summaryrefslogtreecommitdiff
path: root/lib/Sema/SemaExprCXX.cpp
blob: b9c8afa195fda2d3853d1b318053d7586896ea73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for C++ expressions.
//
//===----------------------------------------------------------------------===//

#include "Sema.h"
#include "SemaInit.h"
#include "Lookup.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Template.h"
#include "llvm/ADT/STLExtras.h"
using namespace clang;

Action::TypeTy *Sema::getDestructorName(SourceLocation TildeLoc,
                                        IdentifierInfo &II, 
                                        SourceLocation NameLoc,
                                        Scope *S, const CXXScopeSpec &SS,
                                        TypeTy *ObjectTypePtr,
                                        bool EnteringContext) {
  // Determine where to perform name lookup.

  // FIXME: This area of the standard is very messy, and the current
  // wording is rather unclear about which scopes we search for the
  // destructor name; see core issues 399 and 555. Issue 399 in
  // particular shows where the current description of destructor name
  // lookup is completely out of line with existing practice, e.g.,
  // this appears to be ill-formed:
  //
  //   namespace N {
  //     template <typename T> struct S {
  //       ~S();
  //     };
  //   }
  //
  //   void f(N::S<int>* s) {
  //     s->N::S<int>::~S();
  //   }
  //
  // See also PR6358 and PR6359.
  QualType SearchType;
  DeclContext *LookupCtx = 0;
  bool isDependent = false;
  bool LookInScope = false;

  // If we have an object type, it's because we are in a
  // pseudo-destructor-expression or a member access expression, and
  // we know what type we're looking for.
  if (ObjectTypePtr)
    SearchType = GetTypeFromParser(ObjectTypePtr);

  if (SS.isSet()) {
    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
    
    bool AlreadySearched = false;
    bool LookAtPrefix = true;
    if (!getLangOptions().CPlusPlus0x) {
      // C++ [basic.lookup.qual]p6:
      //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, 
      //   the type-names are looked up as types in the scope designated by the
      //   nested-name-specifier. In a qualified-id of the form:
      // 
      //     ::[opt] nested-name-specifier  ̃ class-name 
      //
      //   where the nested-name-specifier designates a namespace scope, and in
      //   a qualified-id of the form:
      //
      //     ::opt nested-name-specifier class-name ::  ̃ class-name 
      //
      //   the class-names are looked up as types in the scope designated by 
      //   the nested-name-specifier.
      //
      // Here, we check the first case (completely) and determine whether the
      // code below is permitted to look at the prefix of the 
      // nested-name-specifier (as we do in C++0x).
      DeclContext *DC = computeDeclContext(SS, EnteringContext);
      if (DC && DC->isFileContext()) {
        AlreadySearched = true;
        LookupCtx = DC;
        isDependent = false;
      } else if (DC && isa<CXXRecordDecl>(DC))
        LookAtPrefix = false;
    }
    
    // C++0x [basic.lookup.qual]p6:
    //   If a pseudo-destructor-name (5.2.4) contains a
    //   nested-name-specifier, the type-names are looked up as types
    //   in the scope designated by the nested-name-specifier. Similarly, in 
    //   a qualified-id of the form:
    //
    //     :: [opt] nested-name-specifier[opt] class-name :: ~class-name 
    //
    //   the second class-name is looked up in the same scope as the first.
    //
    // To implement this, we look at the prefix of the
    // nested-name-specifier we were given, and determine the lookup
    // context from that.
    //
    // We also fold in the second case from the C++03 rules quoted further 
    // above.
    NestedNameSpecifier *Prefix = 0;
    if (AlreadySearched) {
      // Nothing left to do.
    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
      CXXScopeSpec PrefixSS;
      PrefixSS.setScopeRep(Prefix);
      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
      isDependent = isDependentScopeSpecifier(PrefixSS);
    } else if (getLangOptions().CPlusPlus0x &&
               (LookupCtx = computeDeclContext(SS, EnteringContext))) {
      if (!LookupCtx->isTranslationUnit())
        LookupCtx = LookupCtx->getParent();
      isDependent = LookupCtx && LookupCtx->isDependentContext();
    } else if (ObjectTypePtr) {
      LookupCtx = computeDeclContext(SearchType);
      isDependent = SearchType->isDependentType();
    } else {
      LookupCtx = computeDeclContext(SS, EnteringContext);
      isDependent = LookupCtx && LookupCtx->isDependentContext();
    }
    
    LookInScope = false;
  } else if (ObjectTypePtr) {
    // C++ [basic.lookup.classref]p3:
    //   If the unqualified-id is ~type-name, the type-name is looked up
    //   in the context of the entire postfix-expression. If the type T
    //   of the object expression is of a class type C, the type-name is
    //   also looked up in the scope of class C. At least one of the
    //   lookups shall find a name that refers to (possibly
    //   cv-qualified) T.
    LookupCtx = computeDeclContext(SearchType);
    isDependent = SearchType->isDependentType();
    assert((isDependent || !SearchType->isIncompleteType()) && 
           "Caller should have completed object type");

    LookInScope = true;
  } else {
    // Perform lookup into the current scope (only).
    LookInScope = true;
  }

  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
  for (unsigned Step = 0; Step != 2; ++Step) {
    // Look for the name first in the computed lookup context (if we
    // have one) and, if that fails to find a match, in the sope (if
    // we're allowed to look there).
    Found.clear();
    if (Step == 0 && LookupCtx)
      LookupQualifiedName(Found, LookupCtx);
    else if (Step == 1 && LookInScope && S)
      LookupName(Found, S);
    else
      continue;

    // FIXME: Should we be suppressing ambiguities here?
    if (Found.isAmbiguous())
      return 0;

    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
      QualType T = Context.getTypeDeclType(Type);

      if (SearchType.isNull() || SearchType->isDependentType() ||
          Context.hasSameUnqualifiedType(T, SearchType)) {
        // We found our type!

        return T.getAsOpaquePtr();
      }
    }

    // If the name that we found is a class template name, and it is
    // the same name as the template name in the last part of the
    // nested-name-specifier (if present) or the object type, then
    // this is the destructor for that class.
    // FIXME: This is a workaround until we get real drafting for core
    // issue 399, for which there isn't even an obvious direction. 
    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
      QualType MemberOfType;
      if (SS.isSet()) {
        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
          // Figure out the type of the context, if it has one.
          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
            MemberOfType = Context.getTypeDeclType(Record);
        }
      }
      if (MemberOfType.isNull())
        MemberOfType = SearchType;
      
      if (MemberOfType.isNull())
        continue;

      // We're referring into a class template specialization. If the
      // class template we found is the same as the template being
      // specialized, we found what we are looking for.
      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
        if (ClassTemplateSpecializationDecl *Spec
              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
                Template->getCanonicalDecl())
            return MemberOfType.getAsOpaquePtr();
        }

        continue;
      }
      
      // We're referring to an unresolved class template
      // specialization. Determine whether we class template we found
      // is the same as the template being specialized or, if we don't
      // know which template is being specialized, that it at least
      // has the same name.
      if (const TemplateSpecializationType *SpecType
            = MemberOfType->getAs<TemplateSpecializationType>()) {
        TemplateName SpecName = SpecType->getTemplateName();

        // The class template we found is the same template being
        // specialized.
        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
            return MemberOfType.getAsOpaquePtr();

          continue;
        }

        // The class template we found has the same name as the
        // (dependent) template name being specialized.
        if (DependentTemplateName *DepTemplate 
                                    = SpecName.getAsDependentTemplateName()) {
          if (DepTemplate->isIdentifier() &&
              DepTemplate->getIdentifier() == Template->getIdentifier())
            return MemberOfType.getAsOpaquePtr();

          continue;
        }
      }
    }
  }

  if (isDependent) {
    // We didn't find our type, but that's okay: it's dependent
    // anyway.
    NestedNameSpecifier *NNS = 0;
    SourceRange Range;
    if (SS.isSet()) {
      NNS = (NestedNameSpecifier *)SS.getScopeRep();
      Range = SourceRange(SS.getRange().getBegin(), NameLoc);
    } else {
      NNS = NestedNameSpecifier::Create(Context, &II);
      Range = SourceRange(NameLoc);
    }

    return CheckTypenameType(NNS, II, Range).getAsOpaquePtr();
  }

  if (ObjectTypePtr)
    Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
      << &II;        
  else
    Diag(NameLoc, diag::err_destructor_class_name);

  return 0;
}

/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
Action::OwningExprResult
Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
  if (!StdNamespace)
    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));

  if (isType) {
    // C++ [expr.typeid]p4:
    //   The top-level cv-qualifiers of the lvalue expression or the type-id 
    //   that is the operand of typeid are always ignored.
    // FIXME: Preserve type source info.
    // FIXME: Preserve the type before we stripped the cv-qualifiers?
    QualType T = GetTypeFromParser(TyOrExpr);
    if (T.isNull())
      return ExprError();
    
    // C++ [expr.typeid]p4:
    //   If the type of the type-id is a class type or a reference to a class 
    //   type, the class shall be completely-defined.
    QualType CheckT = T;
    if (const ReferenceType *RefType = CheckT->getAs<ReferenceType>())
      CheckT = RefType->getPointeeType();
    
    if (CheckT->getAs<RecordType>() &&
        RequireCompleteType(OpLoc, CheckT, diag::err_incomplete_typeid))
      return ExprError();
    
    TyOrExpr = T.getUnqualifiedType().getAsOpaquePtr();
  }

  IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
  LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
  LookupQualifiedName(R, StdNamespace);
  RecordDecl *TypeInfoRecordDecl = R.getAsSingle<RecordDecl>();
  if (!TypeInfoRecordDecl)
    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));

  QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl);

  if (!isType) {
    bool isUnevaluatedOperand = true;
    Expr *E = static_cast<Expr *>(TyOrExpr);
    if (E && !E->isTypeDependent()) {
      QualType T = E->getType();
      if (const RecordType *RecordT = T->getAs<RecordType>()) {
        CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
        // C++ [expr.typeid]p3:
        //   [...] If the type of the expression is a class type, the class
        //   shall be completely-defined.
        if (RequireCompleteType(OpLoc, T, diag::err_incomplete_typeid))
          return ExprError();

        // C++ [expr.typeid]p3:
        //   When typeid is applied to an expression other than an lvalue of a
        //   polymorphic class type [...] [the] expression is an unevaluated
        //   operand. [...]
        if (RecordD->isPolymorphic() && E->isLvalue(Context) == Expr::LV_Valid)
          isUnevaluatedOperand = false;
      }

      // C++ [expr.typeid]p4:
      //   [...] If the type of the type-id is a reference to a possibly
      //   cv-qualified type, the result of the typeid expression refers to a 
      //   std::type_info object representing the cv-unqualified referenced 
      //   type.
      if (T.hasQualifiers()) {
        ImpCastExprToType(E, T.getUnqualifiedType(), CastExpr::CK_NoOp,
                          E->isLvalue(Context));
        TyOrExpr = E;
      }
    }

    // If this is an unevaluated operand, clear out the set of
    // declaration references we have been computing and eliminate any
    // temporaries introduced in its computation.
    if (isUnevaluatedOperand)
      ExprEvalContexts.back().Context = Unevaluated;
  }

  return Owned(new (Context) CXXTypeidExpr(isType, TyOrExpr,
                                           TypeInfoType.withConst(),
                                           SourceRange(OpLoc, RParenLoc)));
}

/// ActOnCXXBoolLiteral - Parse {true,false} literals.
Action::OwningExprResult
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
         "Unknown C++ Boolean value!");
  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
                                                Context.BoolTy, OpLoc));
}

/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
Action::OwningExprResult
Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
}

/// ActOnCXXThrow - Parse throw expressions.
Action::OwningExprResult
Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) {
  Expr *Ex = E.takeAs<Expr>();
  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
    return ExprError();
  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
}

