int)1 << LDBL_MANT_DIG))
- {
- a >>= 1;
- ++e;
- }
- /* a is now rounded to LDBL_MANT_DIG bits */
+COMPILER_RT_ABI long double __floatuntixf(tu_int a) {
+ if (a == 0)
+ return 0.0;
+ const unsigned N = sizeof(tu_int) * CHAR_BIT;
+ int sd = N - __clzti2(a); /* number of significant digits */
+ int e = sd - 1; /* exponent */
+ if (sd > LDBL_MANT_DIG) {
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
+ * 12345678901234567890123456
+ * 1 = msb 1 bit
+ * P = bit LDBL_MANT_DIG-1 bits to the right of 1
+ * Q = bit LDBL_MANT_DIG bits to the right of 1
+ * R = "or" of all bits to the right of Q
+ */
+ switch (sd) {
+ case LDBL_MANT_DIG + 1:
+ a <<= 1;
+ break;
+ case LDBL_MANT_DIG + 2:
+ break;
+ default:
+ a = (a >> (sd - (LDBL_MANT_DIG + 2))) |
+ ((a & ((tu_int)(-1) >> ((N + LDBL_MANT_DIG + 2) - sd))) != 0);
+ };
+ /* finish: */
+ a |= (a & 4) != 0; /* Or P into R */
+ ++a; /* round - this step may add a significant bit */
+ a >>= 2; /* dump Q and R */
+ /* a is now rounded to LDBL_MANT_DIG or LDBL_MANT_DIG+1 bits */
+ if (a & ((tu_int)1 << LDBL_MANT_DIG)) {
+ a >>= 1;
+ ++e;
}
- else
- {
- a <<= (LDBL_MANT_DIG - sd);
- /* a is now rounded to LDBL_MANT_DIG bits */
- }
- long_double_bits fb;
- fb.u.high.s.low = (e + 16383); /* exponent */
- fb.u.low.all = (du_int)a; /* mantissa */
- return fb.f;
+ /* a is now rounded to LDBL_MANT_DIG bits */
+ } else {
+ a <<= (LDBL_MANT_DIG - sd);
+ /* a is now rounded to LDBL_MANT_DIG bits */
+ }
+ long_double_bits fb;
+ fb.u.high.s.low = (e + 16383); /* exponent */
+ fb.u.low.all = (du_int)a; /* mantissa */
+ return fb.f;
}
#endif
diff --git a/lib/builtins/fp_add_impl.inc b/lib/builtins/fp_add_impl.inc
index f9a32ce67..b5a2fb098 100644
--- a/lib/builtins/fp_add_impl.inc
+++ b/lib/builtins/fp_add_impl.inc
@@ -14,130 +14,143 @@
#include "fp_lib.h"
static __inline fp_t __addXf3__(fp_t a, fp_t b) {
- rep_t aRep = toRep(a);
- rep_t bRep = toRep(b);
- const rep_t aAbs = aRep & absMask;
- const rep_t bAbs = bRep & absMask;
-
- // Detect if a or b is zero, infinity, or NaN.
- if (aAbs - REP_C(1) >= infRep - REP_C(1) ||
- bAbs - REP_C(1) >= infRep - REP_C(1)) {
- // NaN + anything = qNaN
- if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
- // anything + NaN = qNaN
- if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
-
- if (aAbs == infRep) {
- // +/-infinity + -/+infinity = qNaN
- if ((toRep(a) ^ toRep(b)) == signBit) return fromRep(qnanRep);
- // +/-infinity + anything remaining = +/- infinity
- else return a;
- }
-
- // anything remaining + +/-infinity = +/-infinity
- if (bAbs == infRep) return b;
-
- // zero + anything = anything
- if (!aAbs) {
- // but we need to get the sign right for zero + zero
- if (!bAbs) return fromRep(toRep(a) & toRep(b));
- else return b;
- }
-
- // anything + zero = anything
- if (!bAbs) return a;
+ rep_t aRep = toRep(a);
+ rep_t bRep = toRep(b);
+ const rep_t aAbs = aRep & absMask;
+ const rep_t bAbs = bRep & absMask;
+
+ // Detect if a or b is zero, infinity, or NaN.
+ if (aAbs - REP_C(1) >= infRep - REP_C(1) ||
+ bAbs - REP_C(1) >= infRep - REP_C(1)) {
+ // NaN + anything = qNaN
+ if (aAbs > infRep)
+ return fromRep(toRep(a) | quietBit);
+ // anything + NaN = qNaN
+ if (bAbs > infRep)
+ return fromRep(toRep(b) | quietBit);
+
+ if (aAbs == infRep) {
+ // +/-infinity + -/+infinity = qNaN
+ if ((toRep(a) ^ toRep(b)) == signBit)
+ return fromRep(qnanRep);
+ // +/-infinity + anything remaining = +/- infinity
+ else
+ return a;
}
- // Swap a and b if necessary so that a has the larger absolute value.
- if (bAbs > aAbs) {
- const rep_t temp = aRep;
- aRep = bRep;
- bRep = temp;
+ // anything remaining + +/-infinity = +/-infinity
+ if (bAbs == infRep)
+ return b;
+
+ // zero + anything = anything
+ if (!aAbs) {
+ // but we need to get the sign right for zero + zero
+ if (!bAbs)
+ return fromRep(toRep(a) & toRep(b));
+ else
+ return b;
}
- // Extract the exponent and significand from the (possibly swapped) a and b.
- int aExponent = aRep >> significandBits & maxExponent;
- int bExponent = bRep >> significandBits & maxExponent;
- rep_t aSignificand = aRep & significandMask;
- rep_t bSignificand = bRep & significandMask;
-
- // Normalize any denormals, and adjust the exponent accordingly.
- if (aExponent == 0) aExponent = normalize(&aSignificand);
- if (bExponent == 0) bExponent = normalize(&bSignificand);
-
- // The sign of the result is the sign of the larger operand, a. If they
- // have opposite signs, we are performing a subtraction; otherwise addition.
- const rep_t resultSign = aRep & signBit;
- const bool subtraction = (aRep ^ bRep) & signBit;
-
- // Shift the significands to give us round, guard and sticky, and or in the
- // implicit significand bit. (If we fell through from the denormal path it
- // was already set by normalize( ), but setting it twice won't hurt
- // anything.)
- aSignificand = (aSignificand | implicitBit) << 3;
- bSignificand = (bSignificand | implicitBit) << 3;
-
- // Shift the significand of b by the difference in exponents, with a sticky
- // bottom bit to get rounding correct.
- const unsigned int align = aExponent - bExponent;
- if (align) {
- if (align < typeWidth) {
- const bool sticky = bSignificand << (typeWidth - align);
- bSignificand = bSignificand >> align | sticky;
- } else {
- bSignificand = 1; // sticky; b is known to be non-zero.
- }
+ // anything + zero = anything
+ if (!bAbs)
+ return a;
+ }
+
+ // Swap a and b if necessary so that a has the larger absolute value.
+ if (bAbs > aAbs) {
+ const rep_t temp = aRep;
+ aRep = bRep;
+ bRep = temp;
+ }
+
+ // Extract the exponent and significand from the (possibly swapped) a and b.
+ int aExponent = aRep >> significandBits & maxExponent;
+ int bExponent = bRep >> significandBits & maxExponent;
+ rep_t aSignificand = aRep & significandMask;
+ rep_t bSignificand = bRep & significandMask;
+
+ // Normalize any denormals, and adjust the exponent accordingly.
+ if (aExponent == 0)
+ aExponent = normalize(&aSignificand);
+ if (bExponent == 0)
+ bExponent = normalize(&bSignificand);
+
+ // The sign of the result is the sign of the larger operand, a. If they
+ // have opposite signs, we are performing a subtraction; otherwise addition.
+ const rep_t resultSign = aRep & signBit;
+ const bool subtraction = (aRep ^ bRep) & signBit;
+
+ // Shift the significands to give us round, guard and sticky, and or in the
+ // implicit significand bit. (If we fell through from the denormal path it
+ // was already set by normalize( ), but setting it twice won't hurt
+ // anything.)
+ aSignificand = (aSignificand | implicitBit) << 3;
+ bSignificand = (bSignificand | implicitBit) << 3;
+
+ // Shift the significand of b by the difference in exponents, with a sticky
+ // bottom bit to get rounding correct.
+ const unsigned int align = aExponent - bExponent;
+ if (align) {
+ if (align < typeWidth) {
+ const bool sticky = bSignificand << (typeWidth - align);
+ bSignificand = bSignificand >> align | sticky;
+ } else {
+ bSignificand = 1; // sticky; b is known to be non-zero.
}
- if (subtraction) {
- aSignificand -= bSignificand;
- // If a == -b, return +zero.
- if (aSignificand == 0) return fromRep(0);
-
- // If partial cancellation occured, we need to left-shift the result
- // and adjust the exponent:
- if (aSignificand < implicitBit << 3) {
- const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3);
- aSignificand <<= shift;
- aExponent -= shift;
- }
+ }
+ if (subtraction) {
+ aSignificand -= bSignificand;
+ // If a == -b, return +zero.
+ if (aSignificand == 0)
+ return fromRep(0);
+
+ // If partial cancellation occured, we need to left-shift the result
+ // and adjust the exponent:
+ if (aSignificand < implicitBit << 3) {
+ const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3);
+ aSignificand <<= shift;
+ aExponent -= shift;
}
- else /* addition */ {
- aSignificand += bSignificand;
-
- // If the addition carried up, we need to right-shift the result and
- // adjust the exponent:
- if (aSignificand & implicitBit << 4) {
- const bool sticky = aSignificand & 1;
- aSignificand = aSignificand >> 1 | sticky;
- aExponent += 1;
- }
+ } else /* addition */ {
+ aSignificand += bSignificand;
+
+ // If the addition carried up, we need to right-shift the result and
+ // adjust the exponent:
+ if (aSignificand & implicitBit << 4) {
+ const bool sticky = aSignificand & 1;
+ aSignificand = aSignificand >> 1 | sticky;
+ aExponent += 1;
}
-
- // If we have overflowed the type, return +/- infinity:
- if (aExponent >= maxExponent) return fromRep(infRep | resultSign);
-
- if (aExponent <= 0) {
- // Result is denormal before rounding; the exponent is zero and we
- // need to shift the significand.
- const int shift = 1 - aExponent;
- const bool sticky = aSignificand << (typeWidth - shift);
- aSignificand = aSignificand >> shift | sticky;
- aExponent = 0;
- }
-
- // Low three bits are round, guard, and sticky.
- const int roundGuardSticky = aSignificand & 0x7;
-
- // Shift the significand into place, and mask off the implicit bit.
- rep_t result = aSignificand >> 3 & significandMask;
-
- // Insert the exponent and sign.
- result |= (rep_t)aExponent << significandBits;
- result |= resultSign;
-
- // Final rounding. The result may overflow to infinity, but that is the
- // correct result in that case.
- if (roundGuardSticky > 0x4) result++;
- if (roundGuardSticky == 0x4) result += result & 1;
- return fromRep(result);
+ }
+
+ // If we have overflowed the type, return +/- infinity:
+ if (aExponent >= maxExponent)
+ return fromRep(infRep | resultSign);
+
+ if (aExponent <= 0) {
+ // Result is denormal before rounding; the exponent is zero and we
+ // need to shift the significand.
+ const int shift = 1 - aExponent;
+ const bool sticky = aSignificand << (typeWidth - shift);
+ aSignificand = aSignificand >> shift | sticky;
+ aExponent = 0;
+ }
+
+ // Low three bits are round, guard, and sticky.
+ const int roundGuardSticky = aSignificand & 0x7;
+
+ // Shift the significand into place, and mask off the implicit bit.
+ rep_t result = aSignificand >> 3 & significandMask;
+
+ // Insert the exponent and sign.
+ result |= (rep_t)aExponent << significandBits;
+ result |= resultSign;
+
+ // Final rounding. The result may overflow to infinity, but that is the
+ // correct result in that case.
+ if (roundGuardSticky > 0x4)
+ result++;
+ if (roundGuardSticky == 0x4)
+ result += result & 1;
+ return fromRep(result);
}
diff --git a/lib/builtins/fp_extend.h b/lib/builtins/fp_extend.h
index 08a135c82..d2083c426 100644
--- a/lib/builtins/fp_extend.h
+++ b/lib/builtins/fp_extend.h
@@ -1,4 +1,5 @@
-//===-lib/fp_extend.h - low precision -> high precision conversion -*- C -*-===//
+//===-lib/fp_extend.h - low precision -> high precision conversion -*- C
+//-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
@@ -29,12 +30,12 @@ typedef uint64_t src_rep_t;
static const int srcSigBits = 52;
static __inline int src_rep_t_clz(src_rep_t a) {
#if defined __LP64__
- return __builtin_clzl(a);
+ return __builtin_clzl(a);
#else
- if (a & REP_C(0xffffffff00000000))
- return __builtin_clz(a >> 32);
- else
- return 32 + __builtin_clz(a & REP_C(0xffffffff));
+ if (a & REP_C(0xffffffff00000000))
+ return __builtin_clz(a >> 32);
+ else
+ return 32 + __builtin_clz(a & REP_C(0xffffffff));
#endif
}
@@ -47,7 +48,7 @@ static const int srcSigBits = 10;
#else
#error Source should be half, single, or double precision!
-#endif //end source precision
+#endif // end source precision
#if defined DST_SINGLE
typedef float dst_t;
@@ -69,20 +70,26 @@ static const int dstSigBits = 112;
#else
#error Destination should be single, double, or quad precision!
-#endif //end destination precision
+#endif // end destination precision
// End of specialization parameters. Two helper routines for conversion to and
// from the representation of floating-point data as integer values follow.
static __inline src_rep_t srcToRep(src_t x) {
- const union { src_t f; src_rep_t i; } rep = {.f = x};
- return rep.i;
+ const union {
+ src_t f;
+ src_rep_t i;
+ } rep = {.f = x};
+ return rep.i;
}
static __inline dst_t dstFromRep(dst_rep_t x) {
- const union { dst_t f; dst_rep_t i; } rep = {.i = x};
- return rep.f;
+ const union {
+ dst_t f;
+ dst_rep_t i;
+ } rep = {.i = x};
+ return rep.f;
}
// End helper routines. Conversion implementation follows.
-#endif //FP_EXTEND_HEADER
+#endif // FP_EXTEND_HEADER
diff --git a/lib/builtins/fp_extend_impl.inc b/lib/builtins/fp_extend_impl.inc
index 5763cd1d9..4fa3ed8d9 100644
--- a/lib/builtins/fp_extend_impl.inc
+++ b/lib/builtins/fp_extend_impl.inc
@@ -38,70 +38,70 @@
#include "fp_extend.h"
static __inline dst_t __extendXfYf2__(src_t a) {
- // Various constants whose values follow from the type parameters.
- // Any reasonable optimizer will fold and propagate all of these.
- const int srcBits = sizeof(src_t)*CHAR_BIT;
- const int srcExpBits = srcBits - srcSigBits - 1;
- const int srcInfExp = (1 << srcExpBits) - 1;
- const int srcExpBias = srcInfExp >> 1;
+ // Various constants whose values follow from the type parameters.
+ // Any reasonable optimizer will fold and propagate all of these.
+ const int srcBits = sizeof(src_t) * CHAR_BIT;
+ const int srcExpBits = srcBits - srcSigBits - 1;
+ const int srcInfExp = (1 << srcExpBits) - 1;
+ const int srcExpBias = srcInfExp >> 1;
- const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
- const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
- const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
- const src_rep_t srcAbsMask = srcSignMask - 1;
- const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
- const src_rep_t srcNaNCode = srcQNaN - 1;
+ const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
+ const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
+ const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
+ const src_rep_t srcAbsMask = srcSignMask - 1;
+ const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
+ const src_rep_t srcNaNCode = srcQNaN - 1;
- const int dstBits = sizeof(dst_t)*CHAR_BIT;
- const int dstExpBits = dstBits - dstSigBits - 1;
- const int dstInfExp = (1 << dstExpBits) - 1;
- const int dstExpBias = dstInfExp >> 1;
+ const int dstBits = sizeof(dst_t) * CHAR_BIT;
+ const int dstExpBits = dstBits - dstSigBits - 1;
+ const int dstInfExp = (1 << dstExpBits) - 1;
+ const int dstExpBias = dstInfExp >> 1;
- const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
+ const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
- // Break a into a sign and representation of the absolute value
- const src_rep_t aRep = srcToRep(a);
- const src_rep_t aAbs = aRep & srcAbsMask;
- const src_rep_t sign = aRep & srcSignMask;
- dst_rep_t absResult;
+ // Break a into a sign and representation of the absolute value
+ const src_rep_t aRep = srcToRep(a);
+ const src_rep_t aAbs = aRep & srcAbsMask;
+ const src_rep_t sign = aRep & srcSignMask;
+ dst_rep_t absResult;
- // If sizeof(src_rep_t) < sizeof(int), the subtraction result is promoted
- // to (signed) int. To avoid that, explicitly cast to src_rep_t.
- if ((src_rep_t)(aAbs - srcMinNormal) < srcInfinity - srcMinNormal) {
- // a is a normal number.
- // Extend to the destination type by shifting the significand and
- // exponent into the proper position and rebiasing the exponent.
- absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits);
- absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits;
- }
+ // If sizeof(src_rep_t) < sizeof(int), the subtraction result is promoted
+ // to (signed) int. To avoid that, explicitly cast to src_rep_t.
+ if ((src_rep_t)(aAbs - srcMinNormal) < srcInfinity - srcMinNormal) {
+ // a is a normal number.
+ // Extend to the destination type by shifting the significand and
+ // exponent into the proper position and rebiasing the exponent.
+ absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits);
+ absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits;
+ }
- else if (aAbs >= srcInfinity) {
- // a is NaN or infinity.
- // Conjure the result by beginning with infinity, then setting the qNaN
- // bit (if needed) and right-aligning the rest of the trailing NaN
- // payload field.
- absResult = (dst_rep_t)dstInfExp << dstSigBits;
- absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
- absResult |= (dst_rep_t)(aAbs & srcNaNCode) << (dstSigBits - srcSigBits);
- }
+ else if (aAbs >= srcInfinity) {
+ // a is NaN or infinity.
+ // Conjure the result by beginning with infinity, then setting the qNaN
+ // bit (if needed) and right-aligning the rest of the trailing NaN
+ // payload field.
+ absResult = (dst_rep_t)dstInfExp << dstSigBits;
+ absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
+ absResult |= (dst_rep_t)(aAbs & srcNaNCode) << (dstSigBits - srcSigBits);
+ }
- else if (aAbs) {
- // a is denormal.
- // renormalize the significand and clear the leading bit, then insert
- // the correct adjusted exponent in the destination type.
- const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal);
- absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale);
- absResult ^= dstMinNormal;
- const int resultExponent = dstExpBias - srcExpBias - scale + 1;
- absResult |= (dst_rep_t)resultExponent << dstSigBits;
- }
+ else if (aAbs) {
+ // a is denormal.
+ // renormalize the significand and clear the leading bit, then insert
+ // the correct adjusted exponent in the destination type.
+ const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal);
+ absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale);
+ absResult ^= dstMinNormal;
+ const int resultExponent = dstExpBias - srcExpBias - scale + 1;
+ absResult |= (dst_rep_t)resultExponent << dstSigBits;
+ }
- else {
- // a is zero.
- absResult = 0;
- }
+ else {
+ // a is zero.
+ absResult = 0;
+ }
- // Apply the signbit to (dst_t)abs(a).
- const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
- return dstFromRep(result);
+ // Apply the signbit to (dst_t)abs(a).
+ const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
+ return dstFromRep(result);
}
diff --git a/lib/builtins/fp_fixint_impl.inc b/lib/builtins/fp_fixint_impl.inc
index 0139b05f6..263786bdd 100644
--- a/lib/builtins/fp_fixint_impl.inc
+++ b/lib/builtins/fp_fixint_impl.inc
@@ -14,27 +14,27 @@
#include "fp_lib.h"
static __inline fixint_t __fixint(fp_t a) {
- const fixint_t fixint_max = (fixint_t)((~(fixuint_t)0) / 2);
- const fixint_t fixint_min = -fixint_max - 1;
- // Break a into sign, exponent, significand
- const rep_t aRep = toRep(a);
- const rep_t aAbs = aRep & absMask;
- const fixint_t sign = aRep & signBit ? -1 : 1;
- const int exponent = (aAbs >> significandBits) - exponentBias;
- const rep_t significand = (aAbs & significandMask) | implicitBit;
+ const fixint_t fixint_max = (fixint_t)((~(fixuint_t)0) / 2);
+ const fixint_t fixint_min = -fixint_max - 1;
+ // Break a into sign, exponent, significand
+ const rep_t aRep = toRep(a);
+ const rep_t aAbs = aRep & absMask;
+ const fixint_t sign = aRep & signBit ? -1 : 1;
+ const int exponent = (aAbs >> significandBits) - exponentBias;
+ const rep_t significand = (aAbs & significandMask) | implicitBit;
- // If exponent is negative, the result is zero.
- if (exponent < 0)
- return 0;
+ // If exponent is negative, the result is zero.
+ if (exponent < 0)
+ return 0;
- // If the value is too large for the integer type, saturate.
- if ((unsigned)exponent >= sizeof(fixint_t) * CHAR_BIT)
- return sign == 1 ? fixint_max : fixint_min;
+ // If the value is too large for the integer type, saturate.
+ if ((unsigned)exponent >= sizeof(fixint_t) * CHAR_BIT)
+ return sign == 1 ? fixint_max : fixint_min;
- // If 0 <= exponent < significandBits, right shift to get the result.
- // Otherwise, shift left.
- if (exponent < significandBits)
- return sign * (significand >> (significandBits - exponent));
- else
- return sign * ((fixint_t)significand << (exponent - significandBits));
+ // If 0 <= exponent < significandBits, right shift to get the result.
+ // Otherwise, shift left.
+ if (exponent < significandBits)
+ return sign * (significand >> (significandBits - exponent));
+ else
+ return sign * ((fixint_t)significand << (exponent - significandBits));
}
diff --git a/lib/builtins/fp_fixuint_impl.inc b/lib/builtins/fp_fixuint_impl.inc
index 73b109341..5fd361611 100644
--- a/lib/builtins/fp_fixuint_impl.inc
+++ b/lib/builtins/fp_fixuint_impl.inc
@@ -14,25 +14,25 @@
#include "fp_lib.h"
static __inline fixuint_t __fixuint(fp_t a) {
- // Break a into sign, exponent, significand
- const rep_t aRep = toRep(a);
- const rep_t aAbs = aRep & absMask;
- const int sign = aRep & signBit ? -1 : 1;
- const int exponent = (aAbs >> significandBits) - exponentBias;
- const rep_t significand = (aAbs & significandMask) | implicitBit;
+ // Break a into sign, exponent, significand
+ const rep_t aRep = toRep(a);
+ const rep_t aAbs = aRep & absMask;
+ const int sign = aRep & signBit ? -1 : 1;
+ const int exponent = (aAbs >> significandBits) - exponentBias;
+ const rep_t significand = (aAbs & significandMask) | implicitBit;
- // If either the value or the exponent is negative, the result is zero.
- if (sign == -1 || exponent < 0)
- return 0;
+ // If either the value or the exponent is negative, the result is zero.
+ if (sign == -1 || exponent < 0)
+ return 0;
- // If the value is too large for the integer type, saturate.
- if ((unsigned)exponent >= sizeof(fixuint_t) * CHAR_BIT)
- return ~(fixuint_t)0;
+ // If the value is too large for the integer type, saturate.
+ if ((unsigned)exponent >= sizeof(fixuint_t) * CHAR_BIT)
+ return ~(fixuint_t)0;
- // If 0 <= exponent < significandBits, right shift to get the result.
- // Otherwise, shift left.
- if (exponent < significandBits)
- return significand >> (significandBits - exponent);
- else
- return (fixuint_t)significand << (exponent - significandBits);
+ // If 0 <= exponent < significandBits, right shift to get the result.
+ // Otherwise, shift left.
+ if (exponent < significandBits)
+ return significand >> (significandBits - exponent);
+ else
+ return (fixuint_t)significand << (exponent - significandBits);
}
diff --git a/lib/builtins/fp_lib.h b/lib/builtins/fp_lib.h
index 74ef5709e..83c3081aa 100644
--- a/lib/builtins/fp_lib.h
+++ b/lib/builtins/fp_lib.h
@@ -20,22 +20,22 @@
#ifndef FP_LIB_HEADER
#define FP_LIB_HEADER
-#include <stdint.h>
-#include <stdbool.h>
-#include <limits.h>
#include "int_lib.h"
#include "int_math.h"
+#include <limits.h>
+#include <stdbool.h>
+#include <stdint.h>
// x86_64 FreeBSD prior v9.3 define fixed-width types incorrectly in
// 32-bit mode.
#if defined(__FreeBSD__) && defined(__i386__)
-# include <sys/param.h>
-# if __FreeBSD_version < 903000 // v9.3
-# define uint64_t unsigned long long
-# define int64_t long long
-# undef UINT64_C
-# define UINT64_C(c) (c ## ULL)
-# endif
+#include <sys/param.h>
+#if __FreeBSD_version < 903000 // v9.3
+#define uint64_t unsigned long long
+#define int64_t long long
+#undef UINT64_C
+#define UINT64_C(c) (c##ULL)
+#endif
#endif
#if defined SINGLE_PRECISION
@@ -46,15 +46,13 @@ typedef float fp_t;
#define REP_C UINT32_C
#define significandBits 23
-static __inline int rep_clz(rep_t a) {
- return __builtin_clz(a);
-}
+static __inline int rep_clz(rep_t a) { return __builtin_clz(a); }
// 32x32 --> 64 bit multiply
static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
- const uint64_t product = (uint64_t)a*b;
- *hi = product >> 32;
- *lo = product;
+ const uint64_t product = (uint64_t)a * b;
+ *hi = product >> 32;
+ *lo = product;
}
COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b);
@@ -68,12 +66,12 @@ typedef double fp_t;
static __inline int rep_clz(rep_t a) {
#if defined __LP64__
- return __builtin_clzl(a);
+ return __builtin_clzl(a);
#else
- if (a & REP_C(0xffffffff00000000))
- return __builtin_clz(a >> 32);
- else
- return 32 + __builtin_clz(a & REP_C(0xffffffff));
+ if (a & REP_C(0xffffffff00000000))
+ return __builtin_clz(a >> 32);
+ else
+ return 32 + __builtin_clz(a & REP_C(0xffffffff));
#endif
}
@@ -84,17 +82,17 @@ static __inline int rep_clz(rep_t a) {
// many 64-bit platforms have this operation, but they tend to have hardware
// floating-point, so we don't bother with a special case for them here.
static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
- // Each of the component 32x32 -> 64 products
- const uint64_t plolo = loWord(a) * loWord(b);
- const uint64_t plohi = loWord(a) * hiWord(b);
- const uint64_t philo = hiWord(a) * loWord(b);
- const uint64_t phihi = hiWord(a) * hiWord(b);
- // Sum terms that contribute to lo in a way that allows us to get the carry
- const uint64_t r0 = loWord(plolo);
- const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
- *lo = r0 + (r1 << 32);
- // Sum terms contributing to hi with the carry from lo
- *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
+ // Each of the component 32x32 -> 64 products
+ const uint64_t plolo = loWord(a) * loWord(b);
+ const uint64_t plohi = loWord(a) * hiWord(b);
+ const uint64_t philo = hiWord(a) * loWord(b);
+ const uint64_t phihi = hiWord(a) * hiWord(b);
+ // Sum terms that contribute to lo in a way that allows us to get the carry
+ const uint64_t r0 = loWord(plolo);
+ const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
+ *lo = r0 + (r1 << 32);
+ // Sum terms contributing to hi with the carry from lo
+ *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
}
#undef loWord
#undef hiWord
@@ -113,32 +111,34 @@ typedef long double fp_t;
#define significandBits 112
static __inline int rep_clz(rep_t a) {
- const union
- {
- __uint128_t ll;
+ const union {
+ __uint128_t ll;
#if _YUGA_BIG_ENDIAN
- struct { uint64_t high, low; } s;
+ struct {
+ uint64_t high, low;
+ } s;
#else
- struct { uint64_t low, high; } s;
+ struct {
+ uint64_t low, high;
+ } s;
#endif
- } uu = { .ll = a };
+ } uu = {.ll = a};
- uint64_t word;
- uint64_t add;
+ uint64_t word;
+ uint64_t add;
- if (uu.s.high){
- word = uu.s.high;
- add = 0;
- }
- else{
- word = uu.s.low;
- add = 64;
- }
- return __builtin_clzll(word) + add;
+ if (uu.s.high) {
+ word = uu.s.high;
+ add = 0;
+ } else {
+ word = uu.s.low;
+ add = 64;
+ }
+ return __builtin_clzll(word) + add;
}
-#define Word_LoMask UINT64_C(0x00000000ffffffff)
-#define Word_HiMask UINT64_C(0xffffffff00000000)
+#define Word_LoMask UINT64_C(0x00000000ffffffff)
+#define Word_HiMask UINT64_C(0xffffffff00000000)
#define Word_FullMask UINT64_C(0xffffffffffffffff)
#define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask)
#define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask)
@@ -150,55 +150,41 @@ static __inline int rep_clz(rep_t a) {
// floating-point, so we don't bother with a special case for them here.
static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
- const uint64_t product11 = Word_1(a) * Word_1(b);
- const uint64_t product12 = Word_1(a) * Word_2(b);
- const uint64_t product13 = Word_1(a) * Word_3(b);
- const uint64_t product14 = Word_1(a) * Word_4(b);
- const uint64_t product21 = Word_2(a) * Word_1(b);
- const uint64_t product22 = Word_2(a) * Word_2(b);
- const uint64_t product23 = Word_2(a) * Word_3(b);
- const uint64_t product24 = Word_2(a) * Word_4(b);
- const uint64_t product31 = Word_3(a) * Word_1(b);
- const uint64_t product32 = Word_3(a) * Word_2(b);
- const uint64_t product33 = Word_3(a) * Word_3(b);
- const uint64_t product34 = Word_3(a) * Word_4(b);
- const uint64_t product41 = Word_4(a) * Word_1(b);
- const uint64_t product42 = Word_4(a) * Word_2(b);
- const uint64_t product43 = Word_4(a) * Word_3(b);
- const uint64_t product44 = Word_4(a) * Word_4(b);
-
- const __uint128_t sum0 = (__uint128_t)product44;
- const __uint128_t sum1 = (__uint128_t)product34 +
- (__uint128_t)product43;
- const __uint128_t sum2 = (__uint128_t)product24 +
- (__uint128_t)product33 +
- (__uint128_t)product42;
- const __uint128_t sum3 = (__uint128_t)product14 +
- (__uint128_t)product23 +
- (__uint128_t)product32 +
- (__uint128_t)product41;
- const __uint128_t sum4 = (__uint128_t)product13 +
- (__uint128_t)product22 +
- (__uint128_t)product31;
- const __uint128_t sum5 = (__uint128_t)product12 +
- (__uint128_t)product21;
- const __uint128_t sum6 = (__uint128_t)product11;
-
- const __uint128_t r0 = (sum0 & Word_FullMask) +
- ((sum1 & Word_LoMask) << 32);
- const __uint128_t r1 = (sum0 >> 64) +
- ((sum1 >> 32) & Word_FullMask) +
- (sum2 & Word_FullMask) +
- ((sum3 << 32) & Word_HiMask);
-
- *lo = r0 + (r1 << 64);
- *hi = (r1 >> 64) +
- (sum1 >> 96) +
- (sum2 >> 64) +
- (sum3 >> 32) +
- sum4 +
- (sum5 << 32) +
- (sum6 << 64);
+ const uint64_t product11 = Word_1(a) * Word_1(b);
+ const uint64_t product12 = Word_1(a) * Word_2(b);
+ const uint64_t product13 = Word_1(a) * Word_3(b);
+ const uint64_t product14 = Word_1(a) * Word_4(b);
+ const uint64_t product21 = Word_2(a) * Word_1(b);
+ const uint64_t product22 = Word_2(a) * Word_2(b);
+ const uint64_t product23 = Word_2(a) * Word_3(b);
+ const uint64_t product24 = Word_2(a) * Word_4(b);
+ const uint64_t product31 = Word_3(a) * Word_1(b);
+ const uint64_t product32 = Word_3(a) * Word_2(b);
+ const uint64_t product33 = Word_3(a) * Word_3(b);
+ const uint64_t product34 = Word_3(a) * Word_4(b);
+ const uint64_t product41 = Word_4(a) * Word_1(b);
+ const uint64_t product42 = Word_4(a) * Word_2(b);
+ const uint64_t product43 = Word_4(a) * Word_3(b);
+ const uint64_t product44 = Word_4(a) * Word_4(b);
+
+ const __uint128_t sum0 = (__uint128_t)product44;
+ const __uint128_t sum1 = (__uint128_t)product34 + (__uint128_t)product43;
+ const __uint128_t sum2 =
+ (__uint128_t)product24 + (__uint128_t)product33 + (__uint128_t)product42;
+ const __uint128_t sum3 = (__uint128_t)product14 + (__uint128_t)product23 +
+ (__uint128_t)product32 + (__uint128_t)product41;
+ const __uint128_t sum4 =
+ (__uint128_t)product13 + (__uint128_t)product22 + (__uint128_t)product31;
+ const __uint128_t sum5 = (__uint128_t)product12 + (__uint128_t)product21;
+ const __uint128_t sum6 = (__uint128_t)product11;
+
+ const __uint128_t r0 = (sum0 & Word_FullMask) + ((sum1 & Word_LoMask) << 32);
+ const __uint128_t r1 = (sum0 >> 64) + ((sum1 >> 32) & Word_FullMask) +
+ (sum2 & Word_FullMask) + ((sum3 << 32) & Word_HiMask);
+
+ *lo = r0 + (r1 << 64);
+ *hi = (r1 >> 64) + (sum1 >> 96) + (sum2 >> 64) + (sum3 >> 32) + sum4 +
+ (sum5 << 32) + (sum6 << 64);
}
#undef Word_1
#undef Word_2
@@ -212,58 +198,65 @@ static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
#error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined.
