1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr constant evaluator.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
using llvm::APSInt;
/// EvalInfo - This is a private struct used by the evaluator to capture
/// information about a subexpression as it is folded. It retains information
/// about the AST context, but also maintains information about the folded
/// expression.
///
/// If an expression could be evaluated, it is still possible it is not a C
/// "integer constant expression" or constant expression. If not, this struct
/// captures information about how and why not.
///
/// One bit of information passed *into* the request for constant folding
/// indicates whether the subexpression is "evaluated" or not according to C
/// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
/// evaluate the expression regardless of what the RHS is, but C only allows
/// certain things in certain situations.
struct EvalInfo {
ASTContext &Ctx;
/// isEvaluated - True if the subexpression is required to be evaluated, false
/// if it is short-circuited (according to C rules).
bool isEvaluated;
/// ICEDiag - If the expression is unfoldable, then ICEDiag contains the
/// error diagnostic indicating why it is not foldable and DiagLoc indicates a
/// caret position for the error. If it is foldable, but the expression is
/// not an integer constant expression, ICEDiag contains the extension
/// diagnostic to emit which describes why it isn't an integer constant
/// expression. If this expression *is* an integer-constant-expr, then
/// ICEDiag is zero.
///
/// The caller can choose to emit this diagnostic or not, depending on whether
/// they require an i-c-e or a constant or not. DiagLoc indicates the caret
/// position for the report.
///
/// If ICEDiag is zero, then this expression is an i-c-e.
unsigned ICEDiag;
SourceLocation DiagLoc;
EvalInfo(ASTContext &ctx) : Ctx(ctx), isEvaluated(true), ICEDiag(0) {}
};
static bool EvaluatePointer(const Expr *E, APValue &Result, EvalInfo &Info);
static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
//===----------------------------------------------------------------------===//
// Pointer Evaluation
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN PointerExprEvaluator
: public StmtVisitor<PointerExprEvaluator, APValue> {
EvalInfo &Info;
public:
PointerExprEvaluator(EvalInfo &info) : Info(info) {}
APValue VisitStmt(Stmt *S) {
// FIXME: Remove this when we support more expressions.
printf("Unhandled pointer statement\n");
S->dump();
return APValue();
}
APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
APValue VisitBinaryOperator(const BinaryOperator *E);
APValue VisitCastExpr(const CastExpr* E);
};
} // end anonymous namespace
static bool EvaluatePointer(const Expr* E, APValue& Result, EvalInfo &Info) {
if (!E->getType()->isPointerType())
return false;
Result = PointerExprEvaluator(Info).Visit(const_cast<Expr*>(E));
return Result.isLValue();
}
APValue PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
if (E->getOpcode() != BinaryOperator::Add &&
E->getOpcode() != BinaryOperator::Sub)
return APValue();
const Expr *PExp = E->getLHS();
const Expr *IExp = E->getRHS();
if (IExp->getType()->isPointerType())
std::swap(PExp, IExp);
APValue ResultLValue;
if (!EvaluatePointer(PExp, ResultLValue, Info))
return APValue();
llvm::APSInt AdditionalOffset(32);
if (!EvaluateInteger(IExp, AdditionalOffset, Info))
return APValue();
uint64_t Offset = ResultLValue.getLValueOffset();
if (E->getOpcode() == BinaryOperator::Add)
Offset += AdditionalOffset.getZExtValue();
else
Offset -= AdditionalOffset.getZExtValue();
return APValue(ResultLValue.getLValueBase(), Offset);
}
APValue PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
const Expr* SubExpr = E->getSubExpr();
// Check for pointer->pointer cast
if (SubExpr->getType()->isPointerType()) {
APValue Result;
if (EvaluatePointer(SubExpr, Result, Info))
return Result;
return APValue();
}
if (SubExpr->getType()->isIntegralType()) {
llvm::APSInt Result(32);
if (EvaluateInteger(SubExpr, Result, Info)) {
Result.extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType()));
return APValue(0, Result.getZExtValue());
}
}
assert(0 && "Unhandled cast");
return APValue();
}
//===----------------------------------------------------------------------===//
// Integer Evaluation
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN IntExprEvaluator
: public StmtVisitor<IntExprEvaluator, bool> {
EvalInfo &Info;
APSInt &Result;
public:
IntExprEvaluator(EvalInfo &info, APSInt &result)
: Info(info), Result(result) {}
unsigned getIntTypeSizeInBits(QualType T) const {
return (unsigned)Info.Ctx.getIntWidth(T);
}
bool Extension(SourceLocation L, diag::kind D) {
Info.DiagLoc = L;
Info.ICEDiag = D;
return true; // still a constant.
