summaryrefslogtreecommitdiff
path: root/lib/CodeGen/CodeGenModule.cpp
blob: 25779c044bb04ab1ca9cfbc3adf7043d1752778d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This coordinates the per-module state used while generating code.
//
//===----------------------------------------------------------------------===//

#include "CodeGenModule.h"
#include "CGBlocks.h"
#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CGCall.h"
#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
#include "CGOpenCLRuntime.h"
#include "CGOpenMPRuntime.h"
#include "CGOpenMPRuntimeNVPTX.h"
#include "CodeGenFunction.h"
#include "CodeGenPGO.h"
#include "CodeGenTBAA.h"
#include "ConstantEmitter.h"
#include "CoverageMappingGen.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "clang/Frontend/CodeGenOptions.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MD5.h"

using namespace clang;
using namespace CodeGen;

static llvm::cl::opt<bool> LimitedCoverage(
    "limited-coverage-experimental", llvm::cl::ZeroOrMore,
    llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
    llvm::cl::init(false));

static const char AnnotationSection[] = "llvm.metadata";

static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
  switch (CGM.getTarget().getCXXABI().getKind()) {
  case TargetCXXABI::GenericAArch64:
  case TargetCXXABI::GenericARM:
  case TargetCXXABI::iOS:
  case TargetCXXABI::iOS64:
  case TargetCXXABI::WatchOS:
  case TargetCXXABI::GenericMIPS:
  case TargetCXXABI::GenericItanium:
  case TargetCXXABI::WebAssembly:
    return CreateItaniumCXXABI(CGM);
  case TargetCXXABI::Microsoft:
    return CreateMicrosoftCXXABI(CGM);
  }

  llvm_unreachable("invalid C++ ABI kind");
}

CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
                             const PreprocessorOptions &PPO,
                             const CodeGenOptions &CGO, llvm::Module &M,
                             DiagnosticsEngine &diags,
                             CoverageSourceInfo *CoverageInfo)
    : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
      PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
      Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
      VMContext(M.getContext()), Types(*this), VTables(*this),
      SanitizerMD(new SanitizerMetadata(*this)) {

  // Initialize the type cache.
  llvm::LLVMContext &LLVMContext = M.getContext();
  VoidTy = llvm::Type::getVoidTy(LLVMContext);
  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
  FloatTy = llvm::Type::getFloatTy(LLVMContext);
  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
  PointerAlignInBytes =
    C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
  SizeSizeInBytes =
    C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
  IntAlignInBytes =
    C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
  IntPtrTy = llvm::IntegerType::get(LLVMContext,
    C.getTargetInfo().getMaxPointerWidth());
  Int8PtrTy = Int8Ty->getPointerTo(0);
  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
  AllocaInt8PtrTy = Int8Ty->getPointerTo(
      M.getDataLayout().getAllocaAddrSpace());
  ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();

  RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
  BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();

  if (LangOpts.ObjC1)
    createObjCRuntime();
  if (LangOpts.OpenCL)
    createOpenCLRuntime();
  if (LangOpts.OpenMP)
    createOpenMPRuntime();
  if (LangOpts.CUDA)
    createCUDARuntime();

  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
  if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
    TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
                               getCXXABI().getMangleContext()));

  // If debug info or coverage generation is enabled, create the CGDebugInfo
  // object.
  if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
      CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
    DebugInfo.reset(new CGDebugInfo(*this));

  Block.GlobalUniqueCount = 0;

  if (C.getLangOpts().ObjC1)
    ObjCData.reset(new ObjCEntrypoints());

  if (CodeGenOpts.hasProfileClangUse()) {
    auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
        CodeGenOpts.ProfileInstrumentUsePath);
    if (auto E = ReaderOrErr.takeError()) {
      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
                                              "Could not read profile %0: %1");
      llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
        getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
                                  << EI.message();
      });
    } else
      PGOReader = std::move(ReaderOrErr.get());
  }

  // If coverage mapping generation is enabled, create the
  // CoverageMappingModuleGen object.
  if (CodeGenOpts.CoverageMapping)
    CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
}

CodeGenModule::~CodeGenModule() {}

void CodeGenModule::createObjCRuntime() {
  // This is just isGNUFamily(), but we want to force implementors of
  // new ABIs to decide how best to do this.
  switch (LangOpts.ObjCRuntime.getKind()) {
  case ObjCRuntime::GNUstep:
  case ObjCRuntime::GCC:
  case ObjCRuntime::ObjFW:
    ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
    return;

  case ObjCRuntime::FragileMacOSX:
  case ObjCRuntime::MacOSX:
  case ObjCRuntime::iOS:
  case ObjCRuntime::WatchOS:
    ObjCRuntime.reset(CreateMacObjCRuntime(*this));
    return;
  }
  llvm_unreachable("bad runtime kind");
}

void CodeGenModule::createOpenCLRuntime() {
  OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
}

void CodeGenModule::createOpenMPRuntime() {
  // Select a specialized code generation class based on the target, if any.
  // If it does not exist use the default implementation.
  switch (getTriple().getArch()) {
  case llvm::Triple::nvptx:
  case llvm::Triple::nvptx64:
    assert(getLangOpts().OpenMPIsDevice &&
           "OpenMP NVPTX is only prepared to deal with device code.");
    OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
    break;
  default:
    OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
    break;
  }
}

void CodeGenModule::createCUDARuntime() {
  CUDARuntime.reset(CreateNVCUDARuntime(*this));
}

void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
  Replacements[Name] = C;
}

void CodeGenModule::applyReplacements() {
  for (auto &I : Replacements) {
    StringRef MangledName = I.first();
    llvm::Constant *Replacement = I.second;
    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
    if (!Entry)
      continue;
    auto *OldF = cast<llvm::Function>(Entry);
    auto *NewF = dyn_cast<llvm::Function>(Replacement);
    if (!NewF) {
      if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
        NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
      } else {
        auto *CE = cast<llvm::ConstantExpr>(Replacement);
        assert(CE->getOpcode() == llvm::Instruction::BitCast ||
               CE->getOpcode() == llvm::Instruction::GetElementPtr);
        NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
      }
    }

    // Replace old with new, but keep the old order.
    OldF->replaceAllUsesWith(Replacement);
    if (NewF) {
      NewF->removeFromParent();
      OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
                                                       NewF);
    }
    OldF->eraseFromParent();
  }
}

void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
  GlobalValReplacements.push_back(std::make_pair(GV, C));
}

void CodeGenModule::applyGlobalValReplacements() {
  for (auto &I : GlobalValReplacements) {
    llvm::GlobalValue *GV = I.first;
    llvm::Constant *C = I.second;

    GV->replaceAllUsesWith(C);
    GV->eraseFromParent();
  }
}

// This is only used in aliases that we created and we know they have a
// linear structure.
static const llvm::GlobalObject *getAliasedGlobal(
    const llvm::GlobalIndirectSymbol &GIS) {
  llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
  const llvm::Constant *C = &GIS;
  for (;;) {
    C = C->stripPointerCasts();
    if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
      return GO;
    // stripPointerCasts will not walk over weak aliases.
    auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
    if (!GIS2)
      return nullptr;
    if (!Visited.insert(GIS2).second)
      return nullptr;
    C = GIS2->getIndirectSymbol();
  }
}

void CodeGenModule::checkAliases() {
  // Check if the constructed aliases are well formed. It is really unfortunate
  // that we have to do this in CodeGen, but we only construct mangled names
  // and aliases during codegen.
  bool Error = false;
  DiagnosticsEngine &Diags = getDiags();
  for (const GlobalDecl &GD : Aliases) {
    const auto *D = cast<ValueDecl>(GD.getDecl());
    SourceLocation Location;
    bool IsIFunc = D->hasAttr<IFuncAttr>();
    if (const Attr *A = D->getDefiningAttr())
      Location = A->getLocation();
    else
      llvm_unreachable("Not an alias or ifunc?");
    StringRef MangledName = getMangledName(GD);
    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
    auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
    const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
    if (!GV) {
      Error = true;
      Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
    } else if (GV->isDeclaration()) {
      Error = true;
      Diags.Report(Location, diag::err_alias_to_undefined)
          << IsIFunc << IsIFunc;
    } else if (IsIFunc) {
      // Check resolver function type.
      llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
          GV->getType()->getPointerElementType());
      assert(FTy);
      if (!FTy->getReturnType()->isPointerTy())
        Diags.Report(Location, diag::err_ifunc_resolver_return);
      if (FTy->getNumParams())
        Diags.Report(Location, diag::err_ifunc_resolver_params);
    }

    llvm::Constant *Aliasee = Alias->getIndirectSymbol();
    llvm::GlobalValue *AliaseeGV;
    if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
      AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
    else
      AliaseeGV = cast<llvm::GlobalValue>(Aliasee);

    if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
      StringRef AliasSection = SA->getName();
      if (AliasSection != AliaseeGV->getSection())
        Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
            << AliasSection << IsIFunc << IsIFunc;
    }

    // We have to handle alias to weak aliases in here. LLVM itself disallows
    // this since the object semantics would not match the IL one. For
    // compatibility with gcc we implement it by just pointing the alias
    // to its aliasee's aliasee. We also warn, since the user is probably
    // expecting the link to be weak.
    if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
      if (GA->isInterposable()) {
        Diags.Report(Location, diag::warn_alias_to_weak_alias)
            << GV->getName() << GA->getName() << IsIFunc;
        Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
            GA->getIndirectSymbol(), Alias->getType());
        Alias->setIndirectSymbol(Aliasee);
      }
    }
  }
  if (!Error)
    return;

  for (const GlobalDecl &GD : Aliases) {
    StringRef MangledName = getMangledName(GD);
    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
    auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
    Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
    Alias->eraseFromParent();
  }
}

void CodeGenModule::clear() {
  DeferredDeclsToEmit.clear();
  if (OpenMPRuntime)
    OpenMPRuntime->clear();
}

void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
                                       StringRef MainFile) {
  if (!hasDiagnostics())
    return;
  if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
    if (MainFile.empty())
      MainFile = "<stdin>";
    Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
  } else {
    if (Mismatched > 0)
      Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;

    if (Missing > 0)
      Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
  }
}

void CodeGenModule::Release() {
  EmitDeferred();
  EmitVTablesOpportunistically();
  applyGlobalValReplacements();
  applyReplacements();
  checkAliases();
  EmitCXXGlobalInitFunc();
  EmitCXXGlobalDtorFunc();
  EmitCXXThreadLocalInitFunc();
  if (ObjCRuntime)
    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
      AddGlobalCtor(ObjCInitFunction);
  if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
      CUDARuntime) {
    if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
      AddGlobalCtor(CudaCtorFunction);
    if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
      AddGlobalDtor(CudaDtorFunction);
  }
  if (OpenMPRuntime)
    if (llvm::Function *OpenMPRegistrationFunction =
            OpenMPRuntime->emitRegistrationFunction()) {
      auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
        OpenMPRegistrationFunction : nullptr;
      AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
    }
  if (PGOReader) {
    getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
    if (PGOStats.hasDiagnostics())
      PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
  }
  EmitCtorList(GlobalCtors, "llvm.global_ctors");
  EmitCtorList(GlobalDtors, "llvm.global_dtors");
  EmitGlobalAnnotations();
  EmitStaticExternCAliases();
  EmitDeferredUnusedCoverageMappings();
  if (CoverageMapping)
    CoverageMapping->emit();
  if (CodeGenOpts.SanitizeCfiCrossDso) {
    CodeGenFunction(*this).EmitCfiCheckFail();
    CodeGenFunction(*this).EmitCfiCheckStub();
  }
  emitAtAvailableLinkGuard();
  emitLLVMUsed();
  if (SanStats)
    SanStats->finish();

  if (CodeGenOpts.Autolink &&
      (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
    EmitModuleLinkOptions();
  }

  // Record mregparm value now so it is visible through rest of codegen.
  if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
    getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
                              CodeGenOpts.NumRegisterParameters);
  
  if (CodeGenOpts.DwarfVersion) {
    // We actually want the latest version when there are conflicts.
    // We can change from Warning to Latest if such mode is supported.
    getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
                              CodeGenOpts.DwarfVersion);
  }
  if (CodeGenOpts.EmitCodeView) {
    // Indicate that we want CodeView in the metadata.
    getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
  }
  if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
    // We don't support LTO with 2 with different StrictVTablePointers
    // FIXME: we could support it by stripping all the information introduced
    // by StrictVTablePointers.

    getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);

    llvm::Metadata *Ops[2] = {
              llvm::MDString::get(VMContext, "StrictVTablePointers"),
              llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
                  llvm::Type::getInt32Ty(VMContext), 1))};

    getModule().addModuleFlag(llvm::Module::Require,
                              "StrictVTablePointersRequirement",
                              llvm::MDNode::get(VMContext, Ops));
  }
  if (DebugInfo)
    // We support a single version in the linked module. The LLVM
    // parser will drop debug info with a different version number
    // (and warn about it, too).
    getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
                              llvm::DEBUG_METADATA_VERSION);

  // We need to record the widths of enums and wchar_t, so that we can generate
  // the correct build attributes in the ARM backend. wchar_size is also used by
  // TargetLibraryInfo.
  uint64_t WCharWidth =
      Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
  getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);

  llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
  if (   Arch == llvm::Triple::arm
      || Arch == llvm::Triple::armeb
      || Arch == llvm::Triple::thumb
      || Arch == llvm::Triple::thumbeb) {
    // The minimum width of an enum in bytes
    uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
    getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
  }

  if (CodeGenOpts.SanitizeCfiCrossDso) {
    // Indicate that we want cross-DSO control flow integrity checks.
    getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
  }

  if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
    // Indicate whether __nvvm_reflect should be configured to flush denormal
    // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
    // property.)
    getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
                              LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
  }

  // Emit OpenCL specific module metadata: OpenCL/SPIR version.
  if (LangOpts.OpenCL) {
    EmitOpenCLMetadata();
    // Emit SPIR version.
    if (getTriple().getArch() == llvm::Triple::spir ||
        getTriple().getArch() == llvm::Triple::spir64) {
      // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
      // opencl.spir.version named metadata.
      llvm::Metadata *SPIRVerElts[] = {
          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
              Int32Ty, LangOpts.OpenCLVersion / 100)),
          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
              Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
      llvm::NamedMDNode *SPIRVerMD =
          TheModule.getOrInsertNamedMetadata("opencl.spir.version");
      llvm::LLVMContext &Ctx = TheModule.getContext();
      SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
    }
  }

  if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
    assert(PLevel < 3 && "Invalid PIC Level");
    getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
    if (Context.getLangOpts().PIE)
      getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
  }

  SimplifyPersonality();

  if (getCodeGenOpts().EmitDeclMetadata)
    EmitDeclMetadata();

  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
    EmitCoverageFile();

  if (DebugInfo)
    DebugInfo->finalize();

  EmitVersionIdentMetadata();

  EmitTargetMetadata();
}

void CodeGenModule::EmitOpenCLMetadata() {
  // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
  // opencl.ocl.version named metadata node.
  llvm::Metadata *OCLVerElts[] = {
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
          Int32Ty, LangOpts.OpenCLVersion / 100)),
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
          Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
  llvm::NamedMDNode *OCLVerMD =
      TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
  llvm::LLVMContext &Ctx = TheModule.getContext();
  OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
}

void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
  // Make sure that this type is translated.
  Types.UpdateCompletedType(TD);
}

void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
  // Make sure that this type is translated.
  Types.RefreshTypeCacheForClass(RD);
}

llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
  if (!TBAA)
    return nullptr;
  return TBAA->getTypeInfo(QTy);
}

llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
  if (!TBAA)
    return nullptr;
  return TBAA->getTBAAInfoForVTablePtr();
}

llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
  if (!TBAA)
    return nullptr;
  return TBAA->getTBAAStructInfo(QTy);
}

llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
                                                  llvm::MDNode *AccessN,
                                                  uint64_t O) {
  if (!TBAA)
    return nullptr;
  return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
}

/// Decorate the instruction with a TBAA tag. For both scalar TBAA
/// and struct-path aware TBAA, the tag has the same format:
/// base type, access type and offset.
/// When ConvertTypeToTag is true, we create a tag based on the scalar type.
void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
                                                llvm::MDNode *TBAAInfo,
                                                bool ConvertTypeToTag) {
  if (ConvertTypeToTag && TBAA)
    Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
                      TBAA->getTBAAScalarTagInfo(TBAAInfo));
  else
    Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
}

void CodeGenModule::DecorateInstructionWithInvariantGroup(
    llvm::Instruction *I, const CXXRecordDecl *RD) {
  I->setMetadata(llvm::LLVMContext::MD_invariant_group,
                 llvm::MDNode::get(getLLVMContext(), {}));
}

void CodeGenModule::Error(SourceLocation loc, StringRef message) {
  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
  getDiags().Report(Context.getFullLoc(loc), diagID) << message;
}