#endif
-#if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || defined(CRT_LDBL_128BIT)
-#define typeWidth (sizeof(rep_t)*CHAR_BIT)
-#define exponentBits (typeWidth - significandBits - 1)
-#define maxExponent ((1 << exponentBits) - 1)
-#define exponentBias (maxExponent >> 1)
+#if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || \
+ defined(CRT_LDBL_128BIT)
+#define typeWidth (sizeof(rep_t) * CHAR_BIT)
+#define exponentBits (typeWidth - significandBits - 1)
+#define maxExponent ((1 << exponentBits) - 1)
+#define exponentBias (maxExponent >> 1)
-#define implicitBit (REP_C(1) << significandBits)
+#define implicitBit (REP_C(1) << significandBits)
#define significandMask (implicitBit - 1U)
-#define signBit (REP_C(1) << (significandBits + exponentBits))
-#define absMask (signBit - 1U)
-#define exponentMask (absMask ^ significandMask)
-#define oneRep ((rep_t)exponentBias << significandBits)
-#define infRep exponentMask
-#define quietBit (implicitBit >> 1)
-#define qnanRep (exponentMask | quietBit)
+#define signBit (REP_C(1) << (significandBits + exponentBits))
+#define absMask (signBit - 1U)
+#define exponentMask (absMask ^ significandMask)
+#define oneRep ((rep_t)exponentBias << significandBits)
+#define infRep exponentMask
+#define quietBit (implicitBit >> 1)
+#define qnanRep (exponentMask | quietBit)
static __inline rep_t toRep(fp_t x) {
- const union { fp_t f; rep_t i; } rep = {.f = x};
- return rep.i;
+ const union {
+ fp_t f;
+ rep_t i;
+ } rep = {.f = x};
+ return rep.i;
}
static __inline fp_t fromRep(rep_t x) {
- const union { fp_t f; rep_t i; } rep = {.i = x};
- return rep.f;
+ const union {
+ fp_t f;
+ rep_t i;
+ } rep = {.i = x};
+ return rep.f;
}
static __inline int normalize(rep_t *significand) {
- const int shift = rep_clz(*significand) - rep_clz(implicitBit);
- *significand <<= shift;
- return 1 - shift;
+ const int shift = rep_clz(*significand) - rep_clz(implicitBit);
+ *significand <<= shift;
+ return 1 - shift;
}
static __inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) {
- *hi = *hi << count | *lo >> (typeWidth - count);
- *lo = *lo << count;
+ *hi = *hi << count | *lo >> (typeWidth - count);
+ *lo = *lo << count;
}
-static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, unsigned int count) {
- if (count < typeWidth) {
- const bool sticky = *lo << (typeWidth - count);
- *lo = *hi << (typeWidth - count) | *lo >> count | sticky;
- *hi = *hi >> count;
- }
- else if (count < 2*typeWidth) {
- const bool sticky = *hi << (2*typeWidth - count) | *lo;
- *lo = *hi >> (count - typeWidth) | sticky;
- *hi = 0;
- } else {
- const bool sticky = *hi | *lo;
- *lo = sticky;
- *hi = 0;
- }
+static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo,
+ unsigned int count) {
+ if (count < typeWidth) {
+ const bool sticky = *lo << (typeWidth - count);
+ *lo = *hi << (typeWidth - count) | *lo >> count | sticky;
+ *hi = *hi >> count;
+ } else if (count < 2 * typeWidth) {
+ const bool sticky = *hi << (2 * typeWidth - count) | *lo;
+ *lo = *hi >> (count - typeWidth) | sticky;
+ *hi = 0;
+ } else {
+ const bool sticky = *hi | *lo;
+ *lo = sticky;
+ *hi = 0;
+ }
}
// Implements logb methods (logb, logbf, logbl) for IEEE-754. This avoids
@@ -279,9 +272,9 @@ static __inline fp_t __compiler_rt_logbX(fp_t x) {
// 2) 0.0 returns -inf
if (exp == maxExponent) {
if (((rep & signBit) == 0) || (x != x)) {
- return x; // NaN or +inf: return x
+ return x; // NaN or +inf: return x
} else {
- return -x; // -inf: return -x
+ return -x; // -inf: return -x
}
} else if (x == 0.0) {
// 0.0: return -inf
@@ -290,13 +283,13 @@ static __inline fp_t __compiler_rt_logbX(fp_t x) {
if (exp != 0) {
// Normal number
- return exp - exponentBias; // Unbias exponent
+ return exp - exponentBias; // Unbias exponent
} else {
// Subnormal number; normalize and repeat
rep &= absMask;
const int shift = 1 - normalize(&rep);
exp = (rep & exponentMask) >> significandBits;
- return exp - exponentBias - shift; // Unbias exponent
+ return exp - exponentBias - shift; // Unbias exponent
}
}
#endif
@@ -310,17 +303,17 @@ static __inline fp_t __compiler_rt_logb(fp_t x) {
return __compiler_rt_logbX(x);
}
#elif defined(QUAD_PRECISION)
- #if defined(CRT_LDBL_128BIT)
+#if defined(CRT_LDBL_128BIT)
static __inline fp_t __compiler_rt_logbl(fp_t x) {
return __compiler_rt_logbX(x);
}
- #else
+#else
// The generic implementation only works for ieee754 floating point. For other
// floating point types, continue to rely on the libm implementation for now.
static __inline long double __compiler_rt_logbl(long double x) {
return crt_logbl(x);
}
- #endif
+#endif
#endif
#endif // FP_LIB_HEADER
diff --git a/lib/builtins/fp_mul_impl.inc b/lib/builtins/fp_mul_impl.inc
index 8934e6334..ebfc40b86 100644
--- a/lib/builtins/fp_mul_impl.inc
+++ b/lib/builtins/fp_mul_impl.inc
@@ -14,102 +14,118 @@
#include "fp_lib.h"
static __inline fp_t __mulXf3__(fp_t a, fp_t b) {
- const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
- const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
- const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit;
-
- rep_t aSignificand = toRep(a) & significandMask;
- rep_t bSignificand = toRep(b) & significandMask;
- int scale = 0;
-
- // Detect if a or b is zero, denormal, infinity, or NaN.
- if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
-
- const rep_t aAbs = toRep(a) & absMask;
- const rep_t bAbs = toRep(b) & absMask;
-
- // NaN * anything = qNaN
- if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
- // anything * NaN = qNaN
- if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
-
- if (aAbs == infRep) {
- // infinity * non-zero = +/- infinity
- if (bAbs) return fromRep(aAbs | productSign);
- // infinity * zero = NaN
- else return fromRep(qnanRep);
- }
-
- if (bAbs == infRep) {
- //? non-zero * infinity = +/- infinity
- if (aAbs) return fromRep(bAbs | productSign);
- // zero * infinity = NaN
- else return fromRep(qnanRep);
- }
-
- // zero * anything = +/- zero
- if (!aAbs) return fromRep(productSign);
- // anything * zero = +/- zero
- if (!bAbs) return fromRep(productSign);
-
- // one or both of a or b is denormal, the other (if applicable) is a
- // normal number. Renormalize one or both of a and b, and set scale to
- // include the necessary exponent adjustment.
- if (aAbs < implicitBit) scale += normalize(&aSignificand);
- if (bAbs < implicitBit) scale += normalize(&bSignificand);
+ const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
+ const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
+ const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit;
+
+ rep_t aSignificand = toRep(a) & significandMask;
+ rep_t bSignificand = toRep(b) & significandMask;
+ int scale = 0;
+
+ // Detect if a or b is zero, denormal, infinity, or NaN.
+ if (aExponent - 1U >= maxExponent - 1U ||
+ bExponent - 1U >= maxExponent - 1U) {
+
+ const rep_t aAbs = toRep(a) & absMask;
+ const rep_t bAbs = toRep(b) & absMask;
+
+ // NaN * anything = qNaN
+ if (aAbs > infRep)
+ return fromRep(toRep(a) | quietBit);
+ // anything * NaN = qNaN
+ if (bAbs > infRep)
+ return fromRep(toRep(b) | quietBit);
+
+ if (aAbs == infRep) {
+ // infinity * non-zero = +/- infinity
+ if (bAbs)
+ return fromRep(aAbs | productSign);
+ // infinity * zero = NaN
+ else
+ return fromRep(qnanRep);
}
- // Or in the implicit significand bit. (If we fell through from the
- // denormal path it was already set by normalize( ), but setting it twice
- // won't hurt anything.)
- aSignificand |= implicitBit;
- bSignificand |= implicitBit;
-
- // Get the significand of a*b. Before multiplying the significands, shift
- // one of them left to left-align it in the field. Thus, the product will
- // have (exponentBits + 2) integral digits, all but two of which must be
- // zero. Normalizing this result is just a conditional left-shift by one
- // and bumping the exponent accordingly.
- rep_t productHi, productLo;
- wideMultiply(aSignificand, bSignificand << exponentBits,
- &productHi, &productLo);
-
- int productExponent = aExponent + bExponent - exponentBias + scale;
-
- // Normalize the significand, adjust exponent if needed.
- if (productHi & implicitBit) productExponent++;
- else wideLeftShift(&productHi, &productLo, 1);
-
- // If we have overflowed the type, return +/- infinity.
- if (productExponent >= maxExponent) return fromRep(infRep | productSign);
-
- if (productExponent <= 0) {
- // Result is denormal before rounding
- //
- // If the result is so small that it just underflows to zero, return
- // a zero of the appropriate sign. Mathematically there is no need to
- // handle this case separately, but we make it a special case to
- // simplify the shift logic.
- const unsigned int shift = REP_C(1) - (unsigned int)productExponent;
- if (shift >= typeWidth) return fromRep(productSign);
-
- // Otherwise, shift the significand of the result so that the round
- // bit is the high bit of productLo.
- wideRightShiftWithSticky(&productHi, &productLo, shift);
+ if (bAbs == infRep) {
+ //? non-zero * infinity = +/- infinity
+ if (aAbs)
+ return fromRep(bAbs | productSign);
+ // zero * infinity = NaN
+ else
+ return fromRep(qnanRep);
}
- else {
- // Result is normal before rounding; insert the exponent.
- productHi &= significandMask;
- productHi |= (rep_t)productExponent << significandBits;
- }
-
- // Insert the sign of the result:
- productHi |= productSign;
- // Final rounding. The final result may overflow to infinity, or underflow
- // to zero, but those are the correct results in those cases. We use the
- // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
- if (productLo > signBit) productHi++;
- if (productLo == signBit) productHi += productHi & 1;
- return fromRep(productHi);
+ // zero * anything = +/- zero
+ if (!aAbs)
+ return fromRep(productSign);
+ // anything * zero = +/- zero
+ if (!bAbs)
+ return fromRep(productSign);
+
+ // one or both of a or b is denormal, the other (if applicable) is a
+ // normal number. Renormalize one or both of a and b, and set scale to
+ // include the necessary exponent adjustment.
+ if (aAbs < implicitBit)
+ scale += normalize(&aSignificand);
+ if (bAbs < implicitBit)
+ scale += normalize(&bSignificand);
+ }
+
+ // Or in the implicit significand bit. (If we fell through from the
+ // denormal path it was already set by normalize( ), but setting it twice
+ // won't hurt anything.)
+ aSignificand |= implicitBit;
+ bSignificand |= implicitBit;
+
+ // Get the significand of a*b. Before multiplying the significands, shift
+ // one of them left to left-align it in the field. Thus, the product will
+ // have (exponentBits + 2) integral digits, all but two of which must be
+ // zero. Normalizing this result is just a conditional left-shift by one
+ // and bumping the exponent accordingly.
+ rep_t productHi, productLo;
+ wideMultiply(aSignificand, bSignificand << exponentBits, &productHi,
+ &productLo);
+
+ int productExponent = aExponent + bExponent - exponentBias + scale;
+
+ // Normalize the significand, adjust exponent if needed.
+ if (productHi & implicitBit)
+ productExponent++;
+ else
+ wideLeftShift(&productHi, &productLo, 1);
+
+ // If we have overflowed the type, return +/- infinity.
+ if (productExponent >= maxExponent)
+ return fromRep(infRep | productSign);
+
+ if (productExponent <= 0) {
+ // Result is denormal before rounding
+ //
+ // If the result is so small that it just underflows to zero, return
+ // a zero of the appropriate sign. Mathematically there is no need to
+ // handle this case separately, but we make it a special case to
+ // simplify the shift logic.
+ const unsigned int shift = REP_C(1) - (unsigned int)productExponent;
+ if (shift >= typeWidth)
+ return fromRep(productSign);
+
+ // Otherwise, shift the significand of the result so that the round
+ // bit is the high bit of productLo.
+ wideRightShiftWithSticky(&productHi, &productLo, shift);
+ } else {
+ // Result is normal before rounding; insert the exponent.
+ productHi &= significandMask;
+ productHi |= (rep_t)productExponent << significandBits;
+ }
+
+ // Insert the sign of the result:
+ productHi |= productSign;
+
+ // Final rounding. The final result may overflow to infinity, or underflow
+ // to zero, but those are the correct results in those cases. We use the
+ // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
+ if (productLo > signBit)
+ productHi++;
+ if (productLo == signBit)
+ productHi += productHi & 1;
+ return fromRep(productHi);
}
diff --git a/lib/builtins/fp_trunc.h b/lib/builtins/fp_trunc.h
index a02db2a98..aca4c9b6e 100644
--- a/lib/builtins/fp_trunc.h
+++ b/lib/builtins/fp_trunc.h
@@ -35,7 +35,7 @@ static const int srcSigBits = 112;
#else
#error Source should be double precision or quad precision!
-#endif //end source precision
+#endif // end source precision
#if defined DST_DOUBLE
typedef double dst_t;
@@ -57,19 +57,25 @@ static const int dstSigBits = 10;
#else
#error Destination should be single precision or double precision!
-#endif //end destination precision
+#endif // end destination precision
// End of specialization parameters. Two helper routines for conversion to and
// from the representation of floating-point data as integer values follow.
static __inline src_rep_t srcToRep(src_t x) {
- const union { src_t f; src_rep_t i; } rep = {.f = x};
- return rep.i;
+ const union {
+ src_t f;
+ src_rep_t i;
+ } rep = {.f = x};
+ return rep.i;
}
static __inline dst_t dstFromRep(dst_rep_t x) {
- const union { dst_t f; dst_rep_t i; } rep = {.i = x};
- return rep.f;
+ const union {
+ dst_t f;
+ dst_rep_t i;
+ } rep = {.i = x};
+ return rep.f;
}
#endif // FP_TRUNC_HEADER
diff --git a/lib/builtins/fp_trunc_impl.inc b/lib/builtins/fp_trunc_impl.inc
index ffedfec52..4f103da4d 100644
--- a/lib/builtins/fp_trunc_impl.inc
+++ b/lib/builtins/fp_trunc_impl.inc
@@ -39,96 +39,94 @@
#include "fp_trunc.h"
static __inline dst_t __truncXfYf2__(src_t a) {
- // Various constants whose values follow from the type parameters.
- // Any reasonable optimizer will fold and propagate all of these.
- const int srcBits = sizeof(src_t)*CHAR_BIT;
- const int srcExpBits = srcBits - srcSigBits - 1;
- const int srcInfExp = (1 << srcExpBits) - 1;
- const int srcExpBias = srcInfExp >> 1;
+ // Various constants whose values follow from the type parameters.
+ // Any reasonable optimizer will fold and propagate all of these.
+ const int srcBits = sizeof(src_t) * CHAR_BIT;
+ const int srcExpBits = srcBits - srcSigBits - 1;
+ const int srcInfExp = (1 << srcExpBits) - 1;
+ const int srcExpBias = srcInfExp >> 1;
- const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
- const src_rep_t srcSignificandMask = srcMinNormal - 1;
- const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
- const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
- const src_rep_t srcAbsMask = srcSignMask - 1;
- const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
- const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
- const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
- const src_rep_t srcNaNCode = srcQNaN - 1;
+ const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
+ const src_rep_t srcSignificandMask = srcMinNormal - 1;
+ const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
+ const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
+ const src_rep_t srcAbsMask = srcSignMask - 1;
+ const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
+ const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
+ const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
+ const src_rep_t srcNaNCode = srcQNaN - 1;
- const int dstBits = sizeof(dst_t)*CHAR_BIT;
- const int dstExpBits = dstBits - dstSigBits - 1;
- const int dstInfExp = (1 << dstExpBits) - 1;
- const int dstExpBias = dstInfExp >> 1;
+ const int dstBits = sizeof(dst_t) * CHAR_BIT;
+ const int dstExpBits = dstBits - dstSigBits - 1;
+ const int dstInfExp = (1 << dstExpBits) - 1;
+ const int dstExpBias = dstInfExp >> 1;
- const int underflowExponent = srcExpBias + 1 - dstExpBias;
- const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
- const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
- const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
+ const int underflowExponent = srcExpBias + 1 - dstExpBias;
+ const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
+ const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
+ const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
- const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
- const dst_rep_t dstNaNCode = dstQNaN - 1;
+ const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
+ const dst_rep_t dstNaNCode = dstQNaN - 1;
- // Break a into a sign and representation of the absolute value
- const src_rep_t aRep = srcToRep(a);
- const src_rep_t aAbs = aRep & srcAbsMask;
- const src_rep_t sign = aRep & srcSignMask;
- dst_rep_t absResult;
+ // Break a into a sign and representation of the absolute value
+ const src_rep_t aRep = srcToRep(a);
+ const src_rep_t aAbs = aRep & srcAbsMask;
+ const src_rep_t sign = aRep & srcSignMask;
+ dst_rep_t absResult;
- if (aAbs - underflow < aAbs - overflow) {
- // The exponent of a is within the range of normal numbers in the
- // destination format. We can convert by simply right-shifting with
- // rounding and adjusting the exponent.
- absResult = aAbs >> (srcSigBits - dstSigBits);
- absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
+ if (aAbs - underflow < aAbs - overflow) {
+ // The exponent of a is within the range of normal numbers in the
+ // destination format. We can convert by simply right-shifting with
+ // rounding and adjusting the exponent.
+ absResult = aAbs >> (srcSigBits - dstSigBits);
+ absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
- const src_rep_t roundBits = aAbs & roundMask;
- // Round to nearest
- if (roundBits > halfway)
- absResult++;
- // Ties to even
- else if (roundBits == halfway)
- absResult += absResult & 1;
- }
- else if (aAbs > srcInfinity) {
- // a is NaN.
- // Conjure the result by beginning with infinity, setting the qNaN
- // bit and inserting the (truncated) trailing NaN field.
- absResult = (dst_rep_t)dstInfExp << dstSigBits;
- absResult |= dstQNaN;
- absResult |= ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode;
- }
- else if (aAbs >= overflow) {
- // a overflows to infinity.
- absResult = (dst_rep_t)dstInfExp << dstSigBits;
- }
- else {
- // a underflows on conversion to the destination type or is an exact
- // zero. The result may be a denormal or zero. Extract the exponent
- // to get the shift amount for the denormalization.
- const int aExp = aAbs >> srcSigBits;
- const int shift = srcExpBias - dstExpBias - aExp + 1;
+ const src_rep_t roundBits = aAbs & roundMask;
+ // Round to nearest
+ if (roundBits > halfway)
+ absResult++;
+ // Ties to even
+ else if (roundBits == halfway)
+ absResult += absResult & 1;
+ } else if (aAbs > srcInfinity) {
+ // a is NaN.
+ // Conjure the result by beginning with infinity, setting the qNaN
+ // bit and inserting the (truncated) trailing NaN field.
+ absResult = (dst_rep_t)dstInfExp << dstSigBits;
+ absResult |= dstQNaN;
+ absResult |=
+ ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode;
+ } else if (aAbs >= overflow) {
+ // a overflows to infinity.
+ absResult = (dst_rep_t)dstInfExp << dstSigBits;
+ } else {
+ // a underflows on conversion to the destination type or is an exact
+ // zero. The result may be a denormal or zero. Extract the exponent
+ // to get the shift amount for the denormalization.
+ const int aExp = aAbs >> srcSigBits;
+ const int shift = srcExpBias - dstExpBias - aExp + 1;
- const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal;
+ const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal;
- // Right shift by the denormalization amount with sticky.
- if (shift > srcSigBits) {
- absResult = 0;
- } else {
- const bool sticky = significand << (srcBits - shift);
- src_rep_t denormalizedSignificand = significand >> shift | sticky;
- absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
- const src_rep_t roundBits = denormalizedSignificand & roundMask;
- // Round to nearest
- if (roundBits > halfway)
- absResult++;
- // Ties to even
- else if (roundBits == halfway)
- absResult += absResult & 1;
- }
+ // Right shift by the denormalization amount with sticky.
+ if (shift > srcSigBits) {
+ absResult = 0;
+ } else {
+ const bool sticky = significand << (srcBits - shift);
+ src_rep_t denormalizedSignificand = significand >> shift | sticky;
+ absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
+ const src_rep_t roundBits = denormalizedSignificand & roundMask;
+ // Round to nearest
+ if (roundBits > halfway)
+ absResult++;
+ // Ties to even
+ else if (roundBits == halfway)
+ absResult += absResult & 1;
}
+ }
- // Apply the signbit to (dst_t)abs(a).
- const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
- return dstFromRep(result);
+ // Apply the signbit to (dst_t)abs(a).
+ const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
+ return dstFromRep(result);
}
diff --git a/lib/builtins/gcc_personality_v0.c b/lib/builtins/gcc_personality_v0.c
index 704459407..d50cc369c 100644
--- a/lib/builtins/gcc_personality_v0.c
+++ b/lib/builtins/gcc_personality_v0.c
@@ -11,7 +11,8 @@
#include "int_lib.h"
#include <unwind.h>
-#if defined(__arm__) && !defined(__ARM_DWARF_EH__) && !defined(__USING_SJLJ_EXCEPTIONS__)
+#if defined(__arm__) && !defined(__ARM_DWARF_EH__) && \
+ !defined(__USING_SJLJ_EXCEPTIONS__)
/*
* When building with older compilers (e.g. clang <3.9), it is possible that we
* have a version of unwind.h which does not provide the EHABI declarations
@@ -28,117 +29,113 @@
* http://refspecs.freestandards.org/LSB_1.3.0/gLSB/gLSB/ehframehdr.html
*/
-#define DW_EH_PE_omit 0xff /* no data follows */
-
-#define DW_EH_PE_absptr 0x00
-#define DW_EH_PE_uleb128 0x01
-#define DW_EH_PE_udata2 0x02
-#define DW_EH_PE_udata4 0x03
-#define DW_EH_PE_udata8 0x04
-#define DW_EH_PE_sleb128 0x09
-#define DW_EH_PE_sdata2 0x0A
-#define DW_EH_PE_sdata4 0x0B
-#define DW_EH_PE_sdata8 0x0C
-
-#define DW_EH_PE_pcrel 0x10
-#define DW_EH_PE_textrel 0x20
-#define DW_EH_PE_datarel 0x30
-#define DW_EH_PE_funcrel 0x40
-#define DW_EH_PE_aligned 0x50
-#define DW_EH_PE_indirect 0x80 /* gcc extension */
-
-
+#define DW_EH_PE_omit 0xff /* no data follows */
+
+#define DW_EH_PE_absptr 0x00
+#define DW_EH_PE_uleb128 0x01
+#define DW_EH_PE_udata2 0x02
+#define DW_EH_PE_udata4 0x03
+#define DW_EH_PE_udata8 0x04
+#define DW_EH_PE_sleb128 0x09
+#define DW_EH_PE_sdata2 0x0A
+#define DW_EH_PE_sdata4 0x0B
+#define DW_EH_PE_sdata8 0x0C
+
+#define DW_EH_PE_pcrel 0x10
+#define DW_EH_PE_textrel 0x20
+#define DW_EH_PE_datarel 0x30
+#define DW_EH_PE_funcrel 0x40
+#define DW_EH_PE_aligned 0x50
+#define DW_EH_PE_indirect 0x80 /* gcc extension */
/* read a uleb128 encoded value and advance pointer */
-static uintptr_t readULEB128(const uint8_t** data)
-{
- uintptr_t result = 0;
- uintptr_t shift = 0;
- unsigned char byte;
- const uint8_t* p = *data;
- do {
- byte = *p++;
- result |= (byte & 0x7f) << shift;
- shift += 7;
- } while (byte & 0x80);
- *data = p;
- return result;
+static uintptr_t readULEB128(const uint8_t **data) {
+ uintptr_t result = 0;
+ uintptr_t shift = 0;
+ unsigned char byte;
+ const uint8_t *p = *data;
+ do {
+ byte = *p++;
+ result |= (byte & 0x7f) << shift;
+ shift += 7;
+ } while (byte & 0x80);
+ *data = p;
+ return result;
}
/* read a pointer encoded value and advance pointer */
-static uintptr_t readEncodedPointer(const uint8_t** data, uint8_t encoding)
-{
- const uint8_t* p = *data;
- uintptr_t result = 0;
-
- if ( encoding == DW_EH_PE_omit )
- return 0;
-
- /* first get value */
- switch (encoding & 0x0F) {
- case DW_EH_PE_absptr:
- result = *((const uintptr_t*)p);
- p += sizeof(uintptr_t);
- break;
- case DW_EH_PE_uleb128:
- result = readULEB128(&p);
- break;
- case DW_EH_PE_udata2:
- result = *((const uint16_t*)p);
- p += sizeof(uint16_t);
- break;
- case DW_EH_PE_udata4:
- result = *((const uint32_t*)p);
- p += sizeof(uint32_t);
- break;
- case DW_EH_PE_udata8:
- result = *((const uint64_t*)p);
- p += sizeof(uint64_t);
- break;
- case DW_EH_PE_sdata2:
- result = *((const int16_t*)p);
- p += sizeof(int16_t);
- break;
- case DW_EH_PE_sdata4:
- result = *((const int32_t*)p);
- p += sizeof(int32_t);
- break;
- case DW_EH_PE_sdata8:
- result = *((const int64_t*)p);
- p += sizeof(int64_t);
- break;
- case DW_EH_PE_sleb128:
- default:
- /* not supported */
- compilerrt_abort();
- break;
- }
-
- /* then add relative offset */
- switch ( encoding & 0x70 ) {
- case DW_EH_PE_absptr:
- /* do nothing */
- break;
- case DW_EH_PE_pcrel:
- result += (uintptr_t)(*data);
- break;
- case DW_EH_PE_textrel:
- case DW_EH_PE_datarel:
- case DW_EH_PE_funcrel:
- case DW_EH_PE_aligned:
- default:
- /* not supported */
- compilerrt_abort();
- break;
- }
-
- /* then apply indirection */
- if (encoding & DW_EH_PE_indirect) {
- result = *((const uintptr_t*)result);
- }
-
- *data = p;
- return result;
+static uintptr_t readEncodedPointer(const uint8_t **data, uint8_t encoding) {
+ const uint8_t *p = *data;
+ uintptr_t result = 0;
+
+ if (encoding == DW_EH_PE_omit)
+ return 0;
+
+ /* first get value */
+ switch (encoding & 0x0F) {
+ case DW_EH_PE_absptr:
+ result = *((const uintptr_t *)p);
+ p += sizeof(uintptr_t);
+ break;
+ case DW_EH_PE_uleb128:
+ result = readULEB128(&p);
+ break;
+ case DW_EH_PE_udata2:
+ result = *((const uint16_t *)p);
+ p += sizeof(uint16_t);
+ break;
+ case DW_EH_PE_udata4:
+ result = *((const uint32_t *)p);
+ p += sizeof(uint32_t);
+ break;
+ case DW_EH_PE_udata8:
+ result = *((const uint64_t *)p);
+ p += sizeof(uint64_t);
+ break;
+ case DW_EH_PE_sdata2:
+ result = *((const int16_t *)p);
+ p += sizeof(int16_t);
+ break;
+ case DW_EH_PE_sdata4:
+ result = *((const int32_t *)p);
+ p += sizeof(int32_t);
+ break;
+ case DW_EH_PE_sdata8:
+ result = *((const int64_t *)p);
+ p += sizeof(int64_t);
+ break;
+ case DW_EH_PE_sleb128:
+ default:
+ /* not supported */
+ compilerrt_abort();
+ break;
+ }
+
+ /* then add relative offset */
+ switch (encoding & 0x70) {
+ case DW_EH_PE_absptr:
+ /* do nothing */
+ break;
+ case DW_EH_PE_pcrel:
+ result += (uintptr_t)(*data);
+ break;
+ case DW_EH_PE_textrel:
+ case DW_EH_PE_datarel:
+ case DW_EH_PE_funcrel:
+ case DW_EH_PE_aligned:
+ default:
+ /* not supported */
+ compilerrt_abort();
+ break;
+ }
+
+ /* then apply indirection */
+ if (encoding & DW_EH_PE_indirect) {
+ result = *((const uintptr_t *)result);
+ }
+
+ *data = p;
+ return result;
}
#if defined(__arm__) && !defined(__USING_SJLJ_EXCEPTIONS__) && \
@@ -152,14 +149,14 @@ static inline _Unwind_Reason_Code
continueUnwind(struct _Unwind_Exception *exceptionObject,
struct _Unwind_Context *context) {
#if USING_ARM_EHABI
- /*
- * On ARM EHABI the personality routine is responsible for actually
- * unwinding a single stack frame before returning (ARM EHABI Sec. 6.1).
