summaryrefslogtreecommitdiff
path: root/src/fsmgraph.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/fsmgraph.h')
-rw-r--r--src/fsmgraph.h1317
1 files changed, 1317 insertions, 0 deletions
diff --git a/src/fsmgraph.h b/src/fsmgraph.h
new file mode 100644
index 0000000..9a0f2ae
--- /dev/null
+++ b/src/fsmgraph.h
@@ -0,0 +1,1317 @@
+/*
+ * Copyright 2001-2012 Adrian Thurston <thurston@complang.org>
+ */
+
+/* This file is part of Colm.
+ *
+ * Colm is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * Colm is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with Colm; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#ifndef _FSMGRAPH_H
+#define _FSMGRAPH_H
+
+#include <assert.h>
+#include "keyops.h"
+#include "vector.h"
+#include "bstset.h"
+#include "compare.h"
+#include "avltree.h"
+#include "dlist.h"
+#include "bstmap.h"
+#include "sbstmap.h"
+#include "sbstset.h"
+#include "sbsttable.h"
+#include "avlset.h"
+#include "avlmap.h"
+
+/* Flags that control merging. */
+#define SB_GRAPH1 0x01
+#define SB_GRAPH2 0x02
+#define SB_BOTH 0x03
+#define SB_ISFINAL 0x04
+#define SB_ISMARKED 0x08
+#define SB_ONLIST 0x10
+
+struct FsmTrans;
+struct FsmState;
+struct FsmGraph;
+struct Action;
+struct TokenInstance;
+struct NameInst;
+
+/* State list element for unambiguous access to list element. */
+struct FsmListEl
+{
+ FsmState *prev, *next;
+};
+
+/* This is the marked index for a state pair. Used in minimization. It keeps
+ * track of whether or not the state pair is marked. */
+struct MarkIndex
+{
+ MarkIndex(int states);
+ ~MarkIndex();
+
+ void markPair(int state1, int state2);
+ bool isPairMarked(int state1, int state2);
+
+private:
+ int numStates;
+ bool *array;
+};
+
+extern KeyOps *keyOps;
+
+/* Transistion Action Element. */
+typedef SBstMapEl< int, Action* > ActionTableEl;
+
+/* Transition Action Table. */
+struct ActionTable
+ : public SBstMap< int, Action*, CmpOrd<int> >
+{
+ void setAction( int ordering, Action *action );
+ void setActions( int *orderings, Action **actions, int nActs );
+ void setActions( const ActionTable &other );
+
+ bool hasAction( Action *action );
+};
+
+typedef SBstSet< Action*, CmpOrd<Action*> > ActionSet;
+typedef CmpSTable< Action*, CmpOrd<Action*> > CmpActionSet;
+
+/* Transistion Action Element. */
+typedef SBstMapEl< int, TokenInstance* > LmActionTableEl;
+
+/* Transition Action Table. */
+struct LmActionTable
+ : public SBstMap< int, TokenInstance*, CmpOrd<int> >
+{
+ void setAction( int ordering, TokenInstance *action );
+ void setActions( const LmActionTable &other );
+};
+
+/* Compare of a whole action table element (key & value). */
+struct CmpActionTableEl
+{
+ static int compare( const ActionTableEl &action1,
+ const ActionTableEl &action2 )
+ {
+ if ( action1.key < action2.key )
+ return -1;
+ else if ( action1.key > action2.key )
+ return 1;
+ else if ( action1.value < action2.value )
+ return -1;
+ else if ( action1.value > action2.value )
+ return 1;
+ return 0;
+ }
+};
+
+/* Compare for ActionTable. */
+typedef CmpSTable< ActionTableEl, CmpActionTableEl > CmpActionTable;
+
+/* Compare of a whole lm action table element (key & value). */
+struct CmpLmActionTableEl
+{
+ static int compare( const LmActionTableEl &lmAction1,
+ const LmActionTableEl &lmAction2 )
+ {
+ if ( lmAction1.key < lmAction2.key )
+ return -1;
+ else if ( lmAction1.key > lmAction2.key )
+ return 1;
+ else if ( lmAction1.value < lmAction2.value )
+ return -1;
+ else if ( lmAction1.value > lmAction2.value )
+ return 1;
+ return 0;
+ }
+};
+
+/* Compare for ActionTable. */
+typedef CmpSTable< LmActionTableEl, CmpLmActionTableEl > CmpLmActionTable;
+
+/* Action table element for error action tables. Adds the encoding of transfer
+ * point. */
+struct ErrActionTableEl
+{
+ ErrActionTableEl( Action *action, int ordering, int transferPoint )
+ : ordering(ordering), action(action), transferPoint(transferPoint) { }
+
+ /* Ordering and id of the action embedding. */
+ int ordering;
+ Action *action;
+
+ /* Id of point of transfere from Error action table to transtions and
+ * eofActionTable. */
+ int transferPoint;
+
+ int getKey() const { return ordering; }
+};
+
+struct ErrActionTable
+ : public SBstTable< ErrActionTableEl, int, CmpOrd<int> >
+{
+ void setAction( int ordering, Action *action, int transferPoint );
+ void setActions( const ErrActionTable &other );
+};
+
+/* Compare of an error action table element (key & value). */
+struct CmpErrActionTableEl
+{
+ static int compare( const ErrActionTableEl &action1,
+ const ErrActionTableEl &action2 )
+ {
+ if ( action1.ordering < action2.ordering )
+ return -1;
+ else if ( action1.ordering > action2.ordering )
+ return 1;
+ else if ( action1.action < action2.action )
+ return -1;
+ else if ( action1.action > action2.action )
+ return 1;
+ else if ( action1.transferPoint < action2.transferPoint )
+ return -1;
+ else if ( action1.transferPoint > action2.transferPoint )
+ return 1;
+ return 0;
+ }
+};
+
+/* Compare for ErrActionTable. */
+typedef CmpSTable< ErrActionTableEl, CmpErrActionTableEl > CmpErrActionTable;
+
+
+/* Descibe a priority, shared among PriorEls.
