summaryrefslogtreecommitdiff
path: root/src/fsmmin.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/fsmmin.cc')
-rw-r--r--src/fsmmin.cc732
1 files changed, 732 insertions, 0 deletions
diff --git a/src/fsmmin.cc b/src/fsmmin.cc
new file mode 100644
index 0000000..cbb2b99
--- /dev/null
+++ b/src/fsmmin.cc
@@ -0,0 +1,732 @@
+/*
+ * Copyright 2006-2012 Adrian Thurston <thurston@complang.org>
+ */
+
+/* This file is part of Colm.
+ *
+ * Colm is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * Colm is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with Colm; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#include "fsmgraph.h"
+#include "mergesort.h"
+
+int FsmGraph::partitionRound( FsmState **statePtrs, MinPartition *parts, int numParts )
+{
+ /* Need a mergesort object and a single partition compare. */
+ MergeSort<FsmState*, PartitionCompare> mergeSort;
+ PartitionCompare partCompare;
+
+ /* For each partition. */
+ for ( int p = 0; p < numParts; p++ ) {
+ /* Fill the pointer array with the states in the partition. */
+ StateList::Iter state = parts[p].list;
+ for ( int s = 0; state.lte(); state++, s++ )
+ statePtrs[s] = state;
+
+ /* Sort the states using the partitioning compare. */
+ int numStates = parts[p].list.length();
+ mergeSort.sort( statePtrs, numStates );
+
+ /* Assign the states into partitions based on the results of the sort. */
+ int destPart = p, firstNewPart = numParts;
+ for ( int s = 1; s < numStates; s++ ) {
+ /* If this state differs from the last then move to the next partition. */
+ if ( partCompare.compare( statePtrs[s-1], statePtrs[s] ) < 0 ) {
+ /* The new partition is the next avail spot. */
+ destPart = numParts;
+ numParts += 1;
+ }
+
+ /* If the state is not staying in the first partition, then
+ * transfer it to its destination partition. */
+ if ( destPart != p ) {
+ FsmState *state = parts[p].list.detach( statePtrs[s] );
+ parts[destPart].list.append( state );
+ }
+ }
+
+ /* Fix the partition pointer for all the states that got moved to a new
+ * partition. This must be done after the states are transfered so the
+ * result of the sort is not altered. */
+ for ( int newPart = firstNewPart; newPart < numParts; newPart++ ) {
+ StateList::Iter state = parts[newPart].list;
+ for ( ; state.lte(); state++ )
+ state->alg.partition = &parts[newPart];
+ }
+ }
+
+ return numParts;
+}
+
+/**
+ * \brief Minimize by partitioning version 1.
+ *
+ * Repeatedly tries to split partitions until all partitions are unsplittable.
+ * Produces the most minimal FSM possible.
+ */
+void FsmGraph::minimizePartition1()
+{
+ /* Need one mergesort object and partition compares. */
+ MergeSort<FsmState*, InitPartitionCompare> mergeSort;
+ InitPartitionCompare initPartCompare;
+
+ /* Nothing to do if there are no states. */
+ if ( stateList.length() == 0 )
+ return;
+
+ /*
+ * First thing is to partition the states by final state status and
+ * transition functions. This gives us an initial partitioning to work
+ * with.