- */
- if (__gnu_unwind_frame(exceptionObject, context) != _URC_OK)
- return _URC_FAILURE;
+ /*
+ * On ARM EHABI the personality routine is responsible for actually
+ * unwinding a single stack frame before returning (ARM EHABI Sec. 6.1).
+ */
+ if (__gnu_unwind_frame(exceptionObject, context) != _URC_OK)
+ return _URC_FAILURE;
#endif
- return _URC_CONTINUE_UNWIND;
+ return _URC_CONTINUE_UNWIND;
}
/*
@@ -173,78 +170,76 @@ continueUnwind(struct _Unwind_Exception *exceptionObject,
#if __USING_SJLJ_EXCEPTIONS__
/* the setjump-longjump based exceptions personality routine has a
* different name */
-COMPILER_RT_ABI _Unwind_Reason_Code
-__gcc_personality_sj0(int version, _Unwind_Action actions,
- uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
- struct _Unwind_Context *context)
+COMPILER_RT_ABI _Unwind_Reason_Code __gcc_personality_sj0(
+ int version, _Unwind_Action actions, uint64_t exceptionClass,
+ struct _Unwind_Exception *exceptionObject, struct _Unwind_Context *context)
#elif USING_ARM_EHABI
/* The ARM EHABI personality routine has a different signature. */
COMPILER_RT_ABI _Unwind_Reason_Code __gcc_personality_v0(
- _Unwind_State state, struct _Unwind_Exception *exceptionObject,
- struct _Unwind_Context *context)
+ _Unwind_State state, struct _Unwind_Exception *exceptionObject,
+ struct _Unwind_Context *context)
#else
-COMPILER_RT_ABI _Unwind_Reason_Code
-__gcc_personality_v0(int version, _Unwind_Action actions,
- uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
- struct _Unwind_Context *context)
+COMPILER_RT_ABI _Unwind_Reason_Code __gcc_personality_v0(
+ int version, _Unwind_Action actions, uint64_t exceptionClass,
+ struct _Unwind_Exception *exceptionObject, struct _Unwind_Context *context)
#endif
{
- /* Since C does not have catch clauses, there is nothing to do during */
- /* phase 1 (the search phase). */
+ /* Since C does not have catch clauses, there is nothing to do during */
+ /* phase 1 (the search phase). */
#if USING_ARM_EHABI
- /* After resuming from a cleanup we should also continue on to the next
- * frame straight away. */
- if ((state & _US_ACTION_MASK) != _US_UNWIND_FRAME_STARTING)
+ /* After resuming from a cleanup we should also continue on to the next
+ * frame straight away. */
+ if ((state & _US_ACTION_MASK) != _US_UNWIND_FRAME_STARTING)
#else
- if ( actions & _UA_SEARCH_PHASE )
+ if (actions & _UA_SEARCH_PHASE)
#endif
- return continueUnwind(exceptionObject, context);
-
- /* There is nothing to do if there is no LSDA for this frame. */
- const uint8_t* lsda = (uint8_t*)_Unwind_GetLanguageSpecificData(context);
- if ( lsda == (uint8_t*) 0 )
- return continueUnwind(exceptionObject, context);
+ return continueUnwind(exceptionObject, context);
- uintptr_t pc = (uintptr_t)_Unwind_GetIP(context)-1;
- uintptr_t funcStart = (uintptr_t)_Unwind_GetRegionStart(context);
- uintptr_t pcOffset = pc - funcStart;
+ /* There is nothing to do if there is no LSDA for this frame. */
+ const uint8_t *lsda = (uint8_t *)_Unwind_GetLanguageSpecificData(context);
+ if (lsda == (uint8_t *)0)
+ return continueUnwind(exceptionObject, context);
- /* Parse LSDA header. */
- uint8_t lpStartEncoding = *lsda++;
- if (lpStartEncoding != DW_EH_PE_omit) {
- readEncodedPointer(&lsda, lpStartEncoding);
- }
- uint8_t ttypeEncoding = *lsda++;
- if (ttypeEncoding != DW_EH_PE_omit) {
- readULEB128(&lsda);
- }
- /* Walk call-site table looking for range that includes current PC. */
- uint8_t callSiteEncoding = *lsda++;
- uint32_t callSiteTableLength = readULEB128(&lsda);
- const uint8_t* callSiteTableStart = lsda;
- const uint8_t* callSiteTableEnd = callSiteTableStart + callSiteTableLength;
- const uint8_t* p=callSiteTableStart;
- while (p < callSiteTableEnd) {
- uintptr_t start = readEncodedPointer(&p, callSiteEncoding);
- uintptr_t length = readEncodedPointer(&p, callSiteEncoding);
- uintptr_t landingPad = readEncodedPointer(&p, callSiteEncoding);
- readULEB128(&p); /* action value not used for C code */
- if ( landingPad == 0 )
- continue; /* no landing pad for this entry */
- if ( (start <= pcOffset) && (pcOffset < (start+length)) ) {
- /* Found landing pad for the PC.
- * Set Instruction Pointer to so we re-enter function
- * at landing pad. The landing pad is created by the compiler
- * to take two parameters in registers.
- */
- _Unwind_SetGR(context, __builtin_eh_return_data_regno(0),
- (uintptr_t)exceptionObject);
- _Unwind_SetGR(context, __builtin_eh_return_data_regno(1), 0);
- _Unwind_SetIP(context, (funcStart + landingPad));
- return _URC_INSTALL_CONTEXT;
- }
+ uintptr_t pc = (uintptr_t)_Unwind_GetIP(context) - 1;
+ uintptr_t funcStart = (uintptr_t)_Unwind_GetRegionStart(context);
+ uintptr_t pcOffset = pc - funcStart;
+
+ /* Parse LSDA header. */
+ uint8_t lpStartEncoding = *lsda++;
+ if (lpStartEncoding != DW_EH_PE_omit) {
+ readEncodedPointer(&lsda, lpStartEncoding);
+ }
+ uint8_t ttypeEncoding = *lsda++;
+ if (ttypeEncoding != DW_EH_PE_omit) {
+ readULEB128(&lsda);
+ }
+ /* Walk call-site table looking for range that includes current PC. */
+ uint8_t callSiteEncoding = *lsda++;
+ uint32_t callSiteTableLength = readULEB128(&lsda);
+ const uint8_t *callSiteTableStart = lsda;
+ const uint8_t *callSiteTableEnd = callSiteTableStart + callSiteTableLength;
+ const uint8_t *p = callSiteTableStart;
+ while (p < callSiteTableEnd) {
+ uintptr_t start = readEncodedPointer(&p, callSiteEncoding);
+ uintptr_t length = readEncodedPointer(&p, callSiteEncoding);
+ uintptr_t landingPad = readEncodedPointer(&p, callSiteEncoding);
+ readULEB128(&p); /* action value not used for C code */
+ if (landingPad == 0)
+ continue; /* no landing pad for this entry */
+ if ((start <= pcOffset) && (pcOffset < (start + length))) {
+ /* Found landing pad for the PC.
+ * Set Instruction Pointer to so we re-enter function
+ * at landing pad. The landing pad is created by the compiler
+ * to take two parameters in registers.
+ */
+ _Unwind_SetGR(context, __builtin_eh_return_data_regno(0),
+ (uintptr_t)exceptionObject);
+ _Unwind_SetGR(context, __builtin_eh_return_data_regno(1), 0);
+ _Unwind_SetIP(context, (funcStart + landingPad));
+ return _URC_INSTALL_CONTEXT;
}
+ }
- /* No landing pad found, continue unwinding. */
- return continueUnwind(exceptionObject, context);
+ /* No landing pad found, continue unwinding. */
+ return continueUnwind(exceptionObject, context);
}
diff --git a/lib/builtins/int_endianness.h b/lib/builtins/int_endianness.h
index cd8bd274c..eca5549b5 100644
--- a/lib/builtins/int_endianness.h
+++ b/lib/builtins/int_endianness.h
@@ -15,16 +15,16 @@
#ifndef INT_ENDIANNESS_H
#define INT_ENDIANNESS_H
-#if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && \
+#if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && \
defined(__ORDER_LITTLE_ENDIAN__)
/* Clang and GCC provide built-in endianness definitions. */
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define _YUGA_LITTLE_ENDIAN 0
-#define _YUGA_BIG_ENDIAN 1
+#define _YUGA_BIG_ENDIAN 1
#elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define _YUGA_LITTLE_ENDIAN 1
-#define _YUGA_BIG_ENDIAN 0
+#define _YUGA_BIG_ENDIAN 0
#endif /* __BYTE_ORDER__ */
#else /* Compilers other than Clang or GCC. */
@@ -34,10 +34,10 @@
#if defined(_BIG_ENDIAN)
#define _YUGA_LITTLE_ENDIAN 0
-#define _YUGA_BIG_ENDIAN 1
+#define _YUGA_BIG_ENDIAN 1
#elif defined(_LITTLE_ENDIAN)
#define _YUGA_LITTLE_ENDIAN 1
-#define _YUGA_BIG_ENDIAN 0
+#define _YUGA_BIG_ENDIAN 0
#else /* !_LITTLE_ENDIAN */
#error "unknown endianness"
#endif /* !_LITTLE_ENDIAN */
@@ -52,10 +52,10 @@
#if _BYTE_ORDER == _BIG_ENDIAN
#define _YUGA_LITTLE_ENDIAN 0
-#define _YUGA_BIG_ENDIAN 1
+#define _YUGA_BIG_ENDIAN 1
#elif _BYTE_ORDER == _LITTLE_ENDIAN
#define _YUGA_LITTLE_ENDIAN 1
-#define _YUGA_BIG_ENDIAN 0
+#define _YUGA_BIG_ENDIAN 0
#endif /* _BYTE_ORDER */
#endif /* *BSD */
@@ -65,10 +65,10 @@
#if _BYTE_ORDER == _BIG_ENDIAN
#define _YUGA_LITTLE_ENDIAN 0
-#define _YUGA_BIG_ENDIAN 1
+#define _YUGA_BIG_ENDIAN 1
#elif _BYTE_ORDER == _LITTLE_ENDIAN
#define _YUGA_LITTLE_ENDIAN 1
-#define _YUGA_BIG_ENDIAN 0
+#define _YUGA_BIG_ENDIAN 0
#endif /* _BYTE_ORDER */
#endif /* OpenBSD */
@@ -77,19 +77,19 @@
/* Mac OSX has __BIG_ENDIAN__ or __LITTLE_ENDIAN__ automatically set by the
* compiler (at least with GCC) */
-#if defined(__APPLE__) || defined(__ellcc__ )
+#if defined(__APPLE__) || defined(__ellcc__)
#ifdef __BIG_ENDIAN__
#if __BIG_ENDIAN__
#define _YUGA_LITTLE_ENDIAN 0
-#define _YUGA_BIG_ENDIAN 1
+#define _YUGA_BIG_ENDIAN 1
#endif
#endif /* __BIG_ENDIAN__ */
#ifdef __LITTLE_ENDIAN__
#if __LITTLE_ENDIAN__
#define _YUGA_LITTLE_ENDIAN 1
-#define _YUGA_BIG_ENDIAN 0
+#define _YUGA_BIG_ENDIAN 0
#endif
#endif /* __LITTLE_ENDIAN__ */
@@ -100,7 +100,7 @@
#if defined(_WIN32)
#define _YUGA_LITTLE_ENDIAN 1
-#define _YUGA_BIG_ENDIAN 0
+#define _YUGA_BIG_ENDIAN 0
#endif /* Windows */
diff --git a/lib/builtins/int_lib.h b/lib/builtins/int_lib.h
index 0918b4086..4ea689df1 100644
--- a/lib/builtins/int_lib.h
+++ b/lib/builtins/int_lib.h
@@ -20,24 +20,26 @@
/* Assumption: Endianness is little or big (not mixed). */
#if defined(__ELF__)
-#define FNALIAS(alias_name, original_name) \
+#define FNALIAS(alias_name, original_name) \
void alias_name() __attribute__((__alias__(#original_name)))
#define COMPILER_RT_ALIAS(aliasee) __attribute__((__alias__(#aliasee)))
#else
-#define FNALIAS(alias, name) _Pragma("GCC error(\"alias unsupported on this file format\")")
-#define COMPILER_RT_ALIAS(aliasee) _Pragma("GCC error(\"alias unsupported on this file format\")")
+#define FNALIAS(alias, name) \
+ _Pragma("GCC error(\"alias unsupported on this file format\")")
+#define COMPILER_RT_ALIAS(aliasee) \
+ _Pragma("GCC error(\"alias unsupported on this file format\")")
#endif
/* ABI macro definitions */
#if __ARM_EABI__
-# ifdef COMPILER_RT_ARMHF_TARGET
-# define COMPILER_RT_ABI
-# else
-# define COMPILER_RT_ABI __attribute__((__pcs__("aapcs")))
-# endif
+#ifdef COMPILER_RT_ARMHF_TARGET
+#define COMPILER_RT_ABI
#else
-# define COMPILER_RT_ABI
+#define COMPILER_RT_ABI __attribute__((__pcs__("aapcs")))
+#endif
+#else
+#define COMPILER_RT_ABI
#endif
#define AEABI_RTABI __attribute__((__pcs__("aapcs")))
@@ -59,15 +61,15 @@
* Kernel and boot environment can't use normal headers,
* so use the equivalent system headers.
*/
-# include <machine/limits.h>
-# include <sys/stdint.h>
-# include <sys/types.h>
+#include <machine/limits.h>
+#include <sys/stdint.h>
+#include <sys/types.h>
#else
/* Include the standard compiler builtin headers we use functionality from. */
-# include <limits.h>
-# include <stdint.h>
-# include <stdbool.h>
-# include <float.h>
+#include <float.h>
+#include <limits.h>
+#include <stdbool.h>
+#include <stdint.h>
#endif
/* Include the commonly used internal type definitions. */
@@ -83,11 +85,11 @@ COMPILER_RT_ABI di_int __divdi3(di_int a, di_int b);
COMPILER_RT_ABI si_int __divsi3(si_int a, si_int b);
COMPILER_RT_ABI su_int __udivsi3(su_int n, su_int d);
-COMPILER_RT_ABI su_int __udivmodsi4(su_int a, su_int b, su_int* rem);
-COMPILER_RT_ABI du_int __udivmoddi4(du_int a, du_int b, du_int* rem);
+COMPILER_RT_ABI su_int __udivmodsi4(su_int a, su_int b, su_int *rem);
+COMPILER_RT_ABI du_int __udivmoddi4(du_int a, du_int b, du_int *rem);
#ifdef CRT_HAS_128BIT
COMPILER_RT_ABI si_int __clzti2(ti_int a);
-COMPILER_RT_ABI tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem);
+COMPILER_RT_ABI tu_int __udivmodti4(tu_int a, tu_int b, tu_int *rem);
#endif
/* Definitions for builtins unavailable on MSVC */
diff --git a/lib/builtins/int_math.h b/lib/builtins/int_math.h
index 442a1870c..7193a5d65 100644
--- a/lib/builtins/int_math.h
+++ b/lib/builtins/int_math.h
@@ -21,7 +21,7 @@
#define INT_MATH_H
#ifndef __has_builtin
-# define __has_builtin(x) 0
+#define __has_builtin(x) 0
#endif
#if defined(_MSC_VER) && !defined(__clang__)
@@ -45,15 +45,15 @@
* versions of GCC which didn't have __builtin_isfinite.
*/
#if __has_builtin(__builtin_isfinite)
-# define crt_isfinite(x) __builtin_isfinite((x))
+#define crt_isfinite(x) __builtin_isfinite((x))
#elif defined(__GNUC__)
-# define crt_isfinite(x) \
- __extension__(({ \
- __typeof((x)) x_ = (x); \
- !crt_isinf(x_) && !crt_isnan(x_); \
- }))
+#define crt_isfinite(x) \
+ __extension__(({ \
+ __typeof((x)) x_ = (x); \
+ !crt_isinf(x_) && !crt_isnan(x_); \
+ }))
#else
-# error "Do not know how to check for infinity"
+#error "Do not know how to check for infinity"
#endif /* __has_builtin(__builtin_isfinite) */
#define crt_isinf(x) __builtin_isinf((x))
#define crt_isnan(x) __builtin_isnan((x))
diff --git a/lib/builtins/int_types.h b/lib/builtins/int_types.h
index d36ef6892..4db6dfce6 100644
--- a/lib/builtins/int_types.h
+++ b/lib/builtins/int_types.h
@@ -23,40 +23,36 @@
#ifdef si_int
#undef si_int
#endif
-typedef int si_int;
+typedef int si_int;
typedef unsigned su_int;
-typedef long long di_int;
+typedef long long di_int;
typedef unsigned long long du_int;
-typedef union
-{
- di_int all;
- struct
- {
+typedef union {
+ di_int all;
+ struct {
#if _YUGA_LITTLE_ENDIAN
- su_int low;
- si_int high;
+ su_int low;
+ si_int high;
#else
- si_int high;
- su_int low;
+ si_int high;
+ su_int low;
#endif /* _YUGA_LITTLE_ENDIAN */
- }s;
+ } s;
} dwords;
-typedef union
-{
- du_int all;
- struct
- {
+typedef union {
+ du_int all;
+ struct {
#if _YUGA_LITTLE_ENDIAN
- su_int low;
- su_int high;
+ su_int low;
+ su_int high;
#else
- su_int high;
- su_int low;
+ su_int high;
+ su_int low;
#endif /* _YUGA_LITTLE_ENDIAN */
- }s;
+ } s;
} udwords;
#if defined(__LP64__) || defined(__wasm__) || defined(__mips64) || \
@@ -73,75 +69,68 @@ typedef union
#endif
#ifdef CRT_HAS_128BIT
-typedef int ti_int __attribute__ ((mode (TI)));
-typedef unsigned tu_int __attribute__ ((mode (TI)));
-
-typedef union
-{
- ti_int all;
- struct
- {
+typedef int ti_int __attribute__((mode(TI)));
+typedef unsigned tu_int __attribute__((mode(TI)));
+
+typedef union {
+ ti_int all;
+ struct {
#if _YUGA_LITTLE_ENDIAN
- du_int low;
- di_int high;
+ du_int low;
+ di_int high;
#else
- di_int high;
- du_int low;
+ di_int high;
+ du_int low;
#endif /* _YUGA_LITTLE_ENDIAN */
- }s;
+ } s;
} twords;
-typedef union
-{
- tu_int all;
- struct
- {
+typedef union {
+ tu_int all;
+ struct {
#if _YUGA_LITTLE_ENDIAN
- du_int low;
- du_int high;
+ du_int low;
+ du_int high;
#else
- du_int high;
- du_int low;
+ du_int high;
+ du_int low;
#endif /* _YUGA_LITTLE_ENDIAN */
- }s;
+ } s;
} utwords;
static __inline ti_int make_ti(di_int h, di_int l) {
- twords r;
- r.s.high = h;
- r.s.low = l;
- return r.all;
+ twords r;
+ r.s.high = h;
+ r.s.low = l;
+ return r.all;
}
static __inline tu_int make_tu(du_int h, du_int l) {
- utwords r;
- r.s.high = h;
- r.s.low = l;
- return r.all;
+ utwords r;
+ r.s.high = h;
+ r.s.low = l;
+ return r.all;
}
#endif /* CRT_HAS_128BIT */
-typedef union
-{
- su_int u;
- float f;
+typedef union {
+ su_int u;
+ float f;
} float_bits;
-typedef union
-{
- udwords u;
- double f;
+typedef union {
+ udwords u;
+ double f;
} double_bits;
-typedef struct
-{
+typedef struct {
#if _YUGA_LITTLE_ENDIAN
- udwords low;
- udwords high;
+ udwords low;
+ udwords high;
#else
- udwords high;
- udwords low;
+ udwords high;
+ udwords low;
#endif /* _YUGA_LITTLE_ENDIAN */
} uqwords;
@@ -150,17 +139,16 @@ typedef struct
* still makes it 80 bits. Clang will match whatever compiler it is trying to
* be compatible with.
*/
-#if ((defined(__i386__) || defined(__x86_64__)) && !defined(_MSC_VER)) || \
+#if ((defined(__i386__) || defined(__x86_64__)) && !defined(_MSC_VER)) || \
defined(__m68k__) || defined(__ia64__)
#define HAS_80_BIT_LONG_DOUBLE 1
#else
#define HAS_80_BIT_LONG_DOUBLE 0
#endif
-typedef union
-{
- uqwords u;
- long double f;
+typedef union {
+ uqwords u;
+ long double f;
} long_double_bits;
#if __STDC_VERSION__ >= 199901L
@@ -171,14 +159,19 @@ typedef long double _Complex Lcomplex;
#define COMPLEX_REAL(x) __real__(x)
#define COMPLEX_IMAGINARY(x) __imag__(x)
#else
-typedef struct { float real, imaginary; } Fcomplex;
+typedef struct {
+ float real, imaginary;
+} Fcomplex;
-typedef struct { double real, imaginary; } Dcomplex;
+typedef struct {
+ double real, imaginary;
+} Dcomplex;
-typedef struct { long double real, imaginary; } Lcomplex;
+typedef struct {
+ long double real, imaginary;
+} Lcomplex;
#define COMPLEX_REAL(x) (x).real
#define COMPLEX_IMAGINARY(x) (x).imaginary
#endif
#endif /* INT_TYPES_H */
-
diff --git a/lib/builtins/int_util.c b/lib/builtins/int_util.c
index 2c5ecc75b..48216c49c 100644
--- a/lib/builtins/int_util.c
+++ b/lib/builtins/int_util.c
@@ -8,7 +8,6 @@
*/
#include "int_lib.h"
-#include "int_util.h"
/* NOTE: The definitions in this file are declared weak because we clients to be
* able to arbitrarily package individual functions into separate .a files. If
diff --git a/lib/builtins/lshrdi3.c b/lib/builtins/lshrdi3.c
index cdba610a1..3d5c5b360 100644
--- a/lib/builtins/lshrdi3.c
+++ b/lib/builtins/lshrdi3.c
@@ -17,28 +17,26 @@
/* Precondition: 0 <= b < bits_in_dword */
-COMPILER_RT_ABI di_int
-__lshrdi3(di_int a, si_int b)
-{
- const int bits_in_word = (int)(sizeof(si_int) * CHAR_BIT);
- udwords input;
- udwords result;
- input.all = a;
- if (b & bits_in_word) /* bits_in_word <= b < bits_in_dword */
- {
- result.s.high = 0;
- result.s.low = input.s.high >> (b - bits_in_word);
- }
- else /* 0 <= b < bits_in_word */
- {
- if (b == 0)
- return a;
- result.s.high = input.s.high >> b;
- result.s.low = (input.s.high << (bits_in_word - b)) | (input.s.low >> b);
- }
- return result.all;
+COMPILER_RT_ABI di_int __lshrdi3(di_int a, si_int b) {
+ const int bits_in_word = (int)(sizeof(si_int) * CHAR_BIT);
+ udwords input;
+ udwords result;
+ input.all = a;
+ if (b & bits_in_word) /* bits_in_word <= b < bits_in_dword */
+ {
+ result.s.high = 0;
+ result.s.low = input.s.high >> (b - bits_in_word);
+ } else /* 0 <= b < bits_in_word */
+ {
+ if (b == 0)
+ return a;
+ result.s.high = input.s.high >> b;
+ result.s.low = (input.s.high << (bits_in_word - b)) | (input.s.low >> b);
+ }
+ return result.all;
}
#if defined(__ARM_EABI__)
-AEABI_RTABI di_int __aeabi_llsr(di_int a, si_int b) COMPILER_RT_ALIAS(__lshrdi3);
+AEABI_RTABI di_int __aeabi_llsr(di_int a, si_int b)
+ COMPILER_RT_ALIAS(__lshrdi3);
#endif
diff --git a/lib/builtins/lshrti3.c b/lib/builtins/lshrti3.c
index facabd2dd..b06c786f2 100644
--- a/lib/builtins/lshrti3.c
+++ b/lib/builtins/lshrti3.c
@@ -19,26 +19,23 @@
/* Precondition: 0 <= b < bits_in_tword */
-COMPILER_RT_ABI ti_int
-__lshrti3(ti_int a, si_int b)
-{
- const int bits_in_dword = (int)(sizeof(di_int) * CHAR_BIT);
- utwords input;
- utwords result;
- input.all = a;
- if (b & bits_in_dword) /* bits_in_dword <= b < bits_in_tword */
- {
- result.s.high = 0;
- result.s.low = input.s.high >> (b - bits_in_dword);
- }
- else /* 0 <= b < bits_in_dword */
- {
- if (b == 0)
- return a;
- result.s.high = input.s.high >> b;
- result.s.low = (input.s.high << (bits_in_dword - b)) | (input.s.low >> b);
- }
- return result.all;
+COMPILER_RT_ABI ti_int __lshrti3(ti_int a, si_int b) {
+ const int bits_in_dword = (int)(sizeof(di_int) * CHAR_BIT);
+ utwords input;
+ utwords result;
+ input.all = a;
+ if (b & bits_in_dword) /* bits_in_dword <= b < bits_in_tword */
+ {
+ result.s.high = 0;
+ result.s.low = input.s.high >> (b - bits_in_dword);
+ } else /* 0 <= b < bits_in_dword */
+ {
+ if (b == 0)
+ return a;
+ result.s.high = input.s.high >> b;
+ result.s.low = (input.s.high << (bits_in_dword - b)) | (input.s.low >> b);
+ }
+ return result.all;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/moddi3.c b/lib/builtins/moddi3.c
index f804edf9b..a2e7e72bd 100644
--- a/lib/builtins/moddi3.c
+++ b/lib/builtins/moddi3.c
@@ -15,15 +15,13 @@
/* Returns: a % b */
-COMPILER_RT_ABI di_int
-__moddi3(di_int a, di_int b)
-{
- const int bits_in_dword_m1 = (int)(sizeof(di_int) * CHAR_BIT) - 1;
- di_int s = b >> bits_in_dword_m1; /* s = b < 0 ? -1 : 0 */
- b = (b ^ s) - s; /* negate if s == -1 */
- s = a >> bits_in_dword_m1; /* s = a < 0 ? -1 : 0 */
- a = (a ^ s) - s; /* negate if s == -1 */
- du_int r;
- __udivmoddi4(a, b, &r);
- return ((di_int)r ^ s) - s; /* negate if s == -1 */
+COMPILER_RT_ABI di_int __moddi3(di_int a, di_int b) {
+ const int bits_in_dword_m1 = (int)(sizeof(di_int) * CHAR_BIT) - 1;
+ di_int s = b >> bits_in_dword_m1; /* s = b < 0 ? -1 : 0 */
+ b = (b ^ s) - s; /* negate if s == -1 */
+ s = a >> bits_in_dword_m1; /* s = a < 0 ? -1 : 0 */
+ a = (a ^ s) - s; /* negate if s == -1 */
+ du_int r;
+ __udivmoddi4(a, b, &r);
+ return ((di_int)r ^ s) - s; /* negate if s == -1 */
}
diff --git a/lib/builtins/modsi3.c b/lib/builtins/modsi3.c
index 16f3013f3..ed7cac5cf 100644
--- a/lib/builtins/modsi3.c
+++ b/lib/builtins/modsi3.c
@@ -15,8 +15,6 @@
/* Returns: a % b */
-COMPILER_RT_ABI si_int
-__modsi3(si_int a, si_int b)
-{
- return a - __divsi3(a, b) * b;
+COMPILER_RT_ABI si_int __modsi3(si_int a, si_int b) {
+ return a - __divsi3(a, b) * b;
}
diff --git a/lib/builtins/modti3.c b/lib/builtins/modti3.c
index 455d3c570..02bd62a80 100644
--- a/lib/builtins/modti3.c
+++ b/lib/builtins/modti3.c
@@ -17,17 +17,15 @@
/*Returns: a % b */
-COMPILER_RT_ABI ti_int
-__modti3(ti_int a, ti_int b)
-{
- const int bits_in_tword_m1 = (int)(sizeof(ti_int) * CHAR_BIT) - 1;
- ti_int s = b >> bits_in_tword_m1; /* s = b < 0 ? -1 : 0 */
- b = (b ^ s) - s; /* negate if s == -1 */
- s = a >> bits_in_tword_m1; /* s = a < 0 ? -1 : 0 */
- a = (a ^ s) - s; /* negate if s == -1 */
- tu_int r;
- __udivmodti4(a, b, &r);
- return ((ti_int)r ^ s) - s; /* negate if s == -1 */
+COMPILER_RT_ABI ti_int __modti3(ti_int a, ti_int b) {
+ const int bits_in_tword_m1 = (int)(sizeof(ti_int) * CHAR_BIT) - 1;
+ ti_int s = b >> bits_in_tword_m1; /* s = b < 0 ? -1 : 0 */
+ b = (b ^ s) - s; /* negate if s == -1 */
+ s = a >> bits_in_tword_m1; /* s = a < 0 ? -1 : 0 */
+ a = (a ^ s) - s; /* negate if s == -1 */
+ tu_int r;
+ __udivmodti4(a, b, &r);
+ return ((ti_int)r ^ s) - s; /* negate if s == -1 */
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/muldc3.c b/lib/builtins/muldc3.c
index 48bafcaa9..ad3ef6320 100644
--- a/lib/builtins/muldc3.c
+++ b/lib/builtins/muldc3.c
@@ -16,57 +16,51 @@
/* Returns: the product of a + ib and c + id */
-COMPILER_RT_ABI Dcomplex
-__muldc3(double __a, double __b, double __c, double __d)
-{
- double __ac = __a * __c;
- double __bd = __b * __d;
- double __ad = __a * __d;
- double __bc = __b * __c;
- Dcomplex z;
- COMPLEX_REAL(z) = __ac - __bd;
- COMPLEX_IMAGINARY(z) = __ad + __bc;
- if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
- {
- int __recalc = 0;
- if (crt_isinf(__a) || crt_isinf(__b))
- {
- __a = crt_copysign(crt_isinf(__a) ? 1 : 0, __a);
- __b = crt_copysign(crt_isinf(__b) ? 1 : 0, __b);
- if (crt_isnan(__c))
- __c = crt_copysign(0, __c);
- if (crt_isnan(__d))
- __d = crt_copysign(0, __d);
- __recalc = 1;
- }
- if (crt_isinf(__c) || crt_isinf(__d))
- {
- __c = crt_copysign(crt_isinf(__c) ? 1 : 0, __c);
- __d = crt_copysign(crt_isinf(__d) ? 1 : 0, __d);
- if (crt_isnan(__a))
- __a = crt_copysign(0, __a);
- if (crt_isnan(__b))
- __b = crt_copysign(0, __b);
- __recalc = 1;
- }
- if (!__recalc && (crt_isinf(__ac) || crt_isinf(__bd) ||
- crt_isinf(__ad) || crt_isinf(__bc)))
- {
- if (crt_isnan(__a))
- __a = crt_copysign(0, __a);
- if (crt_isnan(__b))
- __b = crt_copysign(0, __b);
- if (crt_isnan(__c))
- __c = crt_copysign(0, __c);
- if (crt_isnan(__d))
- __d = crt_copysign(0, __d);
- __recalc = 1;
- }
- if (__recalc)
- {
- COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c - __b * __d);
- COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__a * __d + __b * __c);
- }
+COMPILER_RT_ABI Dcomplex __muldc3(double __a, double __b, double __c,
+ double __d) {
+ double __ac = __a * __c;
+ double __bd = __b * __d;
+ double __ad = __a * __d;
+ double __bc = __b * __c;
+ Dcomplex z;
+ COMPLEX_REAL(z) = __ac - __bd;
+ COMPLEX_IMAGINARY(z) = __ad + __bc;
+ if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) {
+ int __recalc = 0;
+ if (crt_isinf(__a) || crt_isinf(__b)) {
+ __a = crt_copysign(crt_isinf(__a) ? 1 : 0, __a);
+ __b = crt_copysign(crt_isinf(__b) ? 1 : 0, __b);
+ if (crt_isnan(__c))
+ __c = crt_copysign(0, __c);
+ if (crt_isnan(__d))
+ __d = crt_copysign(0, __d);
+ __recalc = 1;
}
- return z;
+ if (crt_isinf(__c) || crt_isinf(__d)) {
+ __c = crt_copysign(crt_isinf(__c) ? 1 : 0, __c);
+ __d = crt_copysign(crt_isinf(__d) ? 1 : 0, __d);
+ if (crt_isnan(__a))
+ __a = crt_copysign(0, __a);
+ if (crt_isnan(__b))
+ __b = crt_copysign(0, __b);
+ __recalc = 1;
+ }
+ if (!__recalc && (crt_isinf(__ac) || crt_isinf(__bd) || crt_isinf(__ad) ||
+ crt_isinf(__bc))) {
+ if (crt_isnan(__a))
+ __a = crt_copysign(0, __a);
+ if (crt_isnan(__b))
+ __b = crt_copysign(0, __b);
+ if (crt_isnan(__c))
+ __c = crt_copysign(0, __c);
+ if (crt_isnan(__d))
+ __d = crt_copysign(0, __d);
+ __recalc = 1;
+ }
+ if (__recalc) {
+ COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c - __b * __d);
+ COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__a * __d + __b * __c);
+ }
+ }
+ return z;
}
diff --git a/lib/builtins/muldf3.c b/lib/builtins/muldf3.c
index 0c4f189e7..157394c24 100644
--- a/lib/builtins/muldf3.c
+++ b/lib/builtins/muldf3.c
@@ -14,15 +14,11 @@
#define DOUBLE_PRECISION
