summaryrefslogtreecommitdiff
path: root/lib/Sema/SemaExceptionSpec.cpp
blob: 4de205c50435a2e7e1543a06911188e809c31210 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides Sema routines for C++ exception specification testing.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/SemaInternal.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"

namespace clang {

static const FunctionProtoType *GetUnderlyingFunction(QualType T)
{
  if (const PointerType *PtrTy = T->getAs<PointerType>())
    T = PtrTy->getPointeeType();
  else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
    T = RefTy->getPointeeType();
  else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
    T = MPTy->getPointeeType();
  return T->getAs<FunctionProtoType>();
}

/// HACK: libstdc++ has a bug where it shadows std::swap with a member
/// swap function then tries to call std::swap unqualified from the exception
/// specification of that function. This function detects whether we're in
/// such a case and turns off delay-parsing of exception specifications.
bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
  auto *RD = dyn_cast<CXXRecordDecl>(CurContext);

  // All the problem cases are member functions named "swap" within class
  // templates declared directly within namespace std or std::__debug or
  // std::__profile.
  if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
      !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
    return false;

  auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
  if (!ND)
    return false;

  bool IsInStd = ND->isStdNamespace();
  if (!IsInStd) {
    // This isn't a direct member of namespace std, but it might still be
    // libstdc++'s std::__debug::array or std::__profile::array.
    IdentifierInfo *II = ND->getIdentifier();
    if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
        !ND->isInStdNamespace())
      return false;
  }

  // Only apply this hack within a system header.
  if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
    return false;

  return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
      .Case("array", true)
      .Case("pair", IsInStd)
      .Case("priority_queue", IsInStd)
      .Case("stack", IsInStd)
      .Case("queue", IsInStd)
      .Default(false);
}

ExprResult Sema::ActOnNoexceptSpec(SourceLocation NoexceptLoc,
                                   Expr *NoexceptExpr,
                                   ExceptionSpecificationType &EST) {
  // FIXME: This is bogus, a noexcept expression is not a condition.
  ExprResult Converted = CheckBooleanCondition(NoexceptLoc, NoexceptExpr);
  if (Converted.isInvalid())
    return Converted;

  if (Converted.get()->isValueDependent()) {
    EST = EST_DependentNoexcept;
    return Converted;
  }

  llvm::APSInt Result;
  Converted = VerifyIntegerConstantExpression(
      Converted.get(), &Result,
      diag::err_noexcept_needs_constant_expression,
      /*AllowFold*/ false);
  if (!Converted.isInvalid())
    EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
  return Converted;
}

/// CheckSpecifiedExceptionType - Check if the given type is valid in an
/// exception specification. Incomplete types, or pointers to incomplete types
/// other than void are not allowed.
///
/// \param[in,out] T  The exception type. This will be decayed to a pointer type
///                   when the input is an array or a function type.
bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
  // C++11 [except.spec]p2:
  //   A type cv T, "array of T", or "function returning T" denoted
  //   in an exception-specification is adjusted to type T, "pointer to T", or
  //   "pointer to function returning T", respectively.
  //
  // We also apply this rule in C++98.
  if (T->isArrayType())
    T = Context.getArrayDecayedType(T);
  else if (T->isFunctionType())
    T = Context.getPointerType(T);

  int Kind = 0;
  QualType PointeeT = T;
  if (const PointerType *PT = T->getAs<PointerType>()) {
    PointeeT = PT->getPointeeType();
    Kind = 1;

    // cv void* is explicitly permitted, despite being a pointer to an
    // incomplete type.
    if (PointeeT->isVoidType())
      return false;
  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
    PointeeT = RT->getPointeeType();
    Kind = 2;

    if (RT->isRValueReferenceType()) {
      // C++11 [except.spec]p2:
      //   A type denoted in an exception-specification shall not denote [...]
      //   an rvalue reference type.
      Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
        << T << Range;
      return true;
    }
  }

  // C++11 [except.spec]p2:
  //   A type denoted in an exception-specification shall not denote an
  //   incomplete type other than a class currently being defined [...].
  //   A type denoted in an exception-specification shall not denote a
  //   pointer or reference to an incomplete type, other than (cv) void* or a
  //   pointer or reference to a class currently being defined.
  // In Microsoft mode, downgrade this to a warning.
  unsigned DiagID = diag::err_incomplete_in_exception_spec;
  bool ReturnValueOnError = true;
  if (getLangOpts().MicrosoftExt) {
    DiagID = diag::ext_incomplete_in_exception_spec;
    ReturnValueOnError = false;
  }
  if (!(PointeeT->isRecordType() &&
        PointeeT->getAs<RecordType>()->isBeingDefined()) &&
      RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
    return ReturnValueOnError;

  return false;
}

/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
/// to member to a function with an exception specification. This means that
/// it is invalid to add another level of indirection.
bool Sema::CheckDistantExceptionSpec(QualType T) {
  // C++17 removes this rule in favor of putting exception specifications into
  // the type system.
  if (getLangOpts().CPlusPlus17)
    return false;

  if (const PointerType *PT = T->getAs<PointerType>())
    T = PT->getPointeeType();
  else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
    T = PT->getPointeeType();
  else
    return false;

  const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
  if (!FnT)
    return false;

  return FnT->hasExceptionSpec();
}

const FunctionProtoType *
Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
  if (FPT->getExceptionSpecType() == EST_Unparsed) {
    Diag(Loc, diag::err_exception_spec_not_parsed);
    return nullptr;
  }

  if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
    return FPT;

  FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
  const FunctionProtoType *SourceFPT =
      SourceDecl->getType()->castAs<FunctionProtoType>();

  // If the exception specification has already been resolved, just return it.
  if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
    return SourceFPT;

  // Compute or instantiate the exception specification now.
  if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
    EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl));
  else
    InstantiateExceptionSpec(Loc, SourceDecl);

  const FunctionProtoType *Proto =
    SourceDecl->getType()->castAs<FunctionProtoType>();
  if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
    Diag(Loc, diag::err_exception_spec_not_parsed);
    Proto = nullptr;
  }
  return Proto;
}

void
Sema::UpdateExceptionSpec(FunctionDecl *FD,
                          const FunctionProtoType::ExceptionSpecInfo &ESI) {
  // If we've fully resolved the exception specification, notify listeners.
  if (!isUnresolvedExceptionSpec(ESI.Type))
    if (auto *Listener = getASTMutationListener())
      Listener->ResolvedExceptionSpec(FD);

  for (FunctionDecl *Redecl : FD->redecls())
    Context.adjustExceptionSpec(Redecl, ESI);
}

static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
  auto *MD = dyn_cast<CXXMethodDecl>(FD);
  if (!MD)
    return false;

  auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
  return EST == EST_Unparsed ||
         (EST == EST_Unevaluated && MD->getParent()->isBeingDefined());
}

static bool CheckEquivalentExceptionSpecImpl(
    Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
    const FunctionProtoType *Old, SourceLocation OldLoc,
    const FunctionProtoType *New, SourceLocation NewLoc,
    bool *MissingExceptionSpecification = nullptr,
    bool *MissingEmptyExceptionSpecification = nullptr,
    bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);

/// Determine whether a function has an implicitly-generated exception
/// specification.
static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
  if (!isa<CXXDestructorDecl>(Decl) &&
      Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
      Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
    return false;

  // For a function that the user didn't declare:
  //  - if this is a destructor, its exception specification is implicit.
  //  - if this is 'operator delete' or 'operator delete[]', the exception
  //    specification is as-if an explicit exception specification was given
  //    (per [basic.stc.dynamic]p2).
  if (!Decl->getTypeSourceInfo())
    return isa<CXXDestructorDecl>(Decl);

  const FunctionProtoType *Ty =
    Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>();
  return !Ty->hasExceptionSpec();
}

bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
  // Just completely ignore this under -fno-exceptions prior to C++17.
  // In C++17 onwards, the exception specification is part of the type and
  // we will diagnose mismatches anyway, so it's better to check for them here.
  if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
    return false;

  OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
  bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
  bool MissingExceptionSpecification = false;
  bool MissingEmptyExceptionSpecification = false;

  unsigned DiagID = diag::err_mismatched_exception_spec;
  bool ReturnValueOnError = true;
  if (getLangOpts().MicrosoftExt) {
    DiagID = diag::ext_mismatched_exception_spec;
    ReturnValueOnError = false;
  }

  // If we're befriending a member function of a class that's currently being
  // defined, we might not be able to work out its exception specification yet.
  // If not, defer the check until later.
  if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
    DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
    return false;
  }

  // Check the types as written: they must match before any exception
  // specification adjustment is applied.
  if (!CheckEquivalentExceptionSpecImpl(
        *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
        Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
        New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
        &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
        /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
    // C++11 [except.spec]p4 [DR1492]:
    //   If a declaration of a function has an implicit
    //   exception-specification, other declarations of the function shall
    //   not specify an exception-specification.
    if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
        hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
      Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
        << hasImplicitExceptionSpec(Old);
      if (Old->getLocation().isValid())
        Diag(Old->getLocation(), diag::note_previous_declaration);
    }
    return false;
  }

  // The failure was something other than an missing exception
  // specification; return an error, except in MS mode where this is a warning.
  if (!MissingExceptionSpecification)
    return ReturnValueOnError;

  const FunctionProtoType *NewProto =
    New->getType()->castAs<FunctionProtoType>();

  // The new function declaration is only missing an empty exception
  // specification "throw()". If the throw() specification came from a
  // function in a system header that has C linkage, just add an empty
  // exception specification to the "new" declaration. Note that C library
  // implementations are permitted to add these nothrow exception
  // specifications.
  //
  // Likewise if the old function is a builtin.
  if (MissingEmptyExceptionSpecification && NewProto &&
      (Old->getLocation().isInvalid() ||
       Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
       Old->getBuiltinID()) &&
      Old->isExternC()) {
    New->setType(Context.getFunctionType(
        NewProto->getReturnType(), NewProto->getParamTypes(),
        NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
    return false;
  }

  const FunctionProtoType *OldProto =
    Old->getType()->castAs<FunctionProtoType>();

  FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
  if (ESI.Type == EST_Dynamic) {
    // FIXME: What if the exceptions are described in terms of the old
    // prototype's parameters?
    ESI.Exceptions = OldProto->exceptions();
  }

  if (ESI.Type == EST_NoexceptFalse)
    ESI.Type = EST_None;
  if (ESI.Type == EST_NoexceptTrue)
    ESI.Type = EST_BasicNoexcept;