+ */
+
+ /* Make a array of pointers to states. */
+ int numStates = stateList.length();
+ FsmState** statePtrs = new FsmState*[numStates];
+
+ /* Fill up an array of pointers to the states for easy sorting. */
+ StateList::Iter state = stateList;
+ for ( int s = 0; state.lte(); state++, s++ )
+ statePtrs[s] = state;
+
+ /* Sort the states using the array of states. */
+ mergeSort.sort( statePtrs, numStates );
+
+ /* An array of lists of states is used to partition the states. */
+ MinPartition *parts = new MinPartition[numStates];
+
+ /* Assign the states into partitions. */
+ int destPart = 0;
+ for ( int s = 0; s < numStates; s++ ) {
+ /* If this state differs from the last then move to the next partition. */
+ if ( s > 0 && initPartCompare.compare( statePtrs[s-1], statePtrs[s] ) < 0 ) {
+ /* Move to the next partition. */
+ destPart += 1;
+ }
+
+ /* Put the state into its partition. */
+ statePtrs[s]->alg.partition = &parts[destPart];
+ parts[destPart].list.append( statePtrs[s] );
+ }
+
+ /* We just moved all the states from the main list into partitions without
+ * taking them off the main list. So clean up the main list now. */
+ stateList.abandon();
+
+ /* Split partitions. */
+ int numParts = destPart + 1;
+ while ( true ) {
+ /* Test all partitions for splitting. */
+ int newNum = partitionRound( statePtrs, parts, numParts );
+
+ /* When no partitions can be split, stop. */
+ if ( newNum == numParts )
+ break;
+
+ numParts = newNum;
+ }
+
+ /* Fuse states in the same partition. The states will end up back on the
+ * main list. */
+ fusePartitions( parts, numParts );
+
+ /* Cleanup. */
+ delete[] statePtrs;
+ delete[] parts;
+}
+
+/* Split partitions that need splittting, decide which partitions might need
+ * to be split as a result, continue until there are no more that might need
+ * to be split. */
+int FsmGraph::splitCandidates( FsmState **statePtrs, MinPartition *parts, int numParts )
+{
+ /* Need a mergesort and a partition compare. */
+ MergeSort<FsmState*, PartitionCompare> mergeSort;
+ PartitionCompare partCompare;
+
+ /* The lists of unsplitable (partList) and splitable partitions.
+ * Only partitions in the splitable list are check for needing splitting. */
+ PartitionList partList, splittable;
+
+ /* Initially, all partitions are born from a split (the initial
+ * partitioning) and can cause other partitions to be split. So any
+ * partition with a state with a transition out to another partition is a
+ * candidate for splitting. This will make every partition except possibly
+ * partitions of final states split candidates. */
+ for ( int p = 0; p < numParts; p++ ) {
+ /* Assume not active. */
+ parts[p].active = false;
+
+ /* Look for a trans out of any state in the partition. */
+ for ( StateList::Iter state = parts[p].list; state.lte(); state++ ) {
+ /* If there is at least one transition out to another state then
+ * the partition becomes splittable. */
+ if ( state->outList.length() > 0 ) {
+ parts[p].active = true;
+ break;
+ }
+ }
+
+ /* If it was found active then it goes on the splittable list. */
+ if ( parts[p].active )
+ splittable.append( &parts[p] );
+ else
+ partList.append( &parts[p] );
+ }
+
+ /* While there are partitions that are splittable, pull one off and try
+ * to split it. If it splits, determine which partitions may now be split
+ * as a result of the newly split partition. */
+ while ( splittable.length() > 0 ) {
+ MinPartition *partition = splittable.detachFirst();
+
+ /* Fill the pointer array with the states in the partition. */
+ StateList::Iter state = partition->list;
+ for ( int s = 0; state.lte(); state++, s++ )
+ statePtrs[s] = state;
+
+ /* Sort the states using the partitioning compare. */
+ int numStates = partition->list.length();
+ mergeSort.sort( statePtrs, numStates );
+
+ /* Assign the states into partitions based on the results of the sort. */
+ MinPartition *destPart = partition;
+ int firstNewPart = numParts;
+ for ( int s = 1; s < numStates; s++ ) {
+ /* If this state differs from the last then move to the next partition. */
+ if ( partCompare.compare( statePtrs[s-1], statePtrs[s] ) < 0 ) {
+ /* The new partition is the next avail spot. */
+ destPart = &parts[numParts];
+ numParts += 1;
+ }
+
+ /* If the state is not staying in the first partition, then