#include "fp_mul_impl.inc"
-COMPILER_RT_ABI fp_t __muldf3(fp_t a, fp_t b) {
- return __mulXf3__(a, b);
-}
+COMPILER_RT_ABI fp_t __muldf3(fp_t a, fp_t b) { return __mulXf3__(a, b); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI fp_t __aeabi_dmul(fp_t a, fp_t b) {
- return __muldf3(a, b);
-}
+AEABI_RTABI fp_t __aeabi_dmul(fp_t a, fp_t b) { return __muldf3(a, b); }
#else
AEABI_RTABI fp_t __aeabi_dmul(fp_t a, fp_t b) COMPILER_RT_ALIAS(__muldf3);
#endif
diff --git a/lib/builtins/muldi3.c b/lib/builtins/muldi3.c
index 9a80b12bb..dd7c905d4 100644
--- a/lib/builtins/muldi3.c
+++ b/lib/builtins/muldi3.c
@@ -15,41 +15,36 @@
/* Returns: a * b */
-static
-di_int
-__muldsi3(su_int a, su_int b)
-{
- dwords r;
- const int bits_in_word_2 = (int)(sizeof(si_int) * CHAR_BIT) / 2;
- const su_int lower_mask = (su_int)~0 >> bits_in_word_2;
- r.s.low = (a & lower_mask) * (b & lower_mask);
- su_int t = r.s.low >> bits_in_word_2;
- r.s.low &= lower_mask;
- t += (a >> bits_in_word_2) * (b & lower_mask);
- r.s.low += (t & lower_mask) << bits_in_word_2;
- r.s.high = t >> bits_in_word_2;
- t = r.s.low >> bits_in_word_2;
- r.s.low &= lower_mask;
- t += (b >> bits_in_word_2) * (a & lower_mask);
- r.s.low += (t & lower_mask) << bits_in_word_2;
- r.s.high += t >> bits_in_word_2;
- r.s.high += (a >> bits_in_word_2) * (b >> bits_in_word_2);
- return r.all;
+static di_int __muldsi3(su_int a, su_int b) {
+ dwords r;
+ const int bits_in_word_2 = (int)(sizeof(si_int) * CHAR_BIT) / 2;
+ const su_int lower_mask = (su_int)~0 >> bits_in_word_2;
+ r.s.low = (a & lower_mask) * (b & lower_mask);
+ su_int t = r.s.low >> bits_in_word_2;
+ r.s.low &= lower_mask;
+ t += (a >> bits_in_word_2) * (b & lower_mask);
+ r.s.low += (t & lower_mask) << bits_in_word_2;
+ r.s.high = t >> bits_in_word_2;
+ t = r.s.low >> bits_in_word_2;
+ r.s.low &= lower_mask;
+ t += (b >> bits_in_word_2) * (a & lower_mask);
+ r.s.low += (t & lower_mask) << bits_in_word_2;
+ r.s.high += t >> bits_in_word_2;
+ r.s.high += (a >> bits_in_word_2) * (b >> bits_in_word_2);
+ return r.all;
}
/* Returns: a * b */
-COMPILER_RT_ABI di_int
-__muldi3(di_int a, di_int b)
-{
- dwords x;
- x.all = a;
- dwords y;
- y.all = b;
- dwords r;
- r.all = __muldsi3(x.s.low, y.s.low);
- r.s.high += x.s.high * y.s.low + x.s.low * y.s.high;
- return r.all;
+COMPILER_RT_ABI di_int __muldi3(di_int a, di_int b) {
+ dwords x;
+ x.all = a;
+ dwords y;
+ y.all = b;
+ dwords r;
+ r.all = __muldsi3(x.s.low, y.s.low);
+ r.s.high += x.s.high * y.s.low + x.s.low * y.s.high;
+ return r.all;
}
#if defined(__ARM_EABI__)
diff --git a/lib/builtins/mulodi4.c b/lib/builtins/mulodi4.c
index 64d1a30d7..5fefe52ca 100644
--- a/lib/builtins/mulodi4.c
+++ b/lib/builtins/mulodi4.c
@@ -17,41 +17,34 @@
/* Effects: sets *overflow to 1 if a * b overflows */
-COMPILER_RT_ABI di_int
-__mulodi4(di_int a, di_int b, int* overflow)
-{
- const int N = (int)(sizeof(di_int) * CHAR_BIT);
- const di_int MIN = (di_int)1 << (N-1);
- const di_int MAX = ~MIN;
- *overflow = 0;
- di_int result = a * b;
- if (a == MIN)
- {
- if (b != 0 && b != 1)
- *overflow = 1;
- return result;
- }
- if (b == MIN)
- {
- if (a != 0 && a != 1)
- *overflow = 1;
- return result;
- }
- di_int sa = a >> (N - 1);
- di_int abs_a = (a ^ sa) - sa;
- di_int sb = b >> (N - 1);
- di_int abs_b = (b ^ sb) - sb;
- if (abs_a < 2 || abs_b < 2)
- return result;
- if (sa == sb)
- {
- if (abs_a > MAX / abs_b)
- *overflow = 1;
- }
- else
- {
- if (abs_a > MIN / -abs_b)
- *overflow = 1;
- }
+COMPILER_RT_ABI di_int __mulodi4(di_int a, di_int b, int *overflow) {
+ const int N = (int)(sizeof(di_int) * CHAR_BIT);
+ const di_int MIN = (di_int)1 << (N - 1);
+ const di_int MAX = ~MIN;
+ *overflow = 0;
+ di_int result = a * b;
+ if (a == MIN) {
+ if (b != 0 && b != 1)
+ *overflow = 1;
return result;
+ }
+ if (b == MIN) {
+ if (a != 0 && a != 1)
+ *overflow = 1;
+ return result;
+ }
+ di_int sa = a >> (N - 1);
+ di_int abs_a = (a ^ sa) - sa;
+ di_int sb = b >> (N - 1);
+ di_int abs_b = (b ^ sb) - sb;
+ if (abs_a < 2 || abs_b < 2)
+ return result;
+ if (sa == sb) {
+ if (abs_a > MAX / abs_b)
+ *overflow = 1;
+ } else {
+ if (abs_a > MIN / -abs_b)
+ *overflow = 1;
+ }
+ return result;
}
diff --git a/lib/builtins/mulosi4.c b/lib/builtins/mulosi4.c
index 1732da210..7db178ac0 100644
--- a/lib/builtins/mulosi4.c
+++ b/lib/builtins/mulosi4.c
@@ -17,41 +17,34 @@
/* Effects: sets *overflow to 1 if a * b overflows */
-COMPILER_RT_ABI si_int
-__mulosi4(si_int a, si_int b, int* overflow)
-{
- const int N = (int)(sizeof(si_int) * CHAR_BIT);
- const si_int MIN = (si_int)1 << (N-1);
- const si_int MAX = ~MIN;
- *overflow = 0;
- si_int result = a * b;
- if (a == MIN)
- {
- if (b != 0 && b != 1)
- *overflow = 1;
- return result;
- }
- if (b == MIN)
- {
- if (a != 0 && a != 1)
- *overflow = 1;
- return result;
- }
- si_int sa = a >> (N - 1);
- si_int abs_a = (a ^ sa) - sa;
- si_int sb = b >> (N - 1);
- si_int abs_b = (b ^ sb) - sb;
- if (abs_a < 2 || abs_b < 2)
- return result;
- if (sa == sb)
- {
- if (abs_a > MAX / abs_b)
- *overflow = 1;
- }
- else
- {
- if (abs_a > MIN / -abs_b)
- *overflow = 1;
- }
+COMPILER_RT_ABI si_int __mulosi4(si_int a, si_int b, int *overflow) {
+ const int N = (int)(sizeof(si_int) * CHAR_BIT);
+ const si_int MIN = (si_int)1 << (N - 1);
+ const si_int MAX = ~MIN;
+ *overflow = 0;
+ si_int result = a * b;
+ if (a == MIN) {
+ if (b != 0 && b != 1)
+ *overflow = 1;
return result;
+ }
+ if (b == MIN) {
+ if (a != 0 && a != 1)
+ *overflow = 1;
+ return result;
+ }
+ si_int sa = a >> (N - 1);
+ si_int abs_a = (a ^ sa) - sa;
+ si_int sb = b >> (N - 1);
+ si_int abs_b = (b ^ sb) - sb;
+ if (abs_a < 2 || abs_b < 2)
+ return result;
+ if (sa == sb) {
+ if (abs_a > MAX / abs_b)
+ *overflow = 1;
+ } else {
+ if (abs_a > MIN / -abs_b)
+ *overflow = 1;
+ }
+ return result;
}
diff --git a/lib/builtins/muloti4.c b/lib/builtins/muloti4.c
index a73708264..7dc62b22b 100644
--- a/lib/builtins/muloti4.c
+++ b/lib/builtins/muloti4.c
@@ -19,43 +19,36 @@
/* Effects: sets *overflow to 1 if a * b overflows */
-COMPILER_RT_ABI ti_int
-__muloti4(ti_int a, ti_int b, int* overflow)
-{
- const int N = (int)(sizeof(ti_int) * CHAR_BIT);
- const ti_int MIN = (ti_int)1 << (N-1);
- const ti_int MAX = ~MIN;
- *overflow = 0;
- ti_int result = a * b;
- if (a == MIN)
- {
- if (b != 0 && b != 1)
- *overflow = 1;
- return result;
- }
- if (b == MIN)
- {
- if (a != 0 && a != 1)
- *overflow = 1;
- return result;
- }
- ti_int sa = a >> (N - 1);
- ti_int abs_a = (a ^ sa) - sa;
- ti_int sb = b >> (N - 1);
- ti_int abs_b = (b ^ sb) - sb;
- if (abs_a < 2 || abs_b < 2)
- return result;
- if (sa == sb)
- {
- if (abs_a > MAX / abs_b)
- *overflow = 1;
- }
- else
- {
- if (abs_a > MIN / -abs_b)
- *overflow = 1;
- }
+COMPILER_RT_ABI ti_int __muloti4(ti_int a, ti_int b, int *overflow) {
+ const int N = (int)(sizeof(ti_int) * CHAR_BIT);
+ const ti_int MIN = (ti_int)1 << (N - 1);
+ const ti_int MAX = ~MIN;
+ *overflow = 0;
+ ti_int result = a * b;
+ if (a == MIN) {
+ if (b != 0 && b != 1)
+ *overflow = 1;
return result;
+ }
+ if (b == MIN) {
+ if (a != 0 && a != 1)
+ *overflow = 1;
+ return result;
+ }
+ ti_int sa = a >> (N - 1);
+ ti_int abs_a = (a ^ sa) - sa;
+ ti_int sb = b >> (N - 1);
+ ti_int abs_b = (b ^ sb) - sb;
+ if (abs_a < 2 || abs_b < 2)
+ return result;
+ if (sa == sb) {
+ if (abs_a > MAX / abs_b)
+ *overflow = 1;
+ } else {
+ if (abs_a > MIN / -abs_b)
+ *overflow = 1;
+ }
+ return result;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/mulsc3.c b/lib/builtins/mulsc3.c
index bf3ea1da8..7f08e815c 100644
--- a/lib/builtins/mulsc3.c
+++ b/lib/builtins/mulsc3.c
@@ -16,57 +16,50 @@
/* Returns: the product of a + ib and c + id */
-COMPILER_RT_ABI Fcomplex
-__mulsc3(float __a, float __b, float __c, float __d)
-{
- float __ac = __a * __c;
- float __bd = __b * __d;
- float __ad = __a * __d;
- float __bc = __b * __c;
- Fcomplex z;
- COMPLEX_REAL(z) = __ac - __bd;
- COMPLEX_IMAGINARY(z) = __ad + __bc;
- if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
- {
- int __recalc = 0;
- if (crt_isinf(__a) || crt_isinf(__b))
- {
- __a = crt_copysignf(crt_isinf(__a) ? 1 : 0, __a);
- __b = crt_copysignf(crt_isinf(__b) ? 1 : 0, __b);
- if (crt_isnan(__c))
- __c = crt_copysignf(0, __c);
- if (crt_isnan(__d))
- __d = crt_copysignf(0, __d);
- __recalc = 1;
- }
- if (crt_isinf(__c) || crt_isinf(__d))
- {
- __c = crt_copysignf(crt_isinf(__c) ? 1 : 0, __c);
- __d = crt_copysignf(crt_isinf(__d) ? 1 : 0, __d);
- if (crt_isnan(__a))
- __a = crt_copysignf(0, __a);
- if (crt_isnan(__b))
- __b = crt_copysignf(0, __b);
- __recalc = 1;
- }
- if (!__recalc && (crt_isinf(__ac) || crt_isinf(__bd) ||
- crt_isinf(__ad) || crt_isinf(__bc)))
- {
- if (crt_isnan(__a))
- __a = crt_copysignf(0, __a);
- if (crt_isnan(__b))
- __b = crt_copysignf(0, __b);
- if (crt_isnan(__c))
- __c = crt_copysignf(0, __c);
- if (crt_isnan(__d))
- __d = crt_copysignf(0, __d);
- __recalc = 1;
- }
- if (__recalc)
- {
- COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c - __b * __d);
- COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__a * __d + __b * __c);
- }
+COMPILER_RT_ABI Fcomplex __mulsc3(float __a, float __b, float __c, float __d) {
+ float __ac = __a * __c;
+ float __bd = __b * __d;
+ float __ad = __a * __d;
+ float __bc = __b * __c;
+ Fcomplex z;
+ COMPLEX_REAL(z) = __ac - __bd;
+ COMPLEX_IMAGINARY(z) = __ad + __bc;
+ if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) {
+ int __recalc = 0;
+ if (crt_isinf(__a) || crt_isinf(__b)) {
+ __a = crt_copysignf(crt_isinf(__a) ? 1 : 0, __a);
+ __b = crt_copysignf(crt_isinf(__b) ? 1 : 0, __b);
+ if (crt_isnan(__c))
+ __c = crt_copysignf(0, __c);
+ if (crt_isnan(__d))
+ __d = crt_copysignf(0, __d);
+ __recalc = 1;
}
- return z;
+ if (crt_isinf(__c) || crt_isinf(__d)) {
+ __c = crt_copysignf(crt_isinf(__c) ? 1 : 0, __c);
+ __d = crt_copysignf(crt_isinf(__d) ? 1 : 0, __d);
+ if (crt_isnan(__a))
+ __a = crt_copysignf(0, __a);
+ if (crt_isnan(__b))
+ __b = crt_copysignf(0, __b);
+ __recalc = 1;
+ }
+ if (!__recalc && (crt_isinf(__ac) || crt_isinf(__bd) || crt_isinf(__ad) ||
+ crt_isinf(__bc))) {
+ if (crt_isnan(__a))
+ __a = crt_copysignf(0, __a);
+ if (crt_isnan(__b))
+ __b = crt_copysignf(0, __b);
+ if (crt_isnan(__c))
+ __c = crt_copysignf(0, __c);
+ if (crt_isnan(__d))
+ __d = crt_copysignf(0, __d);
+ __recalc = 1;
+ }
+ if (__recalc) {
+ COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c - __b * __d);
+ COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__a * __d + __b * __c);
+ }
+ }
+ return z;
}
diff --git a/lib/builtins/mulsf3.c b/lib/builtins/mulsf3.c
index d253515c4..d2a1b7725 100644
--- a/lib/builtins/mulsf3.c
+++ b/lib/builtins/mulsf3.c
@@ -14,15 +14,11 @@
#define SINGLE_PRECISION
#include "fp_mul_impl.inc"
-COMPILER_RT_ABI fp_t __mulsf3(fp_t a, fp_t b) {
- return __mulXf3__(a, b);
-}
+COMPILER_RT_ABI fp_t __mulsf3(fp_t a, fp_t b) { return __mulXf3__(a, b); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI fp_t __aeabi_fmul(fp_t a, fp_t b) {
- return __mulsf3(a, b);
-}
+AEABI_RTABI fp_t __aeabi_fmul(fp_t a, fp_t b) { return __mulsf3(a, b); }
#else
AEABI_RTABI fp_t __aeabi_fmul(fp_t a, fp_t b) COMPILER_RT_ALIAS(__mulsf3);
#endif
diff --git a/lib/builtins/multc3.c b/lib/builtins/multc3.c
index eeac53a09..140eef4d2 100644
--- a/lib/builtins/multc3.c
+++ b/lib/builtins/multc3.c
@@ -16,52 +16,51 @@
/* Returns: the product of a + ib and c + id */
-COMPILER_RT_ABI long double _Complex
-__multc3(long double a, long double b, long double c, long double d)
-{
- long double ac = a * c;
- long double bd = b * d;
- long double ad = a * d;
- long double bc = b * c;
- long double _Complex z;
- __real__ z = ac - bd;
- __imag__ z = ad + bc;
- if (crt_isnan(__real__ z) && crt_isnan(__imag__ z)) {
- int recalc = 0;
- if (crt_isinf(a) || crt_isinf(b)) {
- a = crt_copysignl(crt_isinf(a) ? 1 : 0, a);
- b = crt_copysignl(crt_isinf(b) ? 1 : 0, b);
- if (crt_isnan(c))
- c = crt_copysignl(0, c);
- if (crt_isnan(d))
- d = crt_copysignl(0, d);
- recalc = 1;
- }
- if (crt_isinf(c) || crt_isinf(d)) {
- c = crt_copysignl(crt_isinf(c) ? 1 : 0, c);
- d = crt_copysignl(crt_isinf(d) ? 1 : 0, d);
- if (crt_isnan(a))
- a = crt_copysignl(0, a);
- if (crt_isnan(b))
- b = crt_copysignl(0, b);
- recalc = 1;
- }
- if (!recalc && (crt_isinf(ac) || crt_isinf(bd) ||
- crt_isinf(ad) || crt_isinf(bc))) {
- if (crt_isnan(a))
- a = crt_copysignl(0, a);
- if (crt_isnan(b))
- b = crt_copysignl(0, b);
- if (crt_isnan(c))
- c = crt_copysignl(0, c);
- if (crt_isnan(d))
- d = crt_copysignl(0, d);
- recalc = 1;
- }
- if (recalc) {
- __real__ z = CRT_INFINITY * (a * c - b * d);
- __imag__ z = CRT_INFINITY * (a * d + b * c);
- }
+COMPILER_RT_ABI long double _Complex __multc3(long double a, long double b,
+ long double c, long double d) {
+ long double ac = a * c;
+ long double bd = b * d;
+ long double ad = a * d;
+ long double bc = b * c;
+ long double _Complex z;
+ __real__ z = ac - bd;
+ __imag__ z = ad + bc;
+ if (crt_isnan(__real__ z) && crt_isnan(__imag__ z)) {
+ int recalc = 0;
+ if (crt_isinf(a) || crt_isinf(b)) {
+ a = crt_copysignl(crt_isinf(a) ? 1 : 0, a);
+ b = crt_copysignl(crt_isinf(b) ? 1 : 0, b);
+ if (crt_isnan(c))
+ c = crt_copysignl(0, c);
+ if (crt_isnan(d))
+ d = crt_copysignl(0, d);
+ recalc = 1;
}
- return z;
+ if (crt_isinf(c) || crt_isinf(d)) {
+ c = crt_copysignl(crt_isinf(c) ? 1 : 0, c);
+ d = crt_copysignl(crt_isinf(d) ? 1 : 0, d);
+ if (crt_isnan(a))
+ a = crt_copysignl(0, a);
+ if (crt_isnan(b))
+ b = crt_copysignl(0, b);
+ recalc = 1;
+ }
+ if (!recalc &&
+ (crt_isinf(ac) || crt_isinf(bd) || crt_isinf(ad) || crt_isinf(bc))) {
+ if (crt_isnan(a))
+ a = crt_copysignl(0, a);
+ if (crt_isnan(b))
+ b = crt_copysignl(0, b);
+ if (crt_isnan(c))
+ c = crt_copysignl(0, c);
+ if (crt_isnan(d))
+ d = crt_copysignl(0, d);
+ recalc = 1;
+ }
+ if (recalc) {
+ __real__ z = CRT_INFINITY * (a * c - b * d);
+ __imag__ z = CRT_INFINITY * (a * d + b * c);
+ }
+ }
+ return z;
}
diff --git a/lib/builtins/multf3.c b/lib/builtins/multf3.c
index d3885b7c5..0626fb8c7 100644
--- a/lib/builtins/multf3.c
+++ b/lib/builtins/multf3.c
@@ -17,8 +17,6 @@
#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
#include "fp_mul_impl.inc"
-COMPILER_RT_ABI fp_t __multf3(fp_t a, fp_t b) {
- return __mulXf3__(a, b);
-}
+COMPILER_RT_ABI fp_t __multf3(fp_t a, fp_t b) { return __mulXf3__(a, b); }
#endif
diff --git a/lib/builtins/multi3.c b/lib/builtins/multi3.c
index 96c9cf628..e214b231e 100644
--- a/lib/builtins/multi3.c
+++ b/lib/builtins/multi3.c
@@ -17,41 +17,36 @@
/* Returns: a * b */
-static
-ti_int
-__mulddi3(du_int a, du_int b)
-{
- twords r;
- const int bits_in_dword_2 = (int)(sizeof(di_int) * CHAR_BIT) / 2;
- const du_int lower_mask = (du_int)~0 >> bits_in_dword_2;
- r.s.low = (a & lower_mask) * (b & lower_mask);
- du_int t = r.s.low >> bits_in_dword_2;
- r.s.low &= lower_mask;
- t += (a >> bits_in_dword_2) * (b & lower_mask);
- r.s.low += (t & lower_mask) << bits_in_dword_2;
- r.s.high = t >> bits_in_dword_2;
- t = r.s.low >> bits_in_dword_2;
- r.s.low &= lower_mask;
- t += (b >> bits_in_dword_2) * (a & lower_mask);
- r.s.low += (t & lower_mask) << bits_in_dword_2;
- r.s.high += t >> bits_in_dword_2;
- r.s.high += (a >> bits_in_dword_2) * (b >> bits_in_dword_2);
- return r.all;
+static ti_int __mulddi3(du_int a, du_int b) {
+ twords r;
+ const int bits_in_dword_2 = (int)(sizeof(di_int) * CHAR_BIT) / 2;
+ const du_int lower_mask = (du_int)~0 >> bits_in_dword_2;
+ r.s.low = (a & lower_mask) * (b & lower_mask);
+ du_int t = r.s.low >> bits_in_dword_2;
+ r.s.low &= lower_mask;
+ t += (a >> bits_in_dword_2) * (b & lower_mask);
+ r.s.low += (t & lower_mask) << bits_in_dword_2;
+ r.s.high = t >> bits_in_dword_2;
+ t = r.s.low >> bits_in_dword_2;
+ r.s.low &= lower_mask;
+ t += (b >> bits_in_dword_2) * (a & lower_mask);
+ r.s.low += (t & lower_mask) << bits_in_dword_2;
+ r.s.high += t >> bits_in_dword_2;
+ r.s.high += (a >> bits_in_dword_2) * (b >> bits_in_dword_2);
+ return r.all;
}
/* Returns: a * b */
-COMPILER_RT_ABI ti_int
-__multi3(ti_int a, ti_int b)
-{
- twords x;
- x.all = a;
- twords y;
- y.all = b;
- twords r;
- r.all = __mulddi3(x.s.low, y.s.low);
- r.s.high += x.s.high * y.s.low + x.s.low * y.s.high;
- return r.all;
+COMPILER_RT_ABI ti_int __multi3(ti_int a, ti_int b) {
+ twords x;
+ x.all = a;
+ twords y;
+ y.all = b;
+ twords r;
+ r.all = __mulddi3(x.s.low, y.s.low);
+ r.s.high += x.s.high * y.s.low + x.s.low * y.s.high;
+ return r.all;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/mulvdi3.c b/lib/builtins/mulvdi3.c
index 3cb4be652..1ceed68a1 100644
--- a/lib/builtins/mulvdi3.c
+++ b/lib/builtins/mulvdi3.c
@@ -17,39 +17,32 @@
/* Effects: aborts if a * b overflows */
-COMPILER_RT_ABI di_int
-__mulvdi3(di_int a, di_int b)
-{
- const int N = (int)(sizeof(di_int) * CHAR_BIT);
- const di_int MIN = (di_int)1 << (N-1);
- const di_int MAX = ~MIN;
- if (a == MIN)
- {
- if (b == 0 || b == 1)
- return a * b;
- compilerrt_abort();
- }
- if (b == MIN)
- {
- if (a == 0 || a == 1)
- return a * b;
- compilerrt_abort();
- }
- di_int sa = a >> (N - 1);
- di_int abs_a = (a ^ sa) - sa;
- di_int sb = b >> (N - 1);
- di_int abs_b = (b ^ sb) - sb;
- if (abs_a < 2 || abs_b < 2)
- return a * b;
- if (sa == sb)
- {
- if (abs_a > MAX / abs_b)
- compilerrt_abort();
- }
- else
- {
- if (abs_a > MIN / -abs_b)
- compilerrt_abort();
- }
+COMPILER_RT_ABI di_int __mulvdi3(di_int a, di_int b) {
+ const int N = (int)(sizeof(di_int) * CHAR_BIT);
+ const di_int MIN = (di_int)1 << (N - 1);
+ const di_int MAX = ~MIN;
+ if (a == MIN) {
+ if (b == 0 || b == 1)
+ return a * b;
+ compilerrt_abort();
+ }
+ if (b == MIN) {
+ if (a == 0 || a == 1)
+ return a * b;
+ compilerrt_abort();
+ }
+ di_int sa = a >> (N - 1);
+ di_int abs_a = (a ^ sa) - sa;
+ di_int sb = b >> (N - 1);
+ di_int abs_b = (b ^ sb) - sb;
+ if (abs_a < 2 || abs_b < 2)
return a * b;
+ if (sa == sb) {
+ if (abs_a > MAX / abs_b)
+ compilerrt_abort();
+ } else {
+ if (abs_a > MIN / -abs_b)
+ compilerrt_abort();
+ }
+ return a * b;
}
diff --git a/lib/builtins/mulvsi3.c b/lib/builtins/mulvsi3.c
index f779ff34d..e974613e4 100644
--- a/lib/builtins/mulvsi3.c
+++ b/lib/builtins/mulvsi3.c
@@ -17,39 +17,32 @@
/* Effects: aborts if a * b overflows */
-COMPILER_RT_ABI si_int
-__mulvsi3(si_int a, si_int b)
-{
- const int N = (int)(sizeof(si_int) * CHAR_BIT);
- const si_int MIN = (si_int)1 << (N-1);
- const si_int MAX = ~MIN;
- if (a == MIN)
- {
- if (b == 0 || b == 1)
- return a * b;
- compilerrt_abort();
- }
- if (b == MIN)
- {
- if (a == 0 || a == 1)
- return a * b;
- compilerrt_abort();
- }
- si_int sa = a >> (N - 1);
- si_int abs_a = (a ^ sa) - sa;
- si_int sb = b >> (N - 1);
- si_int abs_b = (b ^ sb) - sb;
- if (abs_a < 2 || abs_b < 2)
- return a * b;
- if (sa == sb)
- {
- if (abs_a > MAX / abs_b)
- compilerrt_abort();
- }
- else
- {
- if (abs_a > MIN / -abs_b)
- compilerrt_abort();
- }
+COMPILER_RT_ABI si_int __mulvsi3(si_int a, si_int b) {
+ const int N = (int)(sizeof(si_int) * CHAR_BIT);
+ const si_int MIN = (si_int)1 << (N - 1);
+ const si_int MAX = ~MIN;
+ if (a == MIN) {
+ if (b == 0 || b == 1)
+ return a * b;
+ compilerrt_abort();
+ }
+ if (b == MIN) {
+ if (a == 0 || a == 1)
+ return a * b;
+ compilerrt_abort();
+ }
+ si_int sa = a >> (N - 1);
+ si_int abs_a = (a ^ sa) - sa;
+ si_int sb = b >> (N - 1);
+ si_int abs_b = (b ^ sb) - sb;
+ if (abs_a < 2 || abs_b < 2)
return a * b;
+ if (sa == sb) {
+ if (abs_a > MAX / abs_b)
+ compilerrt_abort();
+ } else {
+ if (abs_a > MIN / -abs_b)
+ compilerrt_abort();
+ }
+ return a * b;
}
diff --git a/lib/builtins/mulvti3.c b/lib/builtins/mulvti3.c
index 3972d1725..b8033d5d3 100644
--- a/lib/builtins/mulvti3.c
+++ b/lib/builtins/mulvti3.c
@@ -19,41 +19,34 @@
/* Effects: aborts if a * b overflows */
-COMPILER_RT_ABI ti_int
-__mulvti3(ti_int a, ti_int b)
-{
- const int N = (int)(sizeof(ti_int) * CHAR_BIT);
- const ti_int MIN = (ti_int)1 << (N-1);
- const ti_int MAX = ~MIN;
- if (a == MIN)
- {
- if (b == 0 || b == 1)
- return a * b;
- compilerrt_abort();
- }
- if (b == MIN)
- {
- if (a == 0 || a == 1)
- return a * b;
- compilerrt_abort();
- }
- ti_int sa = a >> (N - 1);
- ti_int abs_a = (a ^ sa) - sa;
- ti_int sb = b >> (N - 1);
- ti_int abs_b = (b ^ sb) - sb;
- if (abs_a < 2 || abs_b < 2)
- return a * b;
- if (sa == sb)
- {
- if (abs_a > MAX / abs_b)
- compilerrt_abort();
- }
- else
- {
- if (abs_a > MIN / -abs_b)
- compilerrt_abort();
- }
+COMPILER_RT_ABI ti_int __mulvti3(ti_int a, ti_int b) {
+ const int N = (int)(sizeof(ti_int) * CHAR_BIT);
+ const ti_int MIN = (ti_int)1 << (N - 1);
+ const ti_int MAX = ~MIN;
+ if (a == MIN) {
+ if (b == 0 || b == 1)
+ return a * b;
+ compilerrt_abort();
+ }
+ if (b == MIN) {
+ if (a == 0 || a == 1)
+ return a * b;
+ compilerrt_abort();
+ }
+ ti_int sa = a >> (N - 1);
+ ti_int abs_a = (a ^ sa) - sa;
+ ti_int sb = b >> (N - 1);
+ ti_int abs_b = (b ^ sb) - sb;
+ if (abs_a < 2 || abs_b < 2)
return a * b;
+ if (sa == sb) {
+ if (abs_a > MAX / abs_b)
+ compilerrt_abort();
+ } else {
+ if (abs_a > MIN / -abs_b)
+ compilerrt_abort();
+ }
+ return a * b;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/mulxc3.c b/lib/builtins/mulxc3.c
index 2ed9bd530..d9b561066 100644
--- a/lib/builtins/mulxc3.c
+++ b/lib/builtins/mulxc3.c
@@ -18,59 +18,53 @@
/* Returns: the product of a + ib and c + id */
-COMPILER_RT_ABI Lcomplex
-__mulxc3(long double __a, long double __b, long double __c, long double __d)
-{
- long double __ac = __a * __c;
- long double __bd = __b * __d;
- long double __ad = __a * __d;
- long double __bc = __b * __c;
- Lcomplex z;
- COMPLEX_REAL(z) = __ac - __bd;
- COMPLEX_IMAGINARY(z) = __ad + __bc;
- if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z)))
- {
- int __recalc = 0;
- if (crt_isinf(__a) || crt_isinf(__b))
- {
- __a = crt_copysignl(crt_isinf(__a) ? 1 : 0, __a);
- __b = crt_copysignl(crt_isinf(__b) ? 1 : 0, __b);
- if (crt_isnan(__c))
- __c = crt_copysignl(0, __c);
- if (crt_isnan(__d))
- __d = crt_copysignl(0, __d);
- __recalc = 1;
- }
- if (crt_isinf(__c) || crt_isinf(__d))
- {
- __c = crt_copysignl(crt_isinf(__c) ? 1 : 0, __c);
- __d = crt_copysignl(crt_isinf(__d) ? 1 : 0, __d);
- if (crt_isnan(__a))
- __a = crt_copysignl(0, __a);
- if (crt_isnan(__b))
- __b = crt_copysignl(0, __b);
- __recalc = 1;
- }
- if (!__recalc && (crt_isinf(__ac) || crt_isinf(__bd) ||
- crt_isinf(__ad) || crt_isinf(__bc)))
- {
- if (crt_isnan(__a))
- __a = crt_copysignl(0, __a);
- if (crt_isnan(__b))
- __b = crt_copysignl(0, __b);
- if (crt_isnan(__c))
- __c = crt_copysignl(0, __c);
- if (crt_isnan(__d))
- __d = crt_copysignl(0, __d);
- __recalc = 1;
- }
- if (__recalc)
- {
- COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c - __b * __d);
- COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__a * __d + __b * __c);
- }
+COMPILER_RT_ABI Lcomplex __mulxc3(long double __a, long double __b,
+ long double __c, long double __d) {
+ long double __ac = __a * __c;
+ long double __bd = __b * __d;
+ long double __ad = __a * __d;
+ long double __bc = __b * __c;
+ Lcomplex z;
+ COMPLEX_REAL(z) = __ac - __bd;
+ COMPLEX_IMAGINARY(z) = __ad + __bc;
+ if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) {
+ int __recalc = 0;
+ if (crt_isinf(__a) || crt_isinf(__b)) {
+ __a = crt_copysignl(crt_isinf(__a) ? 1 : 0, __a);
+ __b = crt_copysignl(crt_isinf(__b) ? 1 : 0, __b);
+ if (crt_isnan(__c))
+ __c = crt_copysignl(0, __c);
+ if (crt_isnan(__d))
+ __d = crt_copysignl(0, __d);
+ __recalc = 1;
}
- return z;
+ if (crt_isinf(__c) || crt_isinf(__d)) {
+ __c = crt_copysignl(crt_isinf(__c) ? 1 : 0, __c);
+ __d = crt_copysignl(crt_isinf(__d) ? 1 : 0, __d);
+ if (crt_isnan(__a))
+ __a = crt_copysignl(0, __a);
+ if (crt_isnan(__b))
+ __b = crt_copysignl(0, __b);
+ __recalc = 1;
+ }
+ if (!__recalc && (crt_isinf(__ac) || crt_isinf(__bd) || crt_isinf(__ad) ||
+ crt_isinf(__bc))) {
+ if (crt_isnan(__a))
+ __a = crt_copysignl(0, __a);
+ if (crt_isnan(__b))
+ __b = crt_copysignl(0, __b);
+ if (crt_isnan(__c))
+ __c = crt_copysignl(0, __c);
+ if (crt_isnan(__d))
+ __d = crt_copysignl(0, __d);
+ __recalc = 1;
+ }
+ if (__recalc) {
+ COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c - __b * __d);
+ COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__a * __d + __b * __c);
+ }
+ }
+ return z;
}
#endif
diff --git a/lib/builtins/negdf2.c b/lib/builtins/negdf2.c
index 2f2586e8c..9166412b3 100644
--- a/lib/builtins/negdf2.c
+++ b/lib/builtins/negdf2.c
@@ -13,16 +13,11 @@
#define DOUBLE_PRECISION
#include "fp_lib.h"
-COMPILER_RT_ABI fp_t
-__negdf2(fp_t a) {
- return fromRep(toRep(a) ^ signBit);
-}
+COMPILER_RT_ABI fp_t __negdf2(fp_t a) { return fromRep(toRep(a) ^ signBit); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI fp_t __aeabi_dneg(fp_t a) {
- return __negdf2(a);
-}
+AEABI_RTABI fp_t __aeabi_dneg(fp_t a) { return __negdf2(a); }
#else
AEABI_RTABI fp_t __aeabi_dneg(fp_t a) COMPILER_RT_ALIAS(__negdf2);
#endif
diff --git a/lib/builtins/negdi2.c b/lib/builtins/negdi2.c
index 6ffe664df..f6bc3ee56 100644
--- a/lib/builtins/negdi2.c
+++ b/lib/builtins/negdi2.c
@@ -15,11 +15,9 @@
/* Returns: -a */
-COMPILER_RT_ABI di_int
-__negdi2(di_int a)
-{
- /* Note: this routine is here for API compatibility; any sane compiler
- * should expand it inline.