/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified stmt yet.
void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
                                               "cannot compile this %0 yet");
  std::string Msg = Type;
  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
    << Msg << S->getSourceRange();
}

/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified decl yet.
void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
                                               "cannot compile this %0 yet");
  std::string Msg = Type;
  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
}

llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
}

void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
                                        const NamedDecl *D) const {
  // Internal definitions always have default visibility.
  if (GV->hasLocalLinkage()) {
    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
    return;
  }

  // Set visibility for definitions.
  LinkageInfo LV = D->getLinkageAndVisibility();
  if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
    GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
}

static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
}

static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
    CodeGenOptions::TLSModel M) {
  switch (M) {
  case CodeGenOptions::GeneralDynamicTLSModel:
    return llvm::GlobalVariable::GeneralDynamicTLSModel;
  case CodeGenOptions::LocalDynamicTLSModel:
    return llvm::GlobalVariable::LocalDynamicTLSModel;
  case CodeGenOptions::InitialExecTLSModel:
    return llvm::GlobalVariable::InitialExecTLSModel;
  case CodeGenOptions::LocalExecTLSModel:
    return llvm::GlobalVariable::LocalExecTLSModel;
  }
  llvm_unreachable("Invalid TLS model!");
}

void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
  assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");

  llvm::GlobalValue::ThreadLocalMode TLM;
  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());

  // Override the TLS model if it is explicitly specified.
  if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
    TLM = GetLLVMTLSModel(Attr->getModel());
  }

  GV->setThreadLocalMode(TLM);
}

StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
  GlobalDecl CanonicalGD = GD.getCanonicalDecl();

  // Some ABIs don't have constructor variants.  Make sure that base and
  // complete constructors get mangled the same.
  if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
    if (!getTarget().getCXXABI().hasConstructorVariants()) {
      CXXCtorType OrigCtorType = GD.getCtorType();
      assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
      if (OrigCtorType == Ctor_Base)
        CanonicalGD = GlobalDecl(CD, Ctor_Complete);
    }
  }

  auto FoundName = MangledDeclNames.find(CanonicalGD);
  if (FoundName != MangledDeclNames.end())
    return FoundName->second;

  const auto *ND = cast<NamedDecl>(GD.getDecl());
  SmallString<256> Buffer;
  StringRef Str;
  if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
    llvm::raw_svector_ostream Out(Buffer);
    if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
      getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
    else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
      getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
    else
      getCXXABI().getMangleContext().mangleName(ND, Out);
    Str = Out.str();
  } else {
    IdentifierInfo *II = ND->getIdentifier();
    assert(II && "Attempt to mangle unnamed decl.");
    const auto *FD = dyn_cast<FunctionDecl>(ND);

    if (FD &&
        FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
      llvm::raw_svector_ostream Out(Buffer);
      Out << "__regcall3__" << II->getName();
      Str = Out.str();
    } else {
      Str = II->getName();
    }
  }

  // Keep the first result in the case of a mangling collision.
  auto Result = Manglings.insert(std::make_pair(Str, GD));
  return MangledDeclNames[CanonicalGD] = Result.first->first();
}

StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
                                             const BlockDecl *BD) {
  MangleContext &MangleCtx = getCXXABI().getMangleContext();
  const Decl *D = GD.getDecl();

  SmallString<256> Buffer;
  llvm::raw_svector_ostream Out(Buffer);
  if (!D)
    MangleCtx.mangleGlobalBlock(BD, 
      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
  else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
  else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
  else
    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);

  auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
  return Result.first->first();
}

llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
  return getModule().getNamedValue(Name);
}

/// AddGlobalCtor - Add a function to the list that will be called before
/// main() runs.
void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
                                  llvm::Constant *AssociatedData) {
  // FIXME: Type coercion of void()* types.
  GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
}

/// AddGlobalDtor - Add a function to the list that will be called
/// when the module is unloaded.
void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
  // FIXME: Type coercion of void()* types.
  GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
}

void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
  if (Fns.empty()) return;

  // Ctor function type is void()*.
  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);

  // Get the type of a ctor entry, { i32, void ()*, i8* }.
  llvm::StructType *CtorStructTy = llvm::StructType::get(
      Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);

  // Construct the constructor and destructor arrays.
  ConstantInitBuilder builder(*this);
  auto ctors = builder.beginArray(CtorStructTy);
  for (const auto &I : Fns) {
    auto ctor = ctors.beginStruct(CtorStructTy);
    ctor.addInt(Int32Ty, I.Priority);
    ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
    if (I.AssociatedData)
      ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
    else
      ctor.addNullPointer(VoidPtrTy);
    ctor.finishAndAddTo(ctors);
  }

  auto list =
    ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
                                /*constant*/ false,
                                llvm::GlobalValue::AppendingLinkage);

  // The LTO linker doesn't seem to like it when we set an alignment
  // on appending variables.  Take it off as a workaround.
  list->setAlignment(0);

  Fns.clear();
}

llvm::GlobalValue::LinkageTypes
CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
  const auto *D = cast<FunctionDecl>(GD.getDecl());

  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);

  if (isa<CXXDestructorDecl>(D) &&
      getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
                                         GD.getDtorType())) {
    // Destructor variants in the Microsoft C++ ABI are always internal or
    // linkonce_odr thunks emitted on an as-needed basis.
    return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
                                   : llvm::GlobalValue::LinkOnceODRLinkage;
  }

  if (isa<CXXConstructorDecl>(D) &&
      cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
      Context.getTargetInfo().getCXXABI().isMicrosoft()) {
    // Our approach to inheriting constructors is fundamentally different from
    // that used by the MS ABI, so keep our inheriting constructor thunks
    // internal rather than trying to pick an unambiguous mangling for them.
    return llvm::GlobalValue::InternalLinkage;
  }

  return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
}

void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
  const auto *FD = cast<FunctionDecl>(GD.getDecl());

  if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
    if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
      // Don't dllexport/import destructor thunks.
      F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
      return;
    }
  }

  if (FD->hasAttr<DLLImportAttr>())
    F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
  else if (FD->hasAttr<DLLExportAttr>())
    F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
  else
    F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
}

llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
  llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
  if (!MDS) return nullptr;

  return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
}

void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
                                                    llvm::Function *F) {
  setNonAliasAttributes(D, F);
}

void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
                                              const CGFunctionInfo &Info,
                                              llvm::Function *F) {
  unsigned CallingConv;
  llvm::AttributeList PAL;
  ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
  F->setAttributes(PAL);
  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
}

/// Determines whether the language options require us to model
/// unwind exceptions.  We treat -fexceptions as mandating this
/// except under the fragile ObjC ABI with only ObjC exceptions
/// enabled.  This means, for example, that C with -fexceptions
/// enables this.
static bool hasUnwindExceptions(const LangOptions &LangOpts) {
  // If exceptions are completely disabled, obviously this is false.
  if (!LangOpts.Exceptions) return false;

  // If C++ exceptions are enabled, this is true.
  if (LangOpts.CXXExceptions) return true;

  // If ObjC exceptions are enabled, this depends on the ABI.
  if (LangOpts.ObjCExceptions) {
    return LangOpts.ObjCRuntime.hasUnwindExceptions();
  }

  return true;
}

void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
                                                           llvm::Function *F) {
  llvm::AttrBuilder B;

  if (CodeGenOpts.UnwindTables)
    B.addAttribute(llvm::Attribute::UWTable);

  if (!hasUnwindExceptions(LangOpts))
    B.addAttribute(llvm::Attribute::NoUnwind);

  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
    B.addAttribute(llvm::Attribute::StackProtect);
  else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
    B.addAttribute(llvm::Attribute::StackProtectStrong);
  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
    B.addAttribute(llvm::Attribute::StackProtectReq);

  if (!D) {
    // If we don't have a declaration to control inlining, the function isn't
    // explicitly marked as alwaysinline for semantic reasons, and inlining is
    // disabled, mark the function as noinline.
    if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
        CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
      B.addAttribute(llvm::Attribute::NoInline);

    F->addAttributes(llvm::AttributeList::FunctionIndex, B);
    return;
  }

  // Track whether we need to add the optnone LLVM attribute,
  // starting with the default for this optimization level.
  bool ShouldAddOptNone =
      !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
  // We can't add optnone in the following cases, it won't pass the verifier.
  ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
  ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
  ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();

  if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
    B.addAttribute(llvm::Attribute::OptimizeNone);

    // OptimizeNone implies noinline; we should not be inlining such functions.
    B.addAttribute(llvm::Attribute::NoInline);
    assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
           "OptimizeNone and AlwaysInline on same function!");

    // We still need to handle naked functions even though optnone subsumes
    // much of their semantics.
    if (D->hasAttr<NakedAttr>())
      B.addAttribute(llvm::Attribute::Naked);

    // OptimizeNone wins over OptimizeForSize and MinSize.
    F->removeFnAttr(llvm::Attribute::OptimizeForSize);
    F->removeFnAttr(llvm::Attribute::MinSize);
  } else if (D->hasAttr<NakedAttr>()) {
    // Naked implies noinline: we should not be inlining such functions.
    B.addAttribute(llvm::Attribute::Naked);
    B.addAttribute(llvm::Attribute::NoInline);
  } else if (D->hasAttr<NoDuplicateAttr>()) {
    B.addAttribute(llvm::Attribute::NoDuplicate);
  } else if (D->hasAttr<NoInlineAttr>()) {
    B.addAttribute(llvm::Attribute::NoInline);
  } else if (D->hasAttr<AlwaysInlineAttr>() &&
             !F->hasFnAttribute(llvm::Attribute::NoInline)) {
    // (noinline wins over always_inline, and we can't specify both in IR)
    B.addAttribute(llvm::Attribute::AlwaysInline);
  } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
    // If we're not inlining, then force everything that isn't always_inline to
    // carry an explicit noinline attribute.
    if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
      B.addAttribute(llvm::Attribute::NoInline);
  } else {
    // Otherwise, propagate the inline hint attribute and potentially use its
    // absence to mark things as noinline.
    if (auto *FD = dyn_cast<FunctionDecl>(D)) {
      if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
            return Redecl->isInlineSpecified();
          })) {
        B.addAttribute(llvm::Attribute::InlineHint);
      } else if (CodeGenOpts.getInlining() ==
                     CodeGenOptions::OnlyHintInlining &&
                 !FD->isInlined() &&
                 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
        B.addAttribute(llvm::Attribute::NoInline);
      }
    }
  }

  // Add other optimization related attributes if we are optimizing this
  // function.
  if (!D->hasAttr<OptimizeNoneAttr>()) {
    if (D->hasAttr<ColdAttr>()) {
      if (!ShouldAddOptNone)
        B.addAttribute(llvm::Attribute::OptimizeForSize);
      B.addAttribute(llvm::Attribute::Cold);
    }

    if (D->hasAttr<MinSizeAttr>())
      B.addAttribute(llvm::Attribute::MinSize);
  }

  F->addAttributes(llvm::AttributeList::FunctionIndex, B);

  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
  if (alignment)
    F->setAlignment(alignment);

  // Some C++ ABIs require 2-byte alignment for member functions, in order to
  // reserve a bit for differentiating between virtual and non-virtual member
  // functions. If the current target's C++ ABI requires this and this is a
  // member function, set its alignment accordingly.
  if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
    if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
      F->setAlignment(2);
  }

  // In the cross-dso CFI mode, we want !type attributes on definitions only.
  if (CodeGenOpts.SanitizeCfiCrossDso)
    if (auto *FD = dyn_cast<FunctionDecl>(D))
      CreateFunctionTypeMetadata(FD, F);
}

void CodeGenModule::SetCommonAttributes(const Decl *D,
                                        llvm::GlobalValue *GV) {
  if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
    setGlobalVisibility(GV, ND);
  else
    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);

  if (D && D->hasAttr<UsedAttr>())
    addUsedGlobal(GV);
}

void CodeGenModule::setAliasAttributes(const Decl *D,
                                       llvm::GlobalValue *GV) {
  SetCommonAttributes(D, GV);

  // Process the dllexport attribute based on whether the original definition
  // (not necessarily the aliasee) was exported.
  if (D->hasAttr<DLLExportAttr>())
    GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
}

void CodeGenModule::setNonAliasAttributes(const Decl *D,
                                          llvm::GlobalObject *GO) {
  SetCommonAttributes(D, GO);

  if (D) {
    if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
      if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
        GV->addAttribute("bss-section", SA->getName());
      if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
        GV->addAttribute("data-section", SA->getName());
      if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
        GV->addAttribute("rodata-section", SA->getName());
    }

    if (auto *F = dyn_cast<llvm::Function>(GO)) {
      if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
       if (!D->getAttr<SectionAttr>())
         F->addFnAttr("implicit-section-name", SA->getName());
    }

    if (const SectionAttr *SA = D->getAttr<SectionAttr>())
      GO->setSection(SA->getName());
  }

  getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition);
}

void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
                                                  llvm::Function *F,
                                                  const CGFunctionInfo &FI) {
  SetLLVMFunctionAttributes(D, FI, F);
  SetLLVMFunctionAttributesForDefinition(D, F);

  F->setLinkage(llvm::Function::InternalLinkage);

  setNonAliasAttributes(D, F);
}

static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
                                         const NamedDecl *ND) {
  // Set linkage and visibility in case we never see a definition.
  LinkageInfo LV = ND->getLinkageAndVisibility();
  if (!isExternallyVisible(LV.getLinkage())) {
    // Don't set internal linkage on declarations.
  } else {
    if (ND->hasAttr<DLLImportAttr>()) {
      GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
      GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
    } else if (ND->hasAttr<DLLExportAttr>()) {
      GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
    } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
      // "extern_weak" is overloaded in LLVM; we probably should have
      // separate linkage types for this.
      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
    }

    // Set visibility on a declaration only if it's explicit.
    if (LV.isVisibilityExplicit())
      GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
  }
}

void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
                                               llvm::Function *F) {
  // Only if we are checking indirect calls.
  if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
    return;

  // Non-static class methods are handled via vtable pointer checks elsewhere.
  if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
    return;

  // Additionally, if building with cross-DSO support...
  if (CodeGenOpts.SanitizeCfiCrossDso) {
    // Skip available_externally functions. They won't be codegen'ed in the
    // current module anyway.
    if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
      return;
  }

  llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
  F->addTypeMetadata(0, MD);

  // Emit a hash-based bit set entry for cross-DSO calls.
  if (CodeGenOpts.SanitizeCfiCrossDso)
    if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
      F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
}

void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
                                          bool IsIncompleteFunction,
                                          bool IsThunk,
                                          ForDefinition_t IsForDefinition) {

  if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
    // If this is an intrinsic function, set the function's attributes
    // to the intrinsic's attributes.
    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
    return;
  }

  const auto *FD = cast<FunctionDecl>(GD.getDecl());

  if (!IsIncompleteFunction) {
    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
    // Setup target-specific attributes.
    if (!IsForDefinition)
      getTargetCodeGenInfo().setTargetAttributes(FD, F, *this,
                                                 NotForDefinition);
  }

  // Add the Returned attribute for "this", except for iOS 5 and earlier
  // where substantial code, including the libstdc++ dylib, was compiled with
  // GCC and does not actually return "this".
  if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
      !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
    assert(!F->arg_empty() &&
           F->arg_begin()->getType()
             ->canLosslesslyBitCastTo(F->getReturnType()) &&
           "unexpected this return");
    F->addAttribute(1, llvm::Attribute::Returned);
  }

  // Only a few attributes are set on declarations; these may later be
  // overridden by a definition.

  setLinkageAndVisibilityForGV(F, FD);

  if (FD->getAttr<PragmaClangTextSectionAttr>()) {
    F->addFnAttr("implicit-section-name");
  }

  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
    F->setSection(SA->getName());

  if (FD->isReplaceableGlobalAllocationFunction()) {
    // A replaceable global allocation function does not act like a builtin by
    // default, only if it is invoked by a new-expression or delete-expression.
    F->addAttribute(llvm::AttributeList::FunctionIndex,
                    llvm::Attribute::NoBuiltin);

    // A sane operator new returns a non-aliasing pointer.
    // FIXME: Also add NonNull attribute to the return value
    // for the non-nothrow forms?
    auto Kind = FD->getDeclName().getCXXOverloadedOperator();
    if (getCodeGenOpts().AssumeSaneOperatorNew &&
        (Kind == OO_New || Kind == OO_Array_New))
      F->addAttribute(llvm::AttributeList::ReturnIndex,
                      llvm::Attribute::NoAlias);
  }

  if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
    F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
    if (MD->isVirtual())
      F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);

