summaryrefslogtreecommitdiff
path: root/lib/Sema/ParsedAttr.cpp
blob: 5d0a734f237aeb22d70b3a97c3c78e4cee3ad243 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
//======- ParsedAttr.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the ParsedAttr class implementation
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/ParsedAttr.h"
#include "clang/AST/ASTContext.h"
#include "clang/Basic/AttrSubjectMatchRules.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include <cassert>
#include <cstddef>
#include <utility>

using namespace clang;

IdentifierLoc *IdentifierLoc::create(ASTContext &Ctx, SourceLocation Loc,
                                     IdentifierInfo *Ident) {
  IdentifierLoc *Result = new (Ctx) IdentifierLoc;
  Result->Loc = Loc;
  Result->Ident = Ident;
  return Result;
}

size_t ParsedAttr::allocated_size() const {
  if (IsAvailability) return AttributeFactory::AvailabilityAllocSize;
  else if (IsTypeTagForDatatype)
    return AttributeFactory::TypeTagForDatatypeAllocSize;
  else if (IsProperty)
    return AttributeFactory::PropertyAllocSize;
  else if (HasParsedType)
    return totalSizeToAlloc<ArgsUnion, detail::AvailabilityData,
                            detail::TypeTagForDatatypeData, ParsedType,
                            detail::PropertyData>(0, 0, 0, 1, 0);
  return totalSizeToAlloc<ArgsUnion, detail::AvailabilityData,
                          detail::TypeTagForDatatypeData, ParsedType,
                          detail::PropertyData>(NumArgs, 0, 0, 0, 0);
}

AttributeFactory::AttributeFactory() {
  // Go ahead and configure all the inline capacity.  This is just a memset.
  FreeLists.resize(InlineFreeListsCapacity);
}
AttributeFactory::~AttributeFactory() = default;

static size_t getFreeListIndexForSize(size_t size) {
  assert(size >= sizeof(ParsedAttr));
  assert((size % sizeof(void*)) == 0);
  return ((size - sizeof(ParsedAttr)) / sizeof(void *));
}

void *AttributeFactory::allocate(size_t size) {
  // Check for a previously reclaimed attribute.
  size_t index = getFreeListIndexForSize(size);
  if (index < FreeLists.size() && !FreeLists[index].empty()) {
    ParsedAttr *attr = FreeLists[index].back();
    FreeLists[index].pop_back();
    return attr;
  }

  // Otherwise, allocate something new.
  return Alloc.Allocate(size, alignof(AttributeFactory));
}

void AttributeFactory::deallocate(ParsedAttr *Attr) {
  size_t size = Attr->allocated_size();
  size_t freeListIndex = getFreeListIndexForSize(size);

  // Expand FreeLists to the appropriate size, if required.
  if (freeListIndex >= FreeLists.size())
    FreeLists.resize(freeListIndex + 1);

#ifndef NDEBUG
  // In debug mode, zero out the attribute to help find memory overwriting.
  memset(Attr, 0, size);
#endif

  // Add 'Attr' to the appropriate free-list.
  FreeLists[freeListIndex].push_back(Attr);
}

void AttributeFactory::reclaimPool(AttributePool &cur) {
  for (ParsedAttr *AL : cur.Attrs)
    deallocate(AL);
}

void AttributePool::takePool(AttributePool &pool) {
  Attrs.insert(Attrs.end(), pool.Attrs.begin(), pool.Attrs.end());
  pool.Attrs.clear();
}

struct ParsedAttrInfo {
  unsigned NumArgs : 4;
  unsigned OptArgs : 4;
  unsigned HasCustomParsing : 1;
  unsigned IsTargetSpecific : 1;
  unsigned IsType : 1;
  unsigned IsStmt : 1;
  unsigned IsKnownToGCC : 1;
  unsigned IsSupportedByPragmaAttribute : 1;

  bool (*DiagAppertainsToDecl)(Sema &S, const ParsedAttr &Attr, const Decl *);
  bool (*DiagLangOpts)(Sema &S, const ParsedAttr &Attr);
  bool (*ExistsInTarget)(const TargetInfo &Target);
  unsigned (*SpellingIndexToSemanticSpelling)(const ParsedAttr &Attr);
  void (*GetPragmaAttributeMatchRules)(
      llvm::SmallVectorImpl<std::pair<attr::SubjectMatchRule, bool>> &Rules,
      const LangOptions &LangOpts);
};

namespace {

#include "clang/Sema/AttrParsedAttrImpl.inc"

} // namespace

static const ParsedAttrInfo &getInfo(const ParsedAttr &A) {
  return AttrInfoMap[A.getKind()];
}

unsigned ParsedAttr::getMinArgs() const { return getInfo(*this).NumArgs; }

unsigned ParsedAttr::getMaxArgs() const {
  return getMinArgs() + getInfo(*this).OptArgs;
}

bool ParsedAttr::hasCustomParsing() const {
  return getInfo(*this).HasCustomParsing;
}

bool ParsedAttr::diagnoseAppertainsTo(Sema &S, const Decl *D) const {
  return getInfo(*this).DiagAppertainsToDecl(S, *this, D);
}

bool ParsedAttr::appliesToDecl(const Decl *D,
                               attr::SubjectMatchRule MatchRule) const {
  return checkAttributeMatchRuleAppliesTo(D, MatchRule);
}

void ParsedAttr::getMatchRules(
    const LangOptions &LangOpts,
    SmallVectorImpl<std::pair<attr::SubjectMatchRule, bool>> &MatchRules)
    const {
  return getInfo(*this).GetPragmaAttributeMatchRules(MatchRules, LangOpts);
}

bool ParsedAttr::diagnoseLangOpts(Sema &S) const {
  return getInfo(*this).DiagLangOpts(S, *this);
}

bool ParsedAttr::isTargetSpecificAttr() const {
  return getInfo(*this).IsTargetSpecific;
}

bool ParsedAttr::isTypeAttr() const { return getInfo(*this).IsType; }

bool ParsedAttr::isStmtAttr() const { return getInfo(*this).IsStmt; }

bool ParsedAttr::existsInTarget(const TargetInfo &Target) const {
  return getInfo(*this).ExistsInTarget(Target);
}

bool ParsedAttr::isKnownToGCC() const { return getInfo(*this).IsKnownToGCC; }

bool ParsedAttr::isSupportedByPragmaAttribute() const {
  return getInfo(*this).IsSupportedByPragmaAttribute;
}

unsigned ParsedAttr::getSemanticSpelling() const {
  return getInfo(*this).SpellingIndexToSemanticSpelling(*this);
}

bool ParsedAttr::hasVariadicArg() const {
  // If the attribute has the maximum number of optional arguments, we will
  // claim that as being variadic. If we someday get an attribute that
  // legitimately bumps up against that maximum, we can use another bit to track
  // whether it's truly variadic or not.
  return getInfo(*this).OptArgs == 15;
}