}
bool Error(SourceLocation L, diag::kind D) {
// If this is in an unevaluated portion of the subexpression, ignore the
// error.
if (!Info.isEvaluated)
return true;
Info.DiagLoc = L;
Info.ICEDiag = D;
return false;
}
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
bool VisitStmt(Stmt *S) {
return Error(S->getLocStart(), diag::err_expr_not_constant);
}
bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
bool VisitIntegerLiteral(const IntegerLiteral *E) {
Result = E->getValue();
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
bool VisitCharacterLiteral(const CharacterLiteral *E) {
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
Result = E->getValue();
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
bool VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
Result = Info.Ctx.typesAreCompatible(E->getArgType1(), E->getArgType2());
return true;
}
bool VisitDeclRefExpr(const DeclRefExpr *E);
bool VisitCallExpr(const CallExpr *E);
bool VisitBinaryOperator(const BinaryOperator *E);
bool VisitUnaryOperator(const UnaryOperator *E);
bool VisitCastExpr(CastExpr* E) {
return HandleCast(E->getLParenLoc(), E->getSubExpr(), E->getType());
}
bool VisitImplicitCastExpr(ImplicitCastExpr* E) {
return HandleCast(E->getLocStart(), E->getSubExpr(), E->getType());
}
bool VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
return EvaluateSizeAlignOf(E->isSizeOf(), E->getArgumentType(),
E->getType());
}
private:
bool HandleCast(SourceLocation CastLoc, Expr *SubExpr, QualType DestType);
bool EvaluateSizeAlignOf(bool isSizeOf, QualType SrcTy, QualType DstTy);
};
} // end anonymous namespace
static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) {
return IntExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
}
bool IntExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
// Enums are integer constant exprs.
if (const EnumConstantDecl *D = dyn_cast<EnumConstantDecl>(E->getDecl())) {
Result = D->getInitVal();
return true;
}
// Otherwise, random variable references are not constants.
return Error(E->getLocStart(), diag::err_expr_not_constant);
}
bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
// __builtin_type_compatible_p is a constant.
if (E->isBuiltinClassifyType(Result))
return true;
return Error(E->getLocStart(), diag::err_expr_not_constant);
}
bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
// The LHS of a constant expr is always evaluated and needed.
llvm::APSInt RHS(32);
if (!Visit(E->getLHS()))
return false; // error in subexpression.
bool OldEval = Info.isEvaluated;
// The short-circuiting &&/|| operators don't necessarily evaluate their
// RHS. Make sure to pass isEvaluated down correctly.
if ((E->getOpcode() == BinaryOperator::LAnd && Result == 0) ||
(E->getOpcode() == BinaryOperator::LOr && Result != 0))
Info.isEvaluated = false;
// FIXME: Handle pointer subtraction
// FIXME Maybe we want to succeed even where we can't evaluate the
// right side of LAnd/LOr?
// For example, see http://llvm.org/bugs/show_bug.cgi?id=2525
if (!EvaluateInteger(E->getRHS(), RHS, Info))
return false;
Info.isEvaluated = OldEval;
switch (E->getOpcode()) {
default: return Error(E->getOperatorLoc(), diag::err_expr_not_constant);
case BinaryOperator::Mul: Result *= RHS; return true;
case BinaryOperator::Add: Result += RHS; return true;
case BinaryOperator::Sub: Result -= RHS; return true;
case BinaryOperator::And: Result &= RHS; return true;
case BinaryOperator::Xor: Result ^= RHS; return true;
case BinaryOperator::Or: Result |= RHS; return true;
case BinaryOperator::Div:
if (RHS == 0)
return Error(E->getOperatorLoc(), diag::err_expr_divide_by_zero);
Result /= RHS;
return true;
case BinaryOperator::Rem:
if (RHS == 0)
return Error(E->getOperatorLoc(), diag::err_expr_divide_by_zero);
Result %= RHS;
return true;
case BinaryOperator::Shl:
// FIXME: Warn about out of range shift amounts!
Result <<= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1);
break;
case BinaryOperator::Shr:
Result >>= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1);
break;
case BinaryOperator::LT:
Result = Result < RHS;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::GT:
Result = Result > RHS;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::LE:
Result = Result <= RHS;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::GE:
Result = Result >= RHS;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::EQ:
Result = Result == RHS;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::NE:
Result = Result != RHS;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::LAnd:
Result = Result != 0 && RHS != 0;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::LOr:
Result = Result != 0 || RHS != 0;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
break;
case BinaryOperator::Comma:
// Result of the comma is just the result of the RHS.