  // Don't emit entries for function declarations in the cross-DSO mode. This
  // is handled with better precision by the receiving DSO.
  if (!CodeGenOpts.SanitizeCfiCrossDso)
    CreateFunctionTypeMetadata(FD, F);
}

void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
  assert(!GV->isDeclaration() &&
         "Only globals with definition can force usage.");
  LLVMUsed.emplace_back(GV);
}

void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
  assert(!GV->isDeclaration() &&
         "Only globals with definition can force usage.");
  LLVMCompilerUsed.emplace_back(GV);
}

static void emitUsed(CodeGenModule &CGM, StringRef Name,
                     std::vector<llvm::WeakTrackingVH> &List) {
  // Don't create llvm.used if there is no need.
  if (List.empty())
    return;

  // Convert List to what ConstantArray needs.
  SmallVector<llvm::Constant*, 8> UsedArray;
  UsedArray.resize(List.size());
  for (unsigned i = 0, e = List.size(); i != e; ++i) {
    UsedArray[i] =
        llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
            cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
  }

  if (UsedArray.empty())
    return;
  llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());

  auto *GV = new llvm::GlobalVariable(
      CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
      llvm::ConstantArray::get(ATy, UsedArray), Name);

  GV->setSection("llvm.metadata");
}

void CodeGenModule::emitLLVMUsed() {
  emitUsed(*this, "llvm.used", LLVMUsed);
  emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
}

void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
}

void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
  llvm::SmallString<32> Opt;
  getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
}

void CodeGenModule::AddDependentLib(StringRef Lib) {
  llvm::SmallString<24> Opt;
  getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
}

/// \brief Add link options implied by the given module, including modules
/// it depends on, using a postorder walk.
static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
                                    SmallVectorImpl<llvm::MDNode *> &Metadata,
                                    llvm::SmallPtrSet<Module *, 16> &Visited) {
  // Import this module's parent.
  if (Mod->Parent && Visited.insert(Mod->Parent).second) {
    addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
  }

  // Import this module's dependencies.
  for (unsigned I = Mod->Imports.size(); I > 0; --I) {
    if (Visited.insert(Mod->Imports[I - 1]).second)
      addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
  }

  // Add linker options to link against the libraries/frameworks
  // described by this module.
  llvm::LLVMContext &Context = CGM.getLLVMContext();
  for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
    // Link against a framework.  Frameworks are currently Darwin only, so we
    // don't to ask TargetCodeGenInfo for the spelling of the linker option.
    if (Mod->LinkLibraries[I-1].IsFramework) {
      llvm::Metadata *Args[2] = {
          llvm::MDString::get(Context, "-framework"),
          llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};

      Metadata.push_back(llvm::MDNode::get(Context, Args));
      continue;
    }

    // Link against a library.
    llvm::SmallString<24> Opt;
    CGM.getTargetCodeGenInfo().getDependentLibraryOption(
      Mod->LinkLibraries[I-1].Library, Opt);
    auto *OptString = llvm::MDString::get(Context, Opt);
    Metadata.push_back(llvm::MDNode::get(Context, OptString));
  }
}

void CodeGenModule::EmitModuleLinkOptions() {
  // Collect the set of all of the modules we want to visit to emit link
  // options, which is essentially the imported modules and all of their
  // non-explicit child modules.
  llvm::SetVector<clang::Module *> LinkModules;
  llvm::SmallPtrSet<clang::Module *, 16> Visited;
  SmallVector<clang::Module *, 16> Stack;

  // Seed the stack with imported modules.
  for (Module *M : ImportedModules) {
    // Do not add any link flags when an implementation TU of a module imports
    // a header of that same module.
    if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
        !getLangOpts().isCompilingModule())
      continue;
    if (Visited.insert(M).second)
      Stack.push_back(M);
  }

  // Find all of the modules to import, making a little effort to prune
  // non-leaf modules.
  while (!Stack.empty()) {
    clang::Module *Mod = Stack.pop_back_val();

    bool AnyChildren = false;

    // Visit the submodules of this module.
    for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
                                        SubEnd = Mod->submodule_end();
         Sub != SubEnd; ++Sub) {
      // Skip explicit children; they need to be explicitly imported to be
      // linked against.
      if ((*Sub)->IsExplicit)
        continue;

      if (Visited.insert(*Sub).second) {
        Stack.push_back(*Sub);
        AnyChildren = true;
      }
    }

    // We didn't find any children, so add this module to the list of
    // modules to link against.
    if (!AnyChildren) {
      LinkModules.insert(Mod);
    }
  }

  // Add link options for all of the imported modules in reverse topological
  // order.  We don't do anything to try to order import link flags with respect
  // to linker options inserted by things like #pragma comment().
  SmallVector<llvm::MDNode *, 16> MetadataArgs;
  Visited.clear();
  for (Module *M : LinkModules)
    if (Visited.insert(M).second)
      addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
  std::reverse(MetadataArgs.begin(), MetadataArgs.end());
  LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());

  // Add the linker options metadata flag.
  auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
  for (auto *MD : LinkerOptionsMetadata)
    NMD->addOperand(MD);
}

void CodeGenModule::EmitDeferred() {
  // Emit code for any potentially referenced deferred decls.  Since a
  // previously unused static decl may become used during the generation of code
  // for a static function, iterate until no changes are made.

  if (!DeferredVTables.empty()) {
    EmitDeferredVTables();

    // Emitting a vtable doesn't directly cause more vtables to
    // become deferred, although it can cause functions to be
    // emitted that then need those vtables.
    assert(DeferredVTables.empty());
  }

  // Stop if we're out of both deferred vtables and deferred declarations.
  if (DeferredDeclsToEmit.empty())
    return;

  // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
  // work, it will not interfere with this.
  std::vector<GlobalDecl> CurDeclsToEmit;
  CurDeclsToEmit.swap(DeferredDeclsToEmit);

  for (GlobalDecl &D : CurDeclsToEmit) {
    // We should call GetAddrOfGlobal with IsForDefinition set to true in order
    // to get GlobalValue with exactly the type we need, not something that
    // might had been created for another decl with the same mangled name but
    // different type.
    llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
        GetAddrOfGlobal(D, ForDefinition));

    // In case of different address spaces, we may still get a cast, even with
    // IsForDefinition equal to true. Query mangled names table to get
    // GlobalValue.
    if (!GV)
      GV = GetGlobalValue(getMangledName(D));

    // Make sure GetGlobalValue returned non-null.
    assert(GV);

    // Check to see if we've already emitted this.  This is necessary
    // for a couple of reasons: first, decls can end up in the
    // deferred-decls queue multiple times, and second, decls can end
    // up with definitions in unusual ways (e.g. by an extern inline
    // function acquiring a strong function redefinition).  Just
    // ignore these cases.
    if (!GV->isDeclaration())
      continue;

    // Otherwise, emit the definition and move on to the next one.
    EmitGlobalDefinition(D, GV);

    // If we found out that we need to emit more decls, do that recursively.
    // This has the advantage that the decls are emitted in a DFS and related
    // ones are close together, which is convenient for testing.
    if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
      EmitDeferred();
      assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
    }
  }
}

void CodeGenModule::EmitVTablesOpportunistically() {
  // Try to emit external vtables as available_externally if they have emitted
  // all inlined virtual functions.  It runs after EmitDeferred() and therefore
  // is not allowed to create new references to things that need to be emitted
  // lazily. Note that it also uses fact that we eagerly emitting RTTI.

  assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
         && "Only emit opportunistic vtables with optimizations");

  for (const CXXRecordDecl *RD : OpportunisticVTables) {
    assert(getVTables().isVTableExternal(RD) &&
           "This queue should only contain external vtables");
    if (getCXXABI().canSpeculativelyEmitVTable(RD))
      VTables.GenerateClassData(RD);
  }
  OpportunisticVTables.clear();
}

void CodeGenModule::EmitGlobalAnnotations() {
  if (Annotations.empty())
    return;

  // Create a new global variable for the ConstantStruct in the Module.
  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
    Annotations[0]->getType(), Annotations.size()), Annotations);
  auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
                                      llvm::GlobalValue::AppendingLinkage,
                                      Array, "llvm.global.annotations");
  gv->setSection(AnnotationSection);
}

llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
  llvm::Constant *&AStr = AnnotationStrings[Str];
  if (AStr)
    return AStr;

  // Not found yet, create a new global.
  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
  auto *gv =
      new llvm::GlobalVariable(getModule(), s->getType(), true,
                               llvm::GlobalValue::PrivateLinkage, s, ".str");
  gv->setSection(AnnotationSection);
  gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  AStr = gv;
  return gv;
}

llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
  SourceManager &SM = getContext().getSourceManager();
  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
  if (PLoc.isValid())
    return EmitAnnotationString(PLoc.getFilename());
  return EmitAnnotationString(SM.getBufferName(Loc));
}

llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
  SourceManager &SM = getContext().getSourceManager();
  PresumedLoc PLoc = SM.getPresumedLoc(L);
  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
    SM.getExpansionLineNumber(L);
  return llvm::ConstantInt::get(Int32Ty, LineNo);
}

llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
                                                const AnnotateAttr *AA,
                                                SourceLocation L) {
  // Get the globals for file name, annotation, and the line number.
  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
                 *UnitGV = EmitAnnotationUnit(L),
                 *LineNoCst = EmitAnnotationLineNo(L);

  // Create the ConstantStruct for the global annotation.
  llvm::Constant *Fields[4] = {
    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
    LineNoCst
  };
  return llvm::ConstantStruct::getAnon(Fields);
}

void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
                                         llvm::GlobalValue *GV) {
  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
  // Get the struct elements for these annotations.
  for (const auto *I : D->specific_attrs<AnnotateAttr>())
    Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
}

bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
                                           llvm::Function *Fn,
                                           SourceLocation Loc) const {
  const auto &SanitizerBL = getContext().getSanitizerBlacklist();
  // Blacklist by function name.
  if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
    return true;
  // Blacklist by location.
  if (Loc.isValid())
    return SanitizerBL.isBlacklistedLocation(Kind, Loc);
  // If location is unknown, this may be a compiler-generated function. Assume
  // it's located in the main file.
  auto &SM = Context.getSourceManager();
  if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
    return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
  }
  return false;
}

bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
                                           SourceLocation Loc, QualType Ty,
                                           StringRef Category) const {
  // For now globals can be blacklisted only in ASan and KASan.
  const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
      (SanitizerKind::Address | SanitizerKind::KernelAddress);
  if (!EnabledAsanMask)
    return false;
  const auto &SanitizerBL = getContext().getSanitizerBlacklist();
  if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
    return true;
  if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
    return true;
  // Check global type.
  if (!Ty.isNull()) {
    // Drill down the array types: if global variable of a fixed type is
    // blacklisted, we also don't instrument arrays of them.
    while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
      Ty = AT->getElementType();
    Ty = Ty.getCanonicalType().getUnqualifiedType();
    // We allow to blacklist only record types (classes, structs etc.)
    if (Ty->isRecordType()) {
      std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
      if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
        return true;
    }
  }
  return false;
}

bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
                                   StringRef Category) const {
  if (!LangOpts.XRayInstrument)
    return false;
  const auto &XRayFilter = getContext().getXRayFilter();
  using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
  auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
  if (Loc.isValid())
    Attr = XRayFilter.shouldImbueLocation(Loc, Category);
  if (Attr == ImbueAttr::NONE)
    Attr = XRayFilter.shouldImbueFunction(Fn->getName());
  switch (Attr) {
  case ImbueAttr::NONE:
    return false;
  case ImbueAttr::ALWAYS:
    Fn->addFnAttr("function-instrument", "xray-always");
    break;
  case ImbueAttr::ALWAYS_ARG1:
    Fn->addFnAttr("function-instrument", "xray-always");
    Fn->addFnAttr("xray-log-args", "1");
    break;
  case ImbueAttr::NEVER:
    Fn->addFnAttr("function-instrument", "xray-never");
    break;
  }
  return true;
}

bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
  // Never defer when EmitAllDecls is specified.
  if (LangOpts.EmitAllDecls)
    return true;

  return getContext().DeclMustBeEmitted(Global);
}

bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
  if (const auto *FD = dyn_cast<FunctionDecl>(Global))
    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
      // Implicit template instantiations may change linkage if they are later
      // explicitly instantiated, so they should not be emitted eagerly.
      return false;
  if (const auto *VD = dyn_cast<VarDecl>(Global))
    if (Context.getInlineVariableDefinitionKind(VD) ==
        ASTContext::InlineVariableDefinitionKind::WeakUnknown)
      // A definition of an inline constexpr static data member may change
      // linkage later if it's redeclared outside the class.
      return false;
  // If OpenMP is enabled and threadprivates must be generated like TLS, delay
  // codegen for global variables, because they may be marked as threadprivate.
  if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
      getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
    return false;

  return true;
}

ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
    const CXXUuidofExpr* E) {
  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
  // well-formed.
  StringRef Uuid = E->getUuidStr();
  std::string Name = "_GUID_" + Uuid.lower();
  std::replace(Name.begin(), Name.end(), '-', '_');

  // The UUID descriptor should be pointer aligned.
  CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);

  // Look for an existing global.
  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
    return ConstantAddress(GV, Alignment);

  llvm::Constant *Init = EmitUuidofInitializer(Uuid);
  assert(Init && "failed to initialize as constant");

  auto *GV = new llvm::GlobalVariable(
      getModule(), Init->getType(),
      /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
  if (supportsCOMDAT())
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
  return ConstantAddress(GV, Alignment);
}

ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
  const AliasAttr *AA = VD->getAttr<AliasAttr>();
  assert(AA && "No alias?");

  CharUnits Alignment = getContext().getDeclAlign(VD);
  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());

  // See if there is already something with the target's name in the module.
  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
  if (Entry) {
    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
    auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
    return ConstantAddress(Ptr, Alignment);
  }

  llvm::Constant *Aliasee;
  if (isa<llvm::FunctionType>(DeclTy))
    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
                                      GlobalDecl(cast<FunctionDecl>(VD)),
                                      /*ForVTable=*/false);
  else
    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
                                    llvm::PointerType::getUnqual(DeclTy),
                                    nullptr);

  auto *F = cast<llvm::GlobalValue>(Aliasee);
  F->setLinkage(llvm::Function::ExternalWeakLinkage);
  WeakRefReferences.insert(F);

  return ConstantAddress(Aliasee, Alignment);
}

void CodeGenModule::EmitGlobal(GlobalDecl GD) {
  const auto *Global = cast<ValueDecl>(GD.getDecl());

  // Weak references don't produce any output by themselves.
  if (Global->hasAttr<WeakRefAttr>())
    return;

  // If this is an alias definition (which otherwise looks like a declaration)
  // emit it now.
  if (Global->hasAttr<AliasAttr>())
    return EmitAliasDefinition(GD);

  // IFunc like an alias whose value is resolved at runtime by calling resolver.
  if (Global->hasAttr<IFuncAttr>())
    return emitIFuncDefinition(GD);

  // If this is CUDA, be selective about which declarations we emit.
  if (LangOpts.CUDA) {
    if (LangOpts.CUDAIsDevice) {
      if (!Global->hasAttr<CUDADeviceAttr>() &&
          !Global->hasAttr<CUDAGlobalAttr>() &&
          !Global->hasAttr<CUDAConstantAttr>() &&
          !Global->hasAttr<CUDASharedAttr>())
        return;
    } else {
      // We need to emit host-side 'shadows' for all global
      // device-side variables because the CUDA runtime needs their
      // size and host-side address in order to provide access to
      // their device-side incarnations.