  // For dependent noexcept, we can't just take the expression from the old
  // prototype. It likely contains references to the old prototype's parameters.
  if (ESI.Type == EST_DependentNoexcept) {
    New->setInvalidDecl();
  } else {
    // Update the type of the function with the appropriate exception
    // specification.
    New->setType(Context.getFunctionType(
        NewProto->getReturnType(), NewProto->getParamTypes(),
        NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
  }

  if (getLangOpts().MicrosoftExt && ESI.Type != EST_DependentNoexcept) {
    // Allow missing exception specifications in redeclarations as an extension.
    DiagID = diag::ext_ms_missing_exception_specification;
    ReturnValueOnError = false;
  } else if (New->isReplaceableGlobalAllocationFunction() &&
             ESI.Type != EST_DependentNoexcept) {
    // Allow missing exception specifications in redeclarations as an extension,
    // when declaring a replaceable global allocation function.
    DiagID = diag::ext_missing_exception_specification;
    ReturnValueOnError = false;
  } else {
    DiagID = diag::err_missing_exception_specification;
    ReturnValueOnError = true;
  }

  // Warn about the lack of exception specification.
  SmallString<128> ExceptionSpecString;
  llvm::raw_svector_ostream OS(ExceptionSpecString);
  switch (OldProto->getExceptionSpecType()) {
  case EST_DynamicNone:
    OS << "throw()";
    break;

  case EST_Dynamic: {
    OS << "throw(";
    bool OnFirstException = true;
    for (const auto &E : OldProto->exceptions()) {
      if (OnFirstException)
        OnFirstException = false;
      else
        OS << ", ";

      OS << E.getAsString(getPrintingPolicy());
    }
    OS << ")";
    break;
  }

  case EST_BasicNoexcept:
    OS << "noexcept";
    break;

  case EST_DependentNoexcept:
  case EST_NoexceptFalse:
  case EST_NoexceptTrue:
    OS << "noexcept(";
    assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
    OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
    OS << ")";
    break;

  default:
    llvm_unreachable("This spec type is compatible with none.");
  }

  SourceLocation FixItLoc;
  if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
    TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
    // FIXME: Preserve enough information so that we can produce a correct fixit
    // location when there is a trailing return type.
    if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
      if (!FTLoc.getTypePtr()->hasTrailingReturn())
        FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
  }

  if (FixItLoc.isInvalid())
    Diag(New->getLocation(), DiagID)
      << New << OS.str();
  else {
    Diag(New->getLocation(), DiagID)
      << New << OS.str()
      << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
  }

  if (Old->getLocation().isValid())
    Diag(Old->getLocation(), diag::note_previous_declaration);

  return ReturnValueOnError;
}

/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
/// exception specifications. Exception specifications are equivalent if
/// they allow exactly the same set of exception types. It does not matter how
/// that is achieved. See C++ [except.spec]p2.
bool Sema::CheckEquivalentExceptionSpec(
    const FunctionProtoType *Old, SourceLocation OldLoc,
    const FunctionProtoType *New, SourceLocation NewLoc) {
  if (!getLangOpts().CXXExceptions)
    return false;

  unsigned DiagID = diag::err_mismatched_exception_spec;
  if (getLangOpts().MicrosoftExt)
    DiagID = diag::ext_mismatched_exception_spec;
  bool Result = CheckEquivalentExceptionSpecImpl(
      *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
      Old, OldLoc, New, NewLoc);

  // In Microsoft mode, mismatching exception specifications just cause a warning.
  if (getLangOpts().MicrosoftExt)
    return false;
  return Result;
}

/// CheckEquivalentExceptionSpec - Check if the two types have compatible
/// exception specifications. See C++ [except.spec]p3.
///
/// \return \c false if the exception specifications match, \c true if there is
/// a problem. If \c true is returned, either a diagnostic has already been
/// produced or \c *MissingExceptionSpecification is set to \c true.
static bool CheckEquivalentExceptionSpecImpl(
    Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
    const FunctionProtoType *Old, SourceLocation OldLoc,
    const FunctionProtoType *New, SourceLocation NewLoc,
    bool *MissingExceptionSpecification,
    bool *MissingEmptyExceptionSpecification,
    bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
  if (MissingExceptionSpecification)
    *MissingExceptionSpecification = false;

  if (MissingEmptyExceptionSpecification)
    *MissingEmptyExceptionSpecification = false;

  Old = S.ResolveExceptionSpec(NewLoc, Old);
  if (!Old)
    return false;
  New = S.ResolveExceptionSpec(NewLoc, New);
  if (!New)
    return false;

  // C++0x [except.spec]p3: Two exception-specifications are compatible if:
  //   - both are non-throwing, regardless of their form,
  //   - both have the form noexcept(constant-expression) and the constant-
  //     expressions are equivalent,
  //   - both are dynamic-exception-specifications that have the same set of
  //     adjusted types.
  //
  // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
  //   of the form throw(), noexcept, or noexcept(constant-expression) where the
  //   constant-expression yields true.
  //
  // C++0x [except.spec]p4: If any declaration of a function has an exception-
  //   specifier that is not a noexcept-specification allowing all exceptions,
  //   all declarations [...] of that function shall have a compatible
  //   exception-specification.
  //
  // That last point basically means that noexcept(false) matches no spec.
  // It's considered when AllowNoexceptAllMatchWithNoSpec is true.

  ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
  ExceptionSpecificationType NewEST = New->getExceptionSpecType();

  assert(!isUnresolvedExceptionSpec(OldEST) &&
         !isUnresolvedExceptionSpec(NewEST) &&
         "Shouldn't see unknown exception specifications here");

  CanThrowResult OldCanThrow = Old->canThrow();
  CanThrowResult NewCanThrow = New->canThrow();

  // Any non-throwing specifications are compatible.
  if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
    return false;

  // Any throws-anything specifications are usually compatible.
  if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
      NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
    // The exception is that the absence of an exception specification only
    // matches noexcept(false) for functions, as described above.
    if (!AllowNoexceptAllMatchWithNoSpec &&
        ((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
         (OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
      // This is the disallowed case.
    } else {
      return false;
    }
  }

  // C++14 [except.spec]p3:
  //   Two exception-specifications are compatible if [...] both have the form
  //   noexcept(constant-expression) and the constant-expressions are equivalent
  if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
    llvm::FoldingSetNodeID OldFSN, NewFSN;
    Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
    New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
    if (OldFSN == NewFSN)
      return false;
  }

  // Dynamic exception specifications with the same set of adjusted types
  // are compatible.
  if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
    bool Success = true;
    // Both have a dynamic exception spec. Collect the first set, then compare
    // to the second.
    llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
    for (const auto &I : Old->exceptions())
      OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());

    for (const auto &I : New->exceptions()) {
      CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
      if (OldTypes.count(TypePtr))
        NewTypes.insert(TypePtr);
      else {
        Success = false;
        break;
      }
    }

    if (Success && OldTypes.size() == NewTypes.size())
      return false;
  }

  // As a special compatibility feature, under C++0x we accept no spec and
  // throw(std::bad_alloc) as equivalent for operator new and operator new[].
  // This is because the implicit declaration changed, but old code would break.
  if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
    const FunctionProtoType *WithExceptions = nullptr;
    if (OldEST == EST_None && NewEST == EST_Dynamic)
      WithExceptions = New;
    else if (OldEST == EST_Dynamic && NewEST == EST_None)
      WithExceptions = Old;
    if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
      // One has no spec, the other throw(something). If that something is
      // std::bad_alloc, all conditions are met.
      QualType Exception = *WithExceptions->exception_begin();
      if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
        IdentifierInfo* Name = ExRecord->getIdentifier();
        if (Name && Name->getName() == "bad_alloc") {
          // It's called bad_alloc, but is it in std?
          if (ExRecord->isInStdNamespace()) {
            return false;
          }
        }
      }
    }
  }

  // If the caller wants to handle the case that the new function is
  // incompatible due to a missing exception specification, let it.
  if (MissingExceptionSpecification && OldEST != EST_None &&
      NewEST == EST_None) {
    // The old type has an exception specification of some sort, but
    // the new type does not.
    *MissingExceptionSpecification = true;

    if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
      // The old type has a throw() or noexcept(true) exception specification
      // and the new type has no exception specification, and the caller asked
      // to handle this itself.
      *MissingEmptyExceptionSpecification = true;
    }

    return true;
  }

  S.Diag(NewLoc, DiagID);
  if (NoteID.getDiagID() != 0 && OldLoc.isValid())
    S.Diag(OldLoc, NoteID);
  return true;
}

bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
                                        const PartialDiagnostic &NoteID,
                                        const FunctionProtoType *Old,
                                        SourceLocation OldLoc,
                                        const FunctionProtoType *New,
                                        SourceLocation NewLoc) {
  if (!getLangOpts().CXXExceptions)
    return false;
  return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
                                          New, NewLoc);
}

bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
  // [except.handle]p3:
  //   A handler is a match for an exception object of type E if:

  // HandlerType must be ExceptionType or derived from it, or pointer or
  // reference to such types.
  const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
  if (RefTy)
    HandlerType = RefTy->getPointeeType();

  //   -- the handler is of type cv T or cv T& and E and T are the same type
  if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
    return true;

  // FIXME: ObjC pointer types?
  if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
    if (RefTy && (!HandlerType.isConstQualified() ||
                  HandlerType.isVolatileQualified()))
      return false;

    // -- the handler is of type cv T or const T& where T is a pointer or
    //    pointer to member type and E is std::nullptr_t
    if (ExceptionType->isNullPtrType())
      return true;

    // -- the handler is of type cv T or const T& where T is a pointer or
    //    pointer to member type and E is a pointer or pointer to member type
    //    that can be converted to T by one or more of
    //    -- a qualification conversion
    //    -- a function pointer conversion
    bool LifetimeConv;
    QualType Result;
    // FIXME: Should we treat the exception as catchable if a lifetime
    // conversion is required?
    if (IsQualificationConversion(ExceptionType, HandlerType, false,
                                  LifetimeConv) ||
        IsFunctionConversion(ExceptionType, HandlerType, Result))
      return true;

    //    -- a standard pointer conversion [...]
    if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
      return false;