+ * Has key and whether or not used. */
+struct PriorDesc
+{
+ int key;
+ int priority;
+};
+
+/* Element in the arrays of priorities for transitions and arrays. Ordering is
+ * unique among instantiations of machines, desc is shared. */
+struct PriorEl
+{
+ PriorEl( int ordering, PriorDesc *desc )
+ : ordering(ordering), desc(desc) { }
+
+ int ordering;
+ PriorDesc *desc;
+};
+
+/* Compare priority elements, which are ordered by the priority descriptor
+ * key. */
+struct PriorElCmp
+{
+ static inline int compare( const PriorEl &pel1, const PriorEl &pel2 )
+ {
+ if ( pel1.desc->key < pel2.desc->key )
+ return -1;
+ else if ( pel1.desc->key > pel2.desc->key )
+ return 1;
+ else
+ return 0;
+ }
+};
+
+
+/* Priority Table. */
+struct PriorTable
+ : public SBstSet< PriorEl, PriorElCmp >
+{
+ void setPrior( int ordering, PriorDesc *desc );
+ void setPriors( const PriorTable &other );
+};
+
+/* Compare of prior table elements for distinguising state data. */
+struct CmpPriorEl
+{
+ static inline int compare( const PriorEl &pel1, const PriorEl &pel2 )
+ {
+ if ( pel1.desc < pel2.desc )
+ return -1;
+ else if ( pel1.desc > pel2.desc )
+ return 1;
+ else if ( pel1.ordering < pel2.ordering )
+ return -1;
+ else if ( pel1.ordering > pel2.ordering )
+ return 1;
+ return 0;
+ }
+};
+
+/* Compare of PriorTable distinguising state data. Using a compare of the
+ * pointers is a little more strict than it needs be. It requires that
+ * prioritiy tables have the exact same set of priority assignment operators
+ * (from the input lang) to be considered equal.
+ *
+ * Really only key-value pairs need be tested and ordering be merged. However
+ * this would require that in the fuseing of states, priority descriptors be
+ * chosen for the new fused state based on priority. Since the out transition
+ * lists and ranges aren't necessarily going to line up, this is more work for
+ * little gain. Final compression resets all priorities first, so this would
+ * only be useful for compression at every operator, which is only an
+ * undocumented test feature.
+ */
+typedef CmpSTable<PriorEl, CmpPriorEl> CmpPriorTable;
+
+/* Plain action list that imposes no ordering. */
+typedef Vector<int> TransFuncList;
+
+/* Comparison for TransFuncList. */
+typedef CmpTable< int, CmpOrd<int> > TransFuncListCompare;
+
+/* Transition class that implements actions and priorities. */
+struct FsmTrans
+{
+ FsmTrans() : fromState(0), toState(0) {}
+ FsmTrans( const FsmTrans &other ) :
+ lowKey(other.lowKey),
+ highKey(other.highKey),
+ fromState(0), toState(0),
+ actionTable(other.actionTable),
+ priorTable(other.priorTable)
+ {
+ assert( lmActionTable.length() == 0 && other.lmActionTable.length() == 0 );
+ }
+
+ Key lowKey, highKey;
+ FsmState *fromState;
+ FsmState *toState;
+
+ /* Pointers for outlist. */
+ FsmTrans *prev, *next;
+
+ /* Pointers for in-list. */
+ FsmTrans *ilprev, *ilnext;
+
+ /* The function table and priority for the transition. */
+ ActionTable actionTable;
+ PriorTable priorTable;
+
+ LmActionTable lmActionTable;
+};
+
+/* In transition list. Like DList except only has head pointers, which is all
+ * that is required. Insertion and deletion is handled by the graph. This
+ * class provides the iterator of a single list. */
+struct TransInList
+{
+ TransInList() : head(0) { }
+
+ FsmTrans *head;
+
+ struct Iter
+ {
+ /* Default construct. */
+ Iter() : ptr(0) { }
+
+ /* Construct, assign from a list. */
+ Iter( const TransInList &il ) : ptr(il.head) { }
+ Iter &operator=( const TransInList &dl ) { ptr = dl.head; return *this; }
+
+ /* At the end */
+ bool lte() const { return ptr != 0; }
+ bool end() const { return ptr == 0; }
+
+ /* At the first, last element. */
+ bool first() const { return ptr && ptr->ilprev == 0; }
+ bool last() const { return ptr && ptr->ilnext == 0; }
+
+ /* Cast, dereference, arrow ops. */
+ operator FsmTrans*() const { return ptr; }
+ FsmTrans &operator *() const { return *ptr; }
+ FsmTrans *operator->() const { return ptr; }
+
+ /* Increment, decrement. */
+ inline void operator++(int) { ptr = ptr->ilnext; }
+ inline void operator--(int) { ptr = ptr->ilprev; }
+
+ /* The iterator is simply a pointer. */
+ FsmTrans *ptr;
+ };
+};
+
+typedef DList<FsmTrans> TransList;
+
+/* Set of states, list of states. */
+typedef BstSet<FsmState*> StateSet;
+typedef DList<FsmState> StateList;
+