/// CheckCXXThrowOperand - Validate the operand of a throw.
bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
  // C++ [except.throw]p3:
  //   A throw-expression initializes a temporary object, called the exception
  //   object, the type of which is determined by removing any top-level
  //   cv-qualifiers from the static type of the operand of throw and adjusting
  //   the type from "array of T" or "function returning T" to "pointer to T" 
  //   or "pointer to function returning T", [...]
  if (E->getType().hasQualifiers())
    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CastExpr::CK_NoOp,
                      E->isLvalue(Context) == Expr::LV_Valid);
  
  DefaultFunctionArrayConversion(E);

  //   If the type of the exception would be an incomplete type or a pointer
  //   to an incomplete type other than (cv) void the program is ill-formed.
  QualType Ty = E->getType();
  int isPointer = 0;
  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
    Ty = Ptr->getPointeeType();
    isPointer = 1;
  }
  if (!isPointer || !Ty->isVoidType()) {
    if (RequireCompleteType(ThrowLoc, Ty,
                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
                                            : diag::err_throw_incomplete)
                              << E->getSourceRange()))
      return true;

    // FIXME: This is just a hack to mark the copy constructor referenced.
    // This should go away when the next FIXME is fixed.
    const RecordType *RT = Ty->getAs<RecordType>();
    if (!RT)
      return false;

    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    if (RD->hasTrivialCopyConstructor())
      return false;
    CXXConstructorDecl *CopyCtor = RD->getCopyConstructor(Context, 0);
    MarkDeclarationReferenced(ThrowLoc, CopyCtor);
  }

  // FIXME: Construct a temporary here.
  return false;
}

Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
  /// is a non-lvalue expression whose value is the address of the object for
  /// which the function is called.

  if (!isa<FunctionDecl>(CurContext))
    return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));

  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext))
    if (MD->isInstance())
      return Owned(new (Context) CXXThisExpr(ThisLoc,
                                             MD->getThisType(Context),
                                             /*isImplicit=*/false));

  return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
}

/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
Action::OwningExprResult
Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
                                SourceLocation LParenLoc,
                                MultiExprArg exprs,
                                SourceLocation *CommaLocs,
                                SourceLocation RParenLoc) {
  if (!TypeRep)
    return ExprError();

  TypeSourceInfo *TInfo;
  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
  if (!TInfo)
    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
  unsigned NumExprs = exprs.size();
  Expr **Exprs = (Expr**)exprs.get();
  SourceLocation TyBeginLoc = TypeRange.getBegin();
  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);

  if (Ty->isDependentType() ||
      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
    exprs.release();

    return Owned(CXXUnresolvedConstructExpr::Create(Context,
                                                    TypeRange.getBegin(), Ty,
                                                    LParenLoc,
                                                    Exprs, NumExprs,
                                                    RParenLoc));
  }

  if (Ty->isArrayType())
    return ExprError(Diag(TyBeginLoc,
                          diag::err_value_init_for_array_type) << FullRange);
  if (!Ty->isVoidType() &&
      RequireCompleteType(TyBeginLoc, Ty,
                          PDiag(diag::err_invalid_incomplete_type_use)
                            << FullRange))
    return ExprError();
  
  if (RequireNonAbstractType(TyBeginLoc, Ty,
                             diag::err_allocation_of_abstract_type))
    return ExprError();


  // C++ [expr.type.conv]p1:
  // If the expression list is a single expression, the type conversion
  // expression is equivalent (in definedness, and if defined in meaning) to the
  // corresponding cast expression.
  //
  if (NumExprs == 1) {
    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
    CXXMethodDecl *Method = 0;
    if (CheckCastTypes(TypeRange, Ty, Exprs[0], Kind, Method,
                       /*FunctionalStyle=*/true))
      return ExprError();

    exprs.release();
    if (Method) {
      OwningExprResult CastArg 
        = BuildCXXCastArgument(TypeRange.getBegin(), Ty.getNonReferenceType(), 
                               Kind, Method, Owned(Exprs[0]));
      if (CastArg.isInvalid())
        return ExprError();

      Exprs[0] = CastArg.takeAs<Expr>();
    }

    return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(),
                                                     TInfo, TyBeginLoc, Kind,
                                                     Exprs[0], RParenLoc));
  }

  if (const RecordType *RT = Ty->getAs<RecordType>()) {
    CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());

    if (NumExprs > 1 || !Record->hasTrivialConstructor() ||
        !Record->hasTrivialDestructor()) {
      InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
      InitializationKind Kind
        = NumExprs ? InitializationKind::CreateDirect(TypeRange.getBegin(), 
                                                      LParenLoc, RParenLoc)
                   : InitializationKind::CreateValue(TypeRange.getBegin(), 
                                                     LParenLoc, RParenLoc);
      InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
                                                move(exprs));

      // FIXME: Improve AST representation?
      return move(Result);
    }

    // Fall through to value-initialize an object of class type that
    // doesn't have a user-declared default constructor.
  }

  // C++ [expr.type.conv]p1:
  // If the expression list specifies more than a single value, the type shall
  // be a class with a suitably declared constructor.
  //
  if (NumExprs > 1)
    return ExprError(Diag(CommaLocs[0],
                          diag::err_builtin_func_cast_more_than_one_arg)
      << FullRange);

  assert(NumExprs == 0 && "Expected 0 expressions");
  // C++ [expr.type.conv]p2:
  // The expression T(), where T is a simple-type-specifier for a non-array
  // complete object type or the (possibly cv-qualified) void type, creates an
  // rvalue of the specified type, which is value-initialized.
  //
  exprs.release();
  return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc));
}


/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
/// @code new (memory) int[size][4] @endcode
/// or
/// @code ::new Foo(23, "hello") @endcode
/// For the interpretation of this heap of arguments, consult the base version.
Action::OwningExprResult
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
                  SourceLocation PlacementRParen, bool ParenTypeId,
                  Declarator &D, SourceLocation ConstructorLParen,
                  MultiExprArg ConstructorArgs,
                  SourceLocation ConstructorRParen) {
  Expr *ArraySize = 0;
  // If the specified type is an array, unwrap it and save the expression.
  if (D.getNumTypeObjects() > 0 &&
      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
    DeclaratorChunk &Chunk = D.getTypeObject(0);
    if (Chunk.Arr.hasStatic)
      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
        << D.getSourceRange());
    if (!Chunk.Arr.NumElts)
      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
        << D.getSourceRange());

    if (ParenTypeId) {
      // Can't have dynamic array size when the type-id is in parentheses.
      Expr *NumElts = (Expr *)Chunk.Arr.NumElts;
      if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
          !NumElts->isIntegerConstantExpr(Context)) {
        Diag(D.getTypeObject(0).Loc, diag::err_new_paren_array_nonconst)
          << NumElts->getSourceRange();
        return ExprError();
      }
    }

    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
    D.DropFirstTypeObject();
  }

  // Every dimension shall be of constant size.
  if (ArraySize) {
    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
        break;

      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
      if (Expr *NumElts = (Expr *)Array.NumElts) {
        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
            !NumElts->isIntegerConstantExpr(Context)) {
          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
            << NumElts->getSourceRange();
          return ExprError();
        }
      }
    }
  }

  //FIXME: Store TypeSourceInfo in CXXNew expression.
  TypeSourceInfo *TInfo = 0;
  QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, &TInfo);
  if (D.isInvalidType())
    return ExprError();
    
  return BuildCXXNew(StartLoc, UseGlobal,
                     PlacementLParen,
                     move(PlacementArgs),
                     PlacementRParen,
                     ParenTypeId,
                     AllocType,
                     D.getSourceRange().getBegin(),
                     D.getSourceRange(),
                     Owned(ArraySize),
                     ConstructorLParen,
                     move(ConstructorArgs),
                     ConstructorRParen);
}

Sema::OwningExprResult
Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
                  SourceLocation PlacementLParen,
                  MultiExprArg PlacementArgs,
                  SourceLocation PlacementRParen,
                  bool ParenTypeId,
                  QualType AllocType,
                  SourceLocation TypeLoc,
                  SourceRange TypeRange,
                  ExprArg ArraySizeE,
                  SourceLocation ConstructorLParen,
                  MultiExprArg ConstructorArgs,
                  SourceLocation ConstructorRParen) {
  if (CheckAllocatedType(AllocType, TypeLoc, TypeRange))
    return ExprError();

  QualType ResultType = Context.getPointerType(AllocType);

  // That every array dimension except the first is constant was already
  // checked by the type check above.

  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
  //   or enumeration type with a non-negative value."
  Expr *ArraySize = (Expr *)ArraySizeE.get();
  if (ArraySize && !ArraySize->isTypeDependent()) {
    QualType SizeType = ArraySize->getType();
    if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
      return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
                            diag::err_array_size_not_integral)
        << SizeType << ArraySize->getSourceRange());
    // Let's see if this is a constant < 0. If so, we reject it out of hand.
    // We don't care about special rules, so we tell the machinery it's not
    // evaluated - it gives us a result in more cases.
    if (!ArraySize->isValueDependent()) {
      llvm::APSInt Value;
      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
        if (Value < llvm::APSInt(
                        llvm::APInt::getNullValue(Value.getBitWidth()), 
                                 Value.isUnsigned()))
          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
                           diag::err_typecheck_negative_array_size)
            << ArraySize->getSourceRange());
      }
    }
    
    ImpCastExprToType(ArraySize, Context.getSizeType(),
                      CastExpr::CK_IntegralCast);
  }

  FunctionDecl *OperatorNew = 0;
  FunctionDecl *OperatorDelete = 0;
  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
  unsigned NumPlaceArgs = PlacementArgs.size();
  
  if (!AllocType->isDependentType() &&
      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
      FindAllocationFunctions(StartLoc,
                              SourceRange(PlacementLParen, PlacementRParen),
                              UseGlobal, AllocType, ArraySize, PlaceArgs,
                              NumPlaceArgs, OperatorNew, OperatorDelete))
    return ExprError();
  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
  if (OperatorNew) {
    // Add default arguments, if any.
    const FunctionProtoType *Proto = 
      OperatorNew->getType()->getAs<FunctionProtoType>();
    VariadicCallType CallType = 
      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
    bool Invalid = GatherArgumentsForCall(PlacementLParen, OperatorNew,
                                          Proto, 1, PlaceArgs, NumPlaceArgs, 
                                          AllPlaceArgs, CallType);
    if (Invalid)
      return ExprError();
    
    NumPlaceArgs = AllPlaceArgs.size();
    if (NumPlaceArgs > 0)
      PlaceArgs = &AllPlaceArgs[0];
  }
  
  bool Init = ConstructorLParen.isValid();
  // --- Choosing a constructor ---
  CXXConstructorDecl *Constructor = 0;
  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
  unsigned NumConsArgs = ConstructorArgs.size();
  ASTOwningVector<&ActionBase::DeleteExpr> ConvertedConstructorArgs(*this);

  if (!AllocType->isDependentType() &&
      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
    // C++0x [expr.new]p15:
    //   A new-expression that creates an object of type T initializes that
    //   object as follows:
    InitializationKind Kind
    //     - If the new-initializer is omitted, the object is default-
    //       initialized (8.5); if no initialization is performed,
    //       the object has indeterminate value
      = !Init? InitializationKind::CreateDefault(TypeLoc)
    //     - Otherwise, the new-initializer is interpreted according to the 
    //       initialization rules of 8.5 for direct-initialization.
             : InitializationKind::CreateDirect(TypeLoc,
                                                ConstructorLParen, 
                                                ConstructorRParen);
    
    InitializedEntity Entity
      = InitializedEntity::InitializeNew(StartLoc, AllocType);
    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
    OwningExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 
                                                move(ConstructorArgs));
    if (FullInit.isInvalid())
      return ExprError();
    
    // FullInit is our initializer; walk through it to determine if it's a 
    // constructor call, which CXXNewExpr handles directly.
    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
      if (CXXBindTemporaryExpr *Binder
            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
        FullInitExpr = Binder->getSubExpr();
      if (CXXConstructExpr *Construct
                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
        Constructor = Construct->getConstructor();
        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
                                         AEnd = Construct->arg_end();
             A != AEnd; ++A)
          ConvertedConstructorArgs.push_back(A->Retain());
      } else {
        // Take the converted initializer.
        ConvertedConstructorArgs.push_back(FullInit.release());
      }
    } else {
      // No initialization required.
    }
    