+ * transfer it to its destination partition. */
+ if ( destPart != partition ) {
+ FsmState *state = partition->list.detach( statePtrs[s] );
+ destPart->list.append( state );
+ }
+ }
+
+ /* Fix the partition pointer for all the states that got moved to a new
+ * partition. This must be done after the states are transfered so the
+ * result of the sort is not altered. */
+ int newPart;
+ for ( newPart = firstNewPart; newPart < numParts; newPart++ ) {
+ StateList::Iter state = parts[newPart].list;
+ for ( ; state.lte(); state++ )
+ state->alg.partition = &parts[newPart];
+ }
+
+ /* Put the partition we just split and any new partitions that came out
+ * of the split onto the inactive list. */
+ partition->active = false;
+ partList.append( partition );
+ for ( newPart = firstNewPart; newPart < numParts; newPart++ ) {
+ parts[newPart].active = false;
+ partList.append( &parts[newPart] );
+ }
+
+ if ( destPart == partition )
+ continue;
+
+ /* Now determine which partitions are splittable as a result of
+ * splitting partition by walking the in lists of the states in
+ * partitions that got split. Partition is the faked first item in the
+ * loop. */
+ MinPartition *causalPart = partition;
+ newPart = firstNewPart - 1;
+ while ( newPart < numParts ) {
+ /* Loop all states in the causal partition. */
+ StateList::Iter state = causalPart->list;
+ for ( ; state.lte(); state++ ) {
+ /* Walk all transition into the state and put the partition
+ * that the from state is in onto the splittable list. */
+ for ( TransInList::Iter trans = state->inList; trans.lte(); trans++ ) {
+ MinPartition *fromPart = trans->fromState->alg.partition;
+ if ( ! fromPart->active ) {
+ fromPart->active = true;
+ partList.detach( fromPart );
+ splittable.append( fromPart );
+ }
+ }
+ }
+
+ newPart += 1;
+ causalPart = &parts[newPart];
+ }
+ }
+ return numParts;
+}
+
+
+/**
+ * \brief Minimize by partitioning version 2 (best alg).
+ *
+ * Repeatedly tries to split partitions that may splittable until there are no
+ * more partitions that might possibly need splitting. Runs faster than
+ * version 1. Produces the most minimal fsm possible.
+ */
+void FsmGraph::minimizePartition2()
+{
+ /* Need a mergesort and an initial partition compare. */
+ MergeSort<FsmState*, InitPartitionCompare> mergeSort;
+ InitPartitionCompare initPartCompare;
+
+ /* Nothing to do if there are no states. */
+ if ( stateList.length() == 0 )
+ return;
+
+ /*
+ * First thing is to partition the states by final state status and
+ * transition functions. This gives us an initial partitioning to work
+ * with.
+ */
+
+ /* Make a array of pointers to states. */
+ int numStates = stateList.length();
+ FsmState** statePtrs = new FsmState*[numStates];
+
+ /* Fill up an array of pointers to the states for easy sorting. */
+ StateList::Iter state = stateList;
+ for ( int s = 0; state.lte(); state++, s++ )
+ statePtrs[s] = state;
+
+ /* Sort the states using the array of states. */
+ mergeSort.sort( statePtrs, numStates );
+
+ /* An array of lists of states is used to partition the states. */
+ MinPartition *parts = new MinPartition[numStates];
+
+ /* Assign the states into partitions. */
+ int destPart = 0;
+ for ( int s = 0; s < numStates; s++ ) {
+ /* If this state differs from the last then move to the next partition. */
+ if ( s > 0 && initPartCompare.compare( statePtrs[s-1], statePtrs[s] ) < 0 ) {
+ /* Move to the next partition. */
+ destPart += 1;
+ }
+
+ /* Put the state into its partition. */
+ statePtrs[s]->alg.partition = &parts[destPart];
+ parts[destPart].list.append( statePtrs[s] );
+ }
+
+ /* We just moved all the states from the main list into partitions without
+ * taking them off the main list. So clean up the main list now. */
+ stateList.abandon();
+
+ /* Split partitions. */
+ int numParts = splitCandidates( statePtrs, parts, destPart+1 );
+
+ /* Fuse states in the same partition. The states will end up back on the
+ * main list. */
+ fusePartitions( parts, numParts );
+
+ /* Cleanup. */
+ delete[] statePtrs;
+ delete[] parts;
+}
+
+void FsmGraph::initialMarkRound( MarkIndex &markIndex )
+{
+ /* P and q for walking pairs. */
+ FsmState *p = stateList.head, *q;
+
+ /* Need an initial partition compare. */
+ InitPartitionCompare initPartCompare;
+
+ /* Walk all unordered pairs of (p, q) where p != q.