      // So device-only functions are the only things we skip.
      if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
          Global->hasAttr<CUDADeviceAttr>())
        return;

      assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
             "Expected Variable or Function");
    }
  }

  if (LangOpts.OpenMP) {
    // If this is OpenMP device, check if it is legal to emit this global
    // normally.
    if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
      return;
    if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
      if (MustBeEmitted(Global))
        EmitOMPDeclareReduction(DRD);
      return;
    }
  }

  // Ignore declarations, they will be emitted on their first use.
  if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
    // Forward declarations are emitted lazily on first use.
    if (!FD->doesThisDeclarationHaveABody()) {
      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
        return;

      StringRef MangledName = getMangledName(GD);

      // Compute the function info and LLVM type.
      const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
      llvm::Type *Ty = getTypes().GetFunctionType(FI);

      GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
                              /*DontDefer=*/false);
      return;
    }
  } else {
    const auto *VD = cast<VarDecl>(Global);
    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
    // We need to emit device-side global CUDA variables even if a
    // variable does not have a definition -- we still need to define
    // host-side shadow for it.
    bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
                           !VD->hasDefinition() &&
                           (VD->hasAttr<CUDAConstantAttr>() ||
                            VD->hasAttr<CUDADeviceAttr>());
    if (!MustEmitForCuda &&
        VD->isThisDeclarationADefinition() != VarDecl::Definition &&
        !Context.isMSStaticDataMemberInlineDefinition(VD)) {
      // If this declaration may have caused an inline variable definition to
      // change linkage, make sure that it's emitted.
      if (Context.getInlineVariableDefinitionKind(VD) ==
          ASTContext::InlineVariableDefinitionKind::Strong)
        GetAddrOfGlobalVar(VD);
      return;
    }
  }

  // Defer code generation to first use when possible, e.g. if this is an inline
  // function. If the global must always be emitted, do it eagerly if possible
  // to benefit from cache locality.
  if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
    // Emit the definition if it can't be deferred.
    EmitGlobalDefinition(GD);
    return;
  }

  // If we're deferring emission of a C++ variable with an
  // initializer, remember the order in which it appeared in the file.
  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
      cast<VarDecl>(Global)->hasInit()) {
    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
    CXXGlobalInits.push_back(nullptr);
  }

  StringRef MangledName = getMangledName(GD);
  if (GetGlobalValue(MangledName) != nullptr) {
    // The value has already been used and should therefore be emitted.
    addDeferredDeclToEmit(GD);
  } else if (MustBeEmitted(Global)) {
    // The value must be emitted, but cannot be emitted eagerly.
    assert(!MayBeEmittedEagerly(Global));
    addDeferredDeclToEmit(GD);
  } else {
    // Otherwise, remember that we saw a deferred decl with this name.  The
    // first use of the mangled name will cause it to move into
    // DeferredDeclsToEmit.
    DeferredDecls[MangledName] = GD;
  }
}

// Check if T is a class type with a destructor that's not dllimport.
static bool HasNonDllImportDtor(QualType T) {
  if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
      if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
        return true;

  return false;
}

namespace {
  struct FunctionIsDirectlyRecursive :
    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
    const StringRef Name;
    const Builtin::Context &BI;
    bool Result;
    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
      Name(N), BI(C), Result(false) {
    }
    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;

    bool TraverseCallExpr(CallExpr *E) {
      const FunctionDecl *FD = E->getDirectCallee();
      if (!FD)
        return true;
      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
      if (Attr && Name == Attr->getLabel()) {
        Result = true;
        return false;
      }
      unsigned BuiltinID = FD->getBuiltinID();
      if (!BuiltinID || !BI.isLibFunction(BuiltinID))
        return true;
      StringRef BuiltinName = BI.getName(BuiltinID);
      if (BuiltinName.startswith("__builtin_") &&
          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
        Result = true;
        return false;
      }
      return true;
    }
  };

  // Make sure we're not referencing non-imported vars or functions.
  struct DLLImportFunctionVisitor
      : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
    bool SafeToInline = true;

    bool shouldVisitImplicitCode() const { return true; }

    bool VisitVarDecl(VarDecl *VD) {
      if (VD->getTLSKind()) {
        // A thread-local variable cannot be imported.
        SafeToInline = false;
        return SafeToInline;
      }

      // A variable definition might imply a destructor call.
      if (VD->isThisDeclarationADefinition())
        SafeToInline = !HasNonDllImportDtor(VD->getType());

      return SafeToInline;
    }

    bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
      if (const auto *D = E->getTemporary()->getDestructor())
        SafeToInline = D->hasAttr<DLLImportAttr>();
      return SafeToInline;
    }

    bool VisitDeclRefExpr(DeclRefExpr *E) {
      ValueDecl *VD = E->getDecl();
      if (isa<FunctionDecl>(VD))
        SafeToInline = VD->hasAttr<DLLImportAttr>();
      else if (VarDecl *V = dyn_cast<VarDecl>(VD))
        SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
      return SafeToInline;
    }

    bool VisitCXXConstructExpr(CXXConstructExpr *E) {
      SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
      return SafeToInline;
    }

    bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
      CXXMethodDecl *M = E->getMethodDecl();
      if (!M) {
        // Call through a pointer to member function. This is safe to inline.
        SafeToInline = true;
      } else {
        SafeToInline = M->hasAttr<DLLImportAttr>();
      }
      return SafeToInline;
    }

    bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
      SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
      return SafeToInline;
    }

    bool VisitCXXNewExpr(CXXNewExpr *E) {
      SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
      return SafeToInline;
    }
  };
}

// isTriviallyRecursive - Check if this function calls another
// decl that, because of the asm attribute or the other decl being a builtin,
// ends up pointing to itself.
bool
CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
  StringRef Name;
  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
    // asm labels are a special kind of mangling we have to support.
    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
    if (!Attr)
      return false;
    Name = Attr->getLabel();
  } else {
    Name = FD->getName();
  }

  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
  return Walker.Result;
}

bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
  if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
    return true;
  const auto *F = cast<FunctionDecl>(GD.getDecl());
  if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
    return false;

  if (F->hasAttr<DLLImportAttr>()) {
    // Check whether it would be safe to inline this dllimport function.
    DLLImportFunctionVisitor Visitor;
    Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
    if (!Visitor.SafeToInline)
      return false;

    if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
      // Implicit destructor invocations aren't captured in the AST, so the
      // check above can't see them. Check for them manually here.
      for (const Decl *Member : Dtor->getParent()->decls())
        if (isa<FieldDecl>(Member))
          if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
            return false;
      for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
        if (HasNonDllImportDtor(B.getType()))
          return false;
    }
  }

  // PR9614. Avoid cases where the source code is lying to us. An available
  // externally function should have an equivalent function somewhere else,
  // but a function that calls itself is clearly not equivalent to the real
  // implementation.
  // This happens in glibc's btowc and in some configure checks.
  return !isTriviallyRecursive(F);
}

bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
  return CodeGenOpts.OptimizationLevel > 0;
}

void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
  const auto *D = cast<ValueDecl>(GD.getDecl());

  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 
                                 Context.getSourceManager(),
                                 "Generating code for declaration");
  
  if (isa<FunctionDecl>(D)) {
    // At -O0, don't generate IR for functions with available_externally 
    // linkage.
    if (!shouldEmitFunction(GD))
      return;

    if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
      // Make sure to emit the definition(s) before we emit the thunks.
      // This is necessary for the generation of certain thunks.
      if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
        ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
      else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
        ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
      else
        EmitGlobalFunctionDefinition(GD, GV);

      if (Method->isVirtual())
        getVTables().EmitThunks(GD);

      return;
    }

    return EmitGlobalFunctionDefinition(GD, GV);
  }

  if (const auto *VD = dyn_cast<VarDecl>(D))
    return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
  
  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
}

static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
                                                      llvm::Function *NewFn);

/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
/// module, create and return an llvm Function with the specified type. If there
/// is something in the module with the specified name, return it potentially
/// bitcasted to the right type.
///
/// If D is non-null, it specifies a decl that correspond to this.  This is used
/// to set the attributes on the function when it is first created.
llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
    StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
    bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
    ForDefinition_t IsForDefinition) {
  const Decl *D = GD.getDecl();

  // Lookup the entry, lazily creating it if necessary.
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
  if (Entry) {
    if (WeakRefReferences.erase(Entry)) {
      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
      if (FD && !FD->hasAttr<WeakAttr>())
        Entry->setLinkage(llvm::Function::ExternalLinkage);
    }

    // Handle dropped DLL attributes.
    if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
      Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);

    // If there are two attempts to define the same mangled name, issue an
    // error.
    if (IsForDefinition && !Entry->isDeclaration()) {
      GlobalDecl OtherGD;
      // Check that GD is not yet in DiagnosedConflictingDefinitions is required
      // to make sure that we issue an error only once.
      if (lookupRepresentativeDecl(MangledName, OtherGD) &&
          (GD.getCanonicalDecl().getDecl() !=
           OtherGD.getCanonicalDecl().getDecl()) &&
          DiagnosedConflictingDefinitions.insert(GD).second) {
        getDiags().Report(D->getLocation(),
                          diag::err_duplicate_mangled_name);
        getDiags().Report(OtherGD.getDecl()->getLocation(),
                          diag::note_previous_definition);
      }
    }

    if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
        (Entry->getType()->getElementType() == Ty)) {
      return Entry;
    }

    // Make sure the result is of the correct type.
    // (If function is requested for a definition, we always need to create a new
    // function, not just return a bitcast.)
    if (!IsForDefinition)
      return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
  }

  // This function doesn't have a complete type (for example, the return
  // type is an incomplete struct). Use a fake type instead, and make
  // sure not to try to set attributes.
  bool IsIncompleteFunction = false;

  llvm::FunctionType *FTy;
  if (isa<llvm::FunctionType>(Ty)) {
    FTy = cast<llvm::FunctionType>(Ty);
  } else {
    FTy = llvm::FunctionType::get(VoidTy, false);
    IsIncompleteFunction = true;
  }

  llvm::Function *F =
      llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
                             Entry ? StringRef() : MangledName, &getModule());

  // If we already created a function with the same mangled name (but different
  // type) before, take its name and add it to the list of functions to be
  // replaced with F at the end of CodeGen.
  //
  // This happens if there is a prototype for a function (e.g. "int f()") and
  // then a definition of a different type (e.g. "int f(int x)").
  if (Entry) {
    F->takeName(Entry);

    // This might be an implementation of a function without a prototype, in
    // which case, try to do special replacement of calls which match the new
    // prototype.  The really key thing here is that we also potentially drop
    // arguments from the call site so as to make a direct call, which makes the
    // inliner happier and suppresses a number of optimizer warnings (!) about
    // dropping arguments.
    if (!Entry->use_empty()) {
      ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
      Entry->removeDeadConstantUsers();
    }

    llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
        F, Entry->getType()->getElementType()->getPointerTo());
    addGlobalValReplacement(Entry, BC);
  }

  assert(F->getName() == MangledName && "name was uniqued!");
  if (D)
    SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk,
                          IsForDefinition);
  if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
    llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
    F->addAttributes(llvm::AttributeList::FunctionIndex, B);
  }

  if (!DontDefer) {
    // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
    // each other bottoming out with the base dtor.  Therefore we emit non-base
    // dtors on usage, even if there is no dtor definition in the TU.
    if (D && isa<CXXDestructorDecl>(D) &&
        getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
                                           GD.getDtorType()))
      addDeferredDeclToEmit(GD);

    // This is the first use or definition of a mangled name.  If there is a
    // deferred decl with this name, remember that we need to emit it at the end
    // of the file.
    auto DDI = DeferredDecls.find(MangledName);
    if (DDI != DeferredDecls.end()) {
      // Move the potentially referenced deferred decl to the
      // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
      // don't need it anymore).
      addDeferredDeclToEmit(DDI->second);
      DeferredDecls.erase(DDI);

      // Otherwise, there are cases we have to worry about where we're
      // using a declaration for which we must emit a definition but where
      // we might not find a top-level definition:
      //   - member functions defined inline in their classes
      //   - friend functions defined inline in some class
      //   - special member functions with implicit definitions
      // If we ever change our AST traversal to walk into class methods,
      // this will be unnecessary.
      //
      // We also don't emit a definition for a function if it's going to be an
      // entry in a vtable, unless it's already marked as used.
    } else if (getLangOpts().CPlusPlus && D) {
      // Look for a declaration that's lexically in a record.
      for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
           FD = FD->getPreviousDecl()) {
        if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
          if (FD->doesThisDeclarationHaveABody()) {
            addDeferredDeclToEmit(GD.getWithDecl(FD));
            break;
          }
        }
      }
    }
  }

  // Make sure the result is of the requested type.
  if (!IsIncompleteFunction) {
    assert(F->getType()->getElementType() == Ty);
    return F;
  }

  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
  return llvm::ConstantExpr::getBitCast(F, PTy);
}

/// GetAddrOfFunction - Return the address of the given function.  If Ty is
/// non-null, then this function will use the specified type if it has to
/// create it (this occurs when we see a definition of the function).
llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
                                                 llvm::Type *Ty,
                                                 bool ForVTable,
                                                 bool DontDefer,
                                              ForDefinition_t IsForDefinition) {
  // If there was no specific requested type, just convert it now.
  if (!Ty) {
    const auto *FD = cast<FunctionDecl>(GD.getDecl());
    auto CanonTy = Context.getCanonicalType(FD->getType());
    Ty = getTypes().ConvertFunctionType(CanonTy, FD);
  }

  StringRef MangledName = getMangledName(GD);
  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
                                 /*IsThunk=*/false, llvm::AttributeList(),
                                 IsForDefinition);
}

static const FunctionDecl *
GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
  TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
  DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);

  IdentifierInfo &CII = C.Idents.get(Name);
  for (const auto &Result : DC->lookup(&CII))
    if (const auto FD = dyn_cast<FunctionDecl>(Result))
      return FD;

  if (!C.getLangOpts().CPlusPlus)
    return nullptr;

  // Demangle the premangled name from getTerminateFn()
  IdentifierInfo &CXXII =
      (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
          ? C.Idents.get("terminate")
          : C.Idents.get(Name);

  for (const auto &N : {"__cxxabiv1", "std"}) {
    IdentifierInfo &NS = C.Idents.get(N);
    for (const auto &Result : DC->lookup(&NS)) {
      NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
      if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
        for (const auto &Result : LSD->lookup(&NS))
          if ((ND = dyn_cast<NamespaceDecl>(Result)))
            break;

      if (ND)
        for (const auto &Result : ND->lookup(&CXXII))
          if (const auto *FD = dyn_cast<FunctionDecl>(Result))
            return FD;
    }
  }

  return nullptr;
}

/// CreateRuntimeFunction - Create a new runtime function with the specified
/// type and name.
llvm::Constant *
CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
                                     llvm::AttributeList ExtraAttrs,
                                     bool Local) {
  llvm::Constant *C =
      GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
                              /*DontDefer=*/false, /*IsThunk=*/false,
                              ExtraAttrs);

  if (auto *F = dyn_cast<llvm::Function>(C)) {
    if (F->empty()) {
      F->setCallingConv(getRuntimeCC());

      if (!Local && getTriple().isOSBinFormatCOFF() &&
          !getCodeGenOpts().LTOVisibilityPublicStd) {
        const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
        if (!FD || FD->hasAttr<DLLImportAttr>()) {
          F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
          F->setLinkage(llvm::GlobalValue::ExternalLinkage);
        }
      }
    }
  }

  return C;
}

/// CreateBuiltinFunction - Create a new builtin function with the specified
/// type and name.
llvm::Constant *
CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
                                     llvm::AttributeList ExtraAttrs) {
  llvm::Constant *C =
      GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
                              /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
  if (auto *F = dyn_cast<llvm::Function>(C))
    if (F->empty())
      F->setCallingConv(getBuiltinCC());
  return C;
}

/// isTypeConstant - Determine whether an object of this type can be emitted
/// as a constant.
///
/// If ExcludeCtor is true, the duration when the object's constructor runs
/// will not be considered. The caller will need to verify that the object is
/// not written to during its construction.
bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
    return false;

  if (Context.getLangOpts().CPlusPlus) {
    if (const CXXRecordDecl *Record
          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
      return ExcludeCtor && !Record->hasMutableFields() &&
             Record->hasTrivialDestructor();
  }

  return true;
}

/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
/// create and return an llvm GlobalVariable with the specified type.  If there
/// is something in the module with the specified name, return it potentially
/// bitcasted to the right type.
///
/// If D is non-null, it specifies a decl that correspond to this.  This is used
/// to set the attributes on the global when it is first created.
///
/// If IsForDefinition is true, it is guranteed that an actual global with
/// type Ty will be returned, not conversion of a variable with the same
/// mangled name but some other type.
llvm::Constant *
CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
                                     llvm::PointerType *Ty,
                                     const VarDecl *D,
                                     ForDefinition_t IsForDefinition) {
  // Lookup the entry, lazily creating it if necessary.
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
  if (Entry) {
    if (WeakRefReferences.erase(Entry)) {
      if (D && !D->hasAttr<WeakAttr>())
        Entry->setLinkage(llvm::Function::ExternalLinkage);
    }

    // Handle dropped DLL attributes.
    if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
      Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);

    if (Entry->getType() == Ty)
      return Entry;

    // If there are two attempts to define the same mangled name, issue an
    // error.
    if (IsForDefinition && !Entry->isDeclaration()) {
      GlobalDecl OtherGD;
      const VarDecl *OtherD;

