summaryrefslogtreecommitdiff
path: root/test/SemaCXX/conversion.cpp
blob: dcd64fa2ec8aeaa0ce986864b098ffdd9691b0d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
// RUN: %clang_cc1 -triple x86_64-apple-darwin -fsyntax-only -Wconversion -std=c++11 -verify %s
// RUN: %clang_cc1 -triple x86_64-apple-darwin -fsyntax-only -Wconversion -std=c++11 %s 2>&1 | FileCheck %s

#include <stddef.h>

typedef   signed char  int8_t;
typedef   signed short int16_t;
typedef   signed int   int32_t;
typedef   signed long  int64_t;

typedef unsigned char  uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int   uint32_t;
typedef unsigned long  uint64_t;

// <rdar://problem/7909130>
namespace test0 {
  int32_t test1_positive(char *I, char *E) {
    return (E - I); // expected-warning {{implicit conversion loses integer precision}}
  }

  int32_t test1_negative(char *I, char *E) {
    return static_cast<int32_t>(E - I);
  }

  uint32_t test2_positive(uint64_t x) {
    return x; // expected-warning {{implicit conversion loses integer precision}}
  }

  uint32_t test2_negative(uint64_t x) {
    return (uint32_t) x;
  }
}

namespace test1 {
  uint64_t test1(int x, unsigned y) {
    return sizeof(x == y);
  }

  uint64_t test2(int x, unsigned y) {
    return __alignof(x == y);
  }

  void * const foo();
  bool test2(void *p) {
    return p == foo();
  }
}

namespace test2 {
  struct A {
    unsigned int x : 2;
    A() : x(10) {} // expected-warning {{implicit truncation from 'int' to bit-field changes value from 10 to 2}}
  };
}

// This file tests -Wnull-conversion, a subcategory of -Wconversion
// which is on by default.

void test3() {
  int a = NULL; // expected-warning {{implicit conversion of NULL constant to 'int'}}
  int b;
  b = NULL; // expected-warning {{implicit conversion of NULL constant to 'int'}}
  long l = NULL; // FIXME: this should also warn, but currently does not if sizeof(NULL)==sizeof(inttype)
  int c = ((((NULL)))); // expected-warning {{implicit conversion of NULL constant to 'int'}}
  int d;
  d = ((((NULL)))); // expected-warning {{implicit conversion of NULL constant to 'int'}}
  bool bl = NULL; // expected-warning {{implicit conversion of NULL constant to 'bool'}}
  char ch = NULL; // expected-warning {{implicit conversion of NULL constant to 'char'}}
  unsigned char uch = NULL; // expected-warning {{implicit conversion of NULL constant to 'unsigned char'}}
  short sh = NULL; // expected-warning {{implicit conversion of NULL constant to 'short'}}
  double dbl = NULL; // expected-warning {{implicit conversion of NULL constant to 'double'}}

  // Use FileCheck to ensure we don't get any unnecessary macro-expansion notes 
  // (that don't appear as 'real' notes & can't be seen/tested by -verify)
  // CHECK-NOT: note:
  // CHECK: note: expanded from macro 'FINIT'
#define FINIT int a3 = NULL;
  FINIT // expected-warning {{implicit conversion of NULL constant to 'int'}}
  // we don't catch the case of #define FOO NULL ... int i = FOO; but that
  // seems a bit narrow anyway and avoiding that helps us skip other cases.

  int *ip = NULL;
  int (*fp)() = NULL;
  struct foo {
    int n;
    void func();
  };
  int foo::*datamem = NULL;
  int (foo::*funmem)() = NULL;
}

namespace test4 {
  // FIXME: We should warn for non-dependent args (only when the param type is also non-dependent) only once
  // not once for the template + once for every instantiation
  template<typename T>
  void tmpl(char c = NULL, // expected-warning 3 {{implicit conversion of NULL constant to 'char'}}
            T a = NULL, // expected-warning {{implicit conversion of NULL constant to 'char'}} \
                           expected-warning {{implicit conversion of NULL constant to 'int'}}
            T b = 1024) { // expected-warning {{implicit conversion from 'int' to 'char' changes value from 1024 to 0}}
  }

  template<typename T>
  void tmpl2(T t = NULL) {
  }

  void func() {
    tmpl<char>(); // expected-note 2 {{in instantiation of default function argument expression for 'tmpl<char>' required here}}
    tmpl<int>(); // expected-note 2 {{in instantiation of default function argument expression for 'tmpl<int>' required here}}
    tmpl<int>();
    tmpl2<int*>();
  }
}

namespace test5 {
  template<int I>
  void func() {
    bool b = I;
  }

  template void func<3>();
}

namespace test6 {
  decltype(nullptr) func() {
    return NULL;
  }
}

namespace test7 {
  bool fun() {
    bool x = nullptr; // expected-warning {{implicit conversion of nullptr constant to 'bool'}}
    if (nullptr) {} // expected-warning {{implicit conversion of nullptr constant to 'bool'}}
    return nullptr; // expected-warning {{implicit conversion of nullptr constant to 'bool'}}
  }
}

namespace test8 {
  #define NULL_COND(cond) ((cond) ? &num : NULL)
  #define NULL_WRAPPER NULL_COND(false)