    // Take the converted arguments and use them for the new expression.
    NumConsArgs = ConvertedConstructorArgs.size();
    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
  }
  
  // Mark the new and delete operators as referenced.
  if (OperatorNew)
    MarkDeclarationReferenced(StartLoc, OperatorNew);
  if (OperatorDelete)
    MarkDeclarationReferenced(StartLoc, OperatorDelete);

  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
  
  PlacementArgs.release();
  ConstructorArgs.release();
  ArraySizeE.release();
  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
                                        PlaceArgs, NumPlaceArgs, ParenTypeId,
                                        ArraySize, Constructor, Init,
                                        ConsArgs, NumConsArgs, OperatorDelete,
                                        ResultType, StartLoc,
                                        Init ? ConstructorRParen :
                                               SourceLocation()));
}

/// CheckAllocatedType - Checks that a type is suitable as the allocated type
/// in a new-expression.
/// dimension off and stores the size expression in ArraySize.
bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
                              SourceRange R) {
  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
  //   abstract class type or array thereof.
  if (AllocType->isFunctionType())
    return Diag(Loc, diag::err_bad_new_type)
      << AllocType << 0 << R;
  else if (AllocType->isReferenceType())
    return Diag(Loc, diag::err_bad_new_type)
      << AllocType << 1 << R;
  else if (!AllocType->isDependentType() &&
           RequireCompleteType(Loc, AllocType,
                               PDiag(diag::err_new_incomplete_type)
                                 << R))
    return true;
  else if (RequireNonAbstractType(Loc, AllocType,
                                  diag::err_allocation_of_abstract_type))
    return true;

  return false;
}

/// \brief Determine whether the given function is a non-placement
/// deallocation function.
static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
  if (FD->isInvalidDecl())
    return false;

  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
    return Method->isUsualDeallocationFunction();

  return ((FD->getOverloadedOperator() == OO_Delete ||
           FD->getOverloadedOperator() == OO_Array_Delete) &&
          FD->getNumParams() == 1);
}

/// FindAllocationFunctions - Finds the overloads of operator new and delete
/// that are appropriate for the allocation.
bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
                                   bool UseGlobal, QualType AllocType,
                                   bool IsArray, Expr **PlaceArgs,
                                   unsigned NumPlaceArgs,
                                   FunctionDecl *&OperatorNew,
                                   FunctionDecl *&OperatorDelete) {
  // --- Choosing an allocation function ---
  // C++ 5.3.4p8 - 14 & 18
  // 1) If UseGlobal is true, only look in the global scope. Else, also look
  //   in the scope of the allocated class.
  // 2) If an array size is given, look for operator new[], else look for
  //   operator new.
  // 3) The first argument is always size_t. Append the arguments from the
  //   placement form.

  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
  // We don't care about the actual value of this argument.
  // FIXME: Should the Sema create the expression and embed it in the syntax
  // tree? Or should the consumer just recalculate the value?
  IntegerLiteral Size(llvm::APInt::getNullValue(
                      Context.Target.getPointerWidth(0)),
                      Context.getSizeType(),
                      SourceLocation());
  AllocArgs[0] = &Size;
  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);

  // C++ [expr.new]p8:
  //   If the allocated type is a non-array type, the allocation
  //   function’s name is operator new and the deallocation function’s
  //   name is operator delete. If the allocated type is an array
  //   type, the allocation function’s name is operator new[] and the
  //   deallocation function’s name is operator delete[].
  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
                                        IsArray ? OO_Array_New : OO_New);
  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
                                        IsArray ? OO_Array_Delete : OO_Delete);

  if (AllocType->isRecordType() && !UseGlobal) {
    CXXRecordDecl *Record
      = cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl());
    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
                          AllocArgs.size(), Record, /*AllowMissing=*/true,
                          OperatorNew))
      return true;
  }
  if (!OperatorNew) {
    // Didn't find a member overload. Look for a global one.
    DeclareGlobalNewDelete();
    DeclContext *TUDecl = Context.getTranslationUnitDecl();
    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
                          OperatorNew))
      return true;
  }

  // FindAllocationOverload can change the passed in arguments, so we need to
  // copy them back.
  if (NumPlaceArgs > 0)
    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);

  // C++ [expr.new]p19:
  //
  //   If the new-expression begins with a unary :: operator, the
  //   deallocation function’s name is looked up in the global
  //   scope. Otherwise, if the allocated type is a class type T or an
  //   array thereof, the deallocation function’s name is looked up in
  //   the scope of T. If this lookup fails to find the name, or if
  //   the allocated type is not a class type or array thereof, the
  //   deallocation function’s name is looked up in the global scope.
  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
  if (AllocType->isRecordType() && !UseGlobal) {
    CXXRecordDecl *RD
      = cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl());
    LookupQualifiedName(FoundDelete, RD);
  }

  if (FoundDelete.empty()) {
    DeclareGlobalNewDelete();
    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
  }

  FoundDelete.suppressDiagnostics();
  llvm::SmallVector<NamedDecl *, 4> Matches;
  if (NumPlaceArgs > 1) {
    // C++ [expr.new]p20:
    //   A declaration of a placement deallocation function matches the
    //   declaration of a placement allocation function if it has the
    //   same number of parameters and, after parameter transformations
    //   (8.3.5), all parameter types except the first are
    //   identical. [...]
    // 
    // To perform this comparison, we compute the function type that
    // the deallocation function should have, and use that type both
    // for template argument deduction and for comparison purposes.
    QualType ExpectedFunctionType;
    {
      const FunctionProtoType *Proto
        = OperatorNew->getType()->getAs<FunctionProtoType>();
      llvm::SmallVector<QualType, 4> ArgTypes;
      ArgTypes.push_back(Context.VoidPtrTy); 
      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
        ArgTypes.push_back(Proto->getArgType(I));

      ExpectedFunctionType
        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
                                  ArgTypes.size(),
                                  Proto->isVariadic(),
                                  0, false, false, 0, 0, false, CC_Default);
    }

    for (LookupResult::iterator D = FoundDelete.begin(), 
                             DEnd = FoundDelete.end();
         D != DEnd; ++D) {
      FunctionDecl *Fn = 0;
      if (FunctionTemplateDecl *FnTmpl 
            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
        // Perform template argument deduction to try to match the
        // expected function type.
        TemplateDeductionInfo Info(Context, StartLoc);
        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
          continue;
      } else
        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());

      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
        Matches.push_back(Fn);
    }
  } else {
    // C++ [expr.new]p20:
    //   [...] Any non-placement deallocation function matches a
    //   non-placement allocation function. [...]
    for (LookupResult::iterator D = FoundDelete.begin(), 
                             DEnd = FoundDelete.end();
         D != DEnd; ++D) {
      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
        if (isNonPlacementDeallocationFunction(Fn))
          Matches.push_back(*D);
    }
  }

  // C++ [expr.new]p20:
  //   [...] If the lookup finds a single matching deallocation
  //   function, that function will be called; otherwise, no
  //   deallocation function will be called.
  if (Matches.size() == 1) {
    // FIXME: Drops access, using-declaration info!
    OperatorDelete = cast<FunctionDecl>(Matches[0]->getUnderlyingDecl());

    // C++0x [expr.new]p20:
    //   If the lookup finds the two-parameter form of a usual
    //   deallocation function (3.7.4.2) and that function, considered
    //   as a placement deallocation function, would have been
    //   selected as a match for the allocation function, the program
    //   is ill-formed.
    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
        isNonPlacementDeallocationFunction(OperatorDelete)) {
      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
        << SourceRange(PlaceArgs[0]->getLocStart(), 
                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
        << DeleteName;
    }
  }

  return false;
}

/// FindAllocationOverload - Find an fitting overload for the allocation
/// function in the specified scope.
bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
                                  DeclarationName Name, Expr** Args,
                                  unsigned NumArgs, DeclContext *Ctx,
                                  bool AllowMissing, FunctionDecl *&Operator) {
  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
  LookupQualifiedName(R, Ctx);
  if (R.empty()) {
    if (AllowMissing)
      return false;
    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
      << Name << Range;
  }

  // FIXME: handle ambiguity

  OverloadCandidateSet Candidates(StartLoc);
  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 
       Alloc != AllocEnd; ++Alloc) {
    // Even member operator new/delete are implicitly treated as
    // static, so don't use AddMemberCandidate.

    if (FunctionTemplateDecl *FnTemplate = 
          dyn_cast<FunctionTemplateDecl>((*Alloc)->getUnderlyingDecl())) {
      AddTemplateOverloadCandidate(FnTemplate, Alloc.getAccess(),
                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
                                   Candidates,
                                   /*SuppressUserConversions=*/false);
      continue;
    }

    FunctionDecl *Fn = cast<FunctionDecl>((*Alloc)->getUnderlyingDecl());
    AddOverloadCandidate(Fn, Alloc.getAccess(), Args, NumArgs, Candidates,
                         /*SuppressUserConversions=*/false);
  }

  // Do the resolution.
  OverloadCandidateSet::iterator Best;
  switch(BestViableFunction(Candidates, StartLoc, Best)) {
  case OR_Success: {
    // Got one!
    FunctionDecl *FnDecl = Best->Function;
    // The first argument is size_t, and the first parameter must be size_t,
    // too. This is checked on declaration and can be assumed. (It can't be
    // asserted on, though, since invalid decls are left in there.)
    // Whatch out for variadic allocator function.
    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
      if (PerformCopyInitialization(Args[i],
                                    FnDecl->getParamDecl(i)->getType(),
                                    AA_Passing))
        return true;
    }
    Operator = FnDecl;
    return false;
  }

  case OR_No_Viable_Function:
    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
      << Name << Range;
    PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs);
    return true;

  case OR_Ambiguous:
    Diag(StartLoc, diag::err_ovl_ambiguous_call)
      << Name << Range;
    PrintOverloadCandidates(Candidates, OCD_ViableCandidates, Args, NumArgs);
    return true;

  case OR_Deleted:
    Diag(StartLoc, diag::err_ovl_deleted_call)
      << Best->Function->isDeleted()
      << Name << Range;
    PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs);
    return true;
  }
  assert(false && "Unreachable, bad result from BestViableFunction");
  return true;
}


/// DeclareGlobalNewDelete - Declare the global forms of operator new and
/// delete. These are:
/// @code
///   void* operator new(std::size_t) throw(std::bad_alloc);
///   void* operator new[](std::size_t) throw(std::bad_alloc);
///   void operator delete(void *) throw();
///   void operator delete[](void *) throw();
/// @endcode
/// Note that the placement and nothrow forms of new are *not* implicitly
/// declared. Their use requires including \<new\>.
void Sema::DeclareGlobalNewDelete() {
  if (GlobalNewDeleteDeclared)
    return;
  
  // C++ [basic.std.dynamic]p2:
  //   [...] The following allocation and deallocation functions (18.4) are 
  //   implicitly declared in global scope in each translation unit of a 
  //   program
  //   
  //     void* operator new(std::size_t) throw(std::bad_alloc);
  //     void* operator new[](std::size_t) throw(std::bad_alloc); 
  //     void  operator delete(void*) throw(); 
  //     void  operator delete[](void*) throw();
  //
  //   These implicit declarations introduce only the function names operator 
  //   new, operator new[], operator delete, operator delete[].
  //
  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
  // "std" or "bad_alloc" as necessary to form the exception specification.
  // However, we do not make these implicit declarations visible to name
  // lookup.
  if (!StdNamespace) {
    // The "std" namespace has not yet been defined, so build one implicitly.
    StdNamespace = NamespaceDecl::Create(Context, 
                                         Context.getTranslationUnitDecl(),
                                         SourceLocation(),
                                         &PP.getIdentifierTable().get("std"));
    StdNamespace->setImplicit(true);
  }
  
  if (!StdBadAlloc) {
    // The "std::bad_alloc" class has not yet been declared, so build it
    // implicitly.
    StdBadAlloc = CXXRecordDecl::Create(Context, TagDecl::TK_class, 
                                        StdNamespace, 
                                        SourceLocation(), 
                                      &PP.getIdentifierTable().get("bad_alloc"), 
                                        SourceLocation(), 0);
    StdBadAlloc->setImplicit(true);
  }
  