+ * The second depth of the walk stops before reaching p. This
+ * gives us all unordered pairs of states (p, q) where p != q. */
+ while ( p != 0 ) {
+ q = stateList.head;
+ while ( q != p ) {
+ /* If the states differ on final state status, out transitions or
+ * any transition data then they should be separated on the initial
+ * round. */
+ if ( initPartCompare.compare( p, q ) != 0 )
+ markIndex.markPair( p->alg.stateNum, q->alg.stateNum );
+
+ q = q->next;
+ }
+ p = p->next;
+ }
+}
+
+bool FsmGraph::markRound( MarkIndex &markIndex )
+{
+ /* P an q for walking pairs. Take note if any pair gets marked. */
+ FsmState *p = stateList.head, *q;
+ bool pairWasMarked = false;
+
+ /* Need a mark comparison. */
+ MarkCompare markCompare;
+
+ /* Walk all unordered pairs of (p, q) where p != q.
+ * The second depth of the walk stops before reaching p. This
+ * gives us all unordered pairs of states (p, q) where p != q. */
+ while ( p != 0 ) {
+ q = stateList.head;
+ while ( q != p ) {
+ /* Should we mark the pair? */
+ if ( !markIndex.isPairMarked( p->alg.stateNum, q->alg.stateNum ) ) {
+ if ( markCompare.shouldMark( markIndex, p, q ) ) {
+ markIndex.markPair( p->alg.stateNum, q->alg.stateNum );
+ pairWasMarked = true;
+ }
+ }
+ q = q->next;
+ }
+ p = p->next;
+ }
+
+ return pairWasMarked;
+}
+
+
+/**
+ * \brief Minimize by pair marking.
+ *
+ * Decides if each pair of states is distinct or not. Uses O(n^2) memory and
+ * should only be used on small graphs. Produces the most minmimal FSM
+ * possible.
+ */
+void FsmGraph::minimizeStable()
+{
+ /* Set the state numbers. */
+ setStateNumbers( 0 );
+
+ /* This keeps track of which pairs have been marked. */
+ MarkIndex markIndex( stateList.length() );
+
+ /* Mark pairs where final stateness, out trans, or trans data differ. */
+ initialMarkRound( markIndex );
+
+ /* While the last round of marking succeeded in marking a state
+ * continue to do another round. */
+ int modified = markRound( markIndex );
+ while (modified)
+ modified = markRound( markIndex );
+
+ /* Merge pairs that are unmarked. */
+ fuseUnmarkedPairs( markIndex );
+}
+
+bool FsmGraph::minimizeRound()
+{
+ /* Nothing to do if there are no states. */
+ if ( stateList.length() == 0 )
+ return false;
+
+ /* Need a mergesort on approx compare and an approx compare. */
+ MergeSort<FsmState*, ApproxCompare> mergeSort;
+ ApproxCompare approxCompare;
+
+ /* Fill up an array of pointers to the states. */
+ FsmState **statePtrs = new FsmState*[stateList.length()];
+ StateList::Iter state = stateList;
+ for ( int s = 0; state.lte(); state++, s++ )
+ statePtrs[s] = state;
+
+ bool modified = false;
+
+ /* Sort The list. */
+ mergeSort.sort( statePtrs, stateList.length() );
+
+ /* Walk the list looking for duplicates next to each other,
+ * merge in any duplicates. */
+ FsmState **pLast = statePtrs;
+ FsmState **pState = statePtrs + 1;
+ for ( int i = 1; i < stateList.length(); i++, pState++ ) {
+ if ( approxCompare.compare( *pLast, *pState ) == 0 ) {
+ /* Last and pState are the same, so fuse together. Move forward
+ * with pState but not with pLast. If any more are identical, we
+ * must */
+ fuseEquivStates( *pLast, *pState );
+ modified = true;
+ }
+ else {
+ /* Last and this are different, do not set to merge them. Move
+ * pLast to the current (it may be way behind from merging many
+ * states) and pState forward one to consider the next pair. */
+ pLast = pState;
+ }
+ }
+ delete[] statePtrs;
+ return modified;
+}
+
+/**
+ * \brief Minmimize by an approximation.
+ *
+ * Repeatedly tries to find states with transitions out to the same set of
+ * states on the same set of keys until no more identical states can be found.
+ * Does not produce the most minimial FSM possible.