    // Handle the "qualification conversion" portion.
    Qualifiers EQuals, HQuals;
    ExceptionType = Context.getUnqualifiedArrayType(
        ExceptionType->getPointeeType(), EQuals);
    HandlerType = Context.getUnqualifiedArrayType(
        HandlerType->getPointeeType(), HQuals);
    if (!HQuals.compatiblyIncludes(EQuals))
      return false;

    if (HandlerType->isVoidType() && ExceptionType->isObjectType())
      return true;

    // The only remaining case is a derived-to-base conversion.
  }

  //   -- the handler is of type cg T or cv T& and T is an unambiguous public
  //      base class of E
  if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
    return false;
  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
                     /*DetectVirtual=*/false);
  if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
      Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
    return false;

  // Do this check from a context without privileges.
  switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
                               Paths.front(),
                               /*Diagnostic*/ 0,
                               /*ForceCheck*/ true,
                               /*ForceUnprivileged*/ true)) {
  case AR_accessible: return true;
  case AR_inaccessible: return false;
  case AR_dependent:
    llvm_unreachable("access check dependent for unprivileged context");
  case AR_delayed:
    llvm_unreachable("access check delayed in non-declaration");
  }
  llvm_unreachable("unexpected access check result");
}

/// CheckExceptionSpecSubset - Check whether the second function type's
/// exception specification is a subset (or equivalent) of the first function
/// type. This is used by override and pointer assignment checks.
bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
                                    const PartialDiagnostic &NestedDiagID,
                                    const PartialDiagnostic &NoteID,
                                    const FunctionProtoType *Superset,
                                    SourceLocation SuperLoc,
                                    const FunctionProtoType *Subset,
                                    SourceLocation SubLoc) {

  // Just auto-succeed under -fno-exceptions.
  if (!getLangOpts().CXXExceptions)
    return false;

  // FIXME: As usual, we could be more specific in our error messages, but
  // that better waits until we've got types with source locations.

  if (!SubLoc.isValid())
    SubLoc = SuperLoc;

  // Resolve the exception specifications, if needed.
  Superset = ResolveExceptionSpec(SuperLoc, Superset);
  if (!Superset)
    return false;
  Subset = ResolveExceptionSpec(SubLoc, Subset);
  if (!Subset)
    return false;

  ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
  ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
  assert(!isUnresolvedExceptionSpec(SuperEST) &&
         !isUnresolvedExceptionSpec(SubEST) &&
         "Shouldn't see unknown exception specifications here");

  // If there are dependent noexcept specs, assume everything is fine. Unlike
  // with the equivalency check, this is safe in this case, because we don't
  // want to merge declarations. Checks after instantiation will catch any
  // omissions we make here.
  if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
    return false;

  CanThrowResult SuperCanThrow = Superset->canThrow();
  CanThrowResult SubCanThrow = Subset->canThrow();

  // If the superset contains everything or the subset contains nothing, we're
  // done.
  if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
      SubCanThrow == CT_Cannot)
    return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
                                   Subset, SubLoc);

  // If the subset contains everything or the superset contains nothing, we've
  // failed.
  if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
      SuperCanThrow == CT_Cannot) {
    Diag(SubLoc, DiagID);
    if (NoteID.getDiagID() != 0)
      Diag(SuperLoc, NoteID);
    return true;
  }

  assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
         "Exception spec subset: non-dynamic case slipped through.");

  // Neither contains everything or nothing. Do a proper comparison.
  for (QualType SubI : Subset->exceptions()) {
    if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
      SubI = RefTy->getPointeeType();

    // Make sure it's in the superset.
    bool Contained = false;
    for (QualType SuperI : Superset->exceptions()) {
      // [except.spec]p5:
      //   the target entity shall allow at least the exceptions allowed by the
      //   source
      //
      // We interpret this as meaning that a handler for some target type would
      // catch an exception of each source type.
      if (handlerCanCatch(SuperI, SubI)) {
        Contained = true;
        break;
      }
    }
    if (!Contained) {
      Diag(SubLoc, DiagID);
      if (NoteID.getDiagID() != 0)
        Diag(SuperLoc, NoteID);
      return true;
    }
  }
  // We've run half the gauntlet.
  return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
                                 Subset, SubLoc);
}

static bool
CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
                            const PartialDiagnostic &NoteID, QualType Target,
                            SourceLocation TargetLoc, QualType Source,
                            SourceLocation SourceLoc) {
  const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
  if (!TFunc)
    return false;
  const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
  if (!SFunc)
    return false;

  return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
                                        SFunc, SourceLoc);
}

/// CheckParamExceptionSpec - Check if the parameter and return types of the
/// two functions have equivalent exception specs. This is part of the
/// assignment and override compatibility check. We do not check the parameters
/// of parameter function pointers recursively, as no sane programmer would
/// even be able to write such a function type.
bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID,
                                   const PartialDiagnostic &NoteID,
                                   const FunctionProtoType *Target,
                                   SourceLocation TargetLoc,
                                   const FunctionProtoType *Source,
                                   SourceLocation SourceLoc) {
  auto RetDiag = DiagID;
  RetDiag << 0;
  if (CheckSpecForTypesEquivalent(
          *this, RetDiag, PDiag(),
          Target->getReturnType(), TargetLoc, Source->getReturnType(),
          SourceLoc))
    return true;