      // Check that D is not yet in DiagnosedConflictingDefinitions is required
      // to make sure that we issue an error only once.
      if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
          (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
          (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
          OtherD->hasInit() &&
          DiagnosedConflictingDefinitions.insert(D).second) {
        getDiags().Report(D->getLocation(),
                          diag::err_duplicate_mangled_name);
        getDiags().Report(OtherGD.getDecl()->getLocation(),
                          diag::note_previous_definition);
      }
    }

    // Make sure the result is of the correct type.
    if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
      return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);

    // (If global is requested for a definition, we always need to create a new
    // global, not just return a bitcast.)
    if (!IsForDefinition)
      return llvm::ConstantExpr::getBitCast(Entry, Ty);
  }

  auto AddrSpace = GetGlobalVarAddressSpace(D);
  auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);

  auto *GV = new llvm::GlobalVariable(
      getModule(), Ty->getElementType(), false,
      llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
      llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);

  // If we already created a global with the same mangled name (but different
  // type) before, take its name and remove it from its parent.
  if (Entry) {
    GV->takeName(Entry);

    if (!Entry->use_empty()) {
      llvm::Constant *NewPtrForOldDecl =
          llvm::ConstantExpr::getBitCast(GV, Entry->getType());
      Entry->replaceAllUsesWith(NewPtrForOldDecl);
    }

    Entry->eraseFromParent();
  }

  // This is the first use or definition of a mangled name.  If there is a
  // deferred decl with this name, remember that we need to emit it at the end
  // of the file.
  auto DDI = DeferredDecls.find(MangledName);
  if (DDI != DeferredDecls.end()) {
    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
    // list, and remove it from DeferredDecls (since we don't need it anymore).
    addDeferredDeclToEmit(DDI->second);
    DeferredDecls.erase(DDI);
  }

  // Handle things which are present even on external declarations.
  if (D) {
    // FIXME: This code is overly simple and should be merged with other global
    // handling.
    GV->setConstant(isTypeConstant(D->getType(), false));

    GV->setAlignment(getContext().getDeclAlign(D).getQuantity());

    setLinkageAndVisibilityForGV(GV, D);

    if (D->getTLSKind()) {
      if (D->getTLSKind() == VarDecl::TLS_Dynamic)
        CXXThreadLocals.push_back(D);
      setTLSMode(GV, *D);
    }

    // If required by the ABI, treat declarations of static data members with
    // inline initializers as definitions.
    if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
      EmitGlobalVarDefinition(D);
    }

    // Emit section information for extern variables.
    if (D->hasExternalStorage()) {
      if (const SectionAttr *SA = D->getAttr<SectionAttr>())
        GV->setSection(SA->getName());
    }

    // Handle XCore specific ABI requirements.
    if (getTriple().getArch() == llvm::Triple::xcore &&
        D->getLanguageLinkage() == CLanguageLinkage &&
        D->getType().isConstant(Context) &&
        isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
      GV->setSection(".cp.rodata");

    // Check if we a have a const declaration with an initializer, we may be
    // able to emit it as available_externally to expose it's value to the
    // optimizer.
    if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
        D->getType().isConstQualified() && !GV->hasInitializer() &&
        !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
      const auto *Record =
          Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
      bool HasMutableFields = Record && Record->hasMutableFields();
      if (!HasMutableFields) {
        const VarDecl *InitDecl;
        const Expr *InitExpr = D->getAnyInitializer(InitDecl);
        if (InitExpr) {
          ConstantEmitter emitter(*this);
          llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
          if (Init) {
            auto *InitType = Init->getType();
            if (GV->getType()->getElementType() != InitType) {
              // The type of the initializer does not match the definition.
              // This happens when an initializer has a different type from
              // the type of the global (because of padding at the end of a
              // structure for instance).
              GV->setName(StringRef());
              // Make a new global with the correct type, this is now guaranteed
              // to work.
              auto *NewGV = cast<llvm::GlobalVariable>(
                  GetAddrOfGlobalVar(D, InitType, IsForDefinition));

              // Erase the old global, since it is no longer used.
              cast<llvm::GlobalValue>(GV)->eraseFromParent();
              GV = NewGV;
            } else {
              GV->setInitializer(Init);
              GV->setConstant(true);
              GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
            }
            emitter.finalize(GV);
          }
        }
      }
    }
  }

  auto ExpectedAS =
      D ? D->getType().getAddressSpace()
        : static_cast<unsigned>(LangOpts.OpenCL ? LangAS::opencl_global
                                                : LangAS::Default);
  assert(getContext().getTargetAddressSpace(ExpectedAS) ==
         Ty->getPointerAddressSpace());
  if (AddrSpace != ExpectedAS)
    return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
                                                       ExpectedAS, Ty);

  return GV;
}

llvm::Constant *
CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
                               ForDefinition_t IsForDefinition) {
  const Decl *D = GD.getDecl();
  if (isa<CXXConstructorDecl>(D))
    return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
                                getFromCtorType(GD.getCtorType()),
                                /*FnInfo=*/nullptr, /*FnType=*/nullptr,
                                /*DontDefer=*/false, IsForDefinition);
  else if (isa<CXXDestructorDecl>(D))
    return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
                                getFromDtorType(GD.getDtorType()),
                                /*FnInfo=*/nullptr, /*FnType=*/nullptr,
                                /*DontDefer=*/false, IsForDefinition);
  else if (isa<CXXMethodDecl>(D)) {
    auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
        cast<CXXMethodDecl>(D));
    auto Ty = getTypes().GetFunctionType(*FInfo);
    return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
                             IsForDefinition);
  } else if (isa<FunctionDecl>(D)) {
    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
    llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
    return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
                             IsForDefinition);
  } else
    return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
                              IsForDefinition);
}

llvm::GlobalVariable *
CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 
                                      llvm::Type *Ty,
                                      llvm::GlobalValue::LinkageTypes Linkage) {
  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
  llvm::GlobalVariable *OldGV = nullptr;

  if (GV) {
    // Check if the variable has the right type.
    if (GV->getType()->getElementType() == Ty)
      return GV;

    // Because C++ name mangling, the only way we can end up with an already
    // existing global with the same name is if it has been declared extern "C".
    assert(GV->isDeclaration() && "Declaration has wrong type!");
    OldGV = GV;
  }
  
  // Create a new variable.
  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
                                Linkage, nullptr, Name);

  if (OldGV) {
    // Replace occurrences of the old variable if needed.
    GV->takeName(OldGV);
    
    if (!OldGV->use_empty()) {
      llvm::Constant *NewPtrForOldDecl =
      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
    }
    
    OldGV->eraseFromParent();
  }

  if (supportsCOMDAT() && GV->isWeakForLinker() &&
      !GV->hasAvailableExternallyLinkage())
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));

  return GV;
}

/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
/// given global variable.  If Ty is non-null and if the global doesn't exist,
/// then it will be created with the specified type instead of whatever the
/// normal requested type would be. If IsForDefinition is true, it is guranteed
/// that an actual global with type Ty will be returned, not conversion of a
/// variable with the same mangled name but some other type.
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
                                                  llvm::Type *Ty,
                                           ForDefinition_t IsForDefinition) {
  assert(D->hasGlobalStorage() && "Not a global variable");
  QualType ASTTy = D->getType();
  if (!Ty)
    Ty = getTypes().ConvertTypeForMem(ASTTy);

  llvm::PointerType *PTy =
    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));

  StringRef MangledName = getMangledName(D);
  return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
}

/// CreateRuntimeVariable - Create a new runtime global variable with the
/// specified type and name.
llvm::Constant *
CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
                                     StringRef Name) {
  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
}

void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
  assert(!D->getInit() && "Cannot emit definite definitions here!");

  StringRef MangledName = getMangledName(D);
  llvm::GlobalValue *GV = GetGlobalValue(MangledName);

  // We already have a definition, not declaration, with the same mangled name.
  // Emitting of declaration is not required (and actually overwrites emitted
  // definition).
  if (GV && !GV->isDeclaration())
    return;

  // If we have not seen a reference to this variable yet, place it into the
  // deferred declarations table to be emitted if needed later.
  if (!MustBeEmitted(D) && !GV) {
      DeferredDecls[MangledName] = D;
      return;
  }

  // The tentative definition is the only definition.
  EmitGlobalVarDefinition(D);
}

CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
  return Context.toCharUnitsFromBits(
      getDataLayout().getTypeStoreSizeInBits(Ty));
}

unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
  unsigned AddrSpace;
  if (LangOpts.OpenCL) {
    AddrSpace = D ? D->getType().getAddressSpace()
                  : static_cast<unsigned>(LangAS::opencl_global);
    assert(AddrSpace == LangAS::opencl_global ||
           AddrSpace == LangAS::opencl_constant ||
           AddrSpace == LangAS::opencl_local ||
           AddrSpace >= LangAS::FirstTargetAddressSpace);
    return AddrSpace;
  }

  if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
    if (D && D->hasAttr<CUDAConstantAttr>())
      return LangAS::cuda_constant;
    else if (D && D->hasAttr<CUDASharedAttr>())
      return LangAS::cuda_shared;
    else
      return LangAS::cuda_device;
  }

  return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
}

template<typename SomeDecl>
void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
                                               llvm::GlobalValue *GV) {
  if (!getLangOpts().CPlusPlus)
    return;

  // Must have 'used' attribute, or else inline assembly can't rely on
  // the name existing.
  if (!D->template hasAttr<UsedAttr>())
    return;

  // Must have internal linkage and an ordinary name.
  if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
    return;

  // Must be in an extern "C" context. Entities declared directly within
  // a record are not extern "C" even if the record is in such a context.
  const SomeDecl *First = D->getFirstDecl();
  if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
    return;

  // OK, this is an internal linkage entity inside an extern "C" linkage
  // specification. Make a note of that so we can give it the "expected"
  // mangled name if nothing else is using that name.
  std::pair<StaticExternCMap::iterator, bool> R =
      StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));

  // If we have multiple internal linkage entities with the same name
  // in extern "C" regions, none of them gets that name.
  if (!R.second)
    R.first->second = nullptr;
}

static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
  if (!CGM.supportsCOMDAT())
    return false;

  if (D.hasAttr<SelectAnyAttr>())
    return true;

  GVALinkage Linkage;
  if (auto *VD = dyn_cast<VarDecl>(&D))
    Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
  else
    Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));

  switch (Linkage) {
  case GVA_Internal:
  case GVA_AvailableExternally:
  case GVA_StrongExternal:
    return false;
  case GVA_DiscardableODR:
  case GVA_StrongODR:
    return true;
  }
  llvm_unreachable("No such linkage");
}

void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
                                          llvm::GlobalObject &GO) {
  if (!shouldBeInCOMDAT(*this, D))
    return;
  GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
}

/// Pass IsTentative as true if you want to create a tentative definition.
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
                                            bool IsTentative) {
  // OpenCL global variables of sampler type are translated to function calls,
  // therefore no need to be translated.
  QualType ASTTy = D->getType();
  if (getLangOpts().OpenCL && ASTTy->isSamplerT())
    return;

  llvm::Constant *Init = nullptr;
  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
  bool NeedsGlobalCtor = false;
  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();

  const VarDecl *InitDecl;
  const Expr *InitExpr = D->getAnyInitializer(InitDecl);

  Optional<ConstantEmitter> emitter;

  // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
  // as part of their declaration."  Sema has already checked for
  // error cases, so we just need to set Init to UndefValue.
  if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
      D->hasAttr<CUDASharedAttr>())
    Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
  else if (!InitExpr) {
    // This is a tentative definition; tentative definitions are
    // implicitly initialized with { 0 }.
    //
    // Note that tentative definitions are only emitted at the end of
    // a translation unit, so they should never have incomplete
    // type. In addition, EmitTentativeDefinition makes sure that we
    // never attempt to emit a tentative definition if a real one
    // exists. A use may still exists, however, so we still may need
    // to do a RAUW.
    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
    Init = EmitNullConstant(D->getType());
  } else {
    initializedGlobalDecl = GlobalDecl(D);
    emitter.emplace(*this);
    Init = emitter->tryEmitForInitializer(*InitDecl);

    if (!Init) {
      QualType T = InitExpr->getType();
      if (D->getType()->isReferenceType())
        T = D->getType();

      if (getLangOpts().CPlusPlus) {
        Init = EmitNullConstant(T);
        NeedsGlobalCtor = true;
      } else {
        ErrorUnsupported(D, "static initializer");
        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
      }
    } else {
      // We don't need an initializer, so remove the entry for the delayed
      // initializer position (just in case this entry was delayed) if we
      // also don't need to register a destructor.
      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
        DelayedCXXInitPosition.erase(D);
    }
  }

  llvm::Type* InitType = Init->getType();
  llvm::Constant *Entry =
      GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));

  // Strip off a bitcast if we got one back.
  if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
           CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
           // All zero index gep.
           CE->getOpcode() == llvm::Instruction::GetElementPtr);
    Entry = CE->getOperand(0);
  }

  // Entry is now either a Function or GlobalVariable.
  auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);

  // We have a definition after a declaration with the wrong type.
  // We must make a new GlobalVariable* and update everything that used OldGV
  // (a declaration or tentative definition) with the new GlobalVariable*
  // (which will be a definition).
  //
  // This happens if there is a prototype for a global (e.g.
  // "extern int x[];") and then a definition of a different type (e.g.
  // "int x[10];"). This also happens when an initializer has a different type
  // from the type of the global (this happens with unions).
  if (!GV || GV->getType()->getElementType() != InitType ||
      GV->getType()->getAddressSpace() !=
          getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {

    // Move the old entry aside so that we'll create a new one.
    Entry->setName(StringRef());

    // Make a new global with the correct type, this is now guaranteed to work.
    GV = cast<llvm::GlobalVariable>(
        GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));

    // Replace all uses of the old global with the new global
    llvm::Constant *NewPtrForOldDecl =
        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
    Entry->replaceAllUsesWith(NewPtrForOldDecl);

    // Erase the old global, since it is no longer used.
    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
  }

  MaybeHandleStaticInExternC(D, GV);

  if (D->hasAttr<AnnotateAttr>())
    AddGlobalAnnotations(D, GV);

  // Set the llvm linkage type as appropriate.
  llvm::GlobalValue::LinkageTypes Linkage =
      getLLVMLinkageVarDefinition(D, GV->isConstant());

  // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
  // the device. [...]"
  // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
  // __device__, declares a variable that: [...]
  // Is accessible from all the threads within the grid and from the host
  // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
  // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
  if (GV && LangOpts.CUDA) {
    if (LangOpts.CUDAIsDevice) {
      if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
        GV->setExternallyInitialized(true);
    } else {
      // Host-side shadows of external declarations of device-side
      // global variables become internal definitions. These have to
      // be internal in order to prevent name conflicts with global
      // host variables with the same name in a different TUs.
      if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
        Linkage = llvm::GlobalValue::InternalLinkage;

        // Shadow variables and their properties must be registered
        // with CUDA runtime.
        unsigned Flags = 0;
        if (!D->hasDefinition())
          Flags |= CGCUDARuntime::ExternDeviceVar;
        if (D->hasAttr<CUDAConstantAttr>())
          Flags |= CGCUDARuntime::ConstantDeviceVar;
        getCUDARuntime().registerDeviceVar(*GV, Flags);
      } else if (D->hasAttr<CUDASharedAttr>())
        // __shared__ variables are odd. Shadows do get created, but
        // they are not registered with the CUDA runtime, so they
        // can't really be used to access their device-side
        // counterparts. It's not clear yet whether it's nvcc's bug or
        // a feature, but we've got to do the same for compatibility.
        Linkage = llvm::GlobalValue::InternalLinkage;
    }
  }

  GV->setInitializer(Init);
  if (emitter) emitter->finalize(GV);

  // If it is safe to mark the global 'constant', do so now.
  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
                  isTypeConstant(D->getType(), true));

  // If it is in a read-only section, mark it 'constant'.
  if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
    const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
    if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
      GV->setConstant(true);
  }

  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());


  // On Darwin, if the normal linkage of a C++ thread_local variable is
  // LinkOnce or Weak, we keep the normal linkage to prevent multiple
  // copies within a linkage unit; otherwise, the backing variable has
  // internal linkage and all accesses should just be calls to the
  // Itanium-specified entry point, which has the normal linkage of the
  // variable. This is to preserve the ability to change the implementation
  // behind the scenes.
  if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
      Context.getTargetInfo().getTriple().isOSDarwin() &&
      !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
      !llvm::GlobalVariable::isWeakLinkage(Linkage))
    Linkage = llvm::GlobalValue::InternalLinkage;