  GlobalNewDeleteDeclared = true;

  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
  QualType SizeT = Context.getSizeType();
  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;

  DeclareGlobalAllocationFunction(
      Context.DeclarationNames.getCXXOperatorName(OO_New),
      VoidPtr, SizeT, AssumeSaneOperatorNew);
  DeclareGlobalAllocationFunction(
      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
      VoidPtr, SizeT, AssumeSaneOperatorNew);
  DeclareGlobalAllocationFunction(
      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
      Context.VoidTy, VoidPtr);
  DeclareGlobalAllocationFunction(
      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
      Context.VoidTy, VoidPtr);
}

/// DeclareGlobalAllocationFunction - Declares a single implicit global
/// allocation function if it doesn't already exist.
void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
                                           QualType Return, QualType Argument,
                                           bool AddMallocAttr) {
  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();

  // Check if this function is already declared.
  {
    DeclContext::lookup_iterator Alloc, AllocEnd;
    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
         Alloc != AllocEnd; ++Alloc) {
      // Only look at non-template functions, as it is the predefined,
      // non-templated allocation function we are trying to declare here.
      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
        QualType InitialParamType =
          Context.getCanonicalType(
            Func->getParamDecl(0)->getType().getUnqualifiedType());
        // FIXME: Do we need to check for default arguments here?
        if (Func->getNumParams() == 1 && InitialParamType == Argument)
          return;
      }
    }
  }

  QualType BadAllocType;
  bool HasBadAllocExceptionSpec 
    = (Name.getCXXOverloadedOperator() == OO_New ||
       Name.getCXXOverloadedOperator() == OO_Array_New);
  if (HasBadAllocExceptionSpec) {
    assert(StdBadAlloc && "Must have std::bad_alloc declared");
    BadAllocType = Context.getTypeDeclType(StdBadAlloc);
  }
  
  QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0,
                                            true, false,
                                            HasBadAllocExceptionSpec? 1 : 0,
                                            &BadAllocType, false, CC_Default);
  FunctionDecl *Alloc =
    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
                         FnType, /*TInfo=*/0, FunctionDecl::None, false, true);
  Alloc->setImplicit();
  
  if (AddMallocAttr)
    Alloc->addAttr(::new (Context) MallocAttr());
  
  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
                                           0, Argument, /*TInfo=*/0,
                                           VarDecl::None, 0);
  Alloc->setParams(&Param, 1);

  // FIXME: Also add this declaration to the IdentifierResolver, but
  // make sure it is at the end of the chain to coincide with the
  // global scope.
  ((DeclContext *)TUScope->getEntity())->addDecl(Alloc);
}

bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
                                    DeclarationName Name,
                                    FunctionDecl* &Operator) {
  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
  // Try to find operator delete/operator delete[] in class scope.
  LookupQualifiedName(Found, RD);
  
  if (Found.isAmbiguous())
    return true;

  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
       F != FEnd; ++F) {
    if (CXXMethodDecl *Delete = dyn_cast<CXXMethodDecl>(*F))
      if (Delete->isUsualDeallocationFunction()) {
        Operator = Delete;
        return false;
      }
  }

  // We did find operator delete/operator delete[] declarations, but
  // none of them were suitable.
  if (!Found.empty()) {
    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
      << Name << RD;
        
    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
         F != FEnd; ++F) {
      Diag((*F)->getLocation(), 
           diag::note_delete_member_function_declared_here)
        << Name;
    }

    return true;
  }

  // Look for a global declaration.
  DeclareGlobalNewDelete();
  DeclContext *TUDecl = Context.getTranslationUnitDecl();
  
  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
  Expr* DeallocArgs[1];
  DeallocArgs[0] = &Null;
  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
                             Operator))
    return true;

  assert(Operator && "Did not find a deallocation function!");
  return false;
}

/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
/// @code ::delete ptr; @endcode
/// or
/// @code delete [] ptr; @endcode
Action::OwningExprResult
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
                     bool ArrayForm, ExprArg Operand) {
  // C++ [expr.delete]p1:
  //   The operand shall have a pointer type, or a class type having a single
  //   conversion function to a pointer type. The result has type void.
  //
  // DR599 amends "pointer type" to "pointer to object type" in both cases.

  FunctionDecl *OperatorDelete = 0;

  Expr *Ex = (Expr *)Operand.get();
  if (!Ex->isTypeDependent()) {
    QualType Type = Ex->getType();

    if (const RecordType *Record = Type->getAs<RecordType>()) {
      llvm::SmallVector<CXXConversionDecl *, 4> ObjectPtrConversions;
      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
      
      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
             E = Conversions->end(); I != E; ++I) {
        // Skip over templated conversion functions; they aren't considered.
        if (isa<FunctionTemplateDecl>(*I))
          continue;
        
        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
        
        QualType ConvType = Conv->getConversionType().getNonReferenceType();
        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
          if (ConvPtrType->getPointeeType()->isObjectType())
            ObjectPtrConversions.push_back(Conv);
      }
      if (ObjectPtrConversions.size() == 1) {
        // We have a single conversion to a pointer-to-object type. Perform
        // that conversion.
        Operand.release();
        if (!PerformImplicitConversion(Ex, 
                            ObjectPtrConversions.front()->getConversionType(), 
                                      AA_Converting)) {
          Operand = Owned(Ex);
          Type = Ex->getType();
        }
      }
      else if (ObjectPtrConversions.size() > 1) {
        Diag(StartLoc, diag::err_ambiguous_delete_operand)
              << Type << Ex->getSourceRange();
        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) {
          CXXConversionDecl *Conv = ObjectPtrConversions[i];
          NoteOverloadCandidate(Conv);
        }
        return ExprError();
      }
    }

    if (!Type->isPointerType())
      return ExprError(Diag(StartLoc, diag::err_delete_operand)
        << Type << Ex->getSourceRange());

    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
    if (Pointee->isFunctionType() || Pointee->isVoidType())
      return ExprError(Diag(StartLoc, diag::err_delete_operand)
        << Type << Ex->getSourceRange());
    else if (!Pointee->isDependentType() &&
             RequireCompleteType(StartLoc, Pointee,
                                 PDiag(diag::warn_delete_incomplete)
                                   << Ex->getSourceRange()))
      return ExprError();

    // C++ [expr.delete]p2:
    //   [Note: a pointer to a const type can be the operand of a 
    //   delete-expression; it is not necessary to cast away the constness 
    //   (5.2.11) of the pointer expression before it is used as the operand 
    //   of the delete-expression. ]
    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy), 
                      CastExpr::CK_NoOp);
    
    // Update the operand.
    Operand.take();
    Operand = ExprArg(*this, Ex);
    
    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
                                      ArrayForm ? OO_Array_Delete : OO_Delete);

    if (const RecordType *RT = Pointee->getAs<RecordType>()) {
      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());

      if (!UseGlobal && 
          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
        return ExprError();
      
      if (!RD->hasTrivialDestructor())
        if (const CXXDestructorDecl *Dtor = RD->getDestructor(Context))
          MarkDeclarationReferenced(StartLoc,
                                    const_cast<CXXDestructorDecl*>(Dtor));
    }
    
    if (!OperatorDelete) {
      // Look for a global declaration.
      DeclareGlobalNewDelete();
      DeclContext *TUDecl = Context.getTranslationUnitDecl();
      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
                                 OperatorDelete))
        return ExprError();
    }

    // FIXME: Check access and ambiguity of operator delete and destructor.
  }

  Operand.release();
  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
                                           OperatorDelete, Ex, StartLoc));
}

/// \brief Check the use of the given variable as a C++ condition in an if,
/// while, do-while, or switch statement.
Action::OwningExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar) {
  QualType T = ConditionVar->getType();
  
  // C++ [stmt.select]p2:
  //   The declarator shall not specify a function or an array.
  if (T->isFunctionType())
    return ExprError(Diag(ConditionVar->getLocation(), 
                          diag::err_invalid_use_of_function_type)
                       << ConditionVar->getSourceRange());
  else if (T->isArrayType())
    return ExprError(Diag(ConditionVar->getLocation(), 
                          diag::err_invalid_use_of_array_type)
                     << ConditionVar->getSourceRange());

  return Owned(DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
                                   ConditionVar->getLocation(), 
                                ConditionVar->getType().getNonReferenceType()));
}

/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
  // C++ 6.4p4:
  // The value of a condition that is an initialized declaration in a statement
  // other than a switch statement is the value of the declared variable
  // implicitly converted to type bool. If that conversion is ill-formed, the
  // program is ill-formed.
  // The value of a condition that is an expression is the value of the
  // expression, implicitly converted to bool.
  //
  return PerformContextuallyConvertToBool(CondExpr);
}

/// Helper function to determine whether this is the (deprecated) C++
/// conversion from a string literal to a pointer to non-const char or
/// non-const wchar_t (for narrow and wide string literals,
/// respectively).
bool
Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
  // Look inside the implicit cast, if it exists.
  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
    From = Cast->getSubExpr();

  // A string literal (2.13.4) that is not a wide string literal can
  // be converted to an rvalue of type "pointer to char"; a wide
  // string literal can be converted to an rvalue of type "pointer
  // to wchar_t" (C++ 4.2p2).
  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
      if (const BuiltinType *ToPointeeType
          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
        // This conversion is considered only when there is an
        // explicit appropriate pointer target type (C++ 4.2p2).
        if (!ToPtrType->getPointeeType().hasQualifiers() &&
            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
             (!StrLit->isWide() &&
              (ToPointeeType->getKind() == BuiltinType::Char_U ||
               ToPointeeType->getKind() == BuiltinType::Char_S))))
          return true;
      }

  return false;
}

/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType. Returns true if there was an
/// error, false otherwise. The expression From is replaced with the
/// converted expression. Flavor is the kind of conversion we're
/// performing, used in the error message. If @p AllowExplicit,
/// explicit user-defined conversions are permitted. @p Elidable should be true
/// when called for copies which may be elided (C++ 12.8p15). C++0x overload
/// resolution works differently in that case.
bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
                                AssignmentAction Action, bool AllowExplicit,
                                bool Elidable) {
  ImplicitConversionSequence ICS;
  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, 
                                   Elidable, ICS);
}

bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
                                AssignmentAction Action, bool AllowExplicit,
                                bool Elidable,
                                ImplicitConversionSequence& ICS) {
  ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
  if (Elidable && getLangOptions().CPlusPlus0x) {
    ICS = TryImplicitConversion(From, ToType,
                                /*SuppressUserConversions=*/false,
                                AllowExplicit,
                                /*ForceRValue=*/true,
                                /*InOverloadResolution=*/false);
  }
  if (ICS.isBad()) {
    ICS = TryImplicitConversion(From, ToType,
                                /*SuppressUserConversions=*/false,
                                AllowExplicit,
                                /*ForceRValue=*/false,
                                /*InOverloadResolution=*/false);
  }
  return PerformImplicitConversion(From, ToType, ICS, Action);
}

/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType using the pre-computed implicit
/// conversion sequence ICS. Returns true if there was an error, false
/// otherwise. The expression From is replaced with the converted
/// expression. Action is the kind of conversion we're performing,
/// used in the error message.
bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
                                const ImplicitConversionSequence &ICS,
                                AssignmentAction Action, bool IgnoreBaseAccess) {
  switch (ICS.getKind()) {
  case ImplicitConversionSequence::StandardConversion:
    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
                                  IgnoreBaseAccess))
      return true;
    break;

  case ImplicitConversionSequence::UserDefinedConversion: {
    
      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
      CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
      QualType BeforeToType;
      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
        CastKind = CastExpr::CK_UserDefinedConversion;
        