+/* A element in a state dict. */
+struct StateDictEl
+:
+ public AvlTreeEl<StateDictEl>
+{
+ StateDictEl(const StateSet &stateSet)
+ : stateSet(stateSet) { }
+
+ const StateSet &getKey() { return stateSet; }
+ StateSet stateSet;
+ FsmState *targState;
+};
+
+/* Dictionary mapping a set of states to a target state. */
+typedef AvlTree< StateDictEl, StateSet, CmpTable<FsmState*> > StateDict;
+
+/* Data needed for a merge operation. */
+struct MergeData
+{
+ MergeData()
+ : stfillHead(0), stfillTail(0) { }
+
+ StateDict stateDict;
+
+ FsmState *stfillHead;
+ FsmState *stfillTail;
+
+ void fillListAppend( FsmState *state );
+};
+
+struct TransEl
+{
+ /* Constructors. */
+ TransEl() { }
+ TransEl( Key lowKey, Key highKey )
+ : lowKey(lowKey), highKey(highKey) { }
+ TransEl( Key lowKey, Key highKey, FsmTrans *value )
+ : lowKey(lowKey), highKey(highKey), value(value) { }
+
+ Key lowKey, highKey;
+ FsmTrans *value;
+};
+
+struct CmpKey
+{
+ static int compare( const Key key1, const Key key2 )
+ {
+ if ( key1 < key2 )
+ return -1;
+ else if ( key1 > key2 )
+ return 1;
+ else
+ return 0;
+ }
+};
+
+/* Vector based set of key items. */
+typedef BstSet<Key, CmpKey> KeySet;
+
+struct MinPartition
+{
+ MinPartition() : active(false) { }
+
+ StateList list;
+ bool active;
+
+ MinPartition *prev, *next;
+};
+
+/* Epsilon transition stored in a state. Specifies the target */
+typedef Vector<int> EpsilonTrans;
+
+/* List of states that are to be drawn into this. */
+struct EptVectEl
+{
+ EptVectEl( FsmState *targ, bool leaving )
+ : targ(targ), leaving(leaving) { }
+
+ FsmState *targ;
+ bool leaving;
+};
+typedef Vector<EptVectEl> EptVect;
+
+/* Set of entry ids that go into this state. */
+typedef BstSet<int> EntryIdSet;
+
+/* Set of longest match items that may be active in a given state. */
+typedef BstSet<TokenInstance*> LmItemSet;
+
+/* Conditions. */
+typedef BstSet< Action*, CmpOrd<Action*> > CondSet;
+typedef CmpTable< Action*, CmpOrd<Action*> > CmpCondSet;
+
+struct CondSpace
+ : public AvlTreeEl<CondSpace>
+{
+ CondSpace( const CondSet &condSet )
+ : condSet(condSet) {}
+
+ const CondSet &getKey() { return condSet; }
+
+ CondSet condSet;
+ Key baseKey;
+ long condSpaceId;
+};
+
+typedef Vector<CondSpace*> CondSpaceVect;
+
+typedef AvlTree<CondSpace, CondSet, CmpCondSet> CondSpaceMap;
+
+struct StateCond
+{
+ StateCond( Key lowKey, Key highKey ) :
+ lowKey(lowKey), highKey(highKey) {}
+
+ Key lowKey;
+ Key highKey;
+ CondSpace *condSpace;
+
+ StateCond *prev, *next;
+};
+
+typedef DList<StateCond> StateCondList;
+typedef Vector<long> LongVect;
+
+/* State class that implements actions and priorities. */
+struct FsmState
+{
+ FsmState();
+ FsmState(const FsmState &other);
+ ~FsmState();
+
+ /* Is the state final? */
+ bool isFinState() { return stateBits & SB_ISFINAL; }
+
+ /* Out transition list and the pointer for the default out trans. */
+ TransList outList;
+
+ /* In transition Lists. */
+ TransInList inList;
+
+ /* Entry points into the state. */
+ EntryIdSet entryIds;
+
+ /* Epsilon transitions. */
+ EpsilonTrans epsilonTrans;
+
+ /* Condition info. */
+ StateCondList stateCondList;
+
+ /* Number of in transitions from states other than ourselves. */
+ int foreignInTrans;
+
+ /* Temporary data for various algorithms. */
+ union {
+ /* When duplicating the fsm we need to map each
+ * state to the new state representing it. */
+ FsmState *stateMap;
+
+ /* When minimizing machines by partitioning, this maps to the group
+ * the state is in. */
+ MinPartition *partition;
+
+ /* When merging states (state machine operations) this next pointer is
+ * used for the list of states that need to be filled in. */
+ FsmState *next;
+
+ /* Identification for printing and stable minimization. */
+ int stateNum;
+
+ } alg;
+
+ /* Data used in epsilon operation, maybe fit into alg? */
+ FsmState *isolatedShadow;
+ int owningGraph;
+
+ /* A pointer to a dict element that contains the set of states this state
+ * represents. This cannot go into alg, because alg.next is used during
+ * the merging process. */
+ StateDictEl *stateDictEl;
+
+ /* When drawing epsilon transitions, holds the list of states to merge
+ * with. */
+ EptVect *eptVect;
+
+ /* Bits controlling the behaviour of the state during collapsing to dfa. */
+ int stateBits;
+
+ /* State list elements. */
+ FsmState *next, *prev;
+
+ /*
+ * Priority and Action data.