  GV->setLinkage(Linkage);
  if (D->hasAttr<DLLImportAttr>())
    GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
  else if (D->hasAttr<DLLExportAttr>())
    GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
  else
    GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);

  if (Linkage == llvm::GlobalVariable::CommonLinkage) {
    // common vars aren't constant even if declared const.
    GV->setConstant(false);
    // Tentative definition of global variables may be initialized with
    // non-zero null pointers. In this case they should have weak linkage
    // since common linkage must have zero initializer and must not have
    // explicit section therefore cannot have non-zero initial value.
    if (!GV->getInitializer()->isNullValue())
      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
  }

  setNonAliasAttributes(D, GV);

  if (D->getTLSKind() && !GV->isThreadLocal()) {
    if (D->getTLSKind() == VarDecl::TLS_Dynamic)
      CXXThreadLocals.push_back(D);
    setTLSMode(GV, *D);
  }

  maybeSetTrivialComdat(*D, *GV);

  // Emit the initializer function if necessary.
  if (NeedsGlobalCtor || NeedsGlobalDtor)
    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);

  SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);

  // Emit global variable debug information.
  if (CGDebugInfo *DI = getModuleDebugInfo())
    if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
      DI->EmitGlobalVariable(GV, D);
}

static bool isVarDeclStrongDefinition(const ASTContext &Context,
                                      CodeGenModule &CGM, const VarDecl *D,
                                      bool NoCommon) {
  // Don't give variables common linkage if -fno-common was specified unless it
  // was overridden by a NoCommon attribute.
  if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
    return true;

  // C11 6.9.2/2:
  //   A declaration of an identifier for an object that has file scope without
  //   an initializer, and without a storage-class specifier or with the
  //   storage-class specifier static, constitutes a tentative definition.
  if (D->getInit() || D->hasExternalStorage())
    return true;

  // A variable cannot be both common and exist in a section.
  if (D->hasAttr<SectionAttr>())
    return true;

  // A variable cannot be both common and exist in a section.
  // We dont try to determine which is the right section in the front-end.
  // If no specialized section name is applicable, it will resort to default.
  if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
      D->hasAttr<PragmaClangDataSectionAttr>() ||
      D->hasAttr<PragmaClangRodataSectionAttr>())
    return true;

  // Thread local vars aren't considered common linkage.
  if (D->getTLSKind())
    return true;

  // Tentative definitions marked with WeakImportAttr are true definitions.
  if (D->hasAttr<WeakImportAttr>())
    return true;

  // A variable cannot be both common and exist in a comdat.
  if (shouldBeInCOMDAT(CGM, *D))
    return true;

  // Declarations with a required alignment do not have common linkage in MSVC
  // mode.
  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
    if (D->hasAttr<AlignedAttr>())
      return true;
    QualType VarType = D->getType();
    if (Context.isAlignmentRequired(VarType))
      return true;

    if (const auto *RT = VarType->getAs<RecordType>()) {
      const RecordDecl *RD = RT->getDecl();
      for (const FieldDecl *FD : RD->fields()) {
        if (FD->isBitField())
          continue;
        if (FD->hasAttr<AlignedAttr>())
          return true;
        if (Context.isAlignmentRequired(FD->getType()))
          return true;
      }
    }
  }

  return false;
}

llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
    const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
  if (Linkage == GVA_Internal)
    return llvm::Function::InternalLinkage;

  if (D->hasAttr<WeakAttr>()) {
    if (IsConstantVariable)
      return llvm::GlobalVariable::WeakODRLinkage;
    else
      return llvm::GlobalVariable::WeakAnyLinkage;
  }

  // We are guaranteed to have a strong definition somewhere else,
  // so we can use available_externally linkage.
  if (Linkage == GVA_AvailableExternally)
    return llvm::GlobalValue::AvailableExternallyLinkage;

  // Note that Apple's kernel linker doesn't support symbol
  // coalescing, so we need to avoid linkonce and weak linkages there.
  // Normally, this means we just map to internal, but for explicit
  // instantiations we'll map to external.

  // In C++, the compiler has to emit a definition in every translation unit
  // that references the function.  We should use linkonce_odr because
  // a) if all references in this translation unit are optimized away, we
  // don't need to codegen it.  b) if the function persists, it needs to be
  // merged with other definitions. c) C++ has the ODR, so we know the
  // definition is dependable.
  if (Linkage == GVA_DiscardableODR)
    return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
                                            : llvm::Function::InternalLinkage;

  // An explicit instantiation of a template has weak linkage, since
  // explicit instantiations can occur in multiple translation units
  // and must all be equivalent. However, we are not allowed to
  // throw away these explicit instantiations.
  //
  // We don't currently support CUDA device code spread out across multiple TUs,
  // so say that CUDA templates are either external (for kernels) or internal.
  // This lets llvm perform aggressive inter-procedural optimizations.
  if (Linkage == GVA_StrongODR) {
    if (Context.getLangOpts().AppleKext)
      return llvm::Function::ExternalLinkage;
    if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
      return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
                                          : llvm::Function::InternalLinkage;
    return llvm::Function::WeakODRLinkage;
  }

  // C++ doesn't have tentative definitions and thus cannot have common
  // linkage.
  if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
      !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
                                 CodeGenOpts.NoCommon))
    return llvm::GlobalVariable::CommonLinkage;

  // selectany symbols are externally visible, so use weak instead of
  // linkonce.  MSVC optimizes away references to const selectany globals, so
  // all definitions should be the same and ODR linkage should be used.
  // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
  if (D->hasAttr<SelectAnyAttr>())
    return llvm::GlobalVariable::WeakODRLinkage;

  // Otherwise, we have strong external linkage.
  assert(Linkage == GVA_StrongExternal);
  return llvm::GlobalVariable::ExternalLinkage;
}

llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
    const VarDecl *VD, bool IsConstant) {
  GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
  return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
}

/// Replace the uses of a function that was declared with a non-proto type.
/// We want to silently drop extra arguments from call sites
static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
                                          llvm::Function *newFn) {
  // Fast path.
  if (old->use_empty()) return;

  llvm::Type *newRetTy = newFn->getReturnType();
  SmallVector<llvm::Value*, 4> newArgs;
  SmallVector<llvm::OperandBundleDef, 1> newBundles;

  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
         ui != ue; ) {
    llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
    llvm::User *user = use->getUser();

    // Recognize and replace uses of bitcasts.  Most calls to
    // unprototyped functions will use bitcasts.
    if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
      if (bitcast->getOpcode() == llvm::Instruction::BitCast)
        replaceUsesOfNonProtoConstant(bitcast, newFn);
      continue;
    }

    // Recognize calls to the function.
    llvm::CallSite callSite(user);
    if (!callSite) continue;
    if (!callSite.isCallee(&*use)) continue;

    // If the return types don't match exactly, then we can't
    // transform this call unless it's dead.
    if (callSite->getType() != newRetTy && !callSite->use_empty())
      continue;

    // Get the call site's attribute list.
    SmallVector<llvm::AttributeSet, 8> newArgAttrs;
    llvm::AttributeList oldAttrs = callSite.getAttributes();

    // If the function was passed too few arguments, don't transform.
    unsigned newNumArgs = newFn->arg_size();
    if (callSite.arg_size() < newNumArgs) continue;

    // If extra arguments were passed, we silently drop them.
    // If any of the types mismatch, we don't transform.
    unsigned argNo = 0;
    bool dontTransform = false;
    for (llvm::Argument &A : newFn->args()) {
      if (callSite.getArgument(argNo)->getType() != A.getType()) {
        dontTransform = true;
        break;
      }

      // Add any parameter attributes.
      newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
      argNo++;
    }
    if (dontTransform)
      continue;

    // Okay, we can transform this.  Create the new call instruction and copy
    // over the required information.
    newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);

    // Copy over any operand bundles.
    callSite.getOperandBundlesAsDefs(newBundles);

    llvm::CallSite newCall;
    if (callSite.isCall()) {
      newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
                                       callSite.getInstruction());
    } else {
      auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
      newCall = llvm::InvokeInst::Create(newFn,
                                         oldInvoke->getNormalDest(),
                                         oldInvoke->getUnwindDest(),
                                         newArgs, newBundles, "",
                                         callSite.getInstruction());
    }
    newArgs.clear(); // for the next iteration

    if (!newCall->getType()->isVoidTy())
      newCall->takeName(callSite.getInstruction());
    newCall.setAttributes(llvm::AttributeList::get(
        newFn->getContext(), oldAttrs.getFnAttributes(),
        oldAttrs.getRetAttributes(), newArgAttrs));
    newCall.setCallingConv(callSite.getCallingConv());

    // Finally, remove the old call, replacing any uses with the new one.
    if (!callSite->use_empty())
      callSite->replaceAllUsesWith(newCall.getInstruction());

    // Copy debug location attached to CI.
    if (callSite->getDebugLoc())
      newCall->setDebugLoc(callSite->getDebugLoc());

    callSite->eraseFromParent();
  }
}

/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
/// implement a function with no prototype, e.g. "int foo() {}".  If there are
/// existing call uses of the old function in the module, this adjusts them to
/// call the new function directly.
///
/// This is not just a cleanup: the always_inline pass requires direct calls to
/// functions to be able to inline them.  If there is a bitcast in the way, it
/// won't inline them.  Instcombine normally deletes these calls, but it isn't
/// run at -O0.
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
                                                      llvm::Function *NewFn) {
  // If we're redefining a global as a function, don't transform it.
  if (!isa<llvm::Function>(Old)) return;

  replaceUsesOfNonProtoConstant(Old, NewFn);
}

void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
  auto DK = VD->isThisDeclarationADefinition();
  if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
    return;

  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
  // If we have a definition, this might be a deferred decl. If the
  // instantiation is explicit, make sure we emit it at the end.
  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
    GetAddrOfGlobalVar(VD);

  EmitTopLevelDecl(VD);
}

void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
                                                 llvm::GlobalValue *GV) {
  const auto *D = cast<FunctionDecl>(GD.getDecl());

  // Compute the function info and LLVM type.
  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);

  // Get or create the prototype for the function.
  if (!GV || (GV->getType()->getElementType() != Ty))
    GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
                                                   /*DontDefer=*/true,
                                                   ForDefinition));

  // Already emitted.
  if (!GV->isDeclaration())
    return;

  // We need to set linkage and visibility on the function before
  // generating code for it because various parts of IR generation
  // want to propagate this information down (e.g. to local static
  // declarations).
  auto *Fn = cast<llvm::Function>(GV);
  setFunctionLinkage(GD, Fn);
  setFunctionDLLStorageClass(GD, Fn);

  // FIXME: this is redundant with part of setFunctionDefinitionAttributes
  setGlobalVisibility(Fn, D);

  MaybeHandleStaticInExternC(D, Fn);

  maybeSetTrivialComdat(*D, *Fn);

  CodeGenFunction(*this).GenerateCode(D, Fn, FI);

  setFunctionDefinitionAttributes(D, Fn);
  SetLLVMFunctionAttributesForDefinition(D, Fn);

  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
    AddGlobalCtor(Fn, CA->getPriority());
  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
    AddGlobalDtor(Fn, DA->getPriority());
  if (D->hasAttr<AnnotateAttr>())
    AddGlobalAnnotations(D, Fn);
}

void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
  const auto *D = cast<ValueDecl>(GD.getDecl());
  const AliasAttr *AA = D->getAttr<AliasAttr>();
  assert(AA && "Not an alias?");

  StringRef MangledName = getMangledName(GD);

  if (AA->getAliasee() == MangledName) {
    Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
    return;
  }

  // If there is a definition in the module, then it wins over the alias.
  // This is dubious, but allow it to be safe.  Just ignore the alias.
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
  if (Entry && !Entry->isDeclaration())
    return;

  Aliases.push_back(GD);

  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());

  // Create a reference to the named value.  This ensures that it is emitted
  // if a deferred decl.
  llvm::Constant *Aliasee;
  if (isa<llvm::FunctionType>(DeclTy))
    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
                                      /*ForVTable=*/false);
  else
    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
                                    llvm::PointerType::getUnqual(DeclTy),
                                    /*D=*/nullptr);

  // Create the new alias itself, but don't set a name yet.
  auto *GA = llvm::GlobalAlias::create(
      DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());

  if (Entry) {
    if (GA->getAliasee() == Entry) {
      Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
      return;
    }

    assert(Entry->isDeclaration());

    // If there is a declaration in the module, then we had an extern followed
    // by the alias, as in:
    //   extern int test6();
    //   ...
    //   int test6() __attribute__((alias("test7")));
    //
    // Remove it and replace uses of it with the alias.
    GA->takeName(Entry);

    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
                                                          Entry->getType()));
    Entry->eraseFromParent();
  } else {
    GA->setName(MangledName);
  }

  // Set attributes which are particular to an alias; this is a
  // specialization of the attributes which may be set on a global
  // variable/function.
  if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
      D->isWeakImported()) {
    GA->setLinkage(llvm::Function::WeakAnyLinkage);
  }

  if (const auto *VD = dyn_cast<VarDecl>(D))
    if (VD->getTLSKind())
      setTLSMode(GA, *VD);

  setAliasAttributes(D, GA);
}

void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
  const auto *D = cast<ValueDecl>(GD.getDecl());
  const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
  assert(IFA && "Not an ifunc?");

  StringRef MangledName = getMangledName(GD);

  if (IFA->getResolver() == MangledName) {
    Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
    return;
  }

  // Report an error if some definition overrides ifunc.
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
  if (Entry && !Entry->isDeclaration()) {
    GlobalDecl OtherGD;
    if (lookupRepresentativeDecl(MangledName, OtherGD) &&
        DiagnosedConflictingDefinitions.insert(GD).second) {
      Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
      Diags.Report(OtherGD.getDecl()->getLocation(),
                   diag::note_previous_definition);
    }
    return;
  }

  Aliases.push_back(GD);

  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
  llvm::Constant *Resolver =
      GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
                              /*ForVTable=*/false);
  llvm::GlobalIFunc *GIF =
      llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
                                "", Resolver, &getModule());
  if (Entry) {
    if (GIF->getResolver() == Entry) {
      Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
      return;
    }
    assert(Entry->isDeclaration());

    // If there is a declaration in the module, then we had an extern followed
    // by the ifunc, as in:
    //   extern int test();
    //   ...
    //   int test() __attribute__((ifunc("resolver")));
    //
    // Remove it and replace uses of it with the ifunc.
    GIF->takeName(Entry);

    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
                                                          Entry->getType()));
    Entry->eraseFromParent();
  } else
    GIF->setName(MangledName);

  SetCommonAttributes(D, GIF);
}

llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
                                            ArrayRef<llvm::Type*> Tys) {
  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
                                         Tys);
}

static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
                         const StringLiteral *Literal, bool TargetIsLSB,
                         bool &IsUTF16, unsigned &StringLength) {
  StringRef String = Literal->getString();
  unsigned NumBytes = String.size();

  // Check for simple case.
  if (!Literal->containsNonAsciiOrNull()) {
    StringLength = NumBytes;
    return *Map.insert(std::make_pair(String, nullptr)).first;
  }

  // Otherwise, convert the UTF8 literals into a string of shorts.
  IsUTF16 = true;

  SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
  const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
  llvm::UTF16 *ToPtr = &ToBuf[0];

  (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
                                 ToPtr + NumBytes, llvm::strictConversion);

  // ConvertUTF8toUTF16 returns the length in ToPtr.
  StringLength = ToPtr - &ToBuf[0];

  // Add an explicit null.
  *ToPtr = 0;
  return *Map.insert(std::make_pair(
                         StringRef(reinterpret_cast<const char *>(ToBuf.data()),
                                   (StringLength + 1) * 2),
                         nullptr)).first;
}

ConstantAddress
CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
  unsigned StringLength = 0;
  bool isUTF16 = false;
  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
      GetConstantCFStringEntry(CFConstantStringMap, Literal,
                               getDataLayout().isLittleEndian(), isUTF16,
                               StringLength);

  if (auto *C = Entry.second)
    return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));

  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
  llvm::Constant *Zeros[] = { Zero, Zero };

  // If we don't already have it, get __CFConstantStringClassReference.
  if (!CFConstantStringClassRef) {
    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
    Ty = llvm::ArrayType::get(Ty, 0);
    llvm::Constant *GV =
        CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");

    if (getTriple().isOSBinFormatCOFF()) {
      IdentifierInfo &II = getContext().Idents.get(GV->getName());
      TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
      DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
      llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);

      const VarDecl *VD = nullptr;
      for (const auto &Result : DC->lookup(&II))
        if ((VD = dyn_cast<VarDecl>(Result)))
          break;

      if (!VD || !VD->hasAttr<DLLExportAttr>()) {
        CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
        CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
      } else {
        CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
        CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
      }
    }