  // We shouldn't even be testing this unless the arguments are otherwise
  // compatible.
  assert(Target->getNumParams() == Source->getNumParams() &&
         "Functions have different argument counts.");
  for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
    auto ParamDiag = DiagID;
    ParamDiag << 1;
    if (CheckSpecForTypesEquivalent(
            *this, ParamDiag, PDiag(),
            Target->getParamType(i), TargetLoc, Source->getParamType(i),
            SourceLoc))
      return true;
  }
  return false;
}

bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
  // First we check for applicability.
  // Target type must be a function, function pointer or function reference.
  const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
  if (!ToFunc || ToFunc->hasDependentExceptionSpec())
    return false;

  // SourceType must be a function or function pointer.
  const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
  if (!FromFunc || FromFunc->hasDependentExceptionSpec())
    return false;

  unsigned DiagID = diag::err_incompatible_exception_specs;
  unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
  // This is not an error in C++17 onwards, unless the noexceptness doesn't
  // match, but in that case we have a full-on type mismatch, not just a
  // type sugar mismatch.
  if (getLangOpts().CPlusPlus17) {
    DiagID = diag::warn_incompatible_exception_specs;
    NestedDiagID = diag::warn_deep_exception_specs_differ;
  }

  // Now we've got the correct types on both sides, check their compatibility.
  // This means that the source of the conversion can only throw a subset of
  // the exceptions of the target, and any exception specs on arguments or
  // return types must be equivalent.
  //
  // FIXME: If there is a nested dependent exception specification, we should
  // not be checking it here. This is fine:
  //   template<typename T> void f() {
  //     void (*p)(void (*) throw(T));
  //     void (*q)(void (*) throw(int)) = p;
  //   }
  // ... because it might be instantiated with T=int.
  return CheckExceptionSpecSubset(PDiag(DiagID), PDiag(NestedDiagID), PDiag(),
                                  ToFunc, From->getSourceRange().getBegin(),
                                  FromFunc, SourceLocation()) &&
         !getLangOpts().CPlusPlus17;
}

bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
                                                const CXXMethodDecl *Old) {
  // If the new exception specification hasn't been parsed yet, skip the check.
  // We'll get called again once it's been parsed.
  if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
      EST_Unparsed)
    return false;

  // Don't check uninstantiated template destructors at all. We can only
  // synthesize correct specs after the template is instantiated.
  if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
    return false;

  // If the old exception specification hasn't been parsed yet, or the new
  // exception specification can't be computed yet, remember that we need to
  // perform this check when we get to the end of the outermost
  // lexically-surrounding class.
  if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
    DelayedOverridingExceptionSpecChecks.push_back({New, Old});
    return false;
  }

  unsigned DiagID = diag::err_override_exception_spec;
  if (getLangOpts().MicrosoftExt)
    DiagID = diag::ext_override_exception_spec;
  return CheckExceptionSpecSubset(PDiag(DiagID),
                                  PDiag(diag::err_deep_exception_specs_differ),
                                  PDiag(diag::note_overridden_virtual_function),
                                  Old->getType()->getAs<FunctionProtoType>(),
                                  Old->getLocation(),
                                  New->getType()->getAs<FunctionProtoType>(),
                                  New->getLocation());
}

static CanThrowResult canSubExprsThrow(Sema &S, const Expr *E) {
  CanThrowResult R = CT_Cannot;
  for (const Stmt *SubStmt : E->children()) {
    R = mergeCanThrow(R, S.canThrow(cast<Expr>(SubStmt)));
    if (R == CT_Can)
      break;
  }
  return R;
}

static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D) {
  // As an extension, we assume that __attribute__((nothrow)) functions don't
  // throw.
  if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
    return CT_Cannot;

  QualType T;

  // In C++1z, just look at the function type of the callee.
  if (S.getLangOpts().CPlusPlus17 && isa<CallExpr>(E)) {
    E = cast<CallExpr>(E)->getCallee();
    T = E->getType();
    if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
      // Sadly we don't preserve the actual type as part of the "bound member"
      // placeholder, so we need to reconstruct it.
      E = E->IgnoreParenImpCasts();

      // Could be a call to a pointer-to-member or a plain member access.
      if (auto *Op = dyn_cast<BinaryOperator>(E)) {
        assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI);
        T = Op->getRHS()->getType()
              ->castAs<MemberPointerType>()->getPointeeType();
      } else {
        T = cast<MemberExpr>(E)->getMemberDecl()->getType();
      }
    }
  } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
    T = VD->getType();
  else
    // If we have no clue what we're calling, assume the worst.
    return CT_Can;

  const FunctionProtoType *FT;
  if ((FT = T->getAs<FunctionProtoType>())) {
  } else if (const PointerType *PT = T->getAs<PointerType>())
    FT = PT->getPointeeType()->getAs<FunctionProtoType>();
  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
    FT = RT->getPointeeType()->getAs<FunctionProtoType>();
  else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
    FT = MT->getPointeeType()->getAs<FunctionProtoType>();
  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
    FT = BT->getPointeeType()->getAs<FunctionProtoType>();

  if (!FT)
    return CT_Can;