+ */
+
+ /* Out priorities transfered to out transitions. */
+ PriorTable outPriorTable;
+
+ /* The following two action tables are distinguished by the fact that when
+ * toState actions are executed immediatly after transition actions of
+ * incoming transitions and the current character will be the same as the
+ * one available then. The fromState actions are executed immediately
+ * before the transition actions of outgoing transitions and the current
+ * character is same as the one available then. */
+
+ /* Actions to execute upon entering into a state. */
+ ActionTable toStateActionTable;
+
+ /* Actions to execute when going from the state to the transition. */
+ ActionTable fromStateActionTable;
+
+ /* Actions to add to any future transitions that leave via this state. */
+ ActionTable outActionTable;
+
+ /* Conditions to add to any future transiions that leave via this sttate. */
+ ActionSet outCondSet;
+
+ /* Error action tables. */
+ ErrActionTable errActionTable;
+
+ /* Actions to execute on eof. */
+ ActionTable eofActionTable;
+
+ /* Set of longest match items that may be active in this state. */
+ LmItemSet lmItemSet;
+
+ FsmState *eofTarget;
+};
+
+template <class ListItem> struct NextTrans
+{
+ Key lowKey, highKey;
+ ListItem *trans;
+ ListItem *next;
+
+ void load() {
+ if ( trans == 0 )
+ next = 0;
+ else {
+ next = trans->next;
+ lowKey = trans->lowKey;
+ highKey = trans->highKey;
+ }
+ }
+
+ void set( ListItem *t ) {
+ trans = t;
+ load();
+ }
+
+ void increment() {
+ trans = next;
+ load();
+ }
+};
+
+
+/* Encodes the different states that are meaningful to the of the iterator. */
+enum PairIterUserState
+{
+ RangeInS1, RangeInS2,
+ RangeOverlap,
+ BreakS1, BreakS2
+};
+
+template <class ListItem1, class ListItem2 = ListItem1> struct PairIter
+{
+ /* Encodes the different states that an fsm iterator can be in. */
+ enum IterState {
+ Begin,
+ ConsumeS1Range, ConsumeS2Range,
+ OnlyInS1Range, OnlyInS2Range,
+ S1SticksOut, S1SticksOutBreak,
+ S2SticksOut, S2SticksOutBreak,
+ S1DragsBehind, S1DragsBehindBreak,
+ S2DragsBehind, S2DragsBehindBreak,
+ ExactOverlap, End
+ };
+
+ PairIter( ListItem1 *list1, ListItem2 *list2 );
+
+ /* Query iterator. */
+ bool lte() { return itState != End; }
+ bool end() { return itState == End; }
+ void operator++(int) { findNext(); }
+ void operator++() { findNext(); }
+
+ /* Iterator state. */
+ ListItem1 *list1;
+ ListItem2 *list2;
+ IterState itState;
+ PairIterUserState userState;
+
+ NextTrans<ListItem1> s1Tel;
+ NextTrans<ListItem2> s2Tel;
+ Key bottomLow, bottomHigh;
+ ListItem1 *bottomTrans1;
+ ListItem2 *bottomTrans2;
+
+private:
+ void findNext();
+};
+
+/* Init the iterator by advancing to the first item. */
+template <class ListItem1, class ListItem2> PairIter<ListItem1, ListItem2>::PairIter(
+ ListItem1 *list1, ListItem2 *list2 )
+:
+ list1(list1),
+ list2(list2),
+ itState(Begin)
+{
+ findNext();
+}
+
+/* Return and re-entry for the co-routine iterators. This should ALWAYS be
+ * used inside of a block. */
+#define CO_RETURN(label) \
+ itState = label; \
+ return; \
+ entry##label: {}
+
+/* Return and re-entry for the co-routine iterators. This should ALWAYS be
+ * used inside of a block. */
+#define CO_RETURN2(label, uState) \
+ itState = label; \
+ userState = uState; \
+ return; \
+ entry##label: {}
+
+/* Advance to the next transition. When returns, trans points to the next
+ * transition, unless there are no more, in which case end() returns true. */
+template <class ListItem1, class ListItem2> void PairIter<ListItem1, ListItem2>::findNext()
+{
+ /* Jump into the iterator routine base on the iterator state. */
+ switch ( itState ) {
+ case Begin: goto entryBegin;
+ case ConsumeS1Range: goto entryConsumeS1Range;
+ case ConsumeS2Range: goto entryConsumeS2Range;
+ case OnlyInS1Range: goto entryOnlyInS1Range;
+ case OnlyInS2Range: goto entryOnlyInS2Range;
+ case S1SticksOut: goto entryS1SticksOut;
+ case S1SticksOutBreak: goto entryS1SticksOutBreak;
+ case S2SticksOut: goto entryS2SticksOut;
+ case S2SticksOutBreak: goto entryS2SticksOutBreak;
+ case S1DragsBehind: goto entryS1DragsBehind;
+ case S1DragsBehindBreak: goto entryS1DragsBehindBreak;
+ case S2DragsBehind: goto entryS2DragsBehind;
+ case S2DragsBehindBreak: goto entryS2DragsBehindBreak;
+ case ExactOverlap: goto entryExactOverlap;
+ case End: goto entryEnd;
+ }
+
+entryBegin:
+ /* Set up the next structs at the head of the transition lists. */
+ s1Tel.set( list1 );
+ s2Tel.set( list2 );
+
+ /* Concurrently scan both out ranges. */
+ while ( true ) {
+ if ( s1Tel.trans == 0 ) {
+ /* We are at the end of state1's ranges. Process the rest of
+ * state2's ranges. */
+ while ( s2Tel.trans != 0 ) {
+ /* Range is only in s2. */
+ CO_RETURN2( ConsumeS2Range, RangeInS2 );
+ s2Tel.increment();
+ }
+ break;
+ }
+ else if ( s2Tel.trans == 0 ) {
+ /* We are at the end of state2's ranges. Process the rest of
+ * state1's ranges. */
+ while ( s1Tel.trans != 0 ) {
+ /* Range is only in s1. */
+ CO_RETURN2( ConsumeS1Range, RangeInS1 );
+ s1Tel.increment();
+ }
+ break;
+ }
+ /* Both state1's and state2's transition elements are good.