    // Decay array -> ptr
    CFConstantStringClassRef =
        llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
  }

  QualType CFTy = getContext().getCFConstantStringType();

  auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));

  ConstantInitBuilder Builder(*this);
  auto Fields = Builder.beginStruct(STy);

  // Class pointer.
  Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));

  // Flags.
  Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);

  // String pointer.
  llvm::Constant *C = nullptr;
  if (isUTF16) {
    auto Arr = llvm::makeArrayRef(
        reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
        Entry.first().size() / 2);
    C = llvm::ConstantDataArray::get(VMContext, Arr);
  } else {
    C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
  }

  // Note: -fwritable-strings doesn't make the backing store strings of
  // CFStrings writable. (See <rdar://problem/10657500>)
  auto *GV =
      new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
                               llvm::GlobalValue::PrivateLinkage, C, ".str");
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  // Don't enforce the target's minimum global alignment, since the only use
  // of the string is via this class initializer.
  CharUnits Align = isUTF16
                        ? getContext().getTypeAlignInChars(getContext().ShortTy)
                        : getContext().getTypeAlignInChars(getContext().CharTy);
  GV->setAlignment(Align.getQuantity());

  // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
  // Without it LLVM can merge the string with a non unnamed_addr one during
  // LTO.  Doing that changes the section it ends in, which surprises ld64.
  if (getTriple().isOSBinFormatMachO())
    GV->setSection(isUTF16 ? "__TEXT,__ustring"
                           : "__TEXT,__cstring,cstring_literals");

  // String.
  llvm::Constant *Str =
      llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);

  if (isUTF16)
    // Cast the UTF16 string to the correct type.
    Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
  Fields.add(Str);

  // String length.
  auto Ty = getTypes().ConvertType(getContext().LongTy);
  Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);

  CharUnits Alignment = getPointerAlign();

  // The struct.
  GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
                                    /*isConstant=*/false,
                                    llvm::GlobalVariable::PrivateLinkage);
  switch (getTriple().getObjectFormat()) {
  case llvm::Triple::UnknownObjectFormat:
    llvm_unreachable("unknown file format");
  case llvm::Triple::COFF:
  case llvm::Triple::ELF:
  case llvm::Triple::Wasm:
    GV->setSection("cfstring");
    break;
  case llvm::Triple::MachO:
    GV->setSection("__DATA,__cfstring");
    break;
  }
  Entry.second = GV;

  return ConstantAddress(GV, Alignment);
}

bool CodeGenModule::getExpressionLocationsEnabled() const {
  return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
}

QualType CodeGenModule::getObjCFastEnumerationStateType() {
  if (ObjCFastEnumerationStateType.isNull()) {
    RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
    D->startDefinition();
    
    QualType FieldTypes[] = {
      Context.UnsignedLongTy,
      Context.getPointerType(Context.getObjCIdType()),
      Context.getPointerType(Context.UnsignedLongTy),
      Context.getConstantArrayType(Context.UnsignedLongTy,
                           llvm::APInt(32, 5), ArrayType::Normal, 0)
    };
    
    for (size_t i = 0; i < 4; ++i) {
      FieldDecl *Field = FieldDecl::Create(Context,
                                           D,
                                           SourceLocation(),
                                           SourceLocation(), nullptr,
                                           FieldTypes[i], /*TInfo=*/nullptr,
                                           /*BitWidth=*/nullptr,
                                           /*Mutable=*/false,
                                           ICIS_NoInit);
      Field->setAccess(AS_public);
      D->addDecl(Field);
    }
    
    D->completeDefinition();
    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
  }
  
  return ObjCFastEnumerationStateType;
}

llvm::Constant *
CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
  assert(!E->getType()->isPointerType() && "Strings are always arrays");
  
  // Don't emit it as the address of the string, emit the string data itself
  // as an inline array.
  if (E->getCharByteWidth() == 1) {
    SmallString<64> Str(E->getString());

    // Resize the string to the right size, which is indicated by its type.
    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
    Str.resize(CAT->getSize().getZExtValue());
    return llvm::ConstantDataArray::getString(VMContext, Str, false);
  }

  auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
  llvm::Type *ElemTy = AType->getElementType();
  unsigned NumElements = AType->getNumElements();

  // Wide strings have either 2-byte or 4-byte elements.
  if (ElemTy->getPrimitiveSizeInBits() == 16) {
    SmallVector<uint16_t, 32> Elements;
    Elements.reserve(NumElements);

    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
      Elements.push_back(E->getCodeUnit(i));
    Elements.resize(NumElements);
    return llvm::ConstantDataArray::get(VMContext, Elements);
  }
  
  assert(ElemTy->getPrimitiveSizeInBits() == 32);
  SmallVector<uint32_t, 32> Elements;
  Elements.reserve(NumElements);
  
  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
    Elements.push_back(E->getCodeUnit(i));
  Elements.resize(NumElements);
  return llvm::ConstantDataArray::get(VMContext, Elements);
}

static llvm::GlobalVariable *
GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
                      CodeGenModule &CGM, StringRef GlobalName,
                      CharUnits Alignment) {
  // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
  unsigned AddrSpace = 0;
  if (CGM.getLangOpts().OpenCL)
    AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);

  llvm::Module &M = CGM.getModule();
  // Create a global variable for this string
  auto *GV = new llvm::GlobalVariable(
      M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
      nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
  GV->setAlignment(Alignment.getQuantity());
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  if (GV->isWeakForLinker()) {
    assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
    GV->setComdat(M.getOrInsertComdat(GV->getName()));
  }

  return GV;
}

/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
/// constant array for the given string literal.
ConstantAddress
CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
                                                  StringRef Name) {
  CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());

  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
  llvm::GlobalVariable **Entry = nullptr;
  if (!LangOpts.WritableStrings) {
    Entry = &ConstantStringMap[C];
    if (auto GV = *Entry) {
      if (Alignment.getQuantity() > GV->getAlignment())
        GV->setAlignment(Alignment.getQuantity());
      return ConstantAddress(GV, Alignment);
    }
  }

  SmallString<256> MangledNameBuffer;
  StringRef GlobalVariableName;
  llvm::GlobalValue::LinkageTypes LT;

  // Mangle the string literal if the ABI allows for it.  However, we cannot
  // do this if  we are compiling with ASan or -fwritable-strings because they
  // rely on strings having normal linkage.
  if (!LangOpts.WritableStrings &&
      !LangOpts.Sanitize.has(SanitizerKind::Address) &&
      getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
    llvm::raw_svector_ostream Out(MangledNameBuffer);
    getCXXABI().getMangleContext().mangleStringLiteral(S, Out);

    LT = llvm::GlobalValue::LinkOnceODRLinkage;
    GlobalVariableName = MangledNameBuffer;
  } else {
    LT = llvm::GlobalValue::PrivateLinkage;
    GlobalVariableName = Name;
  }

  auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
  if (Entry)
    *Entry = GV;

  SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
                                  QualType());
  return ConstantAddress(GV, Alignment);
}

/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
/// array for the given ObjCEncodeExpr node.
ConstantAddress
CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
  std::string Str;
  getContext().getObjCEncodingForType(E->getEncodedType(), Str);

  return GetAddrOfConstantCString(Str);
}

/// GetAddrOfConstantCString - Returns a pointer to a character array containing
/// the literal and a terminating '\0' character.
/// The result has pointer to array type.
ConstantAddress CodeGenModule::GetAddrOfConstantCString(
    const std::string &Str, const char *GlobalName) {
  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
  CharUnits Alignment =
    getContext().getAlignOfGlobalVarInChars(getContext().CharTy);

  llvm::Constant *C =
      llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);

  // Don't share any string literals if strings aren't constant.
  llvm::GlobalVariable **Entry = nullptr;
  if (!LangOpts.WritableStrings) {
    Entry = &ConstantStringMap[C];
    if (auto GV = *Entry) {
      if (Alignment.getQuantity() > GV->getAlignment())
        GV->setAlignment(Alignment.getQuantity());
      return ConstantAddress(GV, Alignment);
    }
  }

  // Get the default prefix if a name wasn't specified.
  if (!GlobalName)
    GlobalName = ".str";
  // Create a global variable for this.
  auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
                                  GlobalName, Alignment);
  if (Entry)
    *Entry = GV;
  return ConstantAddress(GV, Alignment);
}

ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
    const MaterializeTemporaryExpr *E, const Expr *Init) {
  assert((E->getStorageDuration() == SD_Static ||
          E->getStorageDuration() == SD_Thread) && "not a global temporary");
  const auto *VD = cast<VarDecl>(E->getExtendingDecl());

  // If we're not materializing a subobject of the temporary, keep the
  // cv-qualifiers from the type of the MaterializeTemporaryExpr.
  QualType MaterializedType = Init->getType();
  if (Init == E->GetTemporaryExpr())
    MaterializedType = E->getType();

  CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);

  if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
    return ConstantAddress(Slot, Align);

  // FIXME: If an externally-visible declaration extends multiple temporaries,
  // we need to give each temporary the same name in every translation unit (and
  // we also need to make the temporaries externally-visible).
  SmallString<256> Name;
  llvm::raw_svector_ostream Out(Name);
  getCXXABI().getMangleContext().mangleReferenceTemporary(
      VD, E->getManglingNumber(), Out);

  APValue *Value = nullptr;
  if (E->getStorageDuration() == SD_Static) {
    // We might have a cached constant initializer for this temporary. Note
    // that this might have a different value from the value computed by
    // evaluating the initializer if the surrounding constant expression
    // modifies the temporary.
    Value = getContext().getMaterializedTemporaryValue(E, false);
    if (Value && Value->isUninit())
      Value = nullptr;
  }

  // Try evaluating it now, it might have a constant initializer.
  Expr::EvalResult EvalResult;
  if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
      !EvalResult.hasSideEffects())
    Value = &EvalResult.Val;

  unsigned AddrSpace =
      VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();

  Optional<ConstantEmitter> emitter;
  llvm::Constant *InitialValue = nullptr;
  bool Constant = false;
  llvm::Type *Type;
  if (Value) {
    // The temporary has a constant initializer, use it.
    emitter.emplace(*this);
    InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
                                               MaterializedType);
    Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
    Type = InitialValue->getType();
  } else {
    // No initializer, the initialization will be provided when we
    // initialize the declaration which performed lifetime extension.
    Type = getTypes().ConvertTypeForMem(MaterializedType);
  }

  // Create a global variable for this lifetime-extended temporary.
  llvm::GlobalValue::LinkageTypes Linkage =
      getLLVMLinkageVarDefinition(VD, Constant);
  if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
    const VarDecl *InitVD;
    if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
        isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
      // Temporaries defined inside a class get linkonce_odr linkage because the
      // class can be defined in multipe translation units.
      Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
    } else {
      // There is no need for this temporary to have external linkage if the
      // VarDecl has external linkage.
      Linkage = llvm::GlobalVariable::InternalLinkage;
    }
  }
  auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
  auto *GV = new llvm::GlobalVariable(
      getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
      /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
  if (emitter) emitter->finalize(GV);
  setGlobalVisibility(GV, VD);
  GV->setAlignment(Align.getQuantity());
  if (supportsCOMDAT() && GV->isWeakForLinker())
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
  if (VD->getTLSKind())
    setTLSMode(GV, *VD);
  llvm::Constant *CV = GV;
  if (AddrSpace != LangAS::Default)
    CV = getTargetCodeGenInfo().performAddrSpaceCast(
        *this, GV, AddrSpace, LangAS::Default,
        Type->getPointerTo(
            getContext().getTargetAddressSpace(LangAS::Default)));
  MaterializedGlobalTemporaryMap[E] = CV;
  return ConstantAddress(CV, Align);
}

/// EmitObjCPropertyImplementations - Emit information for synthesized
/// properties for an implementation.
void CodeGenModule::EmitObjCPropertyImplementations(const
                                                    ObjCImplementationDecl *D) {
  for (const auto *PID : D->property_impls()) {
    // Dynamic is just for type-checking.
    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
      ObjCPropertyDecl *PD = PID->getPropertyDecl();

      // Determine which methods need to be implemented, some may have
      // been overridden. Note that ::isPropertyAccessor is not the method
      // we want, that just indicates if the decl came from a
      // property. What we want to know is if the method is defined in
      // this implementation.
      if (!D->getInstanceMethod(PD->getGetterName()))
        CodeGenFunction(*this).GenerateObjCGetter(
                                 const_cast<ObjCImplementationDecl *>(D), PID);
      if (!PD->isReadOnly() &&
          !D->getInstanceMethod(PD->getSetterName()))
        CodeGenFunction(*this).GenerateObjCSetter(
                                 const_cast<ObjCImplementationDecl *>(D), PID);
    }
  }
}

static bool needsDestructMethod(ObjCImplementationDecl *impl) {
  const ObjCInterfaceDecl *iface = impl->getClassInterface();
  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
       ivar; ivar = ivar->getNextIvar())
    if (ivar->getType().isDestructedType())
      return true;

  return false;
}

static bool AllTrivialInitializers(CodeGenModule &CGM,
                                   ObjCImplementationDecl *D) {
  CodeGenFunction CGF(CGM);
  for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
       E = D->init_end(); B != E; ++B) {
    CXXCtorInitializer *CtorInitExp = *B;
    Expr *Init = CtorInitExp->getInit();
    if (!CGF.isTrivialInitializer(Init))
      return false;
  }
  return true;
}

/// EmitObjCIvarInitializations - Emit information for ivar initialization
/// for an implementation.
void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
  // We might need a .cxx_destruct even if we don't have any ivar initializers.
  if (needsDestructMethod(D)) {
    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
    ObjCMethodDecl *DTORMethod =
      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
                             cxxSelector, getContext().VoidTy, nullptr, D,
                             /*isInstance=*/true, /*isVariadic=*/false,
                          /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
                             /*isDefined=*/false, ObjCMethodDecl::Required);
    D->addInstanceMethod(DTORMethod);
    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
    D->setHasDestructors(true);
  }

  // If the implementation doesn't have any ivar initializers, we don't need
  // a .cxx_construct.
  if (D->getNumIvarInitializers() == 0 ||
      AllTrivialInitializers(*this, D))
    return;
  
  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
  // The constructor returns 'self'.
  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 
                                                D->getLocation(),
                                                D->getLocation(),
                                                cxxSelector,
                                                getContext().getObjCIdType(),
                                                nullptr, D, /*isInstance=*/true,
                                                /*isVariadic=*/false,
                                                /*isPropertyAccessor=*/true,
                                                /*isImplicitlyDeclared=*/true,
                                                /*isDefined=*/false,
                                                ObjCMethodDecl::Required);
  D->addInstanceMethod(CTORMethod);
  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
  D->setHasNonZeroConstructors(true);
}

// EmitLinkageSpec - Emit all declarations in a linkage spec.
void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
    ErrorUnsupported(LSD, "linkage spec");
    return;
  }

  EmitDeclContext(LSD);
}

void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
  for (auto *I : DC->decls()) {
    // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
    // are themselves considered "top-level", so EmitTopLevelDecl on an
    // ObjCImplDecl does not recursively visit them. We need to do that in
    // case they're nested inside another construct (LinkageSpecDecl /
    // ExportDecl) that does stop them from being considered "top-level".
    if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
      for (auto *M : OID->methods())
        EmitTopLevelDecl(M);
    }

    EmitTopLevelDecl(I);
  }
}

/// EmitTopLevelDecl - Emit code for a single top level declaration.
void CodeGenModule::EmitTopLevelDecl(Decl *D) {
  // Ignore dependent declarations.
  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
    return;

  switch (D->getKind()) {
  case Decl::CXXConversion:
  case Decl::CXXMethod:
  case Decl::Function:
    // Skip function templates
    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
        cast<FunctionDecl>(D)->isLateTemplateParsed())
      return;

    EmitGlobal(cast<FunctionDecl>(D));
    // Always provide some coverage mapping
    // even for the functions that aren't emitted.
    AddDeferredUnusedCoverageMapping(D);
    break;

  case Decl::CXXDeductionGuide:
    // Function-like, but does not result in code emission.
    break;

  case Decl::Var:
  case Decl::Decomposition:
    // Skip variable templates
    if (cast<VarDecl>(D)->getDescribedVarTemplate())
      return;
    LLVM_FALLTHROUGH;
  case Decl::VarTemplateSpecialization:
    EmitGlobal(cast<VarDecl>(D));
    if (auto *DD = dyn_cast<DecompositionDecl>(D))
      for (auto *B : DD->bindings())
        if (auto *HD = B->getHoldingVar())
          EmitGlobal(HD);
    break;