- */
- return -a;
+COMPILER_RT_ABI di_int __negdi2(di_int a) {
+ /* Note: this routine is here for API compatibility; any sane compiler
+ * should expand it inline.
+ */
+ return -a;
}
diff --git a/lib/builtins/negsf2.c b/lib/builtins/negsf2.c
index b8852d55b..c4c04574a 100644
--- a/lib/builtins/negsf2.c
+++ b/lib/builtins/negsf2.c
@@ -13,16 +13,11 @@
#define SINGLE_PRECISION
#include "fp_lib.h"
-COMPILER_RT_ABI fp_t
-__negsf2(fp_t a) {
- return fromRep(toRep(a) ^ signBit);
-}
+COMPILER_RT_ABI fp_t __negsf2(fp_t a) { return fromRep(toRep(a) ^ signBit); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI fp_t __aeabi_fneg(fp_t a) {
- return __negsf2(a);
-}
+AEABI_RTABI fp_t __aeabi_fneg(fp_t a) { return __negsf2(a); }
#else
AEABI_RTABI fp_t __aeabi_fneg(fp_t a) COMPILER_RT_ALIAS(__negsf2);
#endif
diff --git a/lib/builtins/negti2.c b/lib/builtins/negti2.c
index b39aa3225..789699a10 100644
--- a/lib/builtins/negti2.c
+++ b/lib/builtins/negti2.c
@@ -17,13 +17,11 @@
/* Returns: -a */
-COMPILER_RT_ABI ti_int
-__negti2(ti_int a)
-{
- /* Note: this routine is here for API compatibility; any sane compiler
- * should expand it inline.
- */
- return -a;
+COMPILER_RT_ABI ti_int __negti2(ti_int a) {
+ /* Note: this routine is here for API compatibility; any sane compiler
+ * should expand it inline.
+ */
+ return -a;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/negvdi2.c b/lib/builtins/negvdi2.c
index aefb10eab..6c4edb954 100644
--- a/lib/builtins/negvdi2.c
+++ b/lib/builtins/negvdi2.c
@@ -17,11 +17,9 @@
/* Effects: aborts if -a overflows */
-COMPILER_RT_ABI di_int
-__negvdi2(di_int a)
-{
- const di_int MIN = (di_int)1 << ((int)(sizeof(di_int) * CHAR_BIT)-1);
- if (a == MIN)
- compilerrt_abort();
- return -a;
+COMPILER_RT_ABI di_int __negvdi2(di_int a) {
+ const di_int MIN = (di_int)1 << ((int)(sizeof(di_int) * CHAR_BIT) - 1);
+ if (a == MIN)
+ compilerrt_abort();
+ return -a;
}
diff --git a/lib/builtins/negvsi2.c b/lib/builtins/negvsi2.c
index 6931a6f88..e6afda205 100644
--- a/lib/builtins/negvsi2.c
+++ b/lib/builtins/negvsi2.c
@@ -17,11 +17,9 @@
/* Effects: aborts if -a overflows */
-COMPILER_RT_ABI si_int
-__negvsi2(si_int a)
-{
- const si_int MIN = (si_int)1 << ((int)(sizeof(si_int) * CHAR_BIT)-1);
- if (a == MIN)
- compilerrt_abort();
- return -a;
+COMPILER_RT_ABI si_int __negvsi2(si_int a) {
+ const si_int MIN = (si_int)1 << ((int)(sizeof(si_int) * CHAR_BIT) - 1);
+ if (a == MIN)
+ compilerrt_abort();
+ return -a;
}
diff --git a/lib/builtins/negvti2.c b/lib/builtins/negvti2.c
index 4fee789f7..5ce91b3e1 100644
--- a/lib/builtins/negvti2.c
+++ b/lib/builtins/negvti2.c
@@ -19,13 +19,11 @@
/* Effects: aborts if -a overflows */
-COMPILER_RT_ABI ti_int
-__negvti2(ti_int a)
-{
- const ti_int MIN = (ti_int)1 << ((int)(sizeof(ti_int) * CHAR_BIT)-1);
- if (a == MIN)
- compilerrt_abort();
- return -a;
+COMPILER_RT_ABI ti_int __negvti2(ti_int a) {
+ const ti_int MIN = (ti_int)1 << ((int)(sizeof(ti_int) * CHAR_BIT) - 1);
+ if (a == MIN)
+ compilerrt_abort();
+ return -a;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/os_version_check.c b/lib/builtins/os_version_check.c
index 7a71aa183..d99396a2b 100644
--- a/lib/builtins/os_version_check.c
+++ b/lib/builtins/os_version_check.c
@@ -30,7 +30,7 @@ static dispatch_once_t DispatchOnceCounter;
* just forward declare everything that we need from it. */
typedef const void *CFDataRef, *CFAllocatorRef, *CFPropertyListRef,
- *CFStringRef, *CFDictionaryRef, *CFTypeRef, *CFErrorRef;
+ *CFStringRef, *CFDictionaryRef, *CFTypeRef, *CFErrorRef;
#if __LLP64__
typedef unsigned long long CFTypeID;
@@ -87,8 +87,8 @@ static void parseSystemVersionPList(void *Unused) {
if (!CFDataCreateWithBytesNoCopyFunc)
return;
CFPropertyListCreateWithDataFuncTy CFPropertyListCreateWithDataFunc =
- (CFPropertyListCreateWithDataFuncTy)dlsym(
- RTLD_DEFAULT, "CFPropertyListCreateWithData");
+ (CFPropertyListCreateWithDataFuncTy)dlsym(RTLD_DEFAULT,
+ "CFPropertyListCreateWithData");
/* CFPropertyListCreateWithData was introduced only in macOS 10.6+, so it
* will be NULL on earlier OS versions. */
#pragma clang diagnostic push
diff --git a/lib/builtins/paritydi2.c b/lib/builtins/paritydi2.c
index 72c522332..27b762db1 100644
--- a/lib/builtins/paritydi2.c
+++ b/lib/builtins/paritydi2.c
@@ -15,10 +15,8 @@
/* Returns: 1 if number of bits is odd else returns 0 */
-COMPILER_RT_ABI si_int
-__paritydi2(di_int a)
-{
- dwords x;
- x.all = a;
- return __paritysi2(x.s.high ^ x.s.low);
+COMPILER_RT_ABI si_int __paritydi2(di_int a) {
+ dwords x;
+ x.all = a;
+ return __paritysi2(x.s.high ^ x.s.low);
}
diff --git a/lib/builtins/paritysi2.c b/lib/builtins/paritysi2.c
index aff5326a2..d7a4f5246 100644
--- a/lib/builtins/paritysi2.c
+++ b/lib/builtins/paritysi2.c
@@ -15,12 +15,10 @@
/* Returns: 1 if number of bits is odd else returns 0 */
-COMPILER_RT_ABI si_int
-__paritysi2(si_int a)
-{
- su_int x = (su_int)a;
- x ^= x >> 16;
- x ^= x >> 8;
- x ^= x >> 4;
- return (0x6996 >> (x & 0xF)) & 1;
+COMPILER_RT_ABI si_int __paritysi2(si_int a) {
+ su_int x = (su_int)a;
+ x ^= x >> 16;
+ x ^= x >> 8;
+ x ^= x >> 4;
+ return (0x6996 >> (x & 0xF)) & 1;
}
diff --git a/lib/builtins/parityti2.c b/lib/builtins/parityti2.c
index 62c7724e3..1eec2b7c2 100644
--- a/lib/builtins/parityti2.c
+++ b/lib/builtins/parityti2.c
@@ -9,7 +9,7 @@
* This file implements __parityti2 for the compiler_rt library.
*
* ===----------------------------------------------------------------------===
- */
+ */
#include "int_lib.h"
@@ -17,12 +17,10 @@
/* Returns: 1 if number of bits is odd else returns 0 */
-COMPILER_RT_ABI si_int
-__parityti2(ti_int a)
-{
- twords x;
- x.all = a;
- return __paritydi2(x.s.high ^ x.s.low);
+COMPILER_RT_ABI si_int __parityti2(ti_int a) {
+ twords x;
+ x.all = a;
+ return __paritydi2(x.s.high ^ x.s.low);
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/popcountdi2.c b/lib/builtins/popcountdi2.c
index 09eeb9e99..90c9fe714 100644
--- a/lib/builtins/popcountdi2.c
+++ b/lib/builtins/popcountdi2.c
@@ -15,21 +15,21 @@
/* Returns: count of 1 bits */
-COMPILER_RT_ABI si_int
-__popcountdi2(di_int a)
-{
- du_int x2 = (du_int)a;
- x2 = x2 - ((x2 >> 1) & 0x5555555555555555uLL);
- /* Every 2 bits holds the sum of every pair of bits (32) */
- x2 = ((x2 >> 2) & 0x3333333333333333uLL) + (x2 & 0x3333333333333333uLL);
- /* Every 4 bits holds the sum of every 4-set of bits (3 significant bits) (16) */
- x2 = (x2 + (x2 >> 4)) & 0x0F0F0F0F0F0F0F0FuLL;
- /* Every 8 bits holds the sum of every 8-set of bits (4 significant bits) (8) */
- su_int x = (su_int)(x2 + (x2 >> 32));
- /* The lower 32 bits hold four 16 bit sums (5 significant bits). */
- /* Upper 32 bits are garbage */
- x = x + (x >> 16);
- /* The lower 16 bits hold two 32 bit sums (6 significant bits). */
- /* Upper 16 bits are garbage */
- return (x + (x >> 8)) & 0x0000007F; /* (7 significant bits) */
+COMPILER_RT_ABI si_int __popcountdi2(di_int a) {
+ du_int x2 = (du_int)a;
+ x2 = x2 - ((x2 >> 1) & 0x5555555555555555uLL);
+ /* Every 2 bits holds the sum of every pair of bits (32) */
+ x2 = ((x2 >> 2) & 0x3333333333333333uLL) + (x2 & 0x3333333333333333uLL);
+ /* Every 4 bits holds the sum of every 4-set of bits (3 significant bits) (16)
+ */
+ x2 = (x2 + (x2 >> 4)) & 0x0F0F0F0F0F0F0F0FuLL;
+ /* Every 8 bits holds the sum of every 8-set of bits (4 significant bits) (8)
+ */
+ su_int x = (su_int)(x2 + (x2 >> 32));
+ /* The lower 32 bits hold four 16 bit sums (5 significant bits). */
+ /* Upper 32 bits are garbage */
+ x = x + (x >> 16);
+ /* The lower 16 bits hold two 32 bit sums (6 significant bits). */
+ /* Upper 16 bits are garbage */
+ return (x + (x >> 8)) & 0x0000007F; /* (7 significant bits) */
}
diff --git a/lib/builtins/popcountsi2.c b/lib/builtins/popcountsi2.c
index 4162ba7b0..77c1a3145 100644
--- a/lib/builtins/popcountsi2.c
+++ b/lib/builtins/popcountsi2.c
@@ -15,18 +15,16 @@
/* Returns: count of 1 bits */
-COMPILER_RT_ABI si_int
-__popcountsi2(si_int a)
-{
- su_int x = (su_int)a;
- x = x - ((x >> 1) & 0x55555555);
- /* Every 2 bits holds the sum of every pair of bits */
- x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
- /* Every 4 bits holds the sum of every 4-set of bits (3 significant bits) */
- x = (x + (x >> 4)) & 0x0F0F0F0F;
- /* Every 8 bits holds the sum of every 8-set of bits (4 significant bits) */
- x = (x + (x >> 16));
- /* The lower 16 bits hold two 8 bit sums (5 significant bits).*/
- /* Upper 16 bits are garbage */
- return (x + (x >> 8)) & 0x0000003F; /* (6 significant bits) */
+COMPILER_RT_ABI si_int __popcountsi2(si_int a) {
+ su_int x = (su_int)a;
+ x = x - ((x >> 1) & 0x55555555);
+ /* Every 2 bits holds the sum of every pair of bits */
+ x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
+ /* Every 4 bits holds the sum of every 4-set of bits (3 significant bits) */
+ x = (x + (x >> 4)) & 0x0F0F0F0F;
+ /* Every 8 bits holds the sum of every 8-set of bits (4 significant bits) */
+ x = (x + (x >> 16));
+ /* The lower 16 bits hold two 8 bit sums (5 significant bits).*/
+ /* Upper 16 bits are garbage */
+ return (x + (x >> 8)) & 0x0000003F; /* (6 significant bits) */
}
diff --git a/lib/builtins/popcountti2.c b/lib/builtins/popcountti2.c
index 62309f11a..087e3807e 100644
--- a/lib/builtins/popcountti2.c
+++ b/lib/builtins/popcountti2.c
@@ -17,27 +17,31 @@
/* Returns: count of 1 bits */
-COMPILER_RT_ABI si_int
-__popcountti2(ti_int a)
-{
- tu_int x3 = (tu_int)a;
- x3 = x3 - ((x3 >> 1) & (((tu_int)0x5555555555555555uLL << 64) |
- 0x5555555555555555uLL));
- /* Every 2 bits holds the sum of every pair of bits (64) */
- x3 = ((x3 >> 2) & (((tu_int)0x3333333333333333uLL << 64) | 0x3333333333333333uLL))
- + (x3 & (((tu_int)0x3333333333333333uLL << 64) | 0x3333333333333333uLL));
- /* Every 4 bits holds the sum of every 4-set of bits (3 significant bits) (32) */
- x3 = (x3 + (x3 >> 4))
- & (((tu_int)0x0F0F0F0F0F0F0F0FuLL << 64) | 0x0F0F0F0F0F0F0F0FuLL);
- /* Every 8 bits holds the sum of every 8-set of bits (4 significant bits) (16) */
- du_int x2 = (du_int)(x3 + (x3 >> 64));
- /* Every 8 bits holds the sum of every 8-set of bits (5 significant bits) (8) */
- su_int x = (su_int)(x2 + (x2 >> 32));
- /* Every 8 bits holds the sum of every 8-set of bits (6 significant bits) (4) */
- x = x + (x >> 16);
- /* Every 8 bits holds the sum of every 8-set of bits (7 significant bits) (2) */
- /* Upper 16 bits are garbage */
- return (x + (x >> 8)) & 0xFF; /* (8 significant bits) */
+COMPILER_RT_ABI si_int __popcountti2(ti_int a) {
+ tu_int x3 = (tu_int)a;
+ x3 = x3 - ((x3 >> 1) &
+ (((tu_int)0x5555555555555555uLL << 64) | 0x5555555555555555uLL));
+ /* Every 2 bits holds the sum of every pair of bits (64) */
+ x3 = ((x3 >> 2) &
+ (((tu_int)0x3333333333333333uLL << 64) | 0x3333333333333333uLL)) +
+ (x3 & (((tu_int)0x3333333333333333uLL << 64) | 0x3333333333333333uLL));
+ /* Every 4 bits holds the sum of every 4-set of bits (3 significant bits) (32)
+ */
+ x3 = (x3 + (x3 >> 4)) &
+ (((tu_int)0x0F0F0F0F0F0F0F0FuLL << 64) | 0x0F0F0F0F0F0F0F0FuLL);
+ /* Every 8 bits holds the sum of every 8-set of bits (4 significant bits) (16)
+ */
+ du_int x2 = (du_int)(x3 + (x3 >> 64));
+ /* Every 8 bits holds the sum of every 8-set of bits (5 significant bits) (8)
+ */
+ su_int x = (su_int)(x2 + (x2 >> 32));
+ /* Every 8 bits holds the sum of every 8-set of bits (6 significant bits) (4)
+ */
+ x = x + (x >> 16);
+ /* Every 8 bits holds the sum of every 8-set of bits (7 significant bits) (2)
+ */
+ /* Upper 16 bits are garbage */
+ return (x + (x >> 8)) & 0xFF; /* (8 significant bits) */
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/powidf2.c b/lib/builtins/powidf2.c
index 6d14c4dad..7de4cece4 100644
--- a/lib/builtins/powidf2.c
+++ b/lib/builtins/powidf2.c
@@ -15,19 +15,16 @@
/* Returns: a ^ b */
-COMPILER_RT_ABI double
-__powidf2(double a, si_int b)
-{
- const int recip = b < 0;
- double r = 1;
- while (1)
- {
- if (b & 1)
- r *= a;
- b /= 2;
- if (b == 0)
- break;
- a *= a;
- }
- return recip ? 1/r : r;
+COMPILER_RT_ABI double __powidf2(double a, si_int b) {
+ const int recip = b < 0;
+ double r = 1;
+ while (1) {
+ if (b & 1)
+ r *= a;
+ b /= 2;
+ if (b == 0)
+ break;
+ a *= a;
+ }
+ return recip ? 1 / r : r;
}
diff --git a/lib/builtins/powisf2.c b/lib/builtins/powisf2.c
index 7ddc1dad0..78592b04b 100644
--- a/lib/builtins/powisf2.c
+++ b/lib/builtins/powisf2.c
@@ -15,19 +15,16 @@
/* Returns: a ^ b */
-COMPILER_RT_ABI float
-__powisf2(float a, si_int b)
-{
- const int recip = b < 0;
- float r = 1;
- while (1)
- {
- if (b & 1)
- r *= a;
- b /= 2;
- if (b == 0)
- break;
- a *= a;
- }
- return recip ? 1/r : r;
+COMPILER_RT_ABI float __powisf2(float a, si_int b) {
+ const int recip = b < 0;
+ float r = 1;
+ while (1) {
+ if (b & 1)
+ r *= a;
+ b /= 2;
+ if (b == 0)
+ break;
+ a *= a;
+ }
+ return recip ? 1 / r : r;
}
diff --git a/lib/builtins/powitf2.c b/lib/builtins/powitf2.c
index 94a874b8e..98364242f 100644
--- a/lib/builtins/powitf2.c
+++ b/lib/builtins/powitf2.c
@@ -17,21 +17,18 @@
/* Returns: a ^ b */
-COMPILER_RT_ABI long double
-__powitf2(long double a, si_int b)
-{
- const int recip = b < 0;
- long double r = 1;
- while (1)
- {
- if (b & 1)
- r *= a;
- b /= 2;
- if (b == 0)
- break;
- a *= a;
- }
- return recip ? 1/r : r;
+COMPILER_RT_ABI long double __powitf2(long double a, si_int b) {
+ const int recip = b < 0;
+ long double r = 1;
+ while (1) {
+ if (b & 1)
+ r *= a;
+ b /= 2;
+ if (b == 0)
+ break;
+ a *= a;
+ }
+ return recip ? 1 / r : r;
}
#endif
diff --git a/lib/builtins/powixf2.c b/lib/builtins/powixf2.c
index a0ab6d2c0..f5cbbccfe 100644
--- a/lib/builtins/powixf2.c
+++ b/lib/builtins/powixf2.c
@@ -17,21 +17,18 @@
/* Returns: a ^ b */
-COMPILER_RT_ABI long double
-__powixf2(long double a, si_int b)
-{
- const int recip = b < 0;
- long double r = 1;
- while (1)
- {
- if (b & 1)
- r *= a;
- b /= 2;
- if (b == 0)
- break;
- a *= a;
- }
- return recip ? 1/r : r;
+COMPILER_RT_ABI long double __powixf2(long double a, si_int b) {
+ const int recip = b < 0;
+ long double r = 1;
+ while (1) {
+ if (b & 1)
+ r *= a;
+ b /= 2;
+ if (b == 0)
+ break;
+ a *= a;
+ }
+ return recip ? 1 / r : r;
}
#endif
diff --git a/lib/builtins/ppc/DD.h b/lib/builtins/ppc/DD.h
index 3e5f9e58c..542f7e781 100644
--- a/lib/builtins/ppc/DD.h
+++ b/lib/builtins/ppc/DD.h
@@ -4,20 +4,20 @@
#include "../int_lib.h"
typedef union {
- long double ld;
- struct {
- double hi;
- double lo;
- }s;
+ long double ld;
+ struct {
+ double hi;
+ double lo;
+ } s;
} DD;
-typedef union {
- double d;
- uint64_t x;
+typedef union {
+ double d;
+ uint64_t x;
} doublebits;
-#define LOWORDER(xy,xHi,xLo,yHi,yLo) \
- (((((xHi)*(yHi) - (xy)) + (xHi)*(yLo)) + (xLo)*(yHi)) + (xLo)*(yLo))
+#define LOWORDER(xy, xHi, xLo, yHi, yLo) \
+ (((((xHi) * (yHi) - (xy)) + (xHi) * (yLo)) + (xLo) * (yHi)) + (xLo) * (yLo))
static __inline ALWAYS_INLINE double local_fabs(double x) {
doublebits result = {.d = x};
diff --git a/lib/builtins/ppc/divtc3.c b/lib/builtins/ppc/divtc3.c
index f7afba65c..bce54e187 100644
--- a/lib/builtins/ppc/divtc3.c
+++ b/lib/builtins/ppc/divtc3.c
@@ -3,8 +3,8 @@
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
-#include "DD.h"
#include "../int_math.h"
+#include "DD.h"
// Use DOUBLE_PRECISION because the soft-fp method we use is logb (on the upper
// half of the long doubles), even though this file defines complex division for
// 128-bit floats.