+ * The signiture of no overlap is a back key being in front of a
+ * front key. */
+ else if ( s1Tel.highKey < s2Tel.lowKey ) {
+ /* A range exists in state1 that does not overlap with state2. */
+ CO_RETURN2( OnlyInS1Range, RangeInS1 );
+ s1Tel.increment();
+ }
+ else if ( s2Tel.highKey < s1Tel.lowKey ) {
+ /* A range exists in state2 that does not overlap with state1. */
+ CO_RETURN2( OnlyInS2Range, RangeInS2 );
+ s2Tel.increment();
+ }
+ /* There is overlap, must mix the ranges in some way. */
+ else if ( s1Tel.lowKey < s2Tel.lowKey ) {
+ /* Range from state1 sticks out front. Must break it into
+ * non-overlaping and overlaping segments. */
+ bottomLow = s2Tel.lowKey;
+ bottomHigh = s1Tel.highKey;
+ s1Tel.highKey = s2Tel.lowKey;
+ s1Tel.highKey.decrement();
+ bottomTrans1 = s1Tel.trans;
+
+ /* Notify the caller that we are breaking s1. This gives them a
+ * chance to duplicate s1Tel[0,1].value. */
+ CO_RETURN2( S1SticksOutBreak, BreakS1 );
+
+ /* Broken off range is only in s1. */
+ CO_RETURN2( S1SticksOut, RangeInS1 );
+
+ /* Advance over the part sticking out front. */
+ s1Tel.lowKey = bottomLow;
+ s1Tel.highKey = bottomHigh;
+ s1Tel.trans = bottomTrans1;
+ }
+ else if ( s2Tel.lowKey < s1Tel.lowKey ) {
+ /* Range from state2 sticks out front. Must break it into
+ * non-overlaping and overlaping segments. */
+ bottomLow = s1Tel.lowKey;
+ bottomHigh = s2Tel.highKey;
+ s2Tel.highKey = s1Tel.lowKey;
+ s2Tel.highKey.decrement();
+ bottomTrans2 = s2Tel.trans;
+
+ /* Notify the caller that we are breaking s2. This gives them a
+ * chance to duplicate s2Tel[0,1].value. */
+ CO_RETURN2( S2SticksOutBreak, BreakS2 );
+
+ /* Broken off range is only in s2. */
+ CO_RETURN2( S2SticksOut, RangeInS2 );
+
+ /* Advance over the part sticking out front. */
+ s2Tel.lowKey = bottomLow;
+ s2Tel.highKey = bottomHigh;
+ s2Tel.trans = bottomTrans2;
+ }
+ /* Low ends are even. Are the high ends even? */
+ else if ( s1Tel.highKey < s2Tel.highKey ) {
+ /* Range from state2 goes longer than the range from state1. We
+ * must break the range from state2 into an evenly overlaping
+ * segment. */
+ bottomLow = s1Tel.highKey;
+ bottomLow.increment();
+ bottomHigh = s2Tel.highKey;
+ s2Tel.highKey = s1Tel.highKey;
+ bottomTrans2 = s2Tel.trans;
+
+ /* Notify the caller that we are breaking s2. This gives them a
+ * chance to duplicate s2Tel[0,1].value. */
+ CO_RETURN2( S2DragsBehindBreak, BreakS2 );
+
+ /* Breaking s2 produces exact overlap. */
+ CO_RETURN2( S2DragsBehind, RangeOverlap );
+
+ /* Advance over the front we just broke off of range 2. */
+ s2Tel.lowKey = bottomLow;
+ s2Tel.highKey = bottomHigh;
+ s2Tel.trans = bottomTrans2;
+
+ /* Advance over the entire s1Tel. We have consumed it. */
+ s1Tel.increment();
+ }
+ else if ( s2Tel.highKey < s1Tel.highKey ) {
+ /* Range from state1 goes longer than the range from state2. We
+ * must break the range from state1 into an evenly overlaping
+ * segment. */
+ bottomLow = s2Tel.highKey;
+ bottomLow.increment();
+ bottomHigh = s1Tel.highKey;
+ s1Tel.highKey = s2Tel.highKey;
+ bottomTrans1 = s1Tel.trans;
+
+ /* Notify the caller that we are breaking s1. This gives them a
+ * chance to duplicate s2Tel[0,1].value. */
+ CO_RETURN2( S1DragsBehindBreak, BreakS1 );
+
+ /* Breaking s1 produces exact overlap. */
+ CO_RETURN2( S1DragsBehind, RangeOverlap );
+
+ /* Advance over the front we just broke off of range 1. */
+ s1Tel.lowKey = bottomLow;
+ s1Tel.highKey = bottomHigh;
+ s1Tel.trans = bottomTrans1;
+
+ /* Advance over the entire s2Tel. We have consumed it. */
+ s2Tel.increment();
+ }
+ else {
+ /* There is an exact overlap. */
+ CO_RETURN2( ExactOverlap, RangeOverlap );
+
+ s1Tel.increment();
+ s2Tel.increment();
+ }
+ }
+
+ /* Done, go into end state. */
+ CO_RETURN( End );
+}
+
+
+/* Compare lists of epsilon transitions. Entries are name ids of targets. */
+typedef CmpTable< int, CmpOrd<int> > CmpEpsilonTrans;
+
+/* Compare class for the Approximate minimization. */
+class ApproxCompare
+{
+public:
+ ApproxCompare() { }
+ int compare( const FsmState *pState1, const FsmState *pState2 );
+};
+
+/* Compare class for the initial partitioning of a partition minimization. */
+class InitPartitionCompare
+{
+public:
+ InitPartitionCompare() { }
+ int compare( const FsmState *pState1, const FsmState *pState2 );
+};
+
+/* Compare class for the regular partitioning of a partition minimization. */
+class PartitionCompare
+{
+public:
+ PartitionCompare() { }
+ int compare( const FsmState *pState1, const FsmState *pState2 );
+};
+
+/* Compare class for a minimization that marks pairs. Provides the shouldMark
+ * routine. */
+class MarkCompare
+{
+public:
+ MarkCompare() { }
+ bool shouldMark( MarkIndex &markIndex, const FsmState *pState1,
+ const FsmState *pState2 );
+};
+
+/* List of partitions. */
+typedef DList< MinPartition > PartitionList;
+
+/* List of transtions out of a state. */
+typedef Vector<TransEl> TransListVect;
+
+/* Entry point map used for keeping track of entry points in a machine. */
