summaryrefslogtreecommitdiff
path: root/lib/Sema/SemaCUDA.cpp
blob: 9e101d16da9b8b25d7d6972a9f3e73866fb993d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// \brief This file implements semantic analysis for CUDA constructs.
///
//===----------------------------------------------------------------------===//

#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/Template.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
using namespace clang;

void Sema::PushForceCUDAHostDevice() {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  ForceCUDAHostDeviceDepth++;
}

bool Sema::PopForceCUDAHostDevice() {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  if (ForceCUDAHostDeviceDepth == 0)
    return false;
  ForceCUDAHostDeviceDepth--;
  return true;
}

ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
                                         MultiExprArg ExecConfig,
                                         SourceLocation GGGLoc) {
  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
  if (!ConfigDecl)
    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
                     << "cudaConfigureCall");
  QualType ConfigQTy = ConfigDecl->getType();

  DeclRefExpr *ConfigDR = new (Context)
      DeclRefExpr(ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
  MarkFunctionReferenced(LLLLoc, ConfigDecl);

  return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
                       /*IsExecConfig=*/true);
}

/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
  if (D->hasAttr<CUDAInvalidTargetAttr>())
    return CFT_InvalidTarget;

  if (D->hasAttr<CUDAGlobalAttr>())
    return CFT_Global;

  if (D->hasAttr<CUDADeviceAttr>()) {
    if (D->hasAttr<CUDAHostAttr>())
      return CFT_HostDevice;
    return CFT_Device;
  } else if (D->hasAttr<CUDAHostAttr>()) {
    return CFT_Host;
  } else if (D->isImplicit()) {
    // Some implicit declarations (like intrinsic functions) are not marked.
    // Set the most lenient target on them for maximal flexibility.
    return CFT_HostDevice;
  }

  return CFT_Host;
}

// * CUDA Call preference table
//
// F - from,
// T - to
// Ph - preference in host mode
// Pd - preference in device mode
// H  - handled in (x)
// Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
//
// | F  | T  | Ph  | Pd  |  H  |
// |----+----+-----+-----+-----+
// | d  | d  | N   | N   | (c) |
// | d  | g  | --  | --  | (a) |
// | d  | h  | --  | --  | (e) |
// | d  | hd | HD  | HD  | (b) |
// | g  | d  | N   | N   | (c) |
// | g  | g  | --  | --  | (a) |
// | g  | h  | --  | --  | (e) |
// | g  | hd | HD  | HD  | (b) |
// | h  | d  | --  | --  | (e) |
// | h  | g  | N   | N   | (c) |
// | h  | h  | N   | N   | (c) |
// | h  | hd | HD  | HD  | (b) |
// | hd | d  | WS  | SS  | (d) |
// | hd | g  | SS  | --  |(d/a)|
// | hd | h  | SS  | WS  | (d) |
// | hd | hd | HD  | HD  | (b) |

Sema::CUDAFunctionPreference
Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
                             const FunctionDecl *Callee) {
  assert(Callee && "Callee must be valid.");
  CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
  CUDAFunctionTarget CallerTarget =
      (Caller != nullptr) ? IdentifyCUDATarget(Caller) : Sema::CFT_Host;

  // If one of the targets is invalid, the check always fails, no matter what
  // the other target is.
  if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
    return CFP_Never;

  // (a) Can't call global from some contexts until we support CUDA's
  // dynamic parallelism.
  if (CalleeTarget == CFT_Global &&
      (CallerTarget == CFT_Global || CallerTarget == CFT_Device ||
       (CallerTarget == CFT_HostDevice && getLangOpts().CUDAIsDevice)))
    return CFP_Never;

  // (b) Calling HostDevice is OK for everyone.
  if (CalleeTarget == CFT_HostDevice)
    return CFP_HostDevice;

  // (c) Best case scenarios
  if (CalleeTarget == CallerTarget ||
      (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
      (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
    return CFP_Native;

  // (d) HostDevice behavior depends on compilation mode.
  if (CallerTarget == CFT_HostDevice) {
    // It's OK to call a compilation-mode matching function from an HD one.
    if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
        (!getLangOpts().CUDAIsDevice &&
         (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
      return CFP_SameSide;

    // Calls from HD to non-mode-matching functions (i.e., to host functions
    // when compiling in device mode or to device functions when compiling in
    // host mode) are allowed at the sema level, but eventually rejected if
    // they're ever codegened.  TODO: Reject said calls earlier.
    return CFP_WrongSide;
  }