  // Indirect fields from global anonymous structs and unions can be
  // ignored; only the actual variable requires IR gen support.
  case Decl::IndirectField:
    break;

  // C++ Decls
  case Decl::Namespace:
    EmitDeclContext(cast<NamespaceDecl>(D));
    break;
  case Decl::CXXRecord:
    if (DebugInfo) {
      if (auto *ES = D->getASTContext().getExternalSource())
        if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
          DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
    }
    // Emit any static data members, they may be definitions.
    for (auto *I : cast<CXXRecordDecl>(D)->decls())
      if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
        EmitTopLevelDecl(I);
    break;
    // No code generation needed.
  case Decl::UsingShadow:
  case Decl::ClassTemplate:
  case Decl::VarTemplate:
  case Decl::VarTemplatePartialSpecialization:
  case Decl::FunctionTemplate:
  case Decl::TypeAliasTemplate:
  case Decl::Block:
  case Decl::Empty:
    break;
  case Decl::Using:          // using X; [C++]
    if (CGDebugInfo *DI = getModuleDebugInfo())
        DI->EmitUsingDecl(cast<UsingDecl>(*D));
    return;
  case Decl::NamespaceAlias:
    if (CGDebugInfo *DI = getModuleDebugInfo())
        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
    return;
  case Decl::UsingDirective: // using namespace X; [C++]
    if (CGDebugInfo *DI = getModuleDebugInfo())
      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
    return;
  case Decl::CXXConstructor:
    // Skip function templates
    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
        cast<FunctionDecl>(D)->isLateTemplateParsed())
      return;
      
    getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
    break;
  case Decl::CXXDestructor:
    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
      return;
    getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
    break;

  case Decl::StaticAssert:
    // Nothing to do.
    break;

  // Objective-C Decls

  // Forward declarations, no (immediate) code generation.
  case Decl::ObjCInterface:
  case Decl::ObjCCategory:
    break;

  case Decl::ObjCProtocol: {
    auto *Proto = cast<ObjCProtocolDecl>(D);
    if (Proto->isThisDeclarationADefinition())
      ObjCRuntime->GenerateProtocol(Proto);
    break;
  }
      
  case Decl::ObjCCategoryImpl:
    // Categories have properties but don't support synthesize so we
    // can ignore them here.
    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
    break;

  case Decl::ObjCImplementation: {
    auto *OMD = cast<ObjCImplementationDecl>(D);
    EmitObjCPropertyImplementations(OMD);
    EmitObjCIvarInitializations(OMD);
    ObjCRuntime->GenerateClass(OMD);
    // Emit global variable debug information.
    if (CGDebugInfo *DI = getModuleDebugInfo())
      if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
            OMD->getClassInterface()), OMD->getLocation());
    break;
  }
  case Decl::ObjCMethod: {
    auto *OMD = cast<ObjCMethodDecl>(D);
    // If this is not a prototype, emit the body.
    if (OMD->getBody())
      CodeGenFunction(*this).GenerateObjCMethod(OMD);
    break;
  }
  case Decl::ObjCCompatibleAlias:
    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
    break;

  case Decl::PragmaComment: {
    const auto *PCD = cast<PragmaCommentDecl>(D);
    switch (PCD->getCommentKind()) {
    case PCK_Unknown:
      llvm_unreachable("unexpected pragma comment kind");
    case PCK_Linker:
      AppendLinkerOptions(PCD->getArg());
      break;
    case PCK_Lib:
      AddDependentLib(PCD->getArg());
      break;
    case PCK_Compiler:
    case PCK_ExeStr:
    case PCK_User:
      break; // We ignore all of these.
    }
    break;
  }

  case Decl::PragmaDetectMismatch: {
    const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
    AddDetectMismatch(PDMD->getName(), PDMD->getValue());
    break;
  }

  case Decl::LinkageSpec:
    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
    break;

  case Decl::FileScopeAsm: {
    // File-scope asm is ignored during device-side CUDA compilation.
    if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
      break;
    // File-scope asm is ignored during device-side OpenMP compilation.
    if (LangOpts.OpenMPIsDevice)
      break;
    auto *AD = cast<FileScopeAsmDecl>(D);
    getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
    break;
  }

  case Decl::Import: {
    auto *Import = cast<ImportDecl>(D);

    // If we've already imported this module, we're done.
    if (!ImportedModules.insert(Import->getImportedModule()))
      break;

    // Emit debug information for direct imports.
    if (!Import->getImportedOwningModule()) {
      if (CGDebugInfo *DI = getModuleDebugInfo())
        DI->EmitImportDecl(*Import);
    }

    // Find all of the submodules and emit the module initializers.
    llvm::SmallPtrSet<clang::Module *, 16> Visited;
    SmallVector<clang::Module *, 16> Stack;
    Visited.insert(Import->getImportedModule());
    Stack.push_back(Import->getImportedModule());

    while (!Stack.empty()) {
      clang::Module *Mod = Stack.pop_back_val();
      if (!EmittedModuleInitializers.insert(Mod).second)
        continue;

      for (auto *D : Context.getModuleInitializers(Mod))
        EmitTopLevelDecl(D);

      // Visit the submodules of this module.
      for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
                                             SubEnd = Mod->submodule_end();
           Sub != SubEnd; ++Sub) {
        // Skip explicit children; they need to be explicitly imported to emit
        // the initializers.
        if ((*Sub)->IsExplicit)
          continue;

        if (Visited.insert(*Sub).second)
          Stack.push_back(*Sub);
      }
    }
    break;
  }

  case Decl::Export:
    EmitDeclContext(cast<ExportDecl>(D));
    break;

  case Decl::OMPThreadPrivate:
    EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
    break;

  case Decl::ClassTemplateSpecialization: {
    const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
    if (DebugInfo &&
        Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
        Spec->hasDefinition())
      DebugInfo->completeTemplateDefinition(*Spec);
    break;
  }

  case Decl::OMPDeclareReduction:
    EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
    break;

  default:
    // Make sure we handled everything we should, every other kind is a
    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
    // function. Need to recode Decl::Kind to do that easily.
    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
    break;
  }
}

void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
  // Do we need to generate coverage mapping?
  if (!CodeGenOpts.CoverageMapping)
    return;
  switch (D->getKind()) {
  case Decl::CXXConversion:
  case Decl::CXXMethod:
  case Decl::Function:
  case Decl::ObjCMethod:
  case Decl::CXXConstructor:
  case Decl::CXXDestructor: {
    if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
      return;
    SourceManager &SM = getContext().getSourceManager();
    if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
      return;
    auto I = DeferredEmptyCoverageMappingDecls.find(D);
    if (I == DeferredEmptyCoverageMappingDecls.end())
      DeferredEmptyCoverageMappingDecls[D] = true;
    break;
  }
  default:
    break;
  };
}

void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
  // Do we need to generate coverage mapping?
  if (!CodeGenOpts.CoverageMapping)
    return;
  if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
    if (Fn->isTemplateInstantiation())
      ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
  }
  auto I = DeferredEmptyCoverageMappingDecls.find(D);
  if (I == DeferredEmptyCoverageMappingDecls.end())
    DeferredEmptyCoverageMappingDecls[D] = false;
  else
    I->second = false;
}

void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
  std::vector<const Decl *> DeferredDecls;
  for (const auto &I : DeferredEmptyCoverageMappingDecls) {
    if (!I.second)
      continue;
    DeferredDecls.push_back(I.first);
  }
  // Sort the declarations by their location to make sure that the tests get a
  // predictable order for the coverage mapping for the unused declarations.
  if (CodeGenOpts.DumpCoverageMapping)
    std::sort(DeferredDecls.begin(), DeferredDecls.end(),
              [] (const Decl *LHS, const Decl *RHS) {
      return LHS->getLocStart() < RHS->getLocStart();
    });
  for (const auto *D : DeferredDecls) {
    switch (D->getKind()) {
    case Decl::CXXConversion:
    case Decl::CXXMethod:
    case Decl::Function:
    case Decl::ObjCMethod: {
      CodeGenPGO PGO(*this);
      GlobalDecl GD(cast<FunctionDecl>(D));
      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
                                  getFunctionLinkage(GD));
      break;
    }
    case Decl::CXXConstructor: {
      CodeGenPGO PGO(*this);
      GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
                                  getFunctionLinkage(GD));
      break;
    }
    case Decl::CXXDestructor: {
      CodeGenPGO PGO(*this);
      GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
                                  getFunctionLinkage(GD));
      break;
    }
    default:
      break;
    };
  }
}

/// Turns the given pointer into a constant.
static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
                                          const void *Ptr) {
  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
  return llvm::ConstantInt::get(i64, PtrInt);
}

static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
                                   llvm::NamedMDNode *&GlobalMetadata,
                                   GlobalDecl D,
                                   llvm::GlobalValue *Addr) {
  if (!GlobalMetadata)
    GlobalMetadata =
      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");

  // TODO: should we report variant information for ctors/dtors?
  llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
                           llvm::ConstantAsMetadata::get(GetPointerConstant(
                               CGM.getLLVMContext(), D.getDecl()))};
  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
}

/// For each function which is declared within an extern "C" region and marked
/// as 'used', but has internal linkage, create an alias from the unmangled
/// name to the mangled name if possible. People expect to be able to refer
/// to such functions with an unmangled name from inline assembly within the
/// same translation unit.
void CodeGenModule::EmitStaticExternCAliases() {
  // Don't do anything if we're generating CUDA device code -- the NVPTX
  // assembly target doesn't support aliases.
  if (Context.getTargetInfo().getTriple().isNVPTX())
    return;
  for (auto &I : StaticExternCValues) {
    IdentifierInfo *Name = I.first;
    llvm::GlobalValue *Val = I.second;
    if (Val && !getModule().getNamedValue(Name->getName()))
      addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
  }
}

bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
                                             GlobalDecl &Result) const {
  auto Res = Manglings.find(MangledName);
  if (Res == Manglings.end())
    return false;
  Result = Res->getValue();
  return true;
}

/// Emits metadata nodes associating all the global values in the
/// current module with the Decls they came from.  This is useful for
/// projects using IR gen as a subroutine.
///
/// Since there's currently no way to associate an MDNode directly
/// with an llvm::GlobalValue, we create a global named metadata
/// with the name 'clang.global.decl.ptrs'.
void CodeGenModule::EmitDeclMetadata() {
  llvm::NamedMDNode *GlobalMetadata = nullptr;

  for (auto &I : MangledDeclNames) {
    llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
    // Some mangled names don't necessarily have an associated GlobalValue
    // in this module, e.g. if we mangled it for DebugInfo.
    if (Addr)
      EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
  }
}

/// Emits metadata nodes for all the local variables in the current
/// function.
void CodeGenFunction::EmitDeclMetadata() {
  if (LocalDeclMap.empty()) return;

  llvm::LLVMContext &Context = getLLVMContext();

  // Find the unique metadata ID for this name.
  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");

  llvm::NamedMDNode *GlobalMetadata = nullptr;

  for (auto &I : LocalDeclMap) {
    const Decl *D = I.first;
    llvm::Value *Addr = I.second.getPointer();
    if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
      Alloca->setMetadata(
          DeclPtrKind, llvm::MDNode::get(
                           Context, llvm::ValueAsMetadata::getConstant(DAddr)));
    } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
    }
  }
}

void CodeGenModule::EmitVersionIdentMetadata() {
  llvm::NamedMDNode *IdentMetadata =
    TheModule.getOrInsertNamedMetadata("llvm.ident");
  std::string Version = getClangFullVersion();
  llvm::LLVMContext &Ctx = TheModule.getContext();

  llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
  IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
}

void CodeGenModule::EmitTargetMetadata() {
  // Warning, new MangledDeclNames may be appended within this loop.
  // We rely on MapVector insertions adding new elements to the end
  // of the container.
  // FIXME: Move this loop into the one target that needs it, and only
  // loop over those declarations for which we couldn't emit the target
  // metadata when we emitted the declaration.
  for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
    auto Val = *(MangledDeclNames.begin() + I);
    const Decl *D = Val.first.getDecl()->getMostRecentDecl();
    llvm::GlobalValue *GV = GetGlobalValue(Val.second);
    getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
  }
}

void CodeGenModule::EmitCoverageFile() {
  if (getCodeGenOpts().CoverageDataFile.empty() &&
      getCodeGenOpts().CoverageNotesFile.empty())
    return;

  llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
  if (!CUNode)
    return;

  llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
  llvm::LLVMContext &Ctx = TheModule.getContext();
  auto *CoverageDataFile =
      llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
  auto *CoverageNotesFile =
      llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
  for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
    llvm::MDNode *CU = CUNode->getOperand(i);
    llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
    GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
  }
}

llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
  // Sema has checked that all uuid strings are of the form
  // "12345678-1234-1234-1234-1234567890ab".
  assert(Uuid.size() == 36);
  for (unsigned i = 0; i < 36; ++i) {
    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
    else                                         assert(isHexDigit(Uuid[i]));
  }

  // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
  const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };

  llvm::Constant *Field3[8];
  for (unsigned Idx = 0; Idx < 8; ++Idx)
    Field3[Idx] = llvm::ConstantInt::get(
        Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);

  llvm::Constant *Fields[4] = {
    llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
    llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
    llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
    llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
  };

  return llvm::ConstantStruct::getAnon(Fields);
}

llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
                                                       bool ForEH) {
  // Return a bogus pointer if RTTI is disabled, unless it's for EH.
  // FIXME: should we even be calling this method if RTTI is disabled
  // and it's not for EH?
  if (!ForEH && !getLangOpts().RTTI)
    return llvm::Constant::getNullValue(Int8PtrTy);
  
  if (ForEH && Ty->isObjCObjectPointerType() &&
      LangOpts.ObjCRuntime.isGNUFamily())
    return ObjCRuntime->GetEHType(Ty);

  return getCXXABI().getAddrOfRTTIDescriptor(Ty);
}

void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
  for (auto RefExpr : D->varlists()) {
    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
    bool PerformInit =
        VD->getAnyInitializer() &&
        !VD->getAnyInitializer()->isConstantInitializer(getContext(),
                                                        /*ForRef=*/false);

    Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
    if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
            VD, Addr, RefExpr->getLocStart(), PerformInit))
      CXXGlobalInits.push_back(InitFunction);
  }
}

llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
  llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
  if (InternalId)
    return InternalId;

  if (isExternallyVisible(T->getLinkage())) {
    std::string OutName;
    llvm::raw_string_ostream Out(OutName);
    getCXXABI().getMangleContext().mangleTypeName(T, Out);

    InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
  } else {
    InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
                                           llvm::ArrayRef<llvm::Metadata *>());
  }

  return InternalId;
}

/// Returns whether this module needs the "all-vtables" type identifier.
bool CodeGenModule::NeedAllVtablesTypeId() const {
  // Returns true if at least one of vtable-based CFI checkers is enabled and
  // is not in the trapping mode.
  return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
          (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
          (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
          (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
}

void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
                                          CharUnits Offset,
                                          const CXXRecordDecl *RD) {
  llvm::Metadata *MD =
      CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
  VTable->addTypeMetadata(Offset.getQuantity(), MD);

  if (CodeGenOpts.SanitizeCfiCrossDso)
    if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
      VTable->addTypeMetadata(Offset.getQuantity(),
                              llvm::ConstantAsMetadata::get(CrossDsoTypeId));

  if (NeedAllVtablesTypeId()) {
    llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
    VTable->addTypeMetadata(Offset.getQuantity(), MD);
  }
}

// Fills in the supplied string map with the set of target features for the
// passed in function.
void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
                                          const FunctionDecl *FD) {
  StringRef TargetCPU = Target.getTargetOpts().CPU;
  if (const auto *TD = FD->getAttr<TargetAttr>()) {
    // If we have a TargetAttr build up the feature map based on that.
    TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();

    // Make a copy of the features as passed on the command line into the
    // beginning of the additional features from the function to override.
    ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
                            Target.getTargetOpts().FeaturesAsWritten.begin(),
                            Target.getTargetOpts().FeaturesAsWritten.end());

    if (ParsedAttr.Architecture != "")
      TargetCPU = ParsedAttr.Architecture ;

    // Now populate the feature map, first with the TargetCPU which is either
    // the default or a new one from the target attribute string. Then we'll use
    // the passed in features (FeaturesAsWritten) along with the new ones from
    // the attribute.
    Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
                          ParsedAttr.Features);
  } else {
    Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
                          Target.getTargetOpts().Features);
  }
}

llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
  if (!SanStats)
    SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());

  return *SanStats;
}
llvm::Value *
CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
                                                  CodeGenFunction &CGF) {
  llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
  auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
  auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
  return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
                                "__translate_sampler_initializer"),
                                {C});
}