+typedef BstSet< int > EntryIdSet;
+typedef BstMapEl< int, FsmState* > EntryMapEl;
+typedef BstMap< int, FsmState* > EntryMap;
+typedef Vector<EntryMapEl> EntryMapBase;
+
+/* Graph class that implements actions and priorities. */
+struct FsmGraph
+{
+ /* Constructors/Destructors. */
+ FsmGraph( );
+ FsmGraph( const FsmGraph &graph );
+ ~FsmGraph();
+
+ /* The list of states. */
+ StateList stateList;
+ StateList misfitList;
+
+ /* The map of entry points. */
+ EntryMap entryPoints;
+
+ /* The start state. */
+ FsmState *startState;
+
+ /* Error state, possibly created only when the final machine has been
+ * created and the XML machine is about to be written. No transitions
+ * point to this state. */
+ FsmState *errState;
+
+ /* The set of final states. */
+ StateSet finStateSet;
+
+ /* Misfit Accounting. Are misfits put on a separate list. */
+ bool misfitAccounting;
+
+ bool lmRequiresErrorState;
+ NameInst **nameIndex;
+
+ /*
+ * Transition actions and priorities.
+ */
+
+ /* Set priorities on transtions. */
+ void startFsmPrior( int ordering, PriorDesc *prior );
+ void allTransPrior( int ordering, PriorDesc *prior );
+ void finishFsmPrior( int ordering, PriorDesc *prior );
+ void leaveFsmPrior( int ordering, PriorDesc *prior );
+
+ /* Action setting support. */
+ void transferErrorActions( FsmState *state, int transferPoint );
+ void setErrorAction( FsmState *state, int ordering, Action *action );
+ void setErrorActions( FsmState *state, const ActionTable &other );
+
+ /* Fill all spaces in a transition list with an error transition. */
+ void fillGaps( FsmState *state );
+
+ /* Similar to setErrorAction, instead gives a state to go to on error. */
+ void setErrorTarget( FsmState *state, FsmState *target, int *orderings,
+ Action **actions, int nActs );
+
+ /* Set actions to execute. */
+ void startFsmAction( int ordering, Action *action );
+ void allTransAction( int ordering, Action *action );
+ void finishFsmAction( int ordering, Action *action );
+ void leaveFsmAction( int ordering, Action *action );
+ void longMatchAction( int ordering, TokenInstance *lmPart );
+
+ /* Set error actions to execute. */
+ void startErrorAction( int ordering, Action *action, int transferPoint );
+ void allErrorAction( int ordering, Action *action, int transferPoint );
+ void finalErrorAction( int ordering, Action *action, int transferPoint );
+ void notStartErrorAction( int ordering, Action *action, int transferPoint );
+ void notFinalErrorAction( int ordering, Action *action, int transferPoint );
+ void middleErrorAction( int ordering, Action *action, int transferPoint );
+
+ /* Set EOF actions. */
+ void startEOFAction( int ordering, Action *action );
+ void allEOFAction( int ordering, Action *action );
+ void finalEOFAction( int ordering, Action *action );
+ void notStartEOFAction( int ordering, Action *action );
+ void notFinalEOFAction( int ordering, Action *action );
+ void middleEOFAction( int ordering, Action *action );
+
+ /* Set To State actions. */
+ void startToStateAction( int ordering, Action *action );
+ void allToStateAction( int ordering, Action *action );
+ void finalToStateAction( int ordering, Action *action );
+ void notStartToStateAction( int ordering, Action *action );
+ void notFinalToStateAction( int ordering, Action *action );
+ void middleToStateAction( int ordering, Action *action );
+
+ /* Set From State actions. */
+ void startFromStateAction( int ordering, Action *action );
+ void allFromStateAction( int ordering, Action *action );
+ void finalFromStateAction( int ordering, Action *action );
+ void notStartFromStateAction( int ordering, Action *action );
+ void notFinalFromStateAction( int ordering, Action *action );
+ void middleFromStateAction( int ordering, Action *action );
+
+ /* Shift the action ordering of the start transitions to start at
+ * fromOrder and increase in units of 1. Useful before kleene star
+ * operation. */
+ int shiftStartActionOrder( int fromOrder );
+
+ /* Clear all priorities from the fsm to so they won't affcet minimization
+ * of the final fsm. */
+ void clearAllPriorities();
+
+ /* Zero out all the function keys. */
+ void nullActionKeys();
+
+ /* Walk the list of states and verify state properties. */
+ void verifyStates();
+
+ /* Misfit Accounting. Are misfits put on a separate list. */
+ void setMisfitAccounting( bool val )
+ { misfitAccounting = val; }
+
+ /* Set and Unset a state as final. */
+ void setFinState( FsmState *state );
+ void unsetFinState( FsmState *state );
+
+ void setStartState( FsmState *state );
+ void unsetStartState( );
+
+ /* Set and unset a state as an entry point. */
+ void setEntry( int id, FsmState *state );
+ void changeEntry( int id, FsmState *to, FsmState *from );
+ void unsetEntry( int id, FsmState *state );
+ void unsetEntry( int id );
+ void unsetAllEntryPoints();
+
+ /* Epsilon transitions. */
+ void epsilonTrans( int id );
+ void shadowReadWriteStates( MergeData &md );
+
+ /*
+ * Basic attaching and detaching.