  // (e) Calling across device/host boundary is not something you should do.
  if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
      (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
      (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
    return CFP_Never;

  llvm_unreachable("All cases should've been handled by now.");
}

void Sema::EraseUnwantedCUDAMatches(
    const FunctionDecl *Caller,
    SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
  if (Matches.size() <= 1)
    return;

  using Pair = std::pair<DeclAccessPair, FunctionDecl*>;

  // Gets the CUDA function preference for a call from Caller to Match.
  auto GetCFP = [&](const Pair &Match) {
    return IdentifyCUDAPreference(Caller, Match.second);
  };

  // Find the best call preference among the functions in Matches.
  CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
      Matches.begin(), Matches.end(),
      [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));

  // Erase all functions with lower priority.
  Matches.erase(
      llvm::remove_if(
          Matches, [&](const Pair &Match) { return GetCFP(Match) < BestCFP; }),
      Matches.end());
}

/// When an implicitly-declared special member has to invoke more than one
/// base/field special member, conflicts may occur in the targets of these
/// members. For example, if one base's member __host__ and another's is
/// __device__, it's a conflict.
/// This function figures out if the given targets \param Target1 and
/// \param Target2 conflict, and if they do not it fills in
/// \param ResolvedTarget with a target that resolves for both calls.
/// \return true if there's a conflict, false otherwise.
static bool
resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
                                Sema::CUDAFunctionTarget Target2,
                                Sema::CUDAFunctionTarget *ResolvedTarget) {
  // Only free functions and static member functions may be global.
  assert(Target1 != Sema::CFT_Global);
  assert(Target2 != Sema::CFT_Global);

  if (Target1 == Sema::CFT_HostDevice) {
    *ResolvedTarget = Target2;
  } else if (Target2 == Sema::CFT_HostDevice) {
    *ResolvedTarget = Target1;
  } else if (Target1 != Target2) {
    return true;
  } else {
    *ResolvedTarget = Target1;
  }

  return false;
}

bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
                                                   CXXSpecialMember CSM,
                                                   CXXMethodDecl *MemberDecl,
                                                   bool ConstRHS,
                                                   bool Diagnose) {
  llvm::Optional<CUDAFunctionTarget> InferredTarget;

  // We're going to invoke special member lookup; mark that these special
  // members are called from this one, and not from its caller.
  ContextRAII MethodContext(*this, MemberDecl);

  // Look for special members in base classes that should be invoked from here.
  // Infer the target of this member base on the ones it should call.
  // Skip direct and indirect virtual bases for abstract classes.
  llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
  for (const auto &B : ClassDecl->bases()) {
    if (!B.isVirtual()) {
      Bases.push_back(&B);
    }
  }

  if (!ClassDecl->isAbstract()) {
    for (const auto &VB : ClassDecl->vbases()) {
      Bases.push_back(&VB);
    }
  }

  for (const auto *B : Bases) {
    const RecordType *BaseType = B->getType()->getAs<RecordType>();
    if (!BaseType) {
      continue;
    }

    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
    Sema::SpecialMemberOverloadResult *SMOR =
        LookupSpecialMember(BaseClassDecl, CSM,
                            /* ConstArg */ ConstRHS,
                            /* VolatileArg */ false,
                            /* RValueThis */ false,
                            /* ConstThis */ false,
                            /* VolatileThis */ false);

    if (!SMOR || !SMOR->getMethod()) {
      continue;
    }

    CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR->getMethod());
    if (!InferredTarget.hasValue()) {
      InferredTarget = BaseMethodTarget;
    } else {
      bool ResolutionError = resolveCalleeCUDATargetConflict(
          InferredTarget.getValue(), BaseMethodTarget,
          InferredTarget.getPointer());
      if (ResolutionError) {
        if (Diagnose) {
          Diag(ClassDecl->getLocation(),
               diag::note_implicit_member_target_infer_collision)
              << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
        }
        MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
        return true;
      }
    }
  }

  // Same as for bases, but now for special members of fields.
  for (const auto *F : ClassDecl->fields()) {
    if (F->isInvalidDecl()) {
      continue;
    }

    const RecordType *FieldType =
        Context.getBaseElementType(F->getType())->getAs<RecordType>();
    if (!FieldType) {
      continue;
    }

    CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
    Sema::SpecialMemberOverloadResult *SMOR =
        LookupSpecialMember(FieldRecDecl, CSM,
                            /* ConstArg */ ConstRHS && !F->isMutable(),
                            /* VolatileArg */ false,
                            /* RValueThis */ false,
                            /* ConstThis */ false,
                            /* VolatileThis */ false);

    if (!SMOR || !SMOR->getMethod()) {
      continue;
    }

    CUDAFunctionTarget FieldMethodTarget =
        IdentifyCUDATarget(SMOR->getMethod());
    if (!InferredTarget.hasValue()) {
      InferredTarget = FieldMethodTarget;
    } else {
      bool ResolutionError = resolveCalleeCUDATargetConflict(
          InferredTarget.getValue(), FieldMethodTarget,
          InferredTarget.getPointer());
      if (ResolutionError) {
        if (Diagnose) {
          Diag(ClassDecl->getLocation(),
               diag::note_implicit_member_target_infer_collision)
              << (unsigned)CSM << InferredTarget.getValue()
              << FieldMethodTarget;
        }
        MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
        return true;
      }
    }
  }

  if (InferredTarget.hasValue()) {
    if (InferredTarget.getValue() == CFT_Device) {
      MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
    } else if (InferredTarget.getValue() == CFT_Host) {
      MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
    } else {
      MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
      MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
    }
  } else {
    // If no target was inferred, mark this member as __host__ __device__;
    // it's the least restrictive option that can be invoked from any target.
    MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
    MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
  }

  return false;
}

bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
  if (!CD->isDefined() && CD->isTemplateInstantiation())
    InstantiateFunctionDefinition(Loc, CD->getFirstDecl());

  // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
  // empty at a point in the translation unit, if it is either a
  // trivial constructor
  if (CD->isTrivial())
    return true;

  // ... or it satisfies all of the following conditions:
  // The constructor function has been defined.
  // The constructor function has no parameters,
  // and the function body is an empty compound statement.
  if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
    return false;

  // Its class has no virtual functions and no virtual base classes.
  if (CD->getParent()->isDynamicClass())
    return false;

  // The only form of initializer allowed is an empty constructor.
  // This will recursively check all base classes and member initializers
  if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
        if (const CXXConstructExpr *CE =
                dyn_cast<CXXConstructExpr>(CI->getInit()))
          return isEmptyCudaConstructor(Loc, CE->getConstructor());
        return false;
      }))
    return false;

  return true;
}

bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
  // No destructor -> no problem.
  if (!DD)
    return true;

  if (!DD->isDefined() && DD->isTemplateInstantiation())
    InstantiateFunctionDefinition(Loc, DD->getFirstDecl());

  // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
  // empty at a point in the translation unit, if it is either a
  // trivial constructor
  if (DD->isTrivial())
    return true;

  // ... or it satisfies all of the following conditions:
  // The destructor function has been defined.
  // and the function body is an empty compound statement.
  if (!DD->hasTrivialBody())
    return false;

  const CXXRecordDecl *ClassDecl = DD->getParent();

  // Its class has no virtual functions and no virtual base classes.
  if (ClassDecl->isDynamicClass())
    return false;

  // Only empty destructors are allowed. This will recursively check
  // destructors for all base classes...
  if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
        if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
          return isEmptyCudaDestructor(Loc, RD->getDestructor());
        return true;
      }))
    return false;

  // ... and member fields.
  if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
        if (CXXRecordDecl *RD = Field->getType()
                                    ->getBaseElementTypeUnsafe()
                                    ->getAsCXXRecordDecl())
          return isEmptyCudaDestructor(Loc, RD->getDestructor());
        return true;
      }))
    return false;

  return true;
}

// With -fcuda-host-device-constexpr, an unattributed constexpr function is
// treated as implicitly __host__ __device__, unless:
//  * it is a variadic function (device-side variadic functions are not
//    allowed), or
//  * a __device__ function with this signature was already declared, in which
//    case in which case we output an error, unless the __device__ decl is in a
//    system header, in which case we leave the constexpr function unattributed.
//
// In addition, all function decls are treated as __host__ __device__ when
// ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
//   #pragma clang force_cuda_host_device_begin/end
// pair).
void Sema::maybeAddCUDAHostDeviceAttrs(Scope *S, FunctionDecl *NewD,
                                       const LookupResult &Previous) {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");

  if (ForceCUDAHostDeviceDepth > 0) {
    if (!NewD->hasAttr<CUDAHostAttr>())
      NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
    if (!NewD->hasAttr<CUDADeviceAttr>())
      NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
    return;
  }

  if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
      NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
      NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
    return;