@@ -15,84 +15,83 @@
#define CRT_INFINITY HUGE_VAL
#endif /* CRT_INFINITY */
-#define makeFinite(x) { \
- (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \
- (x).s.lo = 0.0; \
+#define makeFinite(x) \
+ { \
+ (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \
+ (x).s.lo = 0.0; \
+ }
+
+long double _Complex __divtc3(long double a, long double b, long double c,
+ long double d) {
+ DD cDD = {.ld = c};
+ DD dDD = {.ld = d};
+
+ int ilogbw = 0;
+ const double logbw =
+ __compiler_rt_logb(crt_fmax(crt_fabs(cDD.s.hi), crt_fabs(dDD.s.hi)));
+
+ if (crt_isfinite(logbw)) {
+ ilogbw = (int)logbw;
+
+ cDD.s.hi = crt_scalbn(cDD.s.hi, -ilogbw);
+ cDD.s.lo = crt_scalbn(cDD.s.lo, -ilogbw);
+ dDD.s.hi = crt_scalbn(dDD.s.hi, -ilogbw);
+ dDD.s.lo = crt_scalbn(dDD.s.lo, -ilogbw);
+ }
+
+ const long double denom =
+ __gcc_qadd(__gcc_qmul(cDD.ld, cDD.ld), __gcc_qmul(dDD.ld, dDD.ld));
+ const long double realNumerator =
+ __gcc_qadd(__gcc_qmul(a, cDD.ld), __gcc_qmul(b, dDD.ld));
+ const long double imagNumerator =
+ __gcc_qsub(__gcc_qmul(b, cDD.ld), __gcc_qmul(a, dDD.ld));
+
+ DD real = {.ld = __gcc_qdiv(realNumerator, denom)};
+ DD imag = {.ld = __gcc_qdiv(imagNumerator, denom)};
+
+ real.s.hi = crt_scalbn(real.s.hi, -ilogbw);
+ real.s.lo = crt_scalbn(real.s.lo, -ilogbw);
+ imag.s.hi = crt_scalbn(imag.s.hi, -ilogbw);
+ imag.s.lo = crt_scalbn(imag.s.lo, -ilogbw);
+
+ if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi)) {
+ DD aDD = {.ld = a};
+ DD bDD = {.ld = b};
+ DD rDD = {.ld = denom};
+
+ if ((rDD.s.hi == 0.0) && (!crt_isnan(aDD.s.hi) || !crt_isnan(bDD.s.hi))) {
+ real.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * aDD.s.hi;
+ real.s.lo = 0.0;
+ imag.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * bDD.s.hi;
+ imag.s.lo = 0.0;
+ }
+
+ else if ((crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) &&
+ crt_isfinite(cDD.s.hi) && crt_isfinite(dDD.s.hi)) {
+ makeFinite(aDD);
+ makeFinite(bDD);
+ real.s.hi = CRT_INFINITY * (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi);
+ real.s.lo = 0.0;
+ imag.s.hi = CRT_INFINITY * (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi);
+ imag.s.lo = 0.0;
+ }
+
+ else if ((crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) &&
+ crt_isfinite(aDD.s.hi) && crt_isfinite(bDD.s.hi)) {
+ makeFinite(cDD);
+ makeFinite(dDD);
+ real.s.hi =
+ crt_copysign(0.0, (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi));
+ real.s.lo = 0.0;
+ imag.s.hi =
+ crt_copysign(0.0, (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi));
+ imag.s.lo = 0.0;
+ }
}
-long double _Complex
-__divtc3(long double a, long double b, long double c, long double d)
-{
- DD cDD = { .ld = c };
- DD dDD = { .ld = d };
-
- int ilogbw = 0;
- const double logbw = __compiler_rt_logb(
- crt_fmax(crt_fabs(cDD.s.hi), crt_fabs(dDD.s.hi)));
-
- if (crt_isfinite(logbw))
- {
- ilogbw = (int)logbw;
-
- cDD.s.hi = crt_scalbn(cDD.s.hi, -ilogbw);
- cDD.s.lo = crt_scalbn(cDD.s.lo, -ilogbw);
- dDD.s.hi = crt_scalbn(dDD.s.hi, -ilogbw);
- dDD.s.lo = crt_scalbn(dDD.s.lo, -ilogbw);
- }
-
- const long double denom = __gcc_qadd(__gcc_qmul(cDD.ld, cDD.ld), __gcc_qmul(dDD.ld, dDD.ld));
- const long double realNumerator = __gcc_qadd(__gcc_qmul(a,cDD.ld), __gcc_qmul(b,dDD.ld));
- const long double imagNumerator = __gcc_qsub(__gcc_qmul(b,cDD.ld), __gcc_qmul(a,dDD.ld));
-
- DD real = { .ld = __gcc_qdiv(realNumerator, denom) };
- DD imag = { .ld = __gcc_qdiv(imagNumerator, denom) };
-
- real.s.hi = crt_scalbn(real.s.hi, -ilogbw);
- real.s.lo = crt_scalbn(real.s.lo, -ilogbw);
- imag.s.hi = crt_scalbn(imag.s.hi, -ilogbw);
- imag.s.lo = crt_scalbn(imag.s.lo, -ilogbw);
-
- if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi))
- {
- DD aDD = { .ld = a };
- DD bDD = { .ld = b };
- DD rDD = { .ld = denom };
-
- if ((rDD.s.hi == 0.0) && (!crt_isnan(aDD.s.hi) ||
- !crt_isnan(bDD.s.hi)))
- {
- real.s.hi = crt_copysign(CRT_INFINITY,cDD.s.hi) * aDD.s.hi;
- real.s.lo = 0.0;
- imag.s.hi = crt_copysign(CRT_INFINITY,cDD.s.hi) * bDD.s.hi;
- imag.s.lo = 0.0;
- }
-
- else if ((crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) &&
- crt_isfinite(cDD.s.hi) && crt_isfinite(dDD.s.hi))
- {
- makeFinite(aDD);
- makeFinite(bDD);
- real.s.hi = CRT_INFINITY * (aDD.s.hi*cDD.s.hi + bDD.s.hi*dDD.s.hi);
- real.s.lo = 0.0;
- imag.s.hi = CRT_INFINITY * (bDD.s.hi*cDD.s.hi - aDD.s.hi*dDD.s.hi);
- imag.s.lo = 0.0;
- }
-
- else if ((crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) &&
- crt_isfinite(aDD.s.hi) && crt_isfinite(bDD.s.hi))
- {
- makeFinite(cDD);
- makeFinite(dDD);
- real.s.hi = crt_copysign(0.0,(aDD.s.hi*cDD.s.hi + bDD.s.hi*dDD.s.hi));
- real.s.lo = 0.0;
- imag.s.hi = crt_copysign(0.0,(bDD.s.hi*cDD.s.hi - aDD.s.hi*dDD.s.hi));
- imag.s.lo = 0.0;
- }
- }
-
- long double _Complex z;
- __real__ z = real.ld;
- __imag__ z = imag.ld;
-
- return z;
+ long double _Complex z;
+ __real__ z = real.ld;
+ __imag__ z = imag.ld;
+
+ return z;
}
diff --git a/lib/builtins/ppc/fixtfdi.c b/lib/builtins/ppc/fixtfdi.c
index 914d7af9b..d33194a68 100644
--- a/lib/builtins/ppc/fixtfdi.c
+++ b/lib/builtins/ppc/fixtfdi.c
@@ -7,99 +7,98 @@
* This file implements the PowerPC 128-bit double-double -> int64_t conversion
*/
-#include "DD.h"
#include "../int_math.h"
+#include "DD.h"
+
+uint64_t __fixtfdi(long double input) {
+ const DD x = {.ld = input};
+ const doublebits hibits = {.d = x.s.hi};
+
+ const uint32_t absHighWord =
+ (uint32_t)(hibits.x >> 32) & UINT32_C(0x7fffffff);
+ const uint32_t absHighWordMinusOne = absHighWord - UINT32_C(0x3ff00000);
+
+ /* If (1.0 - tiny) <= input < 0x1.0p63: */
+ if (UINT32_C(0x03f00000) > absHighWordMinusOne) {
+ /* Do an unsigned conversion of the absolute value, then restore the sign.
+ */
+ const int unbiasedHeadExponent = absHighWordMinusOne >> 20;
+
+ int64_t result = hibits.x & INT64_C(0x000fffffffffffff); /* mantissa(hi) */
+ result |= INT64_C(0x0010000000000000); /* matissa(hi) with implicit bit */
+ result <<= 10; /* mantissa(hi) with one zero preceding bit. */
+
+ const int64_t hiNegationMask = ((int64_t)(hibits.x)) >> 63;
+
+ /* If the tail is non-zero, we need to patch in the tail bits. */
+ if (0.0 != x.s.lo) {
+ const doublebits lobits = {.d = x.s.lo};
+ int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
+ tailMantissa |= INT64_C(0x0010000000000000);
+
+ /* At this point we have the mantissa of |tail| */
+ /* We need to negate it if head and tail have different signs. */
+ const int64_t loNegationMask = ((int64_t)(lobits.x)) >> 63;
+ const int64_t negationMask = loNegationMask ^ hiNegationMask;
+ tailMantissa = (tailMantissa ^ negationMask) - negationMask;
+
+ /* Now we have the mantissa of tail as a signed 2s-complement integer */
+
+ const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
+
+ /* Shift the tail mantissa into the right position, accounting for the
+ * bias of 10 that we shifted the head mantissa by.
+ */
+ tailMantissa >>=
+ (unbiasedHeadExponent - (biasedTailExponent - (1023 - 10)));
+
+ result += tailMantissa;
+ }
+
+ result >>= (62 - unbiasedHeadExponent);
+
+ /* Restore the sign of the result and return */
+ result = (result ^ hiNegationMask) - hiNegationMask;
+ return result;
+ }
+
+ /* Edge cases handled here: */
+
+ /* |x| < 1, result is zero. */
+ if (1.0 > crt_fabs(x.s.hi))
+ return INT64_C(0);
+
+ /* x very close to INT64_MIN, care must be taken to see which side we are on.
+ */
+ if (x.s.hi == -0x1.0p63) {
+
+ int64_t result = INT64_MIN;
+
+ if (0.0 < x.s.lo) {
+ /* If the tail is positive, the correct result is something other than
+ * INT64_MIN. we'll need to figure out what it is.
+ */
+
+ const doublebits lobits = {.d = x.s.lo};
+ int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
+ tailMantissa |= INT64_C(0x0010000000000000);
+
+ /* Now we negate the tailMantissa */
+ tailMantissa = (tailMantissa ^ INT64_C(-1)) + INT64_C(1);
+
+ /* And shift it by the appropriate amount */
+ const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
+ tailMantissa >>= 1075 - biasedTailExponent;
+
+ result -= tailMantissa;
+ }
+
+ return result;
+ }
-uint64_t __fixtfdi(long double input)
-{
- const DD x = { .ld = input };
- const doublebits hibits = { .d = x.s.hi };
-
- const uint32_t absHighWord = (uint32_t)(hibits.x >> 32) & UINT32_C(0x7fffffff);
- const uint32_t absHighWordMinusOne = absHighWord - UINT32_C(0x3ff00000);
-
- /* If (1.0 - tiny) <= input < 0x1.0p63: */
- if (UINT32_C(0x03f00000) > absHighWordMinusOne)
- {
- /* Do an unsigned conversion of the absolute value, then restore the sign. */
- const int unbiasedHeadExponent = absHighWordMinusOne >> 20;
-
- int64_t result = hibits.x & INT64_C(0x000fffffffffffff); /* mantissa(hi) */
- result |= INT64_C(0x0010000000000000); /* matissa(hi) with implicit bit */
- result <<= 10; /* mantissa(hi) with one zero preceding bit. */
-
- const int64_t hiNegationMask = ((int64_t)(hibits.x)) >> 63;
-
- /* If the tail is non-zero, we need to patch in the tail bits. */
- if (0.0 != x.s.lo)
- {
- const doublebits lobits = { .d = x.s.lo };
- int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
- tailMantissa |= INT64_C(0x0010000000000000);
-
- /* At this point we have the mantissa of |tail| */
- /* We need to negate it if head and tail have different signs. */
- const int64_t loNegationMask = ((int64_t)(lobits.x)) >> 63;
- const int64_t negationMask = loNegationMask ^ hiNegationMask;
- tailMantissa = (tailMantissa ^ negationMask) - negationMask;
-
- /* Now we have the mantissa of tail as a signed 2s-complement integer */
-
- const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
-
- /* Shift the tail mantissa into the right position, accounting for the
- * bias of 10 that we shifted the head mantissa by.
- */
- tailMantissa >>= (unbiasedHeadExponent - (biasedTailExponent - (1023 - 10)));
-
- result += tailMantissa;
- }
-
- result >>= (62 - unbiasedHeadExponent);
-
- /* Restore the sign of the result and return */
- result = (result ^ hiNegationMask) - hiNegationMask;
- return result;
-
- }
-
- /* Edge cases handled here: */
-
- /* |x| < 1, result is zero. */
- if (1.0 > crt_fabs(x.s.hi))
- return INT64_C(0);
-
- /* x very close to INT64_MIN, care must be taken to see which side we are on. */
- if (x.s.hi == -0x1.0p63) {
-
- int64_t result = INT64_MIN;
-
- if (0.0 < x.s.lo)
- {
- /* If the tail is positive, the correct result is something other than INT64_MIN.
- * we'll need to figure out what it is.
- */
-
- const doublebits lobits = { .d = x.s.lo };
- int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
- tailMantissa |= INT64_C(0x0010000000000000);
-
- /* Now we negate the tailMantissa */
- tailMantissa = (tailMantissa ^ INT64_C(-1)) + INT64_C(1);
-
- /* And shift it by the appropriate amount */
- const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
- tailMantissa >>= 1075 - biasedTailExponent;
-
- result -= tailMantissa;
- }
-
- return result;
- }
-
- /* Signed overflows, infinities, and NaNs */
- if (x.s.hi > 0.0)
- return INT64_MAX;
- else
- return INT64_MIN;
+ /* Signed overflows, infinities, and NaNs */
+ if (x.s.hi > 0.0)
+ return INT64_MAX;
+ else
+ return INT64_MIN;
}
diff --git a/lib/builtins/ppc/fixunstfdi.c b/lib/builtins/ppc/fixunstfdi.c
index 01b577a8f..11b977662 100644
--- a/lib/builtins/ppc/fixunstfdi.c
+++ b/lib/builtins/ppc/fixunstfdi.c
@@ -4,57 +4,58 @@
*/
/* uint64_t __fixunstfdi(long double x); */
-/* This file implements the PowerPC 128-bit double-double -> uint64_t conversion */
+/* This file implements the PowerPC 128-bit double-double -> uint64_t conversion
+ */
#include "DD.h"
-uint64_t __fixunstfdi(long double input)
-{
- const DD x = { .ld = input };
- const doublebits hibits = { .d = x.s.hi };
-
- const uint32_t highWordMinusOne = (uint32_t)(hibits.x >> 32) - UINT32_C(0x3ff00000);
-
- /* If (1.0 - tiny) <= input < 0x1.0p64: */
- if (UINT32_C(0x04000000) > highWordMinusOne)
- {
- const int unbiasedHeadExponent = highWordMinusOne >> 20;
-
- uint64_t result = hibits.x & UINT64_C(0x000fffffffffffff); /* mantissa(hi) */
- result |= UINT64_C(0x0010000000000000); /* matissa(hi) with implicit bit */
- result <<= 11; /* mantissa(hi) left aligned in the int64 field. */
-
- /* If the tail is non-zero, we need to patch in the tail bits. */
- if (0.0 != x.s.lo)
- {
- const doublebits lobits = { .d = x.s.lo };
- int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
- tailMantissa |= INT64_C(0x0010000000000000);
-
- /* At this point we have the mantissa of |tail| */
-
- const int64_t negationMask = ((int64_t)(lobits.x)) >> 63;
- tailMantissa = (tailMantissa ^ negationMask) - negationMask;
-
- /* Now we have the mantissa of tail as a signed 2s-complement integer */
-
- const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
-
- /* Shift the tail mantissa into the right position, accounting for the
- * bias of 11 that we shifted the head mantissa by.
- */
- tailMantissa >>= (unbiasedHeadExponent - (biasedTailExponent - (1023 - 11)));
-
- result += tailMantissa;
- }
-
- result >>= (63 - unbiasedHeadExponent);
- return result;
- }
-
- /* Edge cases are handled here, with saturation. */
- if (1.0 > x.s.hi)
- return UINT64_C(0);
- else
- return UINT64_MAX;
+uint64_t __fixunstfdi(long double input) {
+ const DD x = {.ld = input};
+ const doublebits hibits = {.d = x.s.hi};
+
+ const uint32_t highWordMinusOne =
+ (uint32_t)(hibits.x >> 32) - UINT32_C(0x3ff00000);
+
+ /* If (1.0 - tiny) <= input < 0x1.0p64: */
+ if (UINT32_C(0x04000000) > highWordMinusOne) {
+ const int unbiasedHeadExponent = highWordMinusOne >> 20;
+
+ uint64_t result =
+ hibits.x & UINT64_C(0x000fffffffffffff); /* mantissa(hi) */
+ result |= UINT64_C(0x0010000000000000); /* matissa(hi) with implicit bit */
+ result <<= 11; /* mantissa(hi) left aligned in the int64 field. */
+
+ /* If the tail is non-zero, we need to patch in the tail bits. */
+ if (0.0 != x.s.lo) {
+ const doublebits lobits = {.d = x.s.lo};
+ int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
+ tailMantissa |= INT64_C(0x0010000000000000);
+
+ /* At this point we have the mantissa of |tail| */
+
+ const int64_t negationMask = ((int64_t)(lobits.x)) >> 63;
+ tailMantissa = (tailMantissa ^ negationMask) - negationMask;
+
+ /* Now we have the mantissa of tail as a signed 2s-complement integer */
+
+ const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
+
+ /* Shift the tail mantissa into the right position, accounting for the
+ * bias of 11 that we shifted the head mantissa by.
+ */
+ tailMantissa >>=
+ (unbiasedHeadExponent - (biasedTailExponent - (1023 - 11)));
+
+ result += tailMantissa;
+ }
+
+ result >>= (63 - unbiasedHeadExponent);
+ return result;
+ }
+
+ /* Edge cases are handled here, with saturation. */
+ if (1.0 > x.s.hi)
+ return UINT64_C(0);
+ else
+ return UINT64_MAX;
}
diff --git a/lib/builtins/ppc/floatditf.c b/lib/builtins/ppc/floatditf.c
index ecccc9b73..a5a4df4e0 100644
--- a/lib/builtins/ppc/floatditf.c
+++ b/lib/builtins/ppc/floatditf.c
@@ -9,29 +9,28 @@
#include "DD.h"
long double __floatditf(int64_t a) {
-
- static const double twop32 = 0x1.0p32;
- static const double twop52 = 0x1.0p52;
-
- doublebits low = { .d = twop52 };
- low.x |= a & UINT64_C(0x00000000ffffffff); /* 0x1.0p52 + low 32 bits of a. */
-
- const double high_addend = (double)((int32_t)(a >> 32))*twop32 - twop52;
-
- /* At this point, we have two double precision numbers
- * high_addend and low.d, and we wish to return their sum
- * as a canonicalized long double:
- */
-
- /* This implementation sets the inexact flag spuriously.
- * This could be avoided, but at some substantial cost.
- */
-
- DD result;
-
- result.s.hi = high_addend + low.d;
- result.s.lo = (high_addend - result.s.hi) + low.d;
-
- return result.ld;
-
+
+ static const double twop32 = 0x1.0p32;
+ static const double twop52 = 0x1.0p52;
+
+ doublebits low = {.d = twop52};
+ low.x |= a & UINT64_C(0x00000000ffffffff); /* 0x1.0p52 + low 32 bits of a. */
+
+ const double high_addend = (double)((int32_t)(a >> 32)) * twop32 - twop52;
+
+ /* At this point, we have two double precision numbers
+ * high_addend and low.d, and we wish to return their sum
+ * as a canonicalized long double:
+ */
+
+ /* This implementation sets the inexact flag spuriously.
+ * This could be avoided, but at some substantial cost.
+ */
+
+ DD result;
+
+ result.s.hi = high_addend + low.d;
+ result.s.lo = (high_addend - result.s.hi) + low.d;
+
+ return result.ld;
}
diff --git a/lib/builtins/ppc/floatunditf.c b/lib/builtins/ppc/floatunditf.c
index 960e65924..d2d01d29d 100644
--- a/lib/builtins/ppc/floatunditf.c
+++ b/lib/builtins/ppc/floatunditf.c
@@ -4,39 +4,39 @@
*/
/* long double __floatunditf(unsigned long long x); */
-/* This file implements the PowerPC unsigned long long -> long double conversion */
+/* This file implements the PowerPC unsigned long long -> long double conversion
+ */
#include "DD.h"
long double __floatunditf(uint64_t a) {
-
- /* Begins with an exact copy of the code from __floatundidf */
-
- static const double twop52 = 0x1.0p52;
- static const double twop84 = 0x1.0p84;
- static const double twop84_plus_twop52 = 0x1.00000001p84;
-
- doublebits high = { .d = twop84 };
- doublebits low = { .d = twop52 };
-
- high.x |= a >> 32; /* 0x1.0p84 + high 32 bits of a */
- low.x |= a & UINT64_C(0x00000000ffffffff); /* 0x1.0p52 + low 32 bits of a */
-
- const double high_addend = high.d - twop84_plus_twop52;
-
- /* At this point, we have two double precision numbers
- * high_addend and low.d, and we wish to return their sum
- * as a canonicalized long double:
- */
-
- /* This implementation sets the inexact flag spuriously. */
- /* This could be avoided, but at some substantial cost. */
-
- DD result;
-
- result.s.hi = high_addend + low.d;
- result.s.lo = (high_addend - result.s.hi) + low.d;
-
- return result.ld;
-
+
+ /* Begins with an exact copy of the code from __floatundidf */
+
+ static const double twop52 = 0x1.0p52;
+ static const double twop84 = 0x1.0p84;
+ static const double twop84_plus_twop52 = 0x1.00000001p84;
+
+ doublebits high = {.d = twop84};
+ doublebits low = {.d = twop52};
+
+ high.x |= a >> 32; /* 0x1.0p84 + high 32 bits of a */
+ low.x |= a & UINT64_C(0x00000000ffffffff); /* 0x1.0p52 + low 32 bits of a */
+
+ const double high_addend = high.d - twop84_plus_twop52;
+
+ /* At this point, we have two double precision numbers
+ * high_addend and low.d, and we wish to return their sum
+ * as a canonicalized long double:
+ */
+
+ /* This implementation sets the inexact flag spuriously. */
+ /* This could be avoided, but at some substantial cost. */
+
+ DD result;
+
+ result.s.hi = high_addend + low.d;
+ result.s.lo = (high_addend - result.s.hi) + low.d;
+
+ return result.ld;
}
diff --git a/lib/builtins/ppc/gcc_qadd.c b/lib/builtins/ppc/gcc_qadd.c
index c8f39135d..e56962e4e 100644
--- a/lib/builtins/ppc/gcc_qadd.c
+++ b/lib/builtins/ppc/gcc_qadd.c
@@ -10,68 +10,67 @@
#include "DD.h"
-long double __gcc_qadd(long double x, long double y)
-{
- static const uint32_t infinityHi = UINT32_C(0x7ff00000);
-
- DD dst = { .ld = x }, src = { .ld = y };
-
- register double A = dst.s.hi, a = dst.s.lo,
- B = src.s.hi, b = src.s.lo;
-
- /* If both operands are zero: */
- if ((A == 0.0) && (B == 0.0)) {
- dst.s.hi = A + B;
- dst.s.lo = 0.0;
- return dst.ld;
- }
-
- /* If either operand is NaN or infinity: */
- const doublebits abits = { .d = A };
- const doublebits bbits = { .d = B };
- if ((((uint32_t)(abits.x >> 32) & infinityHi) == infinityHi) ||
- (((uint32_t)(bbits.x >> 32) & infinityHi) == infinityHi)) {
- dst.s.hi = A + B;
- dst.s.lo = 0.0;
- return dst.ld;
- }
-
- /* If the computation overflows: */
- /* This may be playing things a little bit fast and loose, but it will do for a start. */
- const double testForOverflow = A + (B + (a + b));
- const doublebits testbits = { .d = testForOverflow };
- if (((uint32_t)(testbits.x >> 32) & infinityHi) == infinityHi) {
- dst.s.hi = testForOverflow;
- dst.s.lo = 0.0;
- return dst.ld;
- }
-
- double H, h;
- double T, t;
- double W, w;
- double Y;
-
- H = B + (A - (A + B));
- T = b + (a - (a + b));
- h = A + (B - (A + B));
- t = a + (b - (a + b));
-
- if (local_fabs(A) <= local_fabs(B))
- w = (a + b) + h;
- else
- w = (a + b) + H;
-
- W = (A + B) + w;
- Y = (A + B) - W;
- Y += w;
-
- if (local_fabs(a) <= local_fabs(b))
- w = t + Y;
- else
- w = T + Y;
-
- dst.s.hi = Y = W + w;