  FT = S.ResolveExceptionSpec(E->getBeginLoc(), FT);
  if (!FT)
    return CT_Can;

  return FT->canThrow();
}

static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
  if (DC->isTypeDependent())
    return CT_Dependent;

  if (!DC->getTypeAsWritten()->isReferenceType())
    return CT_Cannot;

  if (DC->getSubExpr()->isTypeDependent())
    return CT_Dependent;

  return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
}

static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
  if (DC->isTypeOperand())
    return CT_Cannot;

  Expr *Op = DC->getExprOperand();
  if (Op->isTypeDependent())
    return CT_Dependent;

  const RecordType *RT = Op->getType()->getAs<RecordType>();
  if (!RT)
    return CT_Cannot;

  if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
    return CT_Cannot;

  if (Op->Classify(S.Context).isPRValue())
    return CT_Cannot;

  return CT_Can;
}

CanThrowResult Sema::canThrow(const Expr *E) {
  // C++ [expr.unary.noexcept]p3:
  //   [Can throw] if in a potentially-evaluated context the expression would
  //   contain:
  switch (E->getStmtClass()) {
  case Expr::CXXThrowExprClass:
    //   - a potentially evaluated throw-expression
    return CT_Can;

  case Expr::CXXDynamicCastExprClass: {
    //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
    //     where T is a reference type, that requires a run-time check
    CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E));
    if (CT == CT_Can)
      return CT;
    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
  }

  case Expr::CXXTypeidExprClass:
    //   - a potentially evaluated typeid expression applied to a glvalue
    //     expression whose type is a polymorphic class type
    return canTypeidThrow(*this, cast<CXXTypeidExpr>(E));

    //   - a potentially evaluated call to a function, member function, function
    //     pointer, or member function pointer that does not have a non-throwing
    //     exception-specification
  case Expr::CallExprClass:
  case Expr::CXXMemberCallExprClass:
  case Expr::CXXOperatorCallExprClass:
  case Expr::UserDefinedLiteralClass: {
    const CallExpr *CE = cast<CallExpr>(E);
    CanThrowResult CT;
    if (E->isTypeDependent())
      CT = CT_Dependent;
    else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
      CT = CT_Cannot;
    else
      CT = canCalleeThrow(*this, E, CE->getCalleeDecl());
    if (CT == CT_Can)
      return CT;
    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
  }

  case Expr::CXXConstructExprClass:
  case Expr::CXXTemporaryObjectExprClass: {
    CanThrowResult CT = canCalleeThrow(*this, E,
        cast<CXXConstructExpr>(E)->getConstructor());
    if (CT == CT_Can)
      return CT;
    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
  }

  case Expr::CXXInheritedCtorInitExprClass:
    return canCalleeThrow(*this, E,
                          cast<CXXInheritedCtorInitExpr>(E)->getConstructor());

  case Expr::LambdaExprClass: {
    const LambdaExpr *Lambda = cast<LambdaExpr>(E);
    CanThrowResult CT = CT_Cannot;
    for (LambdaExpr::const_capture_init_iterator
             Cap = Lambda->capture_init_begin(),
             CapEnd = Lambda->capture_init_end();
         Cap != CapEnd; ++Cap)
      CT = mergeCanThrow(CT, canThrow(*Cap));
    return CT;
  }

  case Expr::CXXNewExprClass: {
    CanThrowResult CT;
    if (E->isTypeDependent())
      CT = CT_Dependent;
    else
      CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew());
    if (CT == CT_Can)
      return CT;
    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
  }

  case Expr::CXXDeleteExprClass: {
    CanThrowResult CT;
    QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType();
    if (DTy.isNull() || DTy->isDependentType()) {
      CT = CT_Dependent;
    } else {
      CT = canCalleeThrow(*this, E,
                          cast<CXXDeleteExpr>(E)->getOperatorDelete());
      if (const RecordType *RT = DTy->getAs<RecordType>()) {
        const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
        const CXXDestructorDecl *DD = RD->getDestructor();
        if (DD)
          CT = mergeCanThrow(CT, canCalleeThrow(*this, E, DD));
      }
      if (CT == CT_Can)
        return CT;
    }
    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
  }

  case Expr::CXXBindTemporaryExprClass: {
    // The bound temporary has to be destroyed again, which might throw.
    CanThrowResult CT = canCalleeThrow(*this, E,
      cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor());
    if (CT == CT_Can)
      return CT;
    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
  }

    // ObjC message sends are like function calls, but never have exception
    // specs.
  case Expr::ObjCMessageExprClass:
  case Expr::ObjCPropertyRefExprClass:
  case Expr::ObjCSubscriptRefExprClass:
    return CT_Can;

    // All the ObjC literals that are implemented as calls are
    // potentially throwing unless we decide to close off that
    // possibility.
  case Expr::ObjCArrayLiteralClass:
  case Expr::ObjCDictionaryLiteralClass:
  case Expr::ObjCBoxedExprClass:
    return CT_Can;