+ */
+void FsmGraph::minimizeApproximate()
+{
+ /* While the last minimization round succeeded in compacting states,
+ * continue to try to compact states. */
+ while ( true ) {
+ bool modified = minimizeRound();
+ if ( ! modified )
+ break;
+ }
+}
+
+
+/* Remove states that have no path to them from the start state. Recursively
+ * traverses the graph marking states that have paths into them. Then removes
+ * all states that did not get marked. */
+void FsmGraph::removeUnreachableStates()
+{
+ /* Misfit accounting should be off and there should be no states on the
+ * misfit list. */
+ assert( !misfitAccounting && misfitList.length() == 0 );
+
+ /* Mark all the states that can be reached
+ * through the existing set of entry points. */
+ markReachableFromHere( startState );
+ for ( EntryMap::Iter en = entryPoints; en.lte(); en++ )
+ markReachableFromHere( en->value );
+
+ /* Delete all states that are not marked
+ * and unmark the ones that are marked. */
+ FsmState *state = stateList.head;
+ while ( state ) {
+ FsmState *next = state->next;
+
+ if ( state->stateBits & SB_ISMARKED )
+ state->stateBits &= ~ SB_ISMARKED;
+ else {
+ detachState( state );
+ stateList.detach( state );
+ delete state;
+ }
+
+ state = next;
+ }
+}
+
+bool FsmGraph::outListCovers( FsmState *state )
+{
+ /* Must be at least one range to cover. */
+ if ( state->outList.length() == 0 )
+ return false;
+
+ /* The first must start at the lower bound. */
+ TransList::Iter trans = state->outList.first();
+ if ( keyOps->minKey < trans->lowKey )
+ return false;
+
+ /* Loop starts at second el. */
+ trans.increment();
+
+ /* Loop checks lower against prev upper. */
+ for ( ; trans.lte(); trans++ ) {
+ /* Lower end of the trans must be one greater than the
+ * previous' high end. */
+ Key lowKey = trans->lowKey;
+ lowKey.decrement();
+ if ( trans->prev->highKey < lowKey )
+ return false;
+ }
+
+ /* Require that the last range extends to the upper bound. */
+ trans = state->outList.last();
+ if ( trans->highKey < keyOps->maxKey )
+ return false;
+
+ return true;
+}
+
+/* Remove states that that do not lead to a final states. Works recursivly traversing
+ * the graph in reverse (starting from all final states) and marking seen states. Then
+ * removes states that did not get marked. */
+void FsmGraph::removeDeadEndStates()
+{
+ /* Misfit accounting should be off and there should be no states on the
+ * misfit list. */
+ assert( !misfitAccounting && misfitList.length() == 0 );
+
+ /* Mark all states that have paths to the final states. */
+ FsmState **st = finStateSet.data;
+ int nst = finStateSet.length();
+ for ( int i = 0; i < nst; i++, st++ )
+ markReachableFromHereReverse( *st );
+
+ /* Start state gets honorary marking. If the machine accepts nothing we
+ * still want the start state to hang around. This must be done after the
+ * recursive call on all the final states so that it does not cause the
+ * start state in transitions to be skipped when the start state is
+ * visited by the traversal. */
+ startState->stateBits |= SB_ISMARKED;
+
+ /* Delete all states that are not marked
+ * and unmark the ones that are marked. */
+ FsmState *state = stateList.head;
+ while ( state != 0 ) {
+ FsmState *next = state->next;
+
+ if ( state->stateBits & SB_ISMARKED )
+ state->stateBits &= ~ SB_ISMARKED;
+ else {
+ detachState( state );
+ stateList.detach( state );
+ delete state;
+ }
+
+ state = next;
+ }
+}
+
+/* Remove states on the misfit list. To work properly misfit accounting should
+ * be on when this is called. The detaching of a state will likely cause
+ * another misfit to be collected and it can then be removed. */
+void FsmGraph::removeMisfits()
+{
+ while ( misfitList.length() > 0 ) {
+ /* Get the first state. */
+ FsmState *state = misfitList.head;
+
+ /* Detach and delete. */
+ detachState( state );
+
+ /* The state was previously on the misfit list and detaching can only
+ * remove in transitions so the state must still be on the misfit
+ * list. */
+ misfitList.detach( state );
+ delete state;
+ }
+}
+
+/* Fuse src into dest because they have been deemed equivalent states.