        // If the user-defined conversion is specified by a conversion function,
        // the initial standard conversion sequence converts the source type to
        // the implicit object parameter of the conversion function.
        BeforeToType = Context.getTagDeclType(Conv->getParent());
      } else if (const CXXConstructorDecl *Ctor = 
                  dyn_cast<CXXConstructorDecl>(FD)) {
        CastKind = CastExpr::CK_ConstructorConversion;
        // Do no conversion if dealing with ... for the first conversion.
        if (!ICS.UserDefined.EllipsisConversion) {
          // If the user-defined conversion is specified by a constructor, the 
          // initial standard conversion sequence converts the source type to the
          // type required by the argument of the constructor
          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
        }
      }    
      else
        assert(0 && "Unknown conversion function kind!");
      // Whatch out for elipsis conversion.
      if (!ICS.UserDefined.EllipsisConversion) {
        if (PerformImplicitConversion(From, BeforeToType, 
                                      ICS.UserDefined.Before, AA_Converting,
                                      IgnoreBaseAccess))
          return true;
      }
    
      OwningExprResult CastArg 
        = BuildCXXCastArgument(From->getLocStart(),
                               ToType.getNonReferenceType(),
                               CastKind, cast<CXXMethodDecl>(FD), 
                               Owned(From));

      if (CastArg.isInvalid())
        return true;

      From = CastArg.takeAs<Expr>();

      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
                                       AA_Converting, IgnoreBaseAccess);
  }

  case ImplicitConversionSequence::AmbiguousConversion:
    DiagnoseAmbiguousConversion(ICS, From->getExprLoc(),
                          PDiag(diag::err_typecheck_ambiguous_condition)
                            << From->getSourceRange());
     return true;
      
  case ImplicitConversionSequence::EllipsisConversion:
    assert(false && "Cannot perform an ellipsis conversion");
    return false;

  case ImplicitConversionSequence::BadConversion:
    return true;
  }

  // Everything went well.
  return false;
}

/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType by following the standard
/// conversion sequence SCS. Returns true if there was an error, false
/// otherwise. The expression From is replaced with the converted
/// expression. Flavor is the context in which we're performing this
/// conversion, for use in error messages.
bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
                                const StandardConversionSequence& SCS,
                                AssignmentAction Action, bool IgnoreBaseAccess) {
  // Overall FIXME: we are recomputing too many types here and doing far too
  // much extra work. What this means is that we need to keep track of more
  // information that is computed when we try the implicit conversion initially,
  // so that we don't need to recompute anything here.
  QualType FromType = From->getType();

  if (SCS.CopyConstructor) {
    // FIXME: When can ToType be a reference type?
    assert(!ToType->isReferenceType());
    if (SCS.Second == ICK_Derived_To_Base) {
      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
                                  MultiExprArg(*this, (void **)&From, 1),
                                  /*FIXME:ConstructLoc*/SourceLocation(), 
                                  ConstructorArgs))
        return true;
      OwningExprResult FromResult =
        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
                              ToType, SCS.CopyConstructor,
                              move_arg(ConstructorArgs));
      if (FromResult.isInvalid())
        return true;
      From = FromResult.takeAs<Expr>();
      return false;
    }
    OwningExprResult FromResult =
      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
                            ToType, SCS.CopyConstructor,
                            MultiExprArg(*this, (void**)&From, 1));

    if (FromResult.isInvalid())
      return true;

    From = FromResult.takeAs<Expr>();
    return false;
  }

  // Perform the first implicit conversion.
  switch (SCS.First) {
  case ICK_Identity:
  case ICK_Lvalue_To_Rvalue:
    // Nothing to do.
    break;

  case ICK_Array_To_Pointer:
    FromType = Context.getArrayDecayedType(FromType);
    ImpCastExprToType(From, FromType, CastExpr::CK_ArrayToPointerDecay);
    break;

  case ICK_Function_To_Pointer:
    if (Context.getCanonicalType(FromType) == Context.OverloadTy) {
      FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true);
      if (!Fn)
        return true;

      if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
        return true;

      From = FixOverloadedFunctionReference(From, Fn);
      FromType = From->getType();
        
      // If there's already an address-of operator in the expression, we have
      // the right type already, and the code below would just introduce an
      // invalid additional pointer level.
      if (FromType->isPointerType() || FromType->isMemberFunctionPointerType())
        break;
    }
    FromType = Context.getPointerType(FromType);
    ImpCastExprToType(From, FromType, CastExpr::CK_FunctionToPointerDecay);
    break;

  default:
    assert(false && "Improper first standard conversion");
    break;
  }

  // Perform the second implicit conversion
  switch (SCS.Second) {
  case ICK_Identity:
    // If both sides are functions (or pointers/references to them), there could
    // be incompatible exception declarations.
    if (CheckExceptionSpecCompatibility(From, ToType))
      return true;
    // Nothing else to do.
    break;

  case ICK_NoReturn_Adjustment:
    // If both sides are functions (or pointers/references to them), there could
    // be incompatible exception declarations.
    if (CheckExceptionSpecCompatibility(From, ToType))
      return true;      
      
    ImpCastExprToType(From, Context.getNoReturnType(From->getType(), false),
                      CastExpr::CK_NoOp);
    break;
      
  case ICK_Integral_Promotion:
  case ICK_Integral_Conversion:
    ImpCastExprToType(From, ToType, CastExpr::CK_IntegralCast);
    break;

  case ICK_Floating_Promotion:
  case ICK_Floating_Conversion:
    ImpCastExprToType(From, ToType, CastExpr::CK_FloatingCast);
    break;

  case ICK_Complex_Promotion:
  case ICK_Complex_Conversion:
    ImpCastExprToType(From, ToType, CastExpr::CK_Unknown);
    break;

  case ICK_Floating_Integral:
    if (ToType->isFloatingType())
      ImpCastExprToType(From, ToType, CastExpr::CK_IntegralToFloating);
    else
      ImpCastExprToType(From, ToType, CastExpr::CK_FloatingToIntegral);
    break;

  case ICK_Complex_Real:
    ImpCastExprToType(From, ToType, CastExpr::CK_Unknown);
    break;

  case ICK_Compatible_Conversion:
    ImpCastExprToType(From, ToType, CastExpr::CK_NoOp);
    break;

  case ICK_Pointer_Conversion: {
    if (SCS.IncompatibleObjC) {
      // Diagnose incompatible Objective-C conversions
      Diag(From->getSourceRange().getBegin(),
           diag::ext_typecheck_convert_incompatible_pointer)
        << From->getType() << ToType << Action
        << From->getSourceRange();
    }

    
    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
    if (CheckPointerConversion(From, ToType, Kind, IgnoreBaseAccess))
      return true;
    ImpCastExprToType(From, ToType, Kind);
    break;
  }
  
  case ICK_Pointer_Member: {
    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
    if (CheckMemberPointerConversion(From, ToType, Kind, IgnoreBaseAccess))
      return true;
    if (CheckExceptionSpecCompatibility(From, ToType))
      return true;
    ImpCastExprToType(From, ToType, Kind);
    break;
  }
  case ICK_Boolean_Conversion: {
    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
    if (FromType->isMemberPointerType())
      Kind = CastExpr::CK_MemberPointerToBoolean;
    
    ImpCastExprToType(From, Context.BoolTy, Kind);
    break;
  }

  case ICK_Derived_To_Base:
    if (CheckDerivedToBaseConversion(From->getType(), 
                                     ToType.getNonReferenceType(),
                                     From->getLocStart(),
                                     From->getSourceRange(),
                                     IgnoreBaseAccess))
      return true;
    ImpCastExprToType(From, ToType.getNonReferenceType(), 
                      CastExpr::CK_DerivedToBase);
    break;
      
  default:
    assert(false && "Improper second standard conversion");
    break;
  }

  switch (SCS.Third) {
  case ICK_Identity:
    // Nothing to do.
    break;

  case ICK_Qualification:
    // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue
    // references.
    ImpCastExprToType(From, ToType.getNonReferenceType(),
                      CastExpr::CK_NoOp,
                      ToType->isLValueReferenceType());

    if (SCS.DeprecatedStringLiteralToCharPtr)
      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
        << ToType.getNonReferenceType();

    break;
      
  default:
    assert(false && "Improper second standard conversion");
    break;
  }

  return false;
}

Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
                                                 SourceLocation KWLoc,
                                                 SourceLocation LParen,
                                                 TypeTy *Ty,
                                                 SourceLocation RParen) {
  QualType T = GetTypeFromParser(Ty);

  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
  // all traits except __is_class, __is_enum and __is_union require a the type
  // to be complete.
  if (OTT != UTT_IsClass && OTT != UTT_IsEnum && OTT != UTT_IsUnion) {
    if (RequireCompleteType(KWLoc, T,
                            diag::err_incomplete_type_used_in_type_trait_expr))
      return ExprError();
  }

  // There is no point in eagerly computing the value. The traits are designed
  // to be used from type trait templates, so Ty will be a template parameter
  // 99% of the time.
  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, T,
                                                RParen, Context.BoolTy));
}

QualType Sema::CheckPointerToMemberOperands(
  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) {
  const char *OpSpelling = isIndirect ? "->*" : ".*";
  // C++ 5.5p2
  //   The binary operator .* [p3: ->*] binds its second operand, which shall
  //   be of type "pointer to member of T" (where T is a completely-defined
  //   class type) [...]
  QualType RType = rex->getType();
  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
  if (!MemPtr) {
    Diag(Loc, diag::err_bad_memptr_rhs)
      << OpSpelling << RType << rex->getSourceRange();
    return QualType();
  }

  QualType Class(MemPtr->getClass(), 0);

  // C++ 5.5p2
  //   [...] to its first operand, which shall be of class T or of a class of
  //   which T is an unambiguous and accessible base class. [p3: a pointer to
  //   such a class]
  QualType LType = lex->getType();
  if (isIndirect) {
    if (const PointerType *Ptr = LType->getAs<PointerType>())
      LType = Ptr->getPointeeType().getNonReferenceType();
    else {
      Diag(Loc, diag::err_bad_memptr_lhs)
        << OpSpelling << 1 << LType
        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ".*");
      return QualType();
    }
  }

  if (!Context.hasSameUnqualifiedType(Class, LType)) {
    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
                       /*DetectVirtual=*/false);
    // FIXME: Would it be useful to print full ambiguity paths, or is that
    // overkill?
    if (!IsDerivedFrom(LType, Class, Paths) ||
        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
        << (int)isIndirect << lex->getType();
      return QualType();
    }
    // Cast LHS to type of use.
    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
    bool isLValue = !isIndirect && lex->isLvalue(Context) == Expr::LV_Valid;
    ImpCastExprToType(lex, UseType, CastExpr::CK_DerivedToBase, isLValue);
  }

  if (isa<CXXZeroInitValueExpr>(rex->IgnoreParens())) {
    // Diagnose use of pointer-to-member type which when used as
    // the functional cast in a pointer-to-member expression.
    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
     return QualType();
  }
  // C++ 5.5p2
  //   The result is an object or a function of the type specified by the
  //   second operand.
  // The cv qualifiers are the union of those in the pointer and the left side,
  // in accordance with 5.5p5 and 5.2.5.
  // FIXME: This returns a dereferenced member function pointer as a normal
  // function type. However, the only operation valid on such functions is
  // calling them. There's also a GCC extension to get a function pointer to the
  // thing, which is another complication, because this type - unlike the type
  // that is the result of this expression - takes the class as the first
  // argument.
  // We probably need a "MemberFunctionClosureType" or something like that.
  QualType Result = MemPtr->getPointeeType();
  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
  return Result;
}

/// \brief Get the target type of a standard or user-defined conversion.
static QualType TargetType(const ImplicitConversionSequence &ICS) {
  switch (ICS.getKind()) {
  case ImplicitConversionSequence::StandardConversion:
    return ICS.Standard.getToType(2);
  case ImplicitConversionSequence::UserDefinedConversion:
    return ICS.UserDefined.After.getToType(2);
  case ImplicitConversionSequence::AmbiguousConversion:
    return ICS.Ambiguous.getToType();

  case ImplicitConversionSequence::EllipsisConversion:
  case ImplicitConversionSequence::BadConversion:
    llvm_unreachable("function not valid for ellipsis or bad conversions");
  }
  return QualType(); // silence warnings
}