    // Many other things have subexpressions, so we have to test those.
    // Some are simple:
  case Expr::CoawaitExprClass:
  case Expr::ConditionalOperatorClass:
  case Expr::CompoundLiteralExprClass:
  case Expr::CoyieldExprClass:
  case Expr::CXXConstCastExprClass:
  case Expr::CXXReinterpretCastExprClass:
  case Expr::CXXStdInitializerListExprClass:
  case Expr::DesignatedInitExprClass:
  case Expr::DesignatedInitUpdateExprClass:
  case Expr::ExprWithCleanupsClass:
  case Expr::ExtVectorElementExprClass:
  case Expr::InitListExprClass:
  case Expr::ArrayInitLoopExprClass:
  case Expr::MemberExprClass:
  case Expr::ObjCIsaExprClass:
  case Expr::ObjCIvarRefExprClass:
  case Expr::ParenExprClass:
  case Expr::ParenListExprClass:
  case Expr::ShuffleVectorExprClass:
  case Expr::ConvertVectorExprClass:
  case Expr::VAArgExprClass:
    return canSubExprsThrow(*this, E);

    // Some might be dependent for other reasons.
  case Expr::ArraySubscriptExprClass:
  case Expr::OMPArraySectionExprClass:
  case Expr::BinaryOperatorClass:
  case Expr::DependentCoawaitExprClass:
  case Expr::CompoundAssignOperatorClass:
  case Expr::CStyleCastExprClass:
  case Expr::CXXStaticCastExprClass:
  case Expr::CXXFunctionalCastExprClass:
  case Expr::ImplicitCastExprClass:
  case Expr::MaterializeTemporaryExprClass:
  case Expr::UnaryOperatorClass: {
    CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot;
    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
  }

    // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
  case Expr::StmtExprClass:
    return CT_Can;

  case Expr::CXXDefaultArgExprClass:
    return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr());

  case Expr::CXXDefaultInitExprClass:
    return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr());

  case Expr::ChooseExprClass:
    if (E->isTypeDependent() || E->isValueDependent())
      return CT_Dependent;
    return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr());

  case Expr::GenericSelectionExprClass:
    if (cast<GenericSelectionExpr>(E)->isResultDependent())
      return CT_Dependent;
    return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr());

    // Some expressions are always dependent.
  case Expr::CXXDependentScopeMemberExprClass:
  case Expr::CXXUnresolvedConstructExprClass:
  case Expr::DependentScopeDeclRefExprClass:
  case Expr::CXXFoldExprClass:
    return CT_Dependent;

  case Expr::AsTypeExprClass:
  case Expr::BinaryConditionalOperatorClass:
  case Expr::BlockExprClass:
  case Expr::CUDAKernelCallExprClass:
  case Expr::DeclRefExprClass:
  case Expr::ObjCBridgedCastExprClass:
  case Expr::ObjCIndirectCopyRestoreExprClass:
  case Expr::ObjCProtocolExprClass:
  case Expr::ObjCSelectorExprClass:
  case Expr::ObjCAvailabilityCheckExprClass:
  case Expr::OffsetOfExprClass:
  case Expr::PackExpansionExprClass:
  case Expr::PseudoObjectExprClass:
  case Expr::SubstNonTypeTemplateParmExprClass:
  case Expr::SubstNonTypeTemplateParmPackExprClass:
  case Expr::FunctionParmPackExprClass:
  case Expr::UnaryExprOrTypeTraitExprClass:
  case Expr::UnresolvedLookupExprClass:
  case Expr::UnresolvedMemberExprClass:
  case Expr::TypoExprClass:
    // FIXME: Can any of the above throw?  If so, when?
    return CT_Cannot;

  case Expr::AddrLabelExprClass:
  case Expr::ArrayTypeTraitExprClass:
  case Expr::AtomicExprClass:
  case Expr::TypeTraitExprClass:
  case Expr::CXXBoolLiteralExprClass:
  case Expr::CXXNoexceptExprClass:
  case Expr::CXXNullPtrLiteralExprClass:
  case Expr::CXXPseudoDestructorExprClass:
  case Expr::CXXScalarValueInitExprClass:
  case Expr::CXXThisExprClass:
  case Expr::CXXUuidofExprClass:
  case Expr::CharacterLiteralClass:
  case Expr::ExpressionTraitExprClass:
  case Expr::FloatingLiteralClass:
  case Expr::GNUNullExprClass:
  case Expr::ImaginaryLiteralClass:
  case Expr::ImplicitValueInitExprClass:
  case Expr::IntegerLiteralClass:
  case Expr::FixedPointLiteralClass:
  case Expr::ArrayInitIndexExprClass:
  case Expr::NoInitExprClass:
  case Expr::ObjCEncodeExprClass:
  case Expr::ObjCStringLiteralClass:
  case Expr::ObjCBoolLiteralExprClass:
  case Expr::OpaqueValueExprClass:
  case Expr::PredefinedExprClass:
  case Expr::SizeOfPackExprClass:
  case Expr::StringLiteralClass:
    // These expressions can never throw.
    return CT_Cannot;

  case Expr::MSPropertyRefExprClass:
  case Expr::MSPropertySubscriptExprClass:
    llvm_unreachable("Invalid class for expression");

#define STMT(CLASS, PARENT) case Expr::CLASS##Class:
#define STMT_RANGE(Base, First, Last)
#define LAST_STMT_RANGE(BASE, FIRST, LAST)
#define EXPR(CLASS, PARENT)
#define ABSTRACT_STMT(STMT)
#include "clang/AST/StmtNodes.inc"
  case Expr::NoStmtClass:
    llvm_unreachable("Invalid class for expression");
  }
  llvm_unreachable("Bogus StmtClass");
}

} // end namespace clang