  // don't warn on NULL conversion through the conditional operator across a
  // macro boundary
  void macro() {
    int num;
    bool b = NULL_COND(true);
    if (NULL_COND(true)) {}
    while (NULL_COND(true)) {}
    for (;NULL_COND(true);) {}
    do {} while (NULL_COND(true));

    if (NULL_WRAPPER) {}
    while (NULL_WRAPPER) {}
    for (;NULL_WRAPPER;) {}
    do {} while (NULL_WRAPPER);
  }

  // Identical to the previous function except with a template argument.
  // This ensures that template instantiation does not introduce any new
  // warnings.
  template <typename X>
  void template_and_macro() {
    int num;
    bool b = NULL_COND(true);
    if (NULL_COND(true)) {}
    while (NULL_COND(true)) {}
    for (;NULL_COND(true);) {}
    do {} while (NULL_COND(true));

    if (NULL_WRAPPER) {}
    while (NULL_WRAPPER) {}
    for (;NULL_WRAPPER;) {}
    do {} while (NULL_WRAPPER);
  }

  // Identical to the previous function except the template argument affects
  // the conditional statement.
  template <typename X>
  void template_and_macro2() {
    X num;
    bool b = NULL_COND(true);
    if (NULL_COND(true)) {}
    while (NULL_COND(true)) {}
    for (;NULL_COND(true);) {}
    do {} while (NULL_COND(true));

    if (NULL_WRAPPER) {}
    while (NULL_WRAPPER) {}
    for (;NULL_WRAPPER;) {}
    do {} while (NULL_WRAPPER);
  }

  void run() {
    template_and_macro<int>();
    template_and_macro<double>();
    template_and_macro2<int>();
    template_and_macro2<double>();
  }
}

// Don't warn on a nullptr to bool conversion when the nullptr is the return
// type of a function.
namespace test9 {
  typedef decltype(nullptr) nullptr_t;
  nullptr_t EXIT();

  bool test() {
    return EXIT();
  }
}

// Test NULL macro inside a macro has same warnings nullptr inside a macro.
namespace test10 {
#define test1(cond) \
      ((cond) ? nullptr : NULL)
#define test2(cond) \
      ((cond) ? NULL : nullptr)

#define assert(cond) \
      ((cond) ? foo() : bar())
  void foo();
  void bar();

  void run(int x) {
    if (test1(x)) {}
    if (test2(x)) {}
    assert(test1(x));
    assert(test2(x));
  }
}

namespace test11 {

#define assert11(expr) ((expr) ? 0 : 0)

// The whitespace in macro run1 are important to trigger the macro being split
// over multiple SLocEntry's.
#define run1() (dostuff() ? \
    NULL                                   : NULL)
#define run2() (dostuff() ? NULL : NULL)
int dostuff ();

void test(const char * content_type) {
  assert11(run1());
  assert11(run2());
}

}

namespace test12 {

#define x return NULL;

bool run() {
  x  // expected-warning{{}}
}

}

// More tests with macros.  Specficially, test function-like macros that either
// have a pointer return type or take pointer arguments.  Basically, if the
// macro was changed into a function and Clang doesn't warn, then it shouldn't
// warn for the macro either.
namespace test13 {
#define check_str_nullptr_13(str) ((str) ? str : nullptr)
#define check_str_null_13(str) ((str) ? str : NULL)
#define test13(condition) if (condition) return;
#define identity13(arg) arg
#define CHECK13(condition) test13(identity13(!(condition)))

void function1(const char* str) {
  CHECK13(check_str_nullptr_13(str));
  CHECK13(check_str_null_13(str));
}

bool some_bool_function(bool);
void function2() {
  CHECK13(some_bool_function(nullptr));  // expected-warning{{implicit conversion of nullptr constant to 'bool'}}
  CHECK13(some_bool_function(NULL));  // expected-warning{{implicit conversion of NULL constant to 'bool'}}
}

#define run_check_nullptr_13(str) \
    if (check_str_nullptr_13(str)) return;
#define run_check_null_13(str) \
    if (check_str_null_13(str)) return;
void function3(const char* str) {
  run_check_nullptr_13(str)
  run_check_null_13(str)
  if (check_str_nullptr_13(str)) return;
  if (check_str_null_13(str)) return;
}

void run(int* ptr);
#define conditional_run_13(ptr) \
    if (ptr) run(ptr);
void function4() {
  conditional_run_13(nullptr);
  conditional_run_13(NULL);
}
}