/// \brief Try to convert a type to another according to C++0x 5.16p3.
///
/// This is part of the parameter validation for the ? operator. If either
/// value operand is a class type, the two operands are attempted to be
/// converted to each other. This function does the conversion in one direction.
/// It emits a diagnostic and returns true only if it finds an ambiguous
/// conversion.
static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
                                SourceLocation QuestionLoc,
                                ImplicitConversionSequence &ICS) {
  // C++0x 5.16p3
  //   The process for determining whether an operand expression E1 of type T1
  //   can be converted to match an operand expression E2 of type T2 is defined
  //   as follows:
  //   -- If E2 is an lvalue:
  if (To->isLvalue(Self.Context) == Expr::LV_Valid) {
    //   E1 can be converted to match E2 if E1 can be implicitly converted to
    //   type "lvalue reference to T2", subject to the constraint that in the
    //   conversion the reference must bind directly to E1.
    if (!Self.CheckReferenceInit(From,
                            Self.Context.getLValueReferenceType(To->getType()),
                                 To->getLocStart(),
                                 /*SuppressUserConversions=*/false,
                                 /*AllowExplicit=*/false,
                                 /*ForceRValue=*/false,
                                 &ICS))
    {
      assert((ICS.isStandard() || ICS.isUserDefined()) &&
             "expected a definite conversion");
      bool DirectBinding =
        ICS.isStandard() ? ICS.Standard.DirectBinding
                         : ICS.UserDefined.After.DirectBinding;
      if (DirectBinding)
        return false;
    }
  }

  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
  //      -- if E1 and E2 have class type, and the underlying class types are
  //         the same or one is a base class of the other:
  QualType FTy = From->getType();
  QualType TTy = To->getType();
  const RecordType *FRec = FTy->getAs<RecordType>();
  const RecordType *TRec = TTy->getAs<RecordType>();
  bool FDerivedFromT = FRec && TRec && Self.IsDerivedFrom(FTy, TTy);
  if (FRec && TRec && (FRec == TRec ||
        FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
    //         E1 can be converted to match E2 if the class of T2 is the
    //         same type as, or a base class of, the class of T1, and
    //         [cv2 > cv1].
    if (FRec == TRec || FDerivedFromT) {
      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
        // Could still fail if there's no copy constructor.
        // FIXME: Is this a hard error then, or just a conversion failure? The
        // standard doesn't say.
        ICS = Self.TryCopyInitialization(From, TTy,
                                         /*SuppressUserConversions=*/false,
                                         /*ForceRValue=*/false,
                                         /*InOverloadResolution=*/false);
      } else {
        ICS.setBad(BadConversionSequence::bad_qualifiers, From, TTy);
      }
    } else {
      // Can't implicitly convert FTy to a derived class TTy.
      // TODO: more specific error for this.
      ICS.setBad(BadConversionSequence::no_conversion, From, TTy);
    }
  } else {
    //     -- Otherwise: E1 can be converted to match E2 if E1 can be
    //        implicitly converted to the type that expression E2 would have
    //        if E2 were converted to an rvalue.
    // First find the decayed type.
    if (TTy->isFunctionType())
      TTy = Self.Context.getPointerType(TTy);
    else if (TTy->isArrayType())
      TTy = Self.Context.getArrayDecayedType(TTy);

    // Now try the implicit conversion.
    // FIXME: This doesn't detect ambiguities.
    ICS = Self.TryImplicitConversion(From, TTy,
                                     /*SuppressUserConversions=*/false,
                                     /*AllowExplicit=*/false,
                                     /*ForceRValue=*/false,
                                     /*InOverloadResolution=*/false);
  }
  return false;
}

/// \brief Try to find a common type for two according to C++0x 5.16p5.
///
/// This is part of the parameter validation for the ? operator. If either
/// value operand is a class type, overload resolution is used to find a
/// conversion to a common type.
static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
                                    SourceLocation Loc) {
  Expr *Args[2] = { LHS, RHS };
  OverloadCandidateSet CandidateSet(Loc);
  Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet);

  OverloadCandidateSet::iterator Best;
  switch (Self.BestViableFunction(CandidateSet, Loc, Best)) {
    case OR_Success:
      // We found a match. Perform the conversions on the arguments and move on.
      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
                                         Best->Conversions[0], Sema::AA_Converting) ||
          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
                                         Best->Conversions[1], Sema::AA_Converting))
        break;
      return false;

    case OR_No_Viable_Function:
      Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
        << LHS->getType() << RHS->getType()
        << LHS->getSourceRange() << RHS->getSourceRange();
      return true;

    case OR_Ambiguous:
      Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
        << LHS->getType() << RHS->getType()
        << LHS->getSourceRange() << RHS->getSourceRange();
      // FIXME: Print the possible common types by printing the return types of
      // the viable candidates.
      break;

    case OR_Deleted:
      assert(false && "Conditional operator has only built-in overloads");
      break;
  }
  return true;
}

/// \brief Perform an "extended" implicit conversion as returned by
/// TryClassUnification.
///
/// TryClassUnification generates ICSs that include reference bindings.
/// PerformImplicitConversion is not suitable for this; it chokes if the
/// second part of a standard conversion is ICK_DerivedToBase. This function
/// handles the reference binding specially.
static bool ConvertForConditional(Sema &Self, Expr *&E,
                                  const ImplicitConversionSequence &ICS) {
  if (ICS.isStandard() && ICS.Standard.ReferenceBinding) {
    assert(ICS.Standard.DirectBinding &&
           "TryClassUnification should never generate indirect ref bindings");
    // FIXME: CheckReferenceInit should be able to reuse the ICS instead of
    // redoing all the work.
    return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType(
                                        TargetType(ICS)),
                                   /*FIXME:*/E->getLocStart(),
                                   /*SuppressUserConversions=*/false,
                                   /*AllowExplicit=*/false,
                                   /*ForceRValue=*/false);
  }
  if (ICS.isUserDefined() && ICS.UserDefined.After.ReferenceBinding) {
    assert(ICS.UserDefined.After.DirectBinding &&
           "TryClassUnification should never generate indirect ref bindings");
    return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType(
                                        TargetType(ICS)),
                                   /*FIXME:*/E->getLocStart(),
                                   /*SuppressUserConversions=*/false,
                                   /*AllowExplicit=*/false,
                                   /*ForceRValue=*/false);
  }
  if (Self.PerformImplicitConversion(E, TargetType(ICS), ICS, Sema::AA_Converting))
    return true;
  return false;
}

/// \brief Check the operands of ?: under C++ semantics.
///
/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
/// extension. In this case, LHS == Cond. (But they're not aliases.)
QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
                                           SourceLocation QuestionLoc) {
  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
  // interface pointers.

  // C++0x 5.16p1
  //   The first expression is contextually converted to bool.
  if (!Cond->isTypeDependent()) {
    if (CheckCXXBooleanCondition(Cond))
      return QualType();
  }

  // Either of the arguments dependent?
  if (LHS->isTypeDependent() || RHS->isTypeDependent())
    return Context.DependentTy;

  CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional);

  // C++0x 5.16p2
  //   If either the second or the third operand has type (cv) void, ...
  QualType LTy = LHS->getType();
  QualType RTy = RHS->getType();
  bool LVoid = LTy->isVoidType();
  bool RVoid = RTy->isVoidType();
  if (LVoid || RVoid) {
    //   ... then the [l2r] conversions are performed on the second and third
    //   operands ...
    DefaultFunctionArrayLvalueConversion(LHS);
    DefaultFunctionArrayLvalueConversion(RHS);
    LTy = LHS->getType();
    RTy = RHS->getType();

    //   ... and one of the following shall hold:
    //   -- The second or the third operand (but not both) is a throw-
    //      expression; the result is of the type of the other and is an rvalue.
    bool LThrow = isa<CXXThrowExpr>(LHS);
    bool RThrow = isa<CXXThrowExpr>(RHS);
    if (LThrow && !RThrow)
      return RTy;
    if (RThrow && !LThrow)
      return LTy;

    //   -- Both the second and third operands have type void; the result is of
    //      type void and is an rvalue.
    if (LVoid && RVoid)
      return Context.VoidTy;

    // Neither holds, error.
    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
      << LHS->getSourceRange() << RHS->getSourceRange();
    return QualType();
  }

  // Neither is void.

  // C++0x 5.16p3
  //   Otherwise, if the second and third operand have different types, and
  //   either has (cv) class type, and attempt is made to convert each of those
  //   operands to the other.
  if (Context.getCanonicalType(LTy) != Context.getCanonicalType(RTy) &&
      (LTy->isRecordType() || RTy->isRecordType())) {
    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
    // These return true if a single direction is already ambiguous.
    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, ICSLeftToRight))
      return QualType();
    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, ICSRightToLeft))
      return QualType();

    bool HaveL2R = !ICSLeftToRight.isBad();
    bool HaveR2L = !ICSRightToLeft.isBad();
    //   If both can be converted, [...] the program is ill-formed.
    if (HaveL2R && HaveR2L) {
      Diag(QuestionLoc, diag::err_conditional_ambiguous)
        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
      return QualType();
    }

    //   If exactly one conversion is possible, that conversion is applied to
    //   the chosen operand and the converted operands are used in place of the
    //   original operands for the remainder of this section.
    if (HaveL2R) {
      if (ConvertForConditional(*this, LHS, ICSLeftToRight))
        return QualType();
      LTy = LHS->getType();
    } else if (HaveR2L) {
      if (ConvertForConditional(*this, RHS, ICSRightToLeft))
        return QualType();
      RTy = RHS->getType();
    }
  }

  // C++0x 5.16p4
  //   If the second and third operands are lvalues and have the same type,
  //   the result is of that type [...]
  bool Same = Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy);
  if (Same && LHS->isLvalue(Context) == Expr::LV_Valid &&
      RHS->isLvalue(Context) == Expr::LV_Valid)
    return LTy;

  // C++0x 5.16p5
  //   Otherwise, the result is an rvalue. If the second and third operands
  //   do not have the same type, and either has (cv) class type, ...
  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
    //   ... overload resolution is used to determine the conversions (if any)
    //   to be applied to the operands. If the overload resolution fails, the
    //   program is ill-formed.
    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
      return QualType();
  }

  // C++0x 5.16p6
  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
  //   conversions are performed on the second and third operands.
  DefaultFunctionArrayLvalueConversion(LHS);
  DefaultFunctionArrayLvalueConversion(RHS);
  LTy = LHS->getType();
  RTy = RHS->getType();

  //   After those conversions, one of the following shall hold:
  //   -- The second and third operands have the same type; the result
  //      is of that type.
  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy))
    return LTy;

  //   -- The second and third operands have arithmetic or enumeration type;
  //      the usual arithmetic conversions are performed to bring them to a
  //      common type, and the result is of that type.
  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
    UsualArithmeticConversions(LHS, RHS);
    return LHS->getType();
  }

  //   -- The second and third operands have pointer type, or one has pointer
  //      type and the other is a null pointer constant; pointer conversions
  //      and qualification conversions are performed to bring them to their
  //      composite pointer type. The result is of the composite pointer type.
  //   -- The second and third operands have pointer to member type, or one has
  //      pointer to member type and the other is a null pointer constant;
  //      pointer to member conversions and qualification conversions are
  //      performed to bring them to a common type, whose cv-qualification
  //      shall match the cv-qualification of either the second or the third
  //      operand. The result is of the common type.
  bool NonStandardCompositeType = false;
  QualType Composite = FindCompositePointerType(LHS, RHS,
                              isSFINAEContext()? 0 : &NonStandardCompositeType);
  if (!Composite.isNull()) {
    if (NonStandardCompositeType)
      Diag(QuestionLoc, 
           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
        << LTy << RTy << Composite
        << LHS->getSourceRange() << RHS->getSourceRange();
      
    return Composite;
  }
  
  // Similarly, attempt to find composite type of twp objective-c pointers.
  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
  if (!Composite.isNull())
    return Composite;