- dst.s.lo = (W - Y) + w;
-
- return dst.ld;
+long double __gcc_qadd(long double x, long double y) {
+ static const uint32_t infinityHi = UINT32_C(0x7ff00000);
+
+ DD dst = {.ld = x}, src = {.ld = y};
+
+ register double A = dst.s.hi, a = dst.s.lo, B = src.s.hi, b = src.s.lo;
+
+ /* If both operands are zero: */
+ if ((A == 0.0) && (B == 0.0)) {
+ dst.s.hi = A + B;
+ dst.s.lo = 0.0;
+ return dst.ld;
+ }
+
+ /* If either operand is NaN or infinity: */
+ const doublebits abits = {.d = A};
+ const doublebits bbits = {.d = B};
+ if ((((uint32_t)(abits.x >> 32) & infinityHi) == infinityHi) ||
+ (((uint32_t)(bbits.x >> 32) & infinityHi) == infinityHi)) {
+ dst.s.hi = A + B;
+ dst.s.lo = 0.0;
+ return dst.ld;
+ }
+
+ /* If the computation overflows: */
+ /* This may be playing things a little bit fast and loose, but it will do for
+ * a start. */
+ const double testForOverflow = A + (B + (a + b));
+ const doublebits testbits = {.d = testForOverflow};
+ if (((uint32_t)(testbits.x >> 32) & infinityHi) == infinityHi) {
+ dst.s.hi = testForOverflow;
+ dst.s.lo = 0.0;
+ return dst.ld;
+ }
+
+ double H, h;
+ double T, t;
+ double W, w;
+ double Y;
+
+ H = B + (A - (A + B));
+ T = b + (a - (a + b));
+ h = A + (B - (A + B));
+ t = a + (b - (a + b));
+
+ if (local_fabs(A) <= local_fabs(B))
+ w = (a + b) + h;
+ else
+ w = (a + b) + H;
+
+ W = (A + B) + w;
+ Y = (A + B) - W;
+ Y += w;
+
+ if (local_fabs(a) <= local_fabs(b))
+ w = t + Y;
+ else
+ w = T + Y;
+
+ dst.s.hi = Y = W + w;
+ dst.s.lo = (W - Y) + w;
+
+ return dst.ld;
}
diff --git a/lib/builtins/ppc/gcc_qdiv.c b/lib/builtins/ppc/gcc_qdiv.c
index 3efcb10f6..bbb536833 100644
--- a/lib/builtins/ppc/gcc_qdiv.c
+++ b/lib/builtins/ppc/gcc_qdiv.c
@@ -10,47 +10,45 @@
#include "DD.h"
-long double __gcc_qdiv(long double a, long double b)
-{
- static const uint32_t infinityHi = UINT32_C(0x7ff00000);
- DD dst = { .ld = a }, src = { .ld = b };
-
- register double x = dst.s.hi, x1 = dst.s.lo,
- y = src.s.hi, y1 = src.s.lo;
-
- double yHi, yLo, qHi, qLo;
- double yq, tmp, q;
-
- q = x / y;
-
- /* Detect special cases */
- if (q == 0.0) {
- dst.s.hi = q;
- dst.s.lo = 0.0;
- return dst.ld;
- }
-
- const doublebits qBits = { .d = q };
- if (((uint32_t)(qBits.x >> 32) & infinityHi) == infinityHi) {
- dst.s.hi = q;
- dst.s.lo = 0.0;
- return dst.ld;
- }
-
- yHi = high26bits(y);
- qHi = high26bits(q);
-
- yq = y * q;
- yLo = y - yHi;
- qLo = q - qHi;
-
- tmp = LOWORDER(yq, yHi, yLo, qHi, qLo);
- tmp = (x - yq) - tmp;
- tmp = ((tmp + x1) - y1 * q) / y;
- x = q + tmp;
-
- dst.s.lo = (q - x) + tmp;
- dst.s.hi = x;
-
+long double __gcc_qdiv(long double a, long double b) {
+ static const uint32_t infinityHi = UINT32_C(0x7ff00000);
+ DD dst = {.ld = a}, src = {.ld = b};
+
+ register double x = dst.s.hi, x1 = dst.s.lo, y = src.s.hi, y1 = src.s.lo;
+
+ double yHi, yLo, qHi, qLo;
+ double yq, tmp, q;
+
+ q = x / y;
+
+ /* Detect special cases */
+ if (q == 0.0) {
+ dst.s.hi = q;
+ dst.s.lo = 0.0;
+ return dst.ld;
+ }
+
+ const doublebits qBits = {.d = q};
+ if (((uint32_t)(qBits.x >> 32) & infinityHi) == infinityHi) {
+ dst.s.hi = q;
+ dst.s.lo = 0.0;
return dst.ld;
+ }
+
+ yHi = high26bits(y);
+ qHi = high26bits(q);
+
+ yq = y * q;
+ yLo = y - yHi;
+ qLo = q - qHi;
+
+ tmp = LOWORDER(yq, yHi, yLo, qHi, qLo);
+ tmp = (x - yq) - tmp;
+ tmp = ((tmp + x1) - y1 * q) / y;
+ x = q + tmp;
+
+ dst.s.lo = (q - x) + tmp;
+ dst.s.hi = x;
+
+ return dst.ld;
}
diff --git a/lib/builtins/ppc/gcc_qmul.c b/lib/builtins/ppc/gcc_qmul.c
index 0b83aa3ae..efd12d847 100644
--- a/lib/builtins/ppc/gcc_qmul.c
+++ b/lib/builtins/ppc/gcc_qmul.c
@@ -10,45 +10,43 @@
#include "DD.h"
-long double __gcc_qmul(long double x, long double y)
-{
- static const uint32_t infinityHi = UINT32_C(0x7ff00000);
- DD dst = { .ld = x }, src = { .ld = y };
-
- register double A = dst.s.hi, a = dst.s.lo,
- B = src.s.hi, b = src.s.lo;
-
- double aHi, aLo, bHi, bLo;
- double ab, tmp, tau;
-
- ab = A * B;
-
- /* Detect special cases */
- if (ab == 0.0) {
- dst.s.hi = ab;
- dst.s.lo = 0.0;
- return dst.ld;
- }
-
- const doublebits abBits = { .d = ab };
- if (((uint32_t)(abBits.x >> 32) & infinityHi) == infinityHi) {
- dst.s.hi = ab;
- dst.s.lo = 0.0;
- return dst.ld;
- }
-
- /* Generic cases handled here. */
- aHi = high26bits(A);
- bHi = high26bits(B);
- aLo = A - aHi;
- bLo = B - bHi;
-
- tmp = LOWORDER(ab, aHi, aLo, bHi, bLo);
- tmp += (A * b + a * B);
- tau = ab + tmp;
-
- dst.s.lo = (ab - tau) + tmp;
- dst.s.hi = tau;
-
+long double __gcc_qmul(long double x, long double y) {
+ static const uint32_t infinityHi = UINT32_C(0x7ff00000);
+ DD dst = {.ld = x}, src = {.ld = y};
+
+ register double A = dst.s.hi, a = dst.s.lo, B = src.s.hi, b = src.s.lo;
+
+ double aHi, aLo, bHi, bLo;
+ double ab, tmp, tau;
+
+ ab = A * B;
+
+ /* Detect special cases */
+ if (ab == 0.0) {
+ dst.s.hi = ab;
+ dst.s.lo = 0.0;
+ return dst.ld;
+ }
+
+ const doublebits abBits = {.d = ab};
+ if (((uint32_t)(abBits.x >> 32) & infinityHi) == infinityHi) {
+ dst.s.hi = ab;
+ dst.s.lo = 0.0;
return dst.ld;
+ }
+
+ /* Generic cases handled here. */
+ aHi = high26bits(A);
+ bHi = high26bits(B);
+ aLo = A - aHi;
+ bLo = B - bHi;
+
+ tmp = LOWORDER(ab, aHi, aLo, bHi, bLo);
+ tmp += (A * b + a * B);
+ tau = ab + tmp;
+
+ dst.s.lo = (ab - tau) + tmp;
+ dst.s.hi = tau;
+
+ return dst.ld;
}
diff --git a/lib/builtins/ppc/gcc_qsub.c b/lib/builtins/ppc/gcc_qsub.c
index ec718f3f4..98d20747b 100644
--- a/lib/builtins/ppc/gcc_qsub.c
+++ b/lib/builtins/ppc/gcc_qsub.c
@@ -10,68 +10,67 @@
#include "DD.h"
-long double __gcc_qsub(long double x, long double y)
-{
- static const uint32_t infinityHi = UINT32_C(0x7ff00000);
-
- DD dst = { .ld = x }, src = { .ld = y };
-
- register double A = dst.s.hi, a = dst.s.lo,
- B = -src.s.hi, b = -src.s.lo;
-
- /* If both operands are zero: */
- if ((A == 0.0) && (B == 0.0)) {
- dst.s.hi = A + B;
- dst.s.lo = 0.0;
- return dst.ld;
- }
-
- /* If either operand is NaN or infinity: */
- const doublebits abits = { .d = A };
- const doublebits bbits = { .d = B };
- if ((((uint32_t)(abits.x >> 32) & infinityHi) == infinityHi) ||
- (((uint32_t)(bbits.x >> 32) & infinityHi) == infinityHi)) {
- dst.s.hi = A + B;
- dst.s.lo = 0.0;
- return dst.ld;
- }
-
- /* If the computation overflows: */
- /* This may be playing things a little bit fast and loose, but it will do for a start. */
- const double testForOverflow = A + (B + (a + b));
- const doublebits testbits = { .d = testForOverflow };
- if (((uint32_t)(testbits.x >> 32) & infinityHi) == infinityHi) {
- dst.s.hi = testForOverflow;
- dst.s.lo = 0.0;
- return dst.ld;
- }
-
- double H, h;
- double T, t;
- double W, w;
- double Y;
-
- H = B + (A - (A + B));
- T = b + (a - (a + b));
- h = A + (B - (A + B));
- t = a + (b - (a + b));
-
- if (local_fabs(A) <= local_fabs(B))
- w = (a + b) + h;
- else
- w = (a + b) + H;
-
- W = (A + B) + w;
- Y = (A + B) - W;
- Y += w;
-
- if (local_fabs(a) <= local_fabs(b))
- w = t + Y;
- else
- w = T + Y;
-
- dst.s.hi = Y = W + w;
- dst.s.lo = (W - Y) + w;
-
- return dst.ld;
+long double __gcc_qsub(long double x, long double y) {
+ static const uint32_t infinityHi = UINT32_C(0x7ff00000);
+
+ DD dst = {.ld = x}, src = {.ld = y};
+
+ register double A = dst.s.hi, a = dst.s.lo, B = -src.s.hi, b = -src.s.lo;
+
+ /* If both operands are zero: */
+ if ((A == 0.0) && (B == 0.0)) {
+ dst.s.hi = A + B;
+ dst.s.lo = 0.0;
+ return dst.ld;
+ }
+
+ /* If either operand is NaN or infinity: */
+ const doublebits abits = {.d = A};
+ const doublebits bbits = {.d = B};
+ if ((((uint32_t)(abits.x >> 32) & infinityHi) == infinityHi) ||
+ (((uint32_t)(bbits.x >> 32) & infinityHi) == infinityHi)) {
+ dst.s.hi = A + B;
+ dst.s.lo = 0.0;
+ return dst.ld;
+ }
+
+ /* If the computation overflows: */
+ /* This may be playing things a little bit fast and loose, but it will do for
+ * a start. */
+ const double testForOverflow = A + (B + (a + b));
+ const doublebits testbits = {.d = testForOverflow};
+ if (((uint32_t)(testbits.x >> 32) & infinityHi) == infinityHi) {
+ dst.s.hi = testForOverflow;
+ dst.s.lo = 0.0;
+ return dst.ld;
+ }
+
+ double H, h;
+ double T, t;
+ double W, w;
+ double Y;
+
+ H = B + (A - (A + B));
+ T = b + (a - (a + b));
+ h = A + (B - (A + B));
+ t = a + (b - (a + b));
+
+ if (local_fabs(A) <= local_fabs(B))
+ w = (a + b) + h;
+ else
+ w = (a + b) + H;
+
+ W = (A + B) + w;
+ Y = (A + B) - W;
+ Y += w;
+
+ if (local_fabs(a) <= local_fabs(b))
+ w = t + Y;
+ else
+ w = T + Y;
+
+ dst.s.hi = Y = W + w;
+ dst.s.lo = (W - Y) + w;
+
+ return dst.ld;
}
diff --git a/lib/builtins/ppc/multc3.c b/lib/builtins/ppc/multc3.c
index 830b60c0d..40b0d60e6 100644
--- a/lib/builtins/ppc/multc3.c
+++ b/lib/builtins/ppc/multc3.c
@@ -3,89 +3,84 @@
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
-#include "DD.h"
#include "../int_math.h"
+#include "DD.h"
-#define makeFinite(x) { \
- (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \
- (x).s.lo = 0.0; \
+#define makeFinite(x) \
+ { \
+ (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \
+ (x).s.lo = 0.0; \
}
-#define zeroNaN(x) { \
- if (crt_isnan((x).s.hi)) { \
- (x).s.hi = crt_copysign(0.0, (x).s.hi); \
- (x).s.lo = 0.0; \
- } \
+#define zeroNaN(x) \
+ { \
+ if (crt_isnan((x).s.hi)) { \
+ (x).s.hi = crt_copysign(0.0, (x).s.hi); \
+ (x).s.lo = 0.0; \
+ } \
}
-long double _Complex
-__multc3(long double a, long double b, long double c, long double d)
-{
- long double ac = __gcc_qmul(a,c);
- long double bd = __gcc_qmul(b,d);
- long double ad = __gcc_qmul(a,d);
- long double bc = __gcc_qmul(b,c);
-
- DD real = { .ld = __gcc_qsub(ac,bd) };
- DD imag = { .ld = __gcc_qadd(ad,bc) };
-
- if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi))
- {
- int recalc = 0;
-
- DD aDD = { .ld = a };
- DD bDD = { .ld = b };
- DD cDD = { .ld = c };
- DD dDD = { .ld = d };
-
- if (crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi))
- {
- makeFinite(aDD);
- makeFinite(bDD);
- zeroNaN(cDD);
- zeroNaN(dDD);
- recalc = 1;
- }
-
- if (crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi))
- {
- makeFinite(cDD);
- makeFinite(dDD);
- zeroNaN(aDD);
- zeroNaN(bDD);
- recalc = 1;
- }
-
- if (!recalc)
- {
- DD acDD = { .ld = ac };
- DD bdDD = { .ld = bd };
- DD adDD = { .ld = ad };
- DD bcDD = { .ld = bc };
-
- if (crt_isinf(acDD.s.hi) || crt_isinf(bdDD.s.hi) ||
- crt_isinf(adDD.s.hi) || crt_isinf(bcDD.s.hi))
- {
- zeroNaN(aDD);
- zeroNaN(bDD);
- zeroNaN(cDD);
- zeroNaN(dDD);
- recalc = 1;
- }
- }
-
- if (recalc)
- {
- real.s.hi = CRT_INFINITY * (aDD.s.hi*cDD.s.hi - bDD.s.hi*dDD.s.hi);
- real.s.lo = 0.0;
- imag.s.hi = CRT_INFINITY * (aDD.s.hi*dDD.s.hi + bDD.s.hi*cDD.s.hi);
- imag.s.lo = 0.0;
- }
- }
-
- long double _Complex z;
- __real__ z = real.ld;
- __imag__ z = imag.ld;
-
- return z;
+long double _Complex __multc3(long double a, long double b, long double c,
+ long double d) {
+ long double ac = __gcc_qmul(a, c);
+ long double bd = __gcc_qmul(b, d);
+ long double ad = __gcc_qmul(a, d);
+ long double bc = __gcc_qmul(b, c);
+
+ DD real = {.ld = __gcc_qsub(ac, bd)};
+ DD imag = {.ld = __gcc_qadd(ad, bc)};
+
+ if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi)) {
+ int recalc = 0;
+
+ DD aDD = {.ld = a};
+ DD bDD = {.ld = b};
+ DD cDD = {.ld = c};
+ DD dDD = {.ld = d};
+
+ if (crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) {
+ makeFinite(aDD);
+ makeFinite(bDD);
+ zeroNaN(cDD);
+ zeroNaN(dDD);
+ recalc = 1;
+ }
+
+ if (crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) {
+ makeFinite(cDD);
+ makeFinite(dDD);
+ zeroNaN(aDD);
+ zeroNaN(bDD);
+ recalc = 1;
+ }
+
+ if (!recalc) {
+ DD acDD = {.ld = ac};
+ DD bdDD = {.ld = bd};
+ DD adDD = {.ld = ad};
+ DD bcDD = {.ld = bc};
+
+ if (crt_isinf(acDD.s.hi) || crt_isinf(bdDD.s.hi) ||
+ crt_isinf(adDD.s.hi) || crt_isinf(bcDD.s.hi)) {
+ zeroNaN(aDD);
+ zeroNaN(bDD);
+ zeroNaN(cDD);
+ zeroNaN(dDD);
+ recalc = 1;
+ }
+ }
+
+ if (recalc) {
+ real.s.hi = CRT_INFINITY * (aDD.s.hi * cDD.s.hi - bDD.s.hi * dDD.s.hi);
+ real.s.lo = 0.0;
+ imag.s.hi = CRT_INFINITY * (aDD.s.hi * dDD.s.hi + bDD.s.hi * cDD.s.hi);
+ imag.s.lo = 0.0;
+ }
+ }
+
+ long double _Complex z;
+ __real__ z = real.ld;
+ __imag__ z = imag.ld;
+
+ return z;
}
diff --git a/lib/builtins/subdf3.c b/lib/builtins/subdf3.c
index 013c60e9c..bfa9f74ac 100644
--- a/lib/builtins/subdf3.c
+++ b/lib/builtins/subdf3.c
@@ -15,16 +15,13 @@
#include "fp_lib.h"
// Subtraction; flip the sign bit of b and add.
-COMPILER_RT_ABI fp_t
-__subdf3(fp_t a, fp_t b) {
- return __adddf3(a, fromRep(toRep(b) ^ signBit));
+COMPILER_RT_ABI fp_t __subdf3(fp_t a, fp_t b) {
+ return __adddf3(a, fromRep(toRep(b) ^ signBit));
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI fp_t __aeabi_dsub(fp_t a, fp_t b) {
- return __subdf3(a, b);
-}
+AEABI_RTABI fp_t __aeabi_dsub(fp_t a, fp_t b) { return __subdf3(a, b); }
#else
AEABI_RTABI fp_t __aeabi_dsub(fp_t a, fp_t b) COMPILER_RT_ALIAS(__subdf3);
#endif
diff --git a/lib/builtins/subsf3.c b/lib/builtins/subsf3.c
index 90b0e11f3..a41d8eb50 100644
--- a/lib/builtins/subsf3.c
+++ b/lib/builtins/subsf3.c
@@ -15,16 +15,13 @@
#include "fp_lib.h"
// Subtraction; flip the sign bit of b and add.
-COMPILER_RT_ABI fp_t
-__subsf3(fp_t a, fp_t b) {
- return __addsf3(a, fromRep(toRep(b) ^ signBit));
+COMPILER_RT_ABI fp_t __subsf3(fp_t a, fp_t b) {
+ return __addsf3(a, fromRep(toRep(b) ^ signBit));
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI fp_t __aeabi_fsub(fp_t a, fp_t b) {
- return __subsf3(a, b);
-}
+AEABI_RTABI fp_t __aeabi_fsub(fp_t a, fp_t b) { return __subsf3(a, b); }
#else
AEABI_RTABI fp_t __aeabi_fsub(fp_t a, fp_t b) COMPILER_RT_ALIAS(__subsf3);
#endif
diff --git a/lib/builtins/subtf3.c b/lib/builtins/subtf3.c
index 871cf86b8..c96814692 100644
--- a/lib/builtins/subtf3.c
+++ b/lib/builtins/subtf3.c
@@ -18,9 +18,8 @@
COMPILER_RT_ABI fp_t __addtf3(fp_t a, fp_t b);
// Subtraction; flip the sign bit of b and add.
-COMPILER_RT_ABI fp_t
-__subtf3(fp_t a, fp_t b) {
- return __addtf3(a, fromRep(toRep(b) ^ signBit));
+COMPILER_RT_ABI fp_t __subtf3(fp_t a, fp_t b) {
+ return __addtf3(a, fromRep(toRep(b) ^ signBit));
}
#endif
diff --git a/lib/builtins/subvdi3.c b/lib/builtins/subvdi3.c
index 3450875c1..2387619de 100644
--- a/lib/builtins/subvdi3.c
+++ b/lib/builtins/subvdi3.c
@@ -17,19 +17,14 @@
/* Effects: aborts if a - b overflows */
-COMPILER_RT_ABI di_int
-__subvdi3(di_int a, di_int b)
-{
- di_int s = (du_int) a - (du_int) b;
- if (b >= 0)
- {
- if (s > a)
- compilerrt_abort();
- }
- else
- {
- if (s <= a)
- compilerrt_abort();
- }
- return s;
+COMPILER_RT_ABI di_int __subvdi3(di_int a, di_int b) {
+ di_int s = (du_int)a - (du_int)b;
+ if (b >= 0) {
+ if (s > a)
+ compilerrt_abort();
+ } else {
+ if (s <= a)
+ compilerrt_abort();
+ }
+ return s;
}
diff --git a/lib/builtins/subvsi3.c b/lib/builtins/subvsi3.c
index 6f756637a..c0c304d08 100644
--- a/lib/builtins/subvsi3.c
+++ b/lib/builtins/subvsi3.c
@@ -17,19 +17,14 @@
/* Effects: aborts if a - b overflows */
-COMPILER_RT_ABI si_int
-__subvsi3(si_int a, si_int b)
-{
- si_int s = (su_int) a - (su_int) b;
- if (b >= 0)
- {
- if (s > a)
- compilerrt_abort();
- }
- else
- {
- if (s <= a)
- compilerrt_abort();
- }
- return s;
+COMPILER_RT_ABI si_int __subvsi3(si_int a, si_int b) {
+ si_int s = (su_int)a - (su_int)b;
+ if (b >= 0) {
+ if (s > a)
+ compilerrt_abort();
+ } else {
+ if (s <= a)
+ compilerrt_abort();
+ }
+ return s;
}
diff --git a/lib/builtins/subvti3.c b/lib/builtins/subvti3.c
index 661364d75..9d554c1db 100644
--- a/lib/builtins/subvti3.c
+++ b/lib/builtins/subvti3.c
@@ -19,21 +19,16 @@
/* Effects: aborts if a - b overflows */
-COMPILER_RT_ABI ti_int
-__subvti3(ti_int a, ti_int b)
-{
- ti_int s = (tu_int) a - (tu_int) b;
- if (b >= 0)
- {
- if (s > a)
- compilerrt_abort();
- }
- else
- {
- if (s <= a)
- compilerrt_abort();
- }
- return s;
+COMPILER_RT_ABI ti_int __subvti3(ti_int a, ti_int b) {
+ ti_int s = (tu_int)a - (tu_int)b;
+ if (b >= 0) {
+ if (s > a)
+ compilerrt_abort();
+ } else {
+ if (s <= a)
+ compilerrt_abort();
+ }
+ return s;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/trampoline_setup.c b/lib/builtins/trampoline_setup.c
index 99a103329..c287325fc 100644
--- a/lib/builtins/trampoline_setup.c
+++ b/lib/builtins/trampoline_setup.c
@@ -9,39 +9,38 @@
#include "int_lib.h"
-extern void __clear_cache(void* start, void* end);
+extern void __clear_cache(void *start, void *end);
/*
- * The ppc compiler generates calls to __trampoline_setup() when creating
+ * The ppc compiler generates calls to __trampoline_setup() when creating
* trampoline functions on the stack for use with nested functions.
- * This function creates a custom 40-byte trampoline function on the stack
+ * This function creates a custom 40-byte trampoline function on the stack
* which loads r11 with a pointer to the outer function's locals
* and then jumps to the target nested function.
*/
#if __ppc__ && !defined(__powerpc64__)
-COMPILER_RT_ABI void
-__trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated,
- const void* realFunc, void* localsPtr)
-{
- /* should never happen, but if compiler did not allocate */
- /* enough space on stack for the trampoline, abort */
- if ( trampSizeAllocated < 40 )
- compilerrt_abort();
-
- /* create trampoline */
- trampOnStack[0] = 0x7c0802a6; /* mflr r0 */
- trampOnStack[1] = 0x4800000d; /* bl Lbase */
- trampOnStack[2] = (uint32_t)realFunc;
- trampOnStack[3] = (uint32_t)localsPtr;
- trampOnStack[4] = 0x7d6802a6; /* Lbase: mflr r11 */
- trampOnStack[5] = 0x818b0000; /* lwz r12,0(r11) */
- trampOnStack[6] = 0x7c0803a6; /* mtlr r0 */
- trampOnStack[7] = 0x7d8903a6; /* mtctr r12 */
- trampOnStack[8] = 0x816b0004; /* lwz r11,4(r11) */
- trampOnStack[9] = 0x4e800420; /* bctr */
-
- /* clear instruction cache */
- __clear_cache(trampOnStack, &trampOnStack[10]);
+COMPILER_RT_ABI void __trampoline_setup(uint32_t *trampOnStack,
+ int trampSizeAllocated,
+ const void *realFunc, void *localsPtr) {
+ /* should never happen, but if compiler did not allocate */
+ /* enough space on stack for the trampoline, abort */
+ if (trampSizeAllocated < 40)
+ compilerrt_abort();
+
+ /* create trampoline */
+ trampOnStack[0] = 0x7c0802a6; /* mflr r0 */
+ trampOnStack[1] = 0x4800000d; /* bl Lbase */
+ trampOnStack[2] = (uint32_t)realFunc;
+ trampOnStack[3] = (uint32_t)localsPtr;
+ trampOnStack[4] = 0x7d6802a6; /* Lbase: mflr r11 */
+ trampOnStack[5] = 0x818b0000; /* lwz r12,0(r11) */
+ trampOnStack[6] = 0x7c0803a6; /* mtlr r0 */
+ trampOnStack[7] = 0x7d8903a6; /* mtctr r12 */
+ trampOnStack[8] = 0x816b0004; /* lwz r11,4(r11) */
+ trampOnStack[9] = 0x4e800420; /* bctr */
+
+ /* clear instruction cache */
+ __clear_cache(trampOnStack, &trampOnStack[10]);
}
#endif /* __ppc__ && !defined(__powerpc64__) */
diff --git a/lib/builtins/truncdfhf2.c b/lib/builtins/truncdfhf2.c
index e56adc6ea..2085aed95 100644
--- a/lib/builtins/truncdfhf2.c
+++ b/lib/builtins/truncdfhf2.c
@@ -10,15 +10,11 @@
#define DST_HALF
#include "fp_trunc_impl.inc"
-COMPILER_RT_ABI uint16_t __truncdfhf2(double a) {
- return __truncXfYf2__(a);
-}
+COMPILER_RT_ABI uint16_t __truncdfhf2(double a) { return __truncXfYf2__(a); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI uint16_t __aeabi_d2h(double a) {
- return __truncdfhf2(a);
-}
+AEABI_RTABI uint16_t __aeabi_d2h(double a) { return __truncdfhf2(a); }
#else
AEABI_RTABI uint16_t __aeabi_d2h(double a) COMPILER_RT_ALIAS(__truncdfhf2);
#endif
diff --git a/lib/builtins/truncdfsf2.c b/lib/builtins/truncdfsf2.c
index 986a63f80..7330d712b 100644
--- a/lib/builtins/truncdfsf2.c
+++ b/lib/builtins/truncdfsf2.c
@@ -10,15 +10,11 @@
#define DST_SINGLE
#include "fp_trunc_impl.inc"
-COMPILER_RT_ABI float __truncdfsf2(double a) {
- return __truncXfYf2__(a);
-}
+COMPILER_RT_ABI float __truncdfsf2(double a) { return __truncXfYf2__(a); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI float __aeabi_d2f(double a) {
- return __truncdfsf2(a);
-}
+AEABI_RTABI float __aeabi_d2f(double a) { return __truncdfsf2(a); }
#else
AEABI_RTABI float __aeabi_d2f(double a) COMPILER_RT_ALIAS(__truncdfsf2);
#endif
diff --git a/lib/builtins/truncsfhf2.c b/lib/builtins/truncsfhf2.c
index e1f3dfa8b..7c8ea073d 100644
--- a/lib/builtins/truncsfhf2.c
+++ b/lib/builtins/truncsfhf2.c
@@ -13,18 +13,14 @@
// Use a forwarding definition and noinline to implement a poor man's alias,
// as there isn't a good cross-platform way of defining one.
