summaryrefslogtreecommitdiff
path: root/lib/Sema/TypeLocBuilder.cpp
blob: 2dcbbd83c691227d25254d6ef653cae9c26a4131 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
//===--- TypeLocBuilder.cpp - Type Source Info collector ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This files defines TypeLocBuilder, a class for building TypeLocs
//  bottom-up.
//
//===----------------------------------------------------------------------===//

#include "TypeLocBuilder.h"

using namespace clang;

void TypeLocBuilder::pushFullCopy(TypeLoc L) {
  size_t Size = L.getFullDataSize();
  reserve(Size);

  SmallVector<TypeLoc, 4> TypeLocs;
  TypeLoc CurTL = L;
  while (CurTL) {
    TypeLocs.push_back(CurTL);
    CurTL = CurTL.getNextTypeLoc();
  }

  for (unsigned i = 0, e = TypeLocs.size(); i < e; ++i) {
    TypeLoc CurTL = TypeLocs[e-i-1];
    switch (CurTL.getTypeLocClass()) {
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
    case TypeLoc::CLASS: { \
      CLASS##TypeLoc NewTL = push<class CLASS##TypeLoc>(CurTL.getType()); \
      memcpy(NewTL.getOpaqueData(), CurTL.getOpaqueData(), NewTL.getLocalDataSize()); \
      break; \
    }
#include "clang/AST/TypeLocNodes.def"
    }
  }
}

void TypeLocBuilder::grow(size_t NewCapacity) {
  assert(NewCapacity > Capacity);

  // Allocate the new buffer and copy the old data into it.
  char *NewBuffer = new char[NewCapacity];
  unsigned NewIndex = Index + NewCapacity - Capacity;
  memcpy(&NewBuffer[NewIndex],
         &Buffer[Index],
         Capacity - Index);

  if (Buffer != InlineBuffer)
    delete[] Buffer;

  Buffer = NewBuffer;
  Capacity = NewCapacity;
  Index = NewIndex;
}

TypeLoc TypeLocBuilder::pushImpl(QualType T, size_t LocalSize, unsigned LocalAlignment) {
#ifndef NDEBUG
  QualType TLast = TypeLoc(T, nullptr).getNextTypeLoc().getType();
  assert(TLast == LastTy &&
         "mismatch between last type and new type's inner type");
  LastTy = T;
#endif

  assert(LocalAlignment <= BufferMaxAlignment && "Unexpected alignment");

  // If we need to grow, grow by a factor of 2.
  if (LocalSize > Index) {
    size_t RequiredCapacity = Capacity + (LocalSize - Index);
    size_t NewCapacity = Capacity * 2;
    while (RequiredCapacity > NewCapacity)
      NewCapacity *= 2;
    grow(NewCapacity);
  }

  // Because we're adding elements to the TypeLoc backwards, we have to
  // do some extra work to keep everything aligned appropriately.
  // FIXME: This algorithm is a absolute mess because every TypeLoc returned
  // needs to be valid.  Partial TypeLocs are a terrible idea.
  // FIXME: 4 and 8 are sufficient at the moment, but it's pretty ugly to
  // hardcode them.
  if (LocalAlignment == 4) {
    if (NumBytesAtAlign8 == 0) {
      NumBytesAtAlign4 += LocalSize;
    } else {
      unsigned Padding = NumBytesAtAlign4 % 8;
      if (Padding == 0) {
        if (LocalSize % 8 == 0) {
          // Everything is set: there's no padding and we don't need to add
          // any.
        } else {
          assert(LocalSize % 8 == 4);
          // No existing padding; add in 4 bytes padding
          memmove(&Buffer[Index - 4], &Buffer[Index], NumBytesAtAlign4);
          Index -= 4;
        }
      } else {
        assert(Padding == 4);
        if (LocalSize % 8 == 0) {
          // Everything is set: there's 4 bytes padding and we don't need
          // to add any.
        } else {
          assert(LocalSize % 8 == 4);
          // There are 4 bytes padding, but we don't need any; remove it.
          memmove(&Buffer[Index + 4], &Buffer[Index], NumBytesAtAlign4);
          Index += 4;
        }
      }
      NumBytesAtAlign4 += LocalSize;
    }
  } else if (LocalAlignment == 8) {
    if (NumBytesAtAlign8 == 0) {
      // We have not seen any 8-byte aligned element yet. We insert a padding
      // only if the new Index is not 8-byte-aligned.
      if ((Index - LocalSize) % 8 != 0) {
        memmove(&Buffer[Index - 4], &Buffer[Index], NumBytesAtAlign4);
        Index -= 4;
      }
    } else {
      unsigned Padding = NumBytesAtAlign4 % 8;
      if (Padding == 0) {
        if (LocalSize % 8 == 0) {
          // Everything is set: there's no padding and we don't need to add
          // any.
        } else {
          assert(LocalSize % 8 == 4);
          // No existing padding; add in 4 bytes padding
          memmove(&Buffer[Index - 4], &Buffer[Index], NumBytesAtAlign4);
          Index -= 4;
        }
      } else {
        assert(Padding == 4);
        if (LocalSize % 8 == 0) {
          // Everything is set: there's 4 bytes padding and we don't need
          // to add any.
        } else {
          assert(LocalSize % 8 == 4);
          // There are 4 bytes padding, but we don't need any; remove it.
          memmove(&Buffer[Index + 4], &Buffer[Index], NumBytesAtAlign4);
          Index += 4;
        }
      }
    }

    // Forget about any padding.
    NumBytesAtAlign4 = 0;
    NumBytesAtAlign8 += LocalSize;
  } else {
    assert(LocalSize == 0);
  }

  Index -= LocalSize;

  assert(Capacity - Index == TypeLoc::getFullDataSizeForType(T) &&
         "incorrect data size provided to CreateTypeSourceInfo!");

  return getTemporaryTypeLoc(T);
}