  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
    << LHS->getType() << RHS->getType()
    << LHS->getSourceRange() << RHS->getSourceRange();
  return QualType();
}

/// \brief Find a merged pointer type and convert the two expressions to it.
///
/// This finds the composite pointer type (or member pointer type) for @p E1
/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
/// type and returns it.
/// It does not emit diagnostics.
///
/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
/// a non-standard (but still sane) composite type to which both expressions
/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
/// will be set true.
QualType Sema::FindCompositePointerType(Expr *&E1, Expr *&E2,
                                        bool *NonStandardCompositeType) {
  if (NonStandardCompositeType)
    *NonStandardCompositeType = false;
  
  assert(getLangOptions().CPlusPlus && "This function assumes C++");
  QualType T1 = E1->getType(), T2 = E2->getType();

  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
      !T2->isAnyPointerType() && !T2->isMemberPointerType())
   return QualType();

  // C++0x 5.9p2
  //   Pointer conversions and qualification conversions are performed on
  //   pointer operands to bring them to their composite pointer type. If
  //   one operand is a null pointer constant, the composite pointer type is
  //   the type of the other operand.
  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
    if (T2->isMemberPointerType())
      ImpCastExprToType(E1, T2, CastExpr::CK_NullToMemberPointer);
    else
      ImpCastExprToType(E1, T2, CastExpr::CK_IntegralToPointer);
    return T2;
  }
  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
    if (T1->isMemberPointerType())
      ImpCastExprToType(E2, T1, CastExpr::CK_NullToMemberPointer);
    else
      ImpCastExprToType(E2, T1, CastExpr::CK_IntegralToPointer);
    return T1;
  }

  // Now both have to be pointers or member pointers.
  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
      (!T2->isPointerType() && !T2->isMemberPointerType()))
    return QualType();

  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
  //   the other has type "pointer to cv2 T" and the composite pointer type is
  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
  //   Otherwise, the composite pointer type is a pointer type similar to the
  //   type of one of the operands, with a cv-qualification signature that is
  //   the union of the cv-qualification signatures of the operand types.
  // In practice, the first part here is redundant; it's subsumed by the second.
  // What we do here is, we build the two possible composite types, and try the
  // conversions in both directions. If only one works, or if the two composite
  // types are the same, we have succeeded.
  // FIXME: extended qualifiers?
  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
  QualifierVector QualifierUnion;
  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
      ContainingClassVector;
  ContainingClassVector MemberOfClass;
  QualType Composite1 = Context.getCanonicalType(T1),
           Composite2 = Context.getCanonicalType(T2);
  unsigned NeedConstBefore = 0;  
  do {
    const PointerType *Ptr1, *Ptr2;
    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
        (Ptr2 = Composite2->getAs<PointerType>())) {
      Composite1 = Ptr1->getPointeeType();
      Composite2 = Ptr2->getPointeeType();
      
      // If we're allowed to create a non-standard composite type, keep track
      // of where we need to fill in additional 'const' qualifiers. 
      if (NonStandardCompositeType &&
          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
        NeedConstBefore = QualifierUnion.size();
      
      QualifierUnion.push_back(
                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
      continue;
    }

    const MemberPointerType *MemPtr1, *MemPtr2;
    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
      Composite1 = MemPtr1->getPointeeType();
      Composite2 = MemPtr2->getPointeeType();
      
      // If we're allowed to create a non-standard composite type, keep track
      // of where we need to fill in additional 'const' qualifiers. 
      if (NonStandardCompositeType &&
          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
        NeedConstBefore = QualifierUnion.size();
      
      QualifierUnion.push_back(
                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
                                             MemPtr2->getClass()));
      continue;
    }

    // FIXME: block pointer types?

    // Cannot unwrap any more types.
    break;
  } while (true);

  if (NeedConstBefore && NonStandardCompositeType) {
    // Extension: Add 'const' to qualifiers that come before the first qualifier
    // mismatch, so that our (non-standard!) composite type meets the 
    // requirements of C++ [conv.qual]p4 bullet 3.
    for (unsigned I = 0; I != NeedConstBefore; ++I) {
      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
        *NonStandardCompositeType = true;
      }
    }
  }
  
  // Rewrap the composites as pointers or member pointers with the union CVRs.
  ContainingClassVector::reverse_iterator MOC
    = MemberOfClass.rbegin();
  for (QualifierVector::reverse_iterator
         I = QualifierUnion.rbegin(),
         E = QualifierUnion.rend();
       I != E; (void)++I, ++MOC) {
    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
    if (MOC->first && MOC->second) {
      // Rebuild member pointer type
      Composite1 = Context.getMemberPointerType(
                                    Context.getQualifiedType(Composite1, Quals),
                                    MOC->first);
      Composite2 = Context.getMemberPointerType(
                                    Context.getQualifiedType(Composite2, Quals),
                                    MOC->second);
    } else {
      // Rebuild pointer type
      Composite1
        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
      Composite2
        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
    }
  }

  ImplicitConversionSequence E1ToC1 =
    TryImplicitConversion(E1, Composite1,
                          /*SuppressUserConversions=*/false,
                          /*AllowExplicit=*/false,
                          /*ForceRValue=*/false,
                          /*InOverloadResolution=*/false);
  ImplicitConversionSequence E2ToC1 =
    TryImplicitConversion(E2, Composite1,
                          /*SuppressUserConversions=*/false,
                          /*AllowExplicit=*/false,
                          /*ForceRValue=*/false,
                          /*InOverloadResolution=*/false);

  bool ToC2Viable = false;
  ImplicitConversionSequence E1ToC2, E2ToC2;
  if (Context.getCanonicalType(Composite1) !=
      Context.getCanonicalType(Composite2)) {
    E1ToC2 = TryImplicitConversion(E1, Composite2,
                                   /*SuppressUserConversions=*/false,
                                   /*AllowExplicit=*/false,
                                   /*ForceRValue=*/false,
                                   /*InOverloadResolution=*/false);
    E2ToC2 = TryImplicitConversion(E2, Composite2,
                                   /*SuppressUserConversions=*/false,
                                   /*AllowExplicit=*/false,
                                   /*ForceRValue=*/false,
                                   /*InOverloadResolution=*/false);
    ToC2Viable = !E1ToC2.isBad() && !E2ToC2.isBad();
  }

  bool ToC1Viable = !E1ToC1.isBad() && !E2ToC1.isBad();
  if (ToC1Viable && !ToC2Viable) {
    if (!PerformImplicitConversion(E1, Composite1, E1ToC1, Sema::AA_Converting) &&
        !PerformImplicitConversion(E2, Composite1, E2ToC1, Sema::AA_Converting))
      return Composite1;
  }
  if (ToC2Viable && !ToC1Viable) {
    if (!PerformImplicitConversion(E1, Composite2, E1ToC2, Sema::AA_Converting) &&
        !PerformImplicitConversion(E2, Composite2, E2ToC2, Sema::AA_Converting))
      return Composite2;
  }
  return QualType();
}

Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) {
  if (!Context.getLangOptions().CPlusPlus)
    return Owned(E);

  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");

  const RecordType *RT = E->getType()->getAs<RecordType>();
  if (!RT)
    return Owned(E);

  // If this is the result of a call expression, our source might
  // actually be a reference, in which case we shouldn't bind.
  if (CallExpr *CE = dyn_cast<CallExpr>(E)) {
    QualType Ty = CE->getCallee()->getType();
    if (const PointerType *PT = Ty->getAs<PointerType>())
      Ty = PT->getPointeeType();
    else if (const BlockPointerType *BPT = Ty->getAs<BlockPointerType>())
      Ty = BPT->getPointeeType();

    const FunctionType *FTy = Ty->getAs<FunctionType>();
    if (FTy->getResultType()->isReferenceType())
      return Owned(E);
  }

  // That should be enough to guarantee that this type is complete.
  // If it has a trivial destructor, we can avoid the extra copy.
  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
  if (RD->hasTrivialDestructor())
    return Owned(E);

  CXXTemporary *Temp = CXXTemporary::Create(Context,
                                            RD->getDestructor(Context));
  ExprTemporaries.push_back(Temp);
  if (CXXDestructorDecl *Destructor =
        const_cast<CXXDestructorDecl*>(RD->getDestructor(Context)))
    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
  // FIXME: Add the temporary to the temporaries vector.
  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
}

Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr) {
  assert(SubExpr && "sub expression can't be null!");

  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
  assert(ExprTemporaries.size() >= FirstTemporary);
  if (ExprTemporaries.size() == FirstTemporary)
    return SubExpr;

  Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr,
                                           &ExprTemporaries[FirstTemporary],
                                       ExprTemporaries.size() - FirstTemporary);
  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
                        ExprTemporaries.end());

  return E;
}

Sema::OwningExprResult 
Sema::MaybeCreateCXXExprWithTemporaries(OwningExprResult SubExpr) {
  if (SubExpr.isInvalid())
    return ExprError();
  
  return Owned(MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs<Expr>()));
}

FullExpr Sema::CreateFullExpr(Expr *SubExpr) {
  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
  assert(ExprTemporaries.size() >= FirstTemporary);
  
  unsigned NumTemporaries = ExprTemporaries.size() - FirstTemporary;
  CXXTemporary **Temporaries = 
    NumTemporaries == 0 ? 0 : &ExprTemporaries[FirstTemporary];
  
  FullExpr E = FullExpr::Create(Context, SubExpr, Temporaries, NumTemporaries);

  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
                        ExprTemporaries.end());

  return E;
}

Sema::OwningExprResult
Sema::ActOnStartCXXMemberReference(Scope *S, ExprArg Base, SourceLocation OpLoc,
                                   tok::TokenKind OpKind, TypeTy *&ObjectType,
                                   bool &MayBePseudoDestructor) {
  // Since this might be a postfix expression, get rid of ParenListExprs.
  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));

  Expr *BaseExpr = (Expr*)Base.get();
  assert(BaseExpr && "no record expansion");

  QualType BaseType = BaseExpr->getType();
  MayBePseudoDestructor = false;
  if (BaseType->isDependentType()) {
    // If we have a pointer to a dependent type and are using the -> operator,
    // the object type is the type that the pointer points to. We might still
    // have enough information about that type to do something useful.
    if (OpKind == tok::arrow)
      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
        BaseType = Ptr->getPointeeType();
    
    ObjectType = BaseType.getAsOpaquePtr();
    MayBePseudoDestructor = true;
    return move(Base);
  }

  // C++ [over.match.oper]p8:
  //   [...] When operator->returns, the operator-> is applied  to the value
  //   returned, with the original second operand.
  if (OpKind == tok::arrow) {
    // The set of types we've considered so far.
    llvm::SmallPtrSet<CanQualType,8> CTypes;
    llvm::SmallVector<SourceLocation, 8> Locations;
    CTypes.insert(Context.getCanonicalType(BaseType));
    
    while (BaseType->isRecordType()) {
      Base = BuildOverloadedArrowExpr(S, move(Base), OpLoc);
      BaseExpr = (Expr*)Base.get();
      if (BaseExpr == NULL)
        return ExprError();
      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(BaseExpr))
        Locations.push_back(OpCall->getDirectCallee()->getLocation());
      BaseType = BaseExpr->getType();
      CanQualType CBaseType = Context.getCanonicalType(BaseType);
      if (!CTypes.insert(CBaseType)) {
        Diag(OpLoc, diag::err_operator_arrow_circular);
        for (unsigned i = 0; i < Locations.size(); i++)
          Diag(Locations[i], diag::note_declared_at);
        return ExprError();
      }
    }

    if (BaseType->isPointerType())
      BaseType = BaseType->getPointeeType();
  }

  // We could end up with various non-record types here, such as extended
  // vector types or Objective-C interfaces. Just return early and let
  // ActOnMemberReferenceExpr do the work.
  if (!BaseType->isRecordType()) {
    // C++ [basic.lookup.classref]p2:
    //   [...] If the type of the object expression is of pointer to scalar
    //   type, the unqualified-id is looked up in the context of the complete
    //   postfix-expression.
    //
    // This also indicates that we should be parsing a
    // pseudo-destructor-name.
    ObjectType = 0;
    MayBePseudoDestructor = true;
    return move(Base);
  }