  // Is D a __device__ function with the same signature as NewD, ignoring CUDA
  // attributes?
  auto IsMatchingDeviceFn = [&](NamedDecl *D) {
    if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
      D = Using->getTargetDecl();
    FunctionDecl *OldD = D->getAsFunction();
    return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
           !OldD->hasAttr<CUDAHostAttr>() &&
           !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
                       /* ConsiderCudaAttrs = */ false);
  };
  auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
  if (It != Previous.end()) {
    // We found a __device__ function with the same name and signature as NewD
    // (ignoring CUDA attrs).  This is an error unless that function is defined
    // in a system header, in which case we simply return without making NewD
    // host+device.
    NamedDecl *Match = *It;
    if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
      Diag(NewD->getLocation(),
           diag::err_cuda_unattributed_constexpr_cannot_overload_device)
          << NewD->getName();
      Diag(Match->getLocation(),
           diag::note_cuda_conflicting_device_function_declared_here);
    }
    return;
  }

  NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
  NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
}

bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  assert(Callee && "Callee may not be null.");
  FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
  if (!Caller)
    return true;

  Sema::CUDAFunctionPreference Pref = IdentifyCUDAPreference(Caller, Callee);
  if (Pref == Sema::CFP_Never) {
    Diag(Loc, diag::err_ref_bad_target) << IdentifyCUDATarget(Callee) << Callee
                                        << IdentifyCUDATarget(Caller);
    Diag(Callee->getLocation(), diag::note_previous_decl) << Callee;
    return false;
  }

  // Insert into LocsWithCUDADeferredDiags to avoid emitting duplicate deferred
  // diagnostics for the same location.  Duplicate deferred diags are otherwise
  // tricky to avoid, because, unlike with regular errors, sema checking
  // proceeds unhindered when we omit a deferred diagnostic.
  if (Pref == Sema::CFP_WrongSide &&
      LocsWithCUDACallDeferredDiags.insert(Loc.getRawEncoding()).second) {
    // We have to do this odd dance to create our PartialDiagnostic because we
    // want its storage to be allocated with operator new, not in an arena.
    PartialDiagnostic ErrPD{PartialDiagnostic::NullDiagnostic()};
    ErrPD.Reset(diag::err_ref_bad_target);
    ErrPD << IdentifyCUDATarget(Callee) << Callee << IdentifyCUDATarget(Caller);
    Caller->addDeferredDiag({Loc, std::move(ErrPD)});

    PartialDiagnostic NotePD{PartialDiagnostic::NullDiagnostic()};
    NotePD.Reset(diag::note_previous_decl);
    NotePD << Callee;
    Caller->addDeferredDiag({Callee->getLocation(), std::move(NotePD)});

    // This is not immediately an error, so return true.  The deferred errors
    // will be emitted if and when Caller is codegen'ed.
    return true;
  }
  return true;
}

bool Sema::CheckCUDAExceptionExpr(SourceLocation Loc, StringRef ExprTy) {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext);
  if (!CurFn)
    return true;
  CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn);

  // Raise an error immediately if this is a __global__ or __device__ function.
  // If it's a __host__ __device__ function, enqueue a deferred error which will
  // be emitted if the function is codegen'ed for device.
  if (Target == CFT_Global || Target == CFT_Device) {
    Diag(Loc, diag::err_cuda_device_exceptions) << ExprTy << Target << CurFn;
    return false;
  }
  if (Target == CFT_HostDevice && getLangOpts().CUDAIsDevice) {
    PartialDiagnostic ErrPD{PartialDiagnostic::NullDiagnostic()};
    ErrPD.Reset(diag::err_cuda_device_exceptions);
    ErrPD << ExprTy << Target << CurFn;
    CurFn->addDeferredDiag({Loc, std::move(ErrPD)});
    return false;
  }
  return true;
}

bool Sema::CheckCUDAVLA(SourceLocation Loc) {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext);
  if (!CurFn)
    return true;
  CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn);
  if (Target == CFT_Global || Target == CFT_Device) {
    Diag(Loc, diag::err_cuda_vla) << Target;
    return false;
  }
  if (Target == CFT_HostDevice && getLangOpts().CUDAIsDevice) {
    PartialDiagnostic ErrPD{PartialDiagnostic::NullDiagnostic()};
    ErrPD.Reset(diag::err_cuda_vla);
    ErrPD << Target;
    CurFn->addDeferredDiag({Loc, std::move(ErrPD)});
    return false;
  }
  return true;
}

void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
  if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
    return;
  FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext);
  if (!CurFn)
    return;
  CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn);
  if (Target == CFT_Global || Target == CFT_Device) {
    Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
  } else if (Target == CFT_HostDevice) {
    Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
    Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
  }
}