+ * Involves moving transitions into src to go into dest and invoking
+ * callbacks. Src is deleted detached from the graph and deleted. */
+void FsmGraph::fuseEquivStates( FsmState *dest, FsmState *src )
+{
+ /* This would get ugly. */
+ assert( dest != src );
+
+ /* Cur is a duplicate. We can merge it with trail. */
+ inTransMove( dest, src );
+
+ detachState( src );
+ stateList.detach( src );
+ delete src;
+}
+
+void FsmGraph::fuseUnmarkedPairs( MarkIndex &markIndex )
+{
+ FsmState *p = stateList.head, *nextP, *q;
+
+ /* Definition: The primary state of an equivalence class is the first state
+ * encounterd that belongs to the equivalence class. All equivalence
+ * classes have primary state including equivalence classes with one state
+ * in it. */
+
+ /* For each unmarked pair merge p into q and delete p. q is always the
+ * primary state of it's equivalence class. We wouldn't have landed on it
+ * here if it were not, because it would have been deleted.
+ *
+ * Proof that q is the primaray state of it's equivalence class: Assume q
+ * is not the primary state of it's equivalence class, then it would be
+ * merged into some state that came before it and thus p would be
+ * equivalent to that state. But q is the first state that p is equivalent
+ * to so we have a contradiction. */
+
+ /* Walk all unordered pairs of (p, q) where p != q.
+ * The second depth of the walk stops before reaching p. This
+ * gives us all unordered pairs of states (p, q) where p != q. */
+ while ( p != 0 ) {
+ nextP = p->next;
+
+ q = stateList.head;
+ while ( q != p ) {
+ /* If one of p or q is a final state then mark. */
+ if ( ! markIndex.isPairMarked( p->alg.stateNum, q->alg.stateNum ) ) {
+ fuseEquivStates( q, p );
+ break;
+ }
+ q = q->next;
+ }
+ p = nextP;
+ }
+}
+
+void FsmGraph::fusePartitions( MinPartition *parts, int numParts )
+{
+ /* For each partition, fuse state 2, 3, ... into state 1. */
+ for ( int p = 0; p < numParts; p++ ) {
+ /* Assume that there will always be at least one state. */
+ FsmState *first = parts[p].list.head, *toFuse = first->next;
+
+ /* Put the first state back onto the main state list. Don't bother
+ * removing it from the partition list first. */
+ stateList.append( first );
+
+ /* Fuse the rest of the state into the first. */
+ while ( toFuse != 0 ) {
+ /* Save the next. We will trash it before it is needed. */
+ FsmState *next = toFuse->next;
+
+ /* Put the state to be fused in to the first back onto the main
+ * list before it is fuse. the graph. The state needs to be on
+ * the main list for the detach from the graph to work. Don't
+ * bother removing the state from the partition list first. We
+ * need not maintain it. */
+ stateList.append( toFuse );
+
+ /* Now fuse to the first. */
+ fuseEquivStates( first, toFuse );
+
+ /* Go to the next that we saved before trashing the next pointer. */
+ toFuse = next;
+ }
+
+ /* We transfered the states from the partition list into the main list without
+ * removing the states from the partition list first. Clean it up. */
+ parts[p].list.abandon();
+ }
+}
+
+
+/* Merge neighboring transitions go to the same state and have the same
+ * transitions data. */
+void FsmGraph::compressTransitions()
+{
+ for ( StateList::Iter st = stateList; st.lte(); st++ ) {
+ if ( st->outList.length() > 1 ) {
+ for ( TransList::Iter trans = st->outList, next = trans.next(); next.lte(); ) {
+ Key nextLow = next->lowKey;
+ nextLow.decrement();
+ if ( trans->highKey == nextLow && trans->toState == next->toState &&
+ CmpActionTable::compare( trans->actionTable, next->actionTable ) == 0 )
+ {
+ trans->highKey = next->highKey;
+ st->outList.detach( next );
+ detachTrans( next->fromState, next->toState, next );
+ delete next;
+ next = trans.next();
+ }
+ else {
+ trans.increment();
+ next.increment();
+ }
+ }
+ }
+ }
+}