+ */
+
+ /* Common to attaching/detaching list and default. */
+ void attachToInList( FsmState *from, FsmState *to, FsmTrans *&head, FsmTrans *trans );
+ void detachFromInList( FsmState *from, FsmState *to, FsmTrans *&head, FsmTrans *trans );
+
+ /* Attach with a new transition. */
+ FsmTrans *attachNewTrans( FsmState *from, FsmState *to,
+ Key onChar1, Key onChar2 );
+
+ /* Attach with an existing transition that already in an out list. */
+ void attachTrans( FsmState *from, FsmState *to, FsmTrans *trans );
+
+ /* Redirect a transition away from error and towards some state. */
+ void redirectErrorTrans( FsmState *from, FsmState *to, FsmTrans *trans );
+
+ /* Detach a transition from a target state. */
+ void detachTrans( FsmState *from, FsmState *to, FsmTrans *trans );
+
+ /* Detach a state from the graph. */
+ void detachState( FsmState *state );
+
+ /*
+ * NFA to DFA conversion routines.
+ */
+
+ /* Duplicate a transition that will dropin to a free spot. */
+ FsmTrans *dupTrans( FsmState *from, FsmTrans *srcTrans );
+
+ /* In crossing, two transitions both go to real states. */
+ FsmTrans *fsmAttachStates( MergeData &md, FsmState *from,
+ FsmTrans *destTrans, FsmTrans *srcTrans );
+
+ /* Two transitions are to be crossed, handle the possibility of either
+ * going to the error state. */
+ FsmTrans *mergeTrans( MergeData &md, FsmState *from,
+ FsmTrans *destTrans, FsmTrans *srcTrans );
+
+ /* Compare deterimne relative priorities of two transition tables. */
+ int comparePrior( const PriorTable &priorTable1, const PriorTable &priorTable2 );
+
+ /* Cross a src transition with one that is already occupying a spot. */
+ FsmTrans *crossTransitions( MergeData &md, FsmState *from,
+ FsmTrans *destTrans, FsmTrans *srcTrans );
+
+ void outTransCopy( MergeData &md, FsmState *dest, FsmTrans *srcList );
+ void mergeStateConds( FsmState *destState, FsmState *srcState );
+
+ /* Merge a set of states into newState. */
+ void mergeStates( MergeData &md, FsmState *destState,
+ FsmState **srcStates, int numSrc );
+ void mergeStatesLeaving( MergeData &md, FsmState *destState, FsmState *srcState );
+ void mergeStates( MergeData &md, FsmState *destState, FsmState *srcState );
+
+ /* Make all states that are combinations of other states and that
+ * have not yet had their out transitions filled in. This will
+ * empty out stateDict and stFil. */
+ void fillInStates( MergeData &md );
+
+ /*
+ * Transition Comparison.
+ */
+
+ /* Compare transition data. Either of the pointers may be null. */
+ static inline int compareDataPtr( FsmTrans *trans1, FsmTrans *trans2 );
+
+ /* Compare target state and transition data. Either pointer may be null. */
+ static inline int compareFullPtr( FsmTrans *trans1, FsmTrans *trans2 );
+
+ /* Compare target partitions. Either pointer may be null. */
+ static inline int comparePartPtr( FsmTrans *trans1, FsmTrans *trans2 );
+
+ /* Check marked status of target states. Either pointer may be null. */
+ static inline bool shouldMarkPtr( MarkIndex &markIndex,
+ FsmTrans *trans1, FsmTrans *trans2 );
+
+ /*
+ * Callbacks.
+ */
+
+ /* Compare priority and function table of transitions. */
+ static int compareTransData( FsmTrans *trans1, FsmTrans *trans2 );
+
+ /* Add in the properties of srcTrans into this. */
+ void addInTrans( FsmTrans *destTrans, FsmTrans *srcTrans );
+
+ /* Compare states on data stored in the states. */
+ static int compareStateData( const FsmState *state1, const FsmState *state2 );
+
+ /* Out transition data. */
+ void clearOutData( FsmState *state );
+ bool hasOutData( FsmState *state );
+ void transferOutData( FsmState *destState, FsmState *srcState );
+
+ /*
+ * Allocation.
+ */
+
+ /* New up a state and add it to the graph. */
+ FsmState *addState();
+
+ /*
+ * Building basic machines
+ */
+
+ void concatFsm( Key c );
+ void concatFsm( Key *str, int len );
+ void concatFsmCI( Key *str, int len );
+ void orFsm( Key *set, int len );
+ void rangeFsm( Key low, Key high );
+ void rangeStarFsm( Key low, Key high );
+ void emptyFsm( );
+ void lambdaFsm( );
+
+ /*
+ * Fsm operators.