  // The object type must be complete (or dependent).
  if (!BaseType->isDependentType() &&
      RequireCompleteType(OpLoc, BaseType, 
                          PDiag(diag::err_incomplete_member_access)))
    return ExprError();
  
  // C++ [basic.lookup.classref]p2:
  //   If the id-expression in a class member access (5.2.5) is an
  //   unqualified-id, and the type of the object expression is of a class
  //   type C (or of pointer to a class type C), the unqualified-id is looked
  //   up in the scope of class C. [...]
  ObjectType = BaseType.getAsOpaquePtr();
  return move(Base);
}

Sema::OwningExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
                                                   ExprArg MemExpr) {
  Expr *E = (Expr *) MemExpr.get();
  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
  Diag(E->getLocStart(), diag::err_dtor_expr_without_call)
    << isa<CXXPseudoDestructorExpr>(E)
    << CodeModificationHint::CreateInsertion(ExpectedLParenLoc, "()");
  
  return ActOnCallExpr(/*Scope*/ 0,
                       move(MemExpr),
                       /*LPLoc*/ ExpectedLParenLoc,
                       Sema::MultiExprArg(*this, 0, 0),
                       /*CommaLocs*/ 0,
                       /*RPLoc*/ ExpectedLParenLoc);
}

Sema::OwningExprResult Sema::BuildPseudoDestructorExpr(ExprArg Base,
                                                       SourceLocation OpLoc,
                                                       tok::TokenKind OpKind,
                                                       const CXXScopeSpec &SS,
                                                 TypeSourceInfo *ScopeTypeInfo,
                                                       SourceLocation CCLoc,
                                                       SourceLocation TildeLoc,
                                         PseudoDestructorTypeStorage Destructed,
                                                       bool HasTrailingLParen) {
  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
  
  // C++ [expr.pseudo]p2:
  //   The left-hand side of the dot operator shall be of scalar type. The 
  //   left-hand side of the arrow operator shall be of pointer to scalar type.
  //   This scalar type is the object type. 
  Expr *BaseE = (Expr *)Base.get();
  QualType ObjectType = BaseE->getType();
  if (OpKind == tok::arrow) {
    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
      ObjectType = Ptr->getPointeeType();
    } else if (!BaseE->isTypeDependent()) {
      // The user wrote "p->" when she probably meant "p."; fix it.
      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
        << ObjectType << true
        << CodeModificationHint::CreateReplacement(OpLoc, ".");
      if (isSFINAEContext())
        return ExprError();
      
      OpKind = tok::period;
    }
  }
  
  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
      << ObjectType << BaseE->getSourceRange();
    return ExprError();
  }

  // C++ [expr.pseudo]p2:
  //   [...] The cv-unqualified versions of the object type and of the type 
  //   designated by the pseudo-destructor-name shall be the same type.
  if (DestructedTypeInfo) {
    QualType DestructedType = DestructedTypeInfo->getType();
    SourceLocation DestructedTypeStart
      = DestructedTypeInfo->getTypeLoc().getSourceRange().getBegin();
    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
        << ObjectType << DestructedType << BaseE->getSourceRange()
        << DestructedTypeInfo->getTypeLoc().getSourceRange();
      
      // Recover by setting the destructed type to the object type.
      DestructedType = ObjectType;
      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
                                                           DestructedTypeStart);
      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
    }
  }
  
  // C++ [expr.pseudo]p2:
  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
  //   form
  //
  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 
  //
  //   shall designate the same scalar type.
  if (ScopeTypeInfo) {
    QualType ScopeType = ScopeTypeInfo->getType();
    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
        !Context.hasSameType(ScopeType, ObjectType)) {
      
      Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
           diag::err_pseudo_dtor_type_mismatch)
        << ObjectType << ScopeType << BaseE->getSourceRange()
        << ScopeTypeInfo->getTypeLoc().getSourceRange();
  
      ScopeType = QualType();
      ScopeTypeInfo = 0;
    }
  }
  
  OwningExprResult Result
    = Owned(new (Context) CXXPseudoDestructorExpr(Context, 
                                                  Base.takeAs<Expr>(),
                                                  OpKind == tok::arrow,
                                                  OpLoc,
                                       (NestedNameSpecifier *) SS.getScopeRep(),
                                                  SS.getRange(),
                                                  ScopeTypeInfo,
                                                  CCLoc,
                                                  TildeLoc,
                                                  Destructed));
            
  if (HasTrailingLParen)
    return move(Result);
  
  return DiagnoseDtorReference(Destructed.getLocation(), move(Result));
}

Sema::OwningExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, ExprArg Base,
                                                       SourceLocation OpLoc,
                                                       tok::TokenKind OpKind,
                                                       const CXXScopeSpec &SS,
                                                  UnqualifiedId &FirstTypeName,
                                                       SourceLocation CCLoc,
                                                       SourceLocation TildeLoc,
                                                 UnqualifiedId &SecondTypeName,
                                                       bool HasTrailingLParen) {
  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
         "Invalid first type name in pseudo-destructor");
  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
         "Invalid second type name in pseudo-destructor");

  Expr *BaseE = (Expr *)Base.get();
  
  // C++ [expr.pseudo]p2:
  //   The left-hand side of the dot operator shall be of scalar type. The 
  //   left-hand side of the arrow operator shall be of pointer to scalar type.
  //   This scalar type is the object type. 
  QualType ObjectType = BaseE->getType();
  if (OpKind == tok::arrow) {
    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
      ObjectType = Ptr->getPointeeType();
    } else if (!ObjectType->isDependentType()) {
      // The user wrote "p->" when she probably meant "p."; fix it.
      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
        << ObjectType << true
        << CodeModificationHint::CreateReplacement(OpLoc, ".");
      if (isSFINAEContext())
        return ExprError();
      
      OpKind = tok::period;
    }
  }

  // Compute the object type that we should use for name lookup purposes. Only
  // record types and dependent types matter.
  void *ObjectTypePtrForLookup = 0;
  if (!SS.isSet()) {
    ObjectTypePtrForLookup = (void *)ObjectType->getAs<RecordType>();
    if (!ObjectTypePtrForLookup && ObjectType->isDependentType())
      ObjectTypePtrForLookup = Context.DependentTy.getAsOpaquePtr();
  }
  
  // Convert the name of the type being destructed (following the ~) into a 
  // type (with source-location information).
  QualType DestructedType;
  TypeSourceInfo *DestructedTypeInfo = 0;
  PseudoDestructorTypeStorage Destructed;
  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
    TypeTy *T = getTypeName(*SecondTypeName.Identifier, 
                            SecondTypeName.StartLocation,
                            S, &SS, true, ObjectTypePtrForLookup);
    if (!T && 
        ((SS.isSet() && !computeDeclContext(SS, false)) ||
         (!SS.isSet() && ObjectType->isDependentType()))) {
      // The name of the type being destroyed is a dependent name, and we 
      // couldn't find anything useful in scope. Just store the identifier and
      // it's location, and we'll perform (qualified) name lookup again at
      // template instantiation time.
      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
                                               SecondTypeName.StartLocation);
    } else if (!T) {
      Diag(SecondTypeName.StartLocation, 
           diag::err_pseudo_dtor_destructor_non_type)
        << SecondTypeName.Identifier << ObjectType;
      if (isSFINAEContext())
        return ExprError();
      
      // Recover by assuming we had the right type all along.
      DestructedType = ObjectType;
    } else
      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
  } else {
    // Resolve the template-id to a type.
    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
    ASTTemplateArgsPtr TemplateArgsPtr(*this,
                                       TemplateId->getTemplateArgs(),
                                       TemplateId->NumArgs);
    TypeResult T = ActOnTemplateIdType(TemplateTy::make(TemplateId->Template),
                                       TemplateId->TemplateNameLoc,
                                       TemplateId->LAngleLoc,
                                       TemplateArgsPtr,
                                       TemplateId->RAngleLoc);
    if (T.isInvalid() || !T.get()) {
      // Recover by assuming we had the right type all along.
      DestructedType = ObjectType;
    } else
      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
  }
  
  // If we've performed some kind of recovery, (re-)build the type source 
  // information.
  if (!DestructedType.isNull()) {
    if (!DestructedTypeInfo)
      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
                                                  SecondTypeName.StartLocation);
    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
  }
  
  // Convert the name of the scope type (the type prior to '::') into a type.
  TypeSourceInfo *ScopeTypeInfo = 0;
  QualType ScopeType;
  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || 
      FirstTypeName.Identifier) {
    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
      TypeTy *T = getTypeName(*FirstTypeName.Identifier, 
                              FirstTypeName.StartLocation,
                              S, &SS, false, ObjectTypePtrForLookup);
      if (!T) {
        Diag(FirstTypeName.StartLocation, 
             diag::err_pseudo_dtor_destructor_non_type)
          << FirstTypeName.Identifier << ObjectType;
        
        if (isSFINAEContext())
          return ExprError();
        
        // Just drop this type. It's unnecessary anyway.
        ScopeType = QualType();
      } else
        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
    } else {
      // Resolve the template-id to a type.
      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
      ASTTemplateArgsPtr TemplateArgsPtr(*this,
                                         TemplateId->getTemplateArgs(),
                                         TemplateId->NumArgs);
      TypeResult T = ActOnTemplateIdType(TemplateTy::make(TemplateId->Template),
                                         TemplateId->TemplateNameLoc,
                                         TemplateId->LAngleLoc,
                                         TemplateArgsPtr,
                                         TemplateId->RAngleLoc);
      if (T.isInvalid() || !T.get()) {
        // Recover by dropping this type.
        ScopeType = QualType();
      } else
        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);      
    }
  }
      
  if (!ScopeType.isNull() && !ScopeTypeInfo)
    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
                                                  FirstTypeName.StartLocation);

    
  return BuildPseudoDestructorExpr(move(Base), OpLoc, OpKind, SS,
                                   ScopeTypeInfo, CCLoc, TildeLoc,
                                   Destructed, HasTrailingLParen);
}

CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp, 
                                                CXXMethodDecl *Method) {
  if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0, Method))
    assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?");

  MemberExpr *ME = 
      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method, 
                               SourceLocation(), Method->getType());
  QualType ResultType = Method->getResultType().getNonReferenceType();
  MarkDeclarationReferenced(Exp->getLocStart(), Method);
  CXXMemberCallExpr *CE =
    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType,
                                    Exp->getLocEnd());
  return CE;
}

Sema::OwningExprResult Sema::BuildCXXCastArgument(SourceLocation CastLoc,
                                                  QualType Ty,
                                                  CastExpr::CastKind Kind,
                                                  CXXMethodDecl *Method,
                                                  ExprArg Arg) {
  Expr *From = Arg.takeAs<Expr>();

  switch (Kind) {
  default: assert(0 && "Unhandled cast kind!");
  case CastExpr::CK_ConstructorConversion: {
    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
    
    if (CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
                                MultiExprArg(*this, (void **)&From, 1),
                                CastLoc, ConstructorArgs))
      return ExprError();
    
    OwningExprResult Result = 
      BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method), 
                            move_arg(ConstructorArgs));
    if (Result.isInvalid())
      return ExprError();
    
    return MaybeBindToTemporary(Result.takeAs<Expr>());
  }

  case CastExpr::CK_UserDefinedConversion: {
    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");

    // Create an implicit call expr that calls it.
    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(From, Method);
    return MaybeBindToTemporary(CE);
  }
  }
}    

Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) {
  Expr *FullExpr = Arg.takeAs<Expr>();
  if (FullExpr)
    FullExpr = MaybeCreateCXXExprWithTemporaries(FullExpr);

  return Owned(FullExpr);
}