COMPILER_RT_ABI NOINLINE uint16_t __truncsfhf2(float a) {
- return __truncXfYf2__(a);
+ return __truncXfYf2__(a);
}
-COMPILER_RT_ABI uint16_t __gnu_f2h_ieee(float a) {
- return __truncsfhf2(a);
-}
+COMPILER_RT_ABI uint16_t __gnu_f2h_ieee(float a) { return __truncsfhf2(a); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
-AEABI_RTABI uint16_t __aeabi_f2h(float a) {
- return __truncsfhf2(a);
-}
+AEABI_RTABI uint16_t __aeabi_f2h(float a) { return __truncsfhf2(a); }
#else
AEABI_RTABI uint16_t __aeabi_f2h(float a) COMPILER_RT_ALIAS(__truncsfhf2);
#endif
diff --git a/lib/builtins/trunctfdf2.c b/lib/builtins/trunctfdf2.c
index c1c75535f..6857ea54d 100644
--- a/lib/builtins/trunctfdf2.c
+++ b/lib/builtins/trunctfdf2.c
@@ -14,8 +14,6 @@
#define DST_DOUBLE
#include "fp_trunc_impl.inc"
-COMPILER_RT_ABI double __trunctfdf2(long double a) {
- return __truncXfYf2__(a);
-}
+COMPILER_RT_ABI double __trunctfdf2(long double a) { return __truncXfYf2__(a); }
#endif
diff --git a/lib/builtins/trunctfsf2.c b/lib/builtins/trunctfsf2.c
index 15a5343f8..0261b1e90 100644
--- a/lib/builtins/trunctfsf2.c
+++ b/lib/builtins/trunctfsf2.c
@@ -14,8 +14,6 @@
#define DST_SINGLE
#include "fp_trunc_impl.inc"
-COMPILER_RT_ABI float __trunctfsf2(long double a) {
- return __truncXfYf2__(a);
-}
+COMPILER_RT_ABI float __trunctfsf2(long double a) { return __truncXfYf2__(a); }
#endif
diff --git a/lib/builtins/ucmpdi2.c b/lib/builtins/ucmpdi2.c
index 2e7559927..b31e23a29 100644
--- a/lib/builtins/ucmpdi2.c
+++ b/lib/builtins/ucmpdi2.c
@@ -18,33 +18,28 @@
* if (a > b) returns 2
*/
-COMPILER_RT_ABI si_int
-__ucmpdi2(du_int a, du_int b)
-{
- udwords x;
- x.all = a;
- udwords y;
- y.all = b;
- if (x.s.high < y.s.high)
- return 0;
- if (x.s.high > y.s.high)
- return 2;
- if (x.s.low < y.s.low)
- return 0;
- if (x.s.low > y.s.low)
- return 2;
- return 1;
+COMPILER_RT_ABI si_int __ucmpdi2(du_int a, du_int b) {
+ udwords x;
+ x.all = a;
+ udwords y;
+ y.all = b;
+ if (x.s.high < y.s.high)
+ return 0;
+ if (x.s.high > y.s.high)
+ return 2;
+ if (x.s.low < y.s.low)
+ return 0;
+ if (x.s.low > y.s.low)
+ return 2;
+ return 1;
}
#ifdef __ARM_EABI__
/* Returns: if (a < b) returns -1
-* if (a == b) returns 0
-* if (a > b) returns 1
-*/
-COMPILER_RT_ABI si_int
-__aeabi_ulcmp(di_int a, di_int b)
-{
- return __ucmpdi2(a, b) - 1;
+ * if (a == b) returns 0
+ * if (a > b) returns 1
+ */
+COMPILER_RT_ABI si_int __aeabi_ulcmp(di_int a, di_int b) {
+ return __ucmpdi2(a, b) - 1;
}
#endif
-
diff --git a/lib/builtins/ucmpti2.c b/lib/builtins/ucmpti2.c
index dbbbe43db..104099e92 100644
--- a/lib/builtins/ucmpti2.c
+++ b/lib/builtins/ucmpti2.c
@@ -20,22 +20,20 @@
* if (a > b) returns 2
*/
-COMPILER_RT_ABI si_int
-__ucmpti2(tu_int a, tu_int b)
-{
- utwords x;
- x.all = a;
- utwords y;
- y.all = b;
- if (x.s.high < y.s.high)
- return 0;
- if (x.s.high > y.s.high)
- return 2;
- if (x.s.low < y.s.low)
- return 0;
- if (x.s.low > y.s.low)
- return 2;
- return 1;
+COMPILER_RT_ABI si_int __ucmpti2(tu_int a, tu_int b) {
+ utwords x;
+ x.all = a;
+ utwords y;
+ y.all = b;
+ if (x.s.high < y.s.high)
+ return 0;
+ if (x.s.high > y.s.high)
+ return 2;
+ if (x.s.low < y.s.low)
+ return 0;
+ if (x.s.low > y.s.low)
+ return 2;
+ return 1;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/udivdi3.c b/lib/builtins/udivdi3.c
index 6eca7376e..5b20c5f0a 100644
--- a/lib/builtins/udivdi3.c
+++ b/lib/builtins/udivdi3.c
@@ -15,8 +15,6 @@
/* Returns: a / b */
-COMPILER_RT_ABI du_int
-__udivdi3(du_int a, du_int b)
-{
- return __udivmoddi4(a, b, 0);
+COMPILER_RT_ABI du_int __udivdi3(du_int a, du_int b) {
+ return __udivmoddi4(a, b, 0);
}
diff --git a/lib/builtins/udivmoddi4.c b/lib/builtins/udivmoddi4.c
index ee976c837..65f7cde22 100644
--- a/lib/builtins/udivmoddi4.c
+++ b/lib/builtins/udivmoddi4.c
@@ -19,212 +19,190 @@
/* Translated from Figure 3-40 of The PowerPC Compiler Writer's Guide */
-COMPILER_RT_ABI du_int
-__udivmoddi4(du_int a, du_int b, du_int* rem)
-{
- const unsigned n_uword_bits = sizeof(su_int) * CHAR_BIT;
- const unsigned n_udword_bits = sizeof(du_int) * CHAR_BIT;
- udwords n;
- n.all = a;
- udwords d;
- d.all = b;
- udwords q;
- udwords r;
- unsigned sr;
- /* special cases, X is unknown, K != 0 */
- if (n.s.high == 0)
- {
- if (d.s.high == 0)
- {
- /* 0 X
- * ---
- * 0 X
- */
- if (rem)
- *rem = n.s.low % d.s.low;
- return n.s.low / d.s.low;
- }
- /* 0 X
- * ---
- * K X
- */
- if (rem)
- *rem = n.s.low;
- return 0;
+COMPILER_RT_ABI du_int __udivmoddi4(du_int a, du_int b, du_int *rem) {
+ const unsigned n_uword_bits = sizeof(su_int) * CHAR_BIT;
+ const unsigned n_udword_bits = sizeof(du_int) * CHAR_BIT;
+ udwords n;
+ n.all = a;
+ udwords d;
+ d.all = b;
+ udwords q;
+ udwords r;
+ unsigned sr;
+ /* special cases, X is unknown, K != 0 */
+ if (n.s.high == 0) {
+ if (d.s.high == 0) {
+ /* 0 X
+ * ---
+ * 0 X
+ */
+ if (rem)
+ *rem = n.s.low % d.s.low;
+ return n.s.low / d.s.low;
}
- /* n.s.high != 0 */
- if (d.s.low == 0)
+ /* 0 X
+ * ---
+ * K X
+ */
+ if (rem)
+ *rem = n.s.low;
+ return 0;
+ }
+ /* n.s.high != 0 */
+ if (d.s.low == 0) {
+ if (d.s.high == 0) {
+ /* K X
+ * ---
+ * 0 0
+ */
+ if (rem)
+ *rem = n.s.high % d.s.low;
+ return n.s.high / d.s.low;
+ }
+ /* d.s.high != 0 */
+ if (n.s.low == 0) {
+ /* K 0
+ * ---
+ * K 0
+ */
+ if (rem) {
+ r.s.high = n.s.high % d.s.high;
+ r.s.low = 0;
+ *rem = r.all;
+ }
+ return n.s.high / d.s.high;
+ }
+ /* K K
+ * ---
+ * K 0
+ */
+ if ((d.s.high & (d.s.high - 1)) == 0) /* if d is a power of 2 */
{
- if (d.s.high == 0)
- {
- /* K X
- * ---
- * 0 0
- */
- if (rem)
- *rem = n.s.high % d.s.low;
- return n.s.high / d.s.low;
- }
- /* d.s.high != 0 */
- if (n.s.low == 0)
- {
- /* K 0
- * ---
- * K 0
- */
- if (rem)
- {
- r.s.high = n.s.high % d.s.high;
- r.s.low = 0;
- *rem = r.all;
- }
- return n.s.high / d.s.high;
- }
- /* K K
- * ---
- * K 0
- */
- if ((d.s.high & (d.s.high - 1)) == 0) /* if d is a power of 2 */
- {
- if (rem)
- {
- r.s.low = n.s.low;
- r.s.high = n.s.high & (d.s.high - 1);
- *rem = r.all;
- }
- return n.s.high >> __builtin_ctz(d.s.high);
- }
- /* K K
- * ---
- * K 0
- */
- sr = __builtin_clz(d.s.high) - __builtin_clz(n.s.high);
- /* 0 <= sr <= n_uword_bits - 2 or sr large */
- if (sr > n_uword_bits - 2)
- {
- if (rem)
- *rem = n.all;
- return 0;
- }
- ++sr;
- /* 1 <= sr <= n_uword_bits - 1 */
- /* q.all = n.all << (n_udword_bits - sr); */
+ if (rem) {
+ r.s.low = n.s.low;
+ r.s.high = n.s.high & (d.s.high - 1);
+ *rem = r.all;
+ }
+ return n.s.high >> __builtin_ctz(d.s.high);
+ }
+ /* K K
+ * ---
+ * K 0
+ */
+ sr = __builtin_clz(d.s.high) - __builtin_clz(n.s.high);
+ /* 0 <= sr <= n_uword_bits - 2 or sr large */
+ if (sr > n_uword_bits - 2) {
+ if (rem)
+ *rem = n.all;
+ return 0;
+ }
+ ++sr;
+ /* 1 <= sr <= n_uword_bits - 1 */
+ /* q.all = n.all << (n_udword_bits - sr); */
+ q.s.low = 0;
+ q.s.high = n.s.low << (n_uword_bits - sr);
+ /* r.all = n.all >> sr; */
+ r.s.high = n.s.high >> sr;
+ r.s.low = (n.s.high << (n_uword_bits - sr)) | (n.s.low >> sr);
+ } else /* d.s.low != 0 */
+ {
+ if (d.s.high == 0) {
+ /* K X
+ * ---
+ * 0 K
+ */
+ if ((d.s.low & (d.s.low - 1)) == 0) /* if d is a power of 2 */
+ {
+ if (rem)
+ *rem = n.s.low & (d.s.low - 1);
+ if (d.s.low == 1)
+ return n.all;
+ sr = __builtin_ctz(d.s.low);
+ q.s.high = n.s.high >> sr;
+ q.s.low = (n.s.high << (n_uword_bits - sr)) | (n.s.low >> sr);
+ return q.all;
+ }
+ /* K X
+ * ---
+ * 0 K
+ */
+ sr = 1 + n_uword_bits + __builtin_clz(d.s.low) - __builtin_clz(n.s.high);
+ /* 2 <= sr <= n_udword_bits - 1
+ * q.all = n.all << (n_udword_bits - sr);
+ * r.all = n.all >> sr;
+ */
+ if (sr == n_uword_bits) {
+ q.s.low = 0;
+ q.s.high = n.s.low;
+ r.s.high = 0;
+ r.s.low = n.s.high;
+ } else if (sr < n_uword_bits) // 2 <= sr <= n_uword_bits - 1
+ {
q.s.low = 0;
q.s.high = n.s.low << (n_uword_bits - sr);
- /* r.all = n.all >> sr; */
r.s.high = n.s.high >> sr;
r.s.low = (n.s.high << (n_uword_bits - sr)) | (n.s.low >> sr);
+ } else // n_uword_bits + 1 <= sr <= n_udword_bits - 1
+ {
+ q.s.low = n.s.low << (n_udword_bits - sr);
+ q.s.high = (n.s.high << (n_udword_bits - sr)) |
+ (n.s.low >> (sr - n_uword_bits));
+ r.s.high = 0;
+ r.s.low = n.s.high >> (sr - n_uword_bits);
+ }
+ } else {
+ /* K X
+ * ---
+ * K K
+ */
+ sr = __builtin_clz(d.s.high) - __builtin_clz(n.s.high);
+ /* 0 <= sr <= n_uword_bits - 1 or sr large */
+ if (sr > n_uword_bits - 1) {
+ if (rem)
+ *rem = n.all;
+ return 0;
+ }
+ ++sr;
+ /* 1 <= sr <= n_uword_bits */
+ /* q.all = n.all << (n_udword_bits - sr); */
+ q.s.low = 0;
+ if (sr == n_uword_bits) {
+ q.s.high = n.s.low;
+ r.s.high = 0;
+ r.s.low = n.s.high;
+ } else {
+ q.s.high = n.s.low << (n_uword_bits - sr);
+ r.s.high = n.s.high >> sr;
+ r.s.low = (n.s.high << (n_uword_bits - sr)) | (n.s.low >> sr);
+ }
}
- else /* d.s.low != 0 */
- {
- if (d.s.high == 0)
- {
- /* K X
- * ---
- * 0 K
- */
- if ((d.s.low & (d.s.low - 1)) == 0) /* if d is a power of 2 */
- {
- if (rem)
- *rem = n.s.low & (d.s.low - 1);
- if (d.s.low == 1)
- return n.all;
- sr = __builtin_ctz(d.s.low);
- q.s.high = n.s.high >> sr;
- q.s.low = (n.s.high << (n_uword_bits - sr)) | (n.s.low >> sr);
- return q.all;
- }
- /* K X
- * ---
- * 0 K
- */
- sr = 1 + n_uword_bits + __builtin_clz(d.s.low) - __builtin_clz(n.s.high);
- /* 2 <= sr <= n_udword_bits - 1
- * q.all = n.all << (n_udword_bits - sr);
- * r.all = n.all >> sr;
- */
- if (sr == n_uword_bits)
- {
- q.s.low = 0;
- q.s.high = n.s.low;
- r.s.high = 0;
- r.s.low = n.s.high;
- }
- else if (sr < n_uword_bits) // 2 <= sr <= n_uword_bits - 1
- {
- q.s.low = 0;
- q.s.high = n.s.low << (n_uword_bits - sr);
- r.s.high = n.s.high >> sr;
- r.s.low = (n.s.high << (n_uword_bits - sr)) | (n.s.low >> sr);
- }
- else // n_uword_bits + 1 <= sr <= n_udword_bits - 1
- {
- q.s.low = n.s.low << (n_udword_bits - sr);
- q.s.high = (n.s.high << (n_udword_bits - sr)) |
- (n.s.low >> (sr - n_uword_bits));
- r.s.high = 0;
- r.s.low = n.s.high >> (sr - n_uword_bits);
- }
- }
- else
- {
- /* K X
- * ---
- * K K
- */
- sr = __builtin_clz(d.s.high) - __builtin_clz(n.s.high);
- /* 0 <= sr <= n_uword_bits - 1 or sr large */
- if (sr > n_uword_bits - 1)
- {
- if (rem)
- *rem = n.all;
- return 0;
- }
- ++sr;
- /* 1 <= sr <= n_uword_bits */
- /* q.all = n.all << (n_udword_bits - sr); */
- q.s.low = 0;
- if (sr == n_uword_bits)
- {
- q.s.high = n.s.low;
- r.s.high = 0;
- r.s.low = n.s.high;
- }
- else
- {
- q.s.high = n.s.low << (n_uword_bits - sr);
- r.s.high = n.s.high >> sr;
- r.s.low = (n.s.high << (n_uword_bits - sr)) | (n.s.low >> sr);
- }
- }
- }
- /* Not a special case
- * q and r are initialized with:
- * q.all = n.all << (n_udword_bits - sr);
- * r.all = n.all >> sr;
- * 1 <= sr <= n_udword_bits - 1
+ }
+ /* Not a special case
+ * q and r are initialized with:
+ * q.all = n.all << (n_udword_bits - sr);
+ * r.all = n.all >> sr;
+ * 1 <= sr <= n_udword_bits - 1
+ */
+ su_int carry = 0;
+ for (; sr > 0; --sr) {
+ /* r:q = ((r:q) << 1) | carry */
+ r.s.high = (r.s.high << 1) | (r.s.low >> (n_uword_bits - 1));
+ r.s.low = (r.s.low << 1) | (q.s.high >> (n_uword_bits - 1));
+ q.s.high = (q.s.high << 1) | (q.s.low >> (n_uword_bits - 1));
+ q.s.low = (q.s.low << 1) | carry;
+ /* carry = 0;
+ * if (r.all >= d.all)
+ * {
+ * r.all -= d.all;
+ * carry = 1;
+ * }
*/
- su_int carry = 0;
- for (; sr > 0; --sr)
- {
- /* r:q = ((r:q) << 1) | carry */
- r.s.high = (r.s.high << 1) | (r.s.low >> (n_uword_bits - 1));
- r.s.low = (r.s.low << 1) | (q.s.high >> (n_uword_bits - 1));
- q.s.high = (q.s.high << 1) | (q.s.low >> (n_uword_bits - 1));
- q.s.low = (q.s.low << 1) | carry;
- /* carry = 0;
- * if (r.all >= d.all)
- * {
- * r.all -= d.all;
- * carry = 1;
- * }
- */
- const di_int s = (di_int)(d.all - r.all - 1) >> (n_udword_bits - 1);
- carry = s & 1;
- r.all -= d.all & s;
- }
- q.all = (q.all << 1) | carry;
- if (rem)
- *rem = r.all;
- return q.all;
+ const di_int s = (di_int)(d.all - r.all - 1) >> (n_udword_bits - 1);
+ carry = s & 1;
+ r.all -= d.all & s;
+ }
+ q.all = (q.all << 1) | carry;
+ if (rem)
+ *rem = r.all;
+ return q.all;
}
diff --git a/lib/builtins/udivmodsi4.c b/lib/builtins/udivmodsi4.c
index 89199d92b..5fed67911 100644
--- a/lib/builtins/udivmodsi4.c
+++ b/lib/builtins/udivmodsi4.c
@@ -15,12 +15,8 @@
/* Returns: a / b, *rem = a % b */
-COMPILER_RT_ABI su_int
-__udivmodsi4(su_int a, su_int b, su_int* rem)
-{
- si_int d = __udivsi3(a,b);
- *rem = a - (d*b);
+COMPILER_RT_ABI su_int __udivmodsi4(su_int a, su_int b, su_int *rem) {
+ si_int d = __udivsi3(a, b);
+ *rem = a - (d * b);
return d;
}
-
-
diff --git a/lib/builtins/udivmodti4.c b/lib/builtins/udivmodti4.c
index a8edc558b..4aec819ab 100644
--- a/lib/builtins/udivmodti4.c
+++ b/lib/builtins/udivmodti4.c
@@ -9,229 +9,207 @@
* This file implements __udivmodti4 for the compiler_rt library.
*
* ===----------------------------------------------------------------------===
- */
+ */
#include "int_lib.h"
#ifdef CRT_HAS_128BIT
-/* Effects: if rem != 0, *rem = a % b
- * Returns: a / b
+/* Effects: if rem != 0, *rem = a % b
+ * Returns: a / b
*/
/* Translated from Figure 3-40 of The PowerPC Compiler Writer's Guide */
-COMPILER_RT_ABI tu_int
-__udivmodti4(tu_int a, tu_int b, tu_int* rem)
-{
- const unsigned n_udword_bits = sizeof(du_int) * CHAR_BIT;
- const unsigned n_utword_bits = sizeof(tu_int) * CHAR_BIT;
- utwords n;
- n.all = a;
- utwords d;
- d.all = b;
- utwords q;
- utwords r;
- unsigned sr;
- /* special cases, X is unknown, K != 0 */
- if (n.s.high == 0)
- {
- if (d.s.high == 0)
- {
- /* 0 X
- * ---
- * 0 X
- */
- if (rem)
- *rem = n.s.low % d.s.low;
- return n.s.low / d.s.low;
- }
- /* 0 X
- * ---
- * K X
- */
- if (rem)
- *rem = n.s.low;
- return 0;
+COMPILER_RT_ABI tu_int __udivmodti4(tu_int a, tu_int b, tu_int *rem) {
+ const unsigned n_udword_bits = sizeof(du_int) * CHAR_BIT;
+ const unsigned n_utword_bits = sizeof(tu_int) * CHAR_BIT;
+ utwords n;
+ n.all = a;
+ utwords d;
+ d.all = b;
+ utwords q;
+ utwords r;
+ unsigned sr;
+ /* special cases, X is unknown, K != 0 */
+ if (n.s.high == 0) {
+ if (d.s.high == 0) {
+ /* 0 X
+ * ---
+ * 0 X
+ */
+ if (rem)
+ *rem = n.s.low % d.s.low;
+ return n.s.low / d.s.low;
+ }
+ /* 0 X
+ * ---
+ * K X
+ */
+ if (rem)
+ *rem = n.s.low;
+ return 0;
+ }
+ /* n.s.high != 0 */
+ if (d.s.low == 0) {
+ if (d.s.high == 0) {
+ /* K X
+ * ---
+ * 0 0
+ */
+ if (rem)
+ *rem = n.s.high % d.s.low;
+ return n.s.high / d.s.low;
}
- /* n.s.high != 0 */
- if (d.s.low == 0)
+ /* d.s.high != 0 */
+ if (n.s.low == 0) {
+ /* K 0
+ * ---
+ * K 0
+ */
+ if (rem) {
+ r.s.high = n.s.high % d.s.high;
+ r.s.low = 0;
+ *rem = r.all;
+ }
+ return n.s.high / d.s.high;
+ }
+ /* K K
+ * ---
+ * K 0
+ */
+ if ((d.s.high & (d.s.high - 1)) == 0) /* if d is a power of 2 */
{
- if (d.s.high == 0)
- {
- /* K X
- * ---
- * 0 0
- */
- if (rem)
- *rem = n.s.high % d.s.low;
- return n.s.high / d.s.low;
- }
- /* d.s.high != 0 */
- if (n.s.low == 0)
- {
- /* K 0
- * ---
- * K 0
- */
- if (rem)
- {
- r.s.high = n.s.high % d.s.high;
- r.s.low = 0;
- *rem = r.all;
- }
- return n.s.high / d.s.high;
- }
- /* K K
- * ---
- * K 0
- */
- if ((d.s.high & (d.s.high - 1)) == 0) /* if d is a power of 2 */
- {
- if (rem)
- {
- r.s.low = n.s.low;
- r.s.high = n.s.high & (d.s.high - 1);
- *rem = r.all;
- }
- return n.s.high >> __builtin_ctzll(d.s.high);
- }
- /* K K
- * ---
- * K 0
- */
- sr = __builtin_clzll(d.s.high) - __builtin_clzll(n.s.high);
- /* 0 <= sr <= n_udword_bits - 2 or sr large */
- if (sr > n_udword_bits - 2)
- {
- if (rem)
- *rem = n.all;
- return 0;
- }
- ++sr;
- /* 1 <= sr <= n_udword_bits - 1 */
- /* q.all = n.all << (n_utword_bits - sr); */
+ if (rem) {
+ r.s.low = n.s.low;
+ r.s.high = n.s.high & (d.s.high - 1);
+ *rem = r.all;
+ }
+ return n.s.high >> __builtin_ctzll(d.s.high);
+ }
+ /* K K
+ * ---
+ * K 0
+ */
+ sr = __builtin_clzll(d.s.high) - __builtin_clzll(n.s.high);
+ /* 0 <= sr <= n_udword_bits - 2 or sr large */
+ if (sr > n_udword_bits - 2) {
+ if (rem)
+ *rem = n.all;
+ return 0;
+ }
+ ++sr;
+ /* 1 <= sr <= n_udword_bits - 1 */
+ /* q.all = n.all << (n_utword_bits - sr); */
+ q.s.low = 0;
+ q.s.high = n.s.low << (n_udword_bits - sr);
+ /* r.all = n.all >> sr; */
+ r.s.high = n.s.high >> sr;
+ r.s.low = (n.s.high << (n_udword_bits - sr)) | (n.s.low >> sr);
+ } else /* d.s.low != 0 */
+ {
+ if (d.s.high == 0) {
+ /* K X
+ * ---
+ * 0 K
+ */
+ if ((d.s.low & (d.s.low - 1)) == 0) /* if d is a power of 2 */
+ {
+ if (rem)
+ *rem = n.s.low & (d.s.low - 1);
+ if (d.s.low == 1)
+ return n.all;
+ sr = __builtin_ctzll(d.s.low);
+ q.s.high = n.s.high >> sr;
+ q.s.low = (n.s.high << (n_udword_bits - sr)) | (n.s.low >> sr);
+ return q.all;
+ }
+ /* K X
+ * ---
+ * 0 K
+ */
+ sr = 1 + n_udword_bits + __builtin_clzll(d.s.low) -
+ __builtin_clzll(n.s.high);
+ /* 2 <= sr <= n_utword_bits - 1
+ * q.all = n.all << (n_utword_bits - sr);
+ * r.all = n.all >> sr;
+ */
+ if (sr == n_udword_bits) {
+ q.s.low = 0;
+ q.s.high = n.s.low;
+ r.s.high = 0;
+ r.s.low = n.s.high;
+ } else if (sr < n_udword_bits) // 2 <= sr <= n_udword_bits - 1
+ {
q.s.low = 0;
q.s.high = n.s.low << (n_udword_bits - sr);
- /* r.all = n.all >> sr; */
r.s.high = n.s.high >> sr;
r.s.low = (n.s.high << (n_udword_bits - sr)) | (n.s.low >> sr);
+ } else // n_udword_bits + 1 <= sr <= n_utword_bits - 1
+ {
+ q.s.low = n.s.low << (n_utword_bits - sr);
+ q.s.high = (n.s.high << (n_utword_bits - sr)) |
+ (n.s.low >> (sr - n_udword_bits));
+ r.s.high = 0;
+ r.s.low = n.s.high >> (sr - n_udword_bits);
+ }
+ } else {
+ /* K X
+ * ---
+ * K K
+ */
+ sr = __builtin_clzll(d.s.high) - __builtin_clzll(n.s.high);
+ /*0 <= sr <= n_udword_bits - 1 or sr large */
+ if (sr > n_udword_bits - 1) {
+ if (rem)
+ *rem = n.all;
+ return 0;
+ }
+ ++sr;
+ /* 1 <= sr <= n_udword_bits
+ * q.all = n.all << (n_utword_bits - sr);
+ * r.all = n.all >> sr;
+ */
+ q.s.low = 0;
+ if (sr == n_udword_bits) {
+ q.s.high = n.s.low;
+ r.s.high = 0;
+ r.s.low = n.s.high;
+ } else {
+ r.s.high = n.s.high >> sr;
+ r.s.low = (n.s.high << (n_udword_bits - sr)) | (n.s.low >> sr);
+ q.s.high = n.s.low << (n_udword_bits - sr);
+ }
}
- else /* d.s.low != 0 */
- {
- if (d.s.high == 0)
- {
- /* K X
- * ---
- * 0 K
- */
- if ((d.s.low & (d.s.low - 1)) == 0) /* if d is a power of 2 */
- {
- if (rem)
- *rem = n.s.low & (d.s.low - 1);
- if (d.s.low == 1)
- return n.all;
- sr = __builtin_ctzll(d.s.low);
- q.s.high = n.s.high >> sr;
- q.s.low = (n.s.high << (n_udword_bits - sr)) | (n.s.low >> sr);
- return q.all;
- }
- /* K X
- * ---
- * 0 K
- */
- sr = 1 + n_udword_bits + __builtin_clzll(d.s.low)
- - __builtin_clzll(n.s.high);
- /* 2 <= sr <= n_utword_bits - 1
- * q.all = n.all << (n_utword_bits - sr);
- * r.all = n.all >> sr;
- */
- if (sr == n_udword_bits)
- {
- q.s.low = 0;
- q.s.high = n.s.low;
- r.s.high = 0;
- r.s.low = n.s.high;
- }
- else if (sr < n_udword_bits) // 2 <= sr <= n_udword_bits - 1
- {
- q.s.low = 0;
- q.s.high = n.s.low << (n_udword_bits - sr);
- r.s.high = n.s.high >> sr;
- r.s.low = (n.s.high << (n_udword_bits - sr)) | (n.s.low >> sr);
- }
- else // n_udword_bits + 1 <= sr <= n_utword_bits - 1
- {
- q.s.low = n.s.low << (n_utword_bits - sr);
- q.s.high = (n.s.high << (n_utword_bits - sr)) |
- (n.s.low >> (sr - n_udword_bits));
- r.s.high = 0;
- r.s.low = n.s.high >> (sr - n_udword_bits);
- }
- }
- else
- {
- /* K X
- * ---
- * K K
- */
- sr = __builtin_clzll(d.s.high) - __builtin_clzll(n.s.high);
- /*0 <= sr <= n_udword_bits - 1 or sr large */
- if (sr > n_udword_bits - 1)
- {
- if (rem)
- *rem = n.all;
- return 0;
- }
- ++sr;
- /* 1 <= sr <= n_udword_bits
- * q.all = n.all << (n_utword_bits - sr);
- * r.all = n.all >> sr;
- */
- q.s.low = 0;
- if (sr == n_udword_bits)
- {
- q.s.high = n.s.low;
- r.s.high = 0;
- r.s.low = n.s.high;
- }
- else
- {
- r.s.high = n.s.high >> sr;
- r.s.low = (n.s.high << (n_udword_bits - sr)) | (n.s.low >> sr);
- q.s.high = n.s.low << (n_udword_bits - sr);
- }
- }
- }
- /* Not a special case
- * q and r are initialized with:
- * q.all = n.all << (n_utword_bits - sr);
- * r.all = n.all >> sr;
- * 1 <= sr <= n_utword_bits - 1
+ }
+ /* Not a special case
+ * q and r are initialized with:
+ * q.all = n.all << (n_utword_bits - sr);
+ * r.all = n.all >> sr;
+ * 1 <= sr <= n_utword_bits - 1
+ */
+ su_int carry = 0;
+ for (; sr > 0; --sr) {
+ /* r:q = ((r:q) << 1) | carry */
+ r.s.high = (r.s.high << 1) | (r.s.low >> (n_udword_bits - 1));
+ r.s.low = (r.s.low << 1) | (q.s.high >> (n_udword_bits - 1));
+ q.s.high = (q.s.high << 1) | (q.s.low >> (n_udword_bits - 1));
+ q.s.low = (q.s.low << 1) | carry;
+ /* carry = 0;
+ * if (r.all >= d.all)
+ * {
+ * r.all -= d.all;
+ * carry = 1;
+ * }
*/
- su_int carry = 0;
- for (; sr > 0; --sr)
- {
- /* r:q = ((r:q) << 1) | carry */
- r.s.high = (r.s.high << 1) | (r.s.low >> (n_udword_bits - 1));
- r.s.low = (r.s.low << 1) | (q.s.high >> (n_udword_bits - 1));
- q.s.high = (q.s.high << 1) | (q.s.low >> (n_udword_bits - 1));
- q.s.low = (q.s.low << 1) | carry;
- /* carry = 0;
- * if (r.all >= d.all)
- * {
- * r.all -= d.all;
- * carry = 1;
- * }
- */
- const ti_int s = (ti_int)(d.all - r.all - 1) >> (n_utword_bits - 1);
- carry = s & 1;
- r.all -= d.all & s;
- }
- q.all = (q.all << 1) | carry;
- if (rem)
- *rem = r.all;
- return q.all;
+ const ti_int s = (ti_int)(d.all - r.all - 1) >> (n_utword_bits - 1);
+ carry = s & 1;
+ r.all -= d.all & s;
+ }
+ q.all = (q.all << 1) | carry;
+ if (rem)
+ *rem = r.all;
+ return q.all;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/udivsi3.c b/lib/builtins/udivsi3.c
index 4115a1550..28fec70b6 100644
--- a/lib/builtins/udivsi3.c
+++ b/lib/builtins/udivsi3.c
@@ -18,50 +18,48 @@
/* Translated from Figure 3-40 of The PowerPC Compiler Writer's Guide */
/* This function should not call __divsi3! */
-COMPILER_RT_ABI su_int
-__udivsi3(su_int n, su_int d)
-{
- const unsigned n_uword_bits = sizeof(su_int) * CHAR_BIT;
- su_int q;
- su_int r;
- unsigned sr;
- /* special cases */
- if (d == 0)
- return 0; /* ?! */
- if (n == 0)
- return 0;
- sr = __builtin_clz(d) - __builtin_clz(n);
- /* 0 <= sr <= n_uword_bits - 1 or sr large */
- if (sr > n_uword_bits - 1) /* d > r */
- return 0;
- if (sr == n_uword_bits - 1) /* d == 1 */
- return n;
- ++sr;
- /* 1 <= sr <= n_uword_bits - 1 */
- /* Not a special case */
- q = n << (n_uword_bits - sr);
- r = n >> sr;
- su_int carry = 0;
- for (; sr > 0; --sr)
- {
- /* r:q = ((r:q) << 1) | carry */
- r = (r << 1) | (q >> (n_uword_bits - 1));
- q = (q << 1) | carry;
- /* carry = 0;
- * if (r.all >= d.all)
- * {
- * r.all -= d.all;
- * carry = 1;
- * }
- */
- const si_int s = (si_int)(d - r - 1) >> (n_uword_bits - 1);
- carry = s & 1;
- r -= d & s;
- }
+COMPILER_RT_ABI su_int __udivsi3(su_int n, su_int d) {
+ const unsigned n_uword_bits = sizeof(su_int) * CHAR_BIT;
+ su_int q;
+ su_int r;
+ unsigned sr;
+ /* special cases */
+ if (d == 0)
+ return 0; /* ?! */
+ if (n == 0)
+ return 0;
+ sr = __builtin_clz(d) - __builtin_clz(n);
+ /* 0 <= sr <= n_uword_bits - 1 or sr large */
+ if (sr > n_uword_bits - 1) /* d > r */
+ return 0;
+ if (sr == n_uword_bits - 1) /* d == 1 */
+ return n;
+ ++sr;
+ /* 1 <= sr <= n_uword_bits - 1 */
+ /* Not a special case */
+ q = n << (n_uword_bits - sr);
+ r = n >> sr;
+ su_int carry = 0;
+ for (; sr > 0; --sr) {
+ /* r:q = ((r:q) << 1) | carry */
+ r = (r << 1) | (q >> (n_uword_bits - 1));
q = (q << 1) | carry;
- return q;
+ /* carry = 0;
+ * if (r.all >= d.all)
+ * {
+ * r.all -= d.all;
+ * carry = 1;
+ * }
+ */
+ const si_int s = (si_int)(d - r - 1) >> (n_uword_bits - 1);
+ carry = s & 1;
+ r -= d & s;
+ }
+ q = (q << 1) | carry;
+ return q;
}
#if defined(__ARM_EABI__)
-AEABI_RTABI su_int __aeabi_uidiv(su_int n, su_int d) COMPILER_RT_ALIAS(__udivsi3);
+AEABI_RTABI su_int __aeabi_uidiv(su_int n, su_int d)
+ COMPILER_RT_ALIAS(__udivsi3);
#endif
diff --git a/lib/builtins/udivti3.c b/lib/builtins/udivti3.c
index 2f926a861..482303ec9 100644
--- a/lib/builtins/udivti3.c
+++ b/lib/builtins/udivti3.c
@@ -17,10 +17,8 @@
/* Returns: a / b */
-COMPILER_RT_ABI tu_int
-__udivti3(tu_int a, tu_int b)
-{
- return __udivmodti4(a, b, 0);
+COMPILER_RT_ABI tu_int __udivti3(tu_int a, tu_int b) {
+ return __udivmodti4(a, b, 0);
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/umoddi3.c b/lib/builtins/umoddi3.c
index 4983015e7..31c21585f 100644
--- a/lib/builtins/umoddi3.c
+++ b/lib/builtins/umoddi3.c
@@ -15,10 +15,8 @@
/* Returns: a % b */
-COMPILER_RT_ABI du_int
-__umoddi3(du_int a, du_int b)
-{
- du_int r;
- __udivmoddi4(a, b, &r);
- return r;
+COMPILER_RT_ABI du_int __umoddi3(du_int a, du_int b) {
+ du_int r;
+ __udivmoddi4(a, b, &r);
+ return r;
}
diff --git a/lib/builtins/umodsi3.c b/lib/builtins/umodsi3.c
index 0b71bd630..bd95539be 100644
--- a/lib/builtins/umodsi3.c
+++ b/lib/builtins/umodsi3.c
@@ -15,8 +15,6 @@
/* Returns: a % b */
-COMPILER_RT_ABI su_int
-__umodsi3(su_int a, su_int b)
-{
- return a - __udivsi3(a, b) * b;
+COMPILER_RT_ABI su_int __umodsi3(su_int a, su_int b) {
+ return a - __udivsi3(a, b) * b;
}
diff --git a/lib/builtins/umodti3.c b/lib/builtins/umodti3.c
index 4d132aa7b..42616c5d7 100644
--- a/lib/builtins/umodti3.c
+++ b/lib/builtins/umodti3.c
@@ -17,12 +17,10 @@
/* Returns: a % b */
-COMPILER_RT_ABI tu_int
-__umodti3(tu_int a, tu_int b)
-{
- tu_int r;
- __udivmodti4(a, b, &r);
- return r;
+COMPILER_RT_ABI tu_int __umodti3(tu_int a, tu_int b) {
+ tu_int r;
+ __udivmodti4(a, b, &r);
+ return r;
}
#endif /* CRT_HAS_128BIT */
diff --git a/lib/builtins/unwind-ehabi-helpers.h b/lib/builtins/unwind-ehabi-helpers.h
index bdae409a9..33d1f8abd 100644
--- a/lib/builtins/unwind-ehabi-helpers.h
+++ b/lib/builtins/unwind-ehabi-helpers.h
@@ -35,8 +35,8 @@
* those states.
*/
-#define _URC_OK 0
-#define _URC_FAILURE 9
+#define _URC_OK 0
+#define _URC_FAILURE 9
typedef uint32_t _Unwind_State;
@@ -51,4 +51,3 @@ typedef uint32_t _Unwind_State;
#endif
#endif
-
diff --git a/lib/builtins/x86_64/floatdidf.c b/lib/builtins/x86_64/floatdidf.c
index c47c59608..36d7e04cb 100644
--- a/lib/builtins/x86_64/floatdidf.c
+++ b/lib/builtins/x86_64/floatdidf.c
@@ -9,9 +9,6 @@
#include "../int_lib.h"
-double __floatdidf(int64_t a)
-{
- return (double)a;
-}
+double __floatdidf(int64_t a) { return (double)a; }
#endif /* __x86_64__ */
diff --git a/lib/builtins/x86_64/floatdisf.c b/lib/builtins/x86_64/floatdisf.c
index cb95707a0..a557848d8 100644
--- a/lib/builtins/x86_64/floatdisf.c
+++ b/lib/builtins/x86_64/floatdisf.c
@@ -7,9 +7,6 @@
#include "../int_lib.h"
-float __floatdisf(int64_t a)
-{
- return (float)a;
-}
+float __floatdisf(int64_t a) { return (float)a; }
#endif /* __x86_64__ */
diff --git a/lib/builtins/x86_64/floatdixf.c b/lib/builtins/x86_64/floatdixf.c
index 56df0a2ee..97cc9a0a4 100644
--- a/lib/builtins/x86_64/floatdixf.c
+++ b/lib/builtins/x86_64/floatdixf.c
@@ -9,9 +9,6 @@
#include "../int_lib.h"
-long double __floatdixf(int64_t a)
-{
- return (long double)a;
-}
+long double __floatdixf(int64_t a) { return (long double)a; }
#endif /* __i386__ */