+ */
+
+ void starOp( );
+ void repeatOp( int times );
+ void optionalRepeatOp( int times );
+ void concatOp( FsmGraph *other );
+ void unionOp( FsmGraph *other );
+ void intersectOp( FsmGraph *other );
+ void subtractOp( FsmGraph *other );
+ void epsilonOp();
+ void joinOp( int startId, int finalId, FsmGraph **others, int numOthers );
+ void globOp( FsmGraph **others, int numOthers );
+ void deterministicEntry();
+
+ /*
+ * Operator workers
+ */
+
+ /* Determine if there are any entry points into a start state other than
+ * the start state. */
+ bool isStartStateIsolated();
+
+ /* Make a new start state that has no entry points. Will not change the
+ * identity of the fsm. */
+ void isolateStartState();
+
+ /* Workers for resolving epsilon transitions. */
+ bool inEptVect( EptVect *eptVect, FsmState *targ );
+ void epsilonFillEptVectFrom( FsmState *root, FsmState *from, bool parentLeaving );
+ void resolveEpsilonTrans( MergeData &md );
+
+ /* Workers for concatenation and union. */
+ void doConcat( FsmGraph *other, StateSet *fromStates, bool optional );
+ void doOr( FsmGraph *other );
+
+ /*
+ * Final states
+ */
+
+ /* Unset any final states that are no longer to be final
+ * due to final bits. */
+ void unsetIncompleteFinals();
+ void unsetKilledFinals();
+
+ /* Bring in other's entry points. Assumes others states are going to be
+ * copied into this machine. */
+ void copyInEntryPoints( FsmGraph *other );
+
+ /* Ordering states. */
+ void depthFirstOrdering( FsmState *state );
+ void depthFirstOrdering();
+ void sortStatesByFinal();
+
+ /* Set sqequential state numbers starting at 0. */
+ void setStateNumbers( int base );
+
+ /* Unset all final states. */
+ void unsetAllFinStates();
+
+ /* Set the bits of final states and clear the bits of non final states. */
+ void setFinBits( int finStateBits );
+
+ /*
+ * Self-consistency checks.
+ */
+
+ /* Run a sanity check on the machine. */
+ void verifyIntegrity();
+
+ /* Verify that there are no unreachable states, or dead end states. */
+ void verifyReachability();
+ void verifyNoDeadEndStates();
+
+ /*
+ * Path pruning
+ */
+
+ /* Mark all states reachable from state. */
+ void markReachableFromHereReverse( FsmState *state );
+
+ /* Mark all states reachable from state. */
+ void markReachableFromHere( FsmState *state );
+ void markReachableFromHereStopFinal( FsmState *state );
+
+ /* Removes states that cannot be reached by any path in the fsm and are
+ * thus wasted silicon. */
+ void removeDeadEndStates();
+
+ /* Removes states that cannot be reached by any path in the fsm and are
+ * thus wasted silicon. */
+ void removeUnreachableStates();
+
+ /* Remove error actions from states on which the error transition will
+ * never be taken. */
+ bool outListCovers( FsmState *state );
+ bool anyErrorRange( FsmState *state );
+
+ /* Remove states that are on the misfit list. */
+ void removeMisfits();
+
+ /*
+ * FSM Minimization
+ */
+
+ /* Minimization by partitioning. */
+ void minimizePartition1();
+ void minimizePartition2();
+
+ /* Minimize the final state Machine. The result is the minimal fsm. Slow
+ * but stable, correct minimization. Uses n^2 space (lookout) and average
+ * n^2 time. Worst case n^3 time, but a that is a very rare case. */
+ void minimizeStable();
+
+ /* Minimize the final state machine. Does not find the minimal fsm, but a
+ * pretty good approximation. Does not use any extra space. Average n^2
+ * time. Worst case n^3 time, but a that is a very rare case. */
+ void minimizeApproximate();
+
+ /* This is the worker for the minimize approximate solution. It merges
+ * states that have identical out transitions. */
+ bool minimizeRound( );
+
+ /* Given an intial partioning of states, split partitions that have out trans
+ * to differing partitions. */
+ int partitionRound( FsmState **statePtrs, MinPartition *parts, int numParts );
+
+ /* Split partitions that have a transition to a previously split partition, until
+ * there are no more partitions to split. */
+ int splitCandidates( FsmState **statePtrs, MinPartition *parts, int numParts );
+
+ /* Fuse together states in the same partition. */
+ void fusePartitions( MinPartition *parts, int numParts );
+
+ /* Mark pairs where out final stateness differs, out trans data differs,
+ * trans pairs go to a marked pair or trans data differs. Should get
+ * alot of pairs. */
+ void initialMarkRound( MarkIndex &markIndex );
+
+ /* One marking round on all state pairs. Considers if trans pairs go
+ * to a marked state only. Returns whether or not a pair was marked. */
+ bool markRound( MarkIndex &markIndex );
+
+ /* Move the in trans into src into dest. */
+ void inTransMove(FsmState *dest, FsmState *src);
+
+ /* Make state src and dest the same state. */
+ void fuseEquivStates(FsmState *dest, FsmState *src);
+
+ /* Find any states that didn't get marked by the marking algorithm and
+ * merge them into the primary states of their equivalence class. */
+ void fuseUnmarkedPairs( MarkIndex &markIndex );
+
+ /* Merge neighboring transitions go to the same state and have the same
+ * transitions data. */
+ void compressTransitions();
+
+ /* Returns true if there is a transtion (either explicit or by a gap) to
+ * the error state. */
+ bool checkErrTrans( FsmState *state, FsmTrans *trans );
+ bool checkErrTransFinish( FsmState *state );
+ bool hasErrorTrans();
+};
+
+
+#endif /* _FSMGRAPH_H */