Result = RHS;
// C99 6.6p3: "shall not contain assignment, ..., or comma operators,
// *except* when they are contained within a subexpression that is not
// evaluated". Note that Assignment can never happen due to constraints
// on the LHS subexpr, so we don't need to check it here.
if (!Info.isEvaluated)
return true;
// If the value is evaluated, we can accept it as an extension.
return Extension(E->getOperatorLoc(), diag::ext_comma_in_constant_expr);
}
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
/// EvaluateSizeAlignOf - Evaluate sizeof(SrcTy) or alignof(SrcTy) with a result
/// as a DstTy type.
bool IntExprEvaluator::EvaluateSizeAlignOf(bool isSizeOf, QualType SrcTy,
QualType DstTy) {
// Return the result in the right width.
Result.zextOrTrunc(getIntTypeSizeInBits(DstTy));
Result.setIsUnsigned(DstTy->isUnsignedIntegerType());
// sizeof(void) and __alignof__(void) = 1 as a gcc extension.
if (SrcTy->isVoidType())
Result = 1;
// sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
if (!SrcTy->isConstantSizeType()) {
// FIXME: Should we attempt to evaluate this?
return false;
}
// GCC extension: sizeof(function) = 1.
if (SrcTy->isFunctionType()) {
// FIXME: AlignOf shouldn't be unconditionally 4!
Result = isSizeOf ? 1 : 4;
return true;
}
// Get information about the size or align.
unsigned CharSize = Info.Ctx.Target.getCharWidth();
if (isSizeOf)
Result = getIntTypeSizeInBits(SrcTy) / CharSize;
else
Result = Info.Ctx.getTypeAlign(SrcTy) / CharSize;
return true;
}
bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
// Special case unary operators that do not need their subexpression
// evaluated. offsetof/sizeof/alignof are all special.
if (E->isOffsetOfOp()) {
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
Result = E->evaluateOffsetOf(Info.Ctx);
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
if (E->isSizeOfAlignOfOp())
return EvaluateSizeAlignOf(E->getOpcode() == UnaryOperator::SizeOf,
E->getSubExpr()->getType(), E->getType());
// Get the operand value into 'Result'.
if (!Visit(E->getSubExpr()))
return false;
switch (E->getOpcode()) {
default:
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
// See C99 6.6p3.
return Error(E->getOperatorLoc(), diag::err_expr_not_constant);
case UnaryOperator::LNot: {
bool Val = Result == 0;
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
Result = Val;
break;
}
case UnaryOperator::Extension:
// FIXME: Should extension allow i-c-e extension expressions in its scope?
// If so, we could clear the diagnostic ID.
case UnaryOperator::Plus:
// The result is always just the subexpr.
break;
case UnaryOperator::Minus:
Result = -Result;
break;
case UnaryOperator::Not:
Result = ~Result;
break;
}
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
/// HandleCast - This is used to evaluate implicit or explicit casts where the
/// result type is integer.
bool IntExprEvaluator::HandleCast(SourceLocation CastLoc,
Expr *SubExpr, QualType DestType) {
unsigned DestWidth = getIntTypeSizeInBits(DestType);
// Handle simple integer->integer casts.
if (SubExpr->getType()->isIntegerType()) {
if (!Visit(SubExpr))
return false;
// Figure out if this is a truncate, extend or noop cast.
// If the input is signed, do a sign extend, noop, or truncate.
if (DestType->isBooleanType()) {
// Conversion to bool compares against zero.
Result = Result != 0;
Result.zextOrTrunc(DestWidth);
} else
Result.extOrTrunc(DestWidth);
Result.setIsUnsigned(DestType->isUnsignedIntegerType());
return true;
}
// FIXME: Clean this up!
if (SubExpr->getType()->isPointerType()) {
APValue LV;
if (!EvaluatePointer(SubExpr, LV, Info))
return false;
if (LV.getLValueBase())
return false;
Result.extOrTrunc(DestWidth);
Result = LV.getLValueOffset();
Result.setIsUnsigned(DestType->isUnsignedIntegerType());
return true;
}
if (!SubExpr->getType()->isRealFloatingType())
return Error(CastLoc, diag::err_expr_not_constant);
// FIXME: Generalize floating point constant folding! For now we just permit
// which is allowed by integer constant expressions.
// Allow floating constants that are the immediate operands of casts or that
// are parenthesized.
const Expr *Operand = SubExpr;
while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
Operand = PE->getSubExpr();
// If this isn't a floating literal, we can't handle it.
const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
if (!FL)
return Error(CastLoc, diag::err_expr_not_constant);
// If the destination is boolean, compare against zero.
if (DestType->isBooleanType()) {
Result = !FL->getValue().isZero();
Result.zextOrTrunc(DestWidth);
Result.setIsUnsigned(DestType->isUnsignedIntegerType());
return true;
}
// Determine whether we are converting to unsigned or signed.
bool DestSigned = DestType->isSignedIntegerType();
// FIXME: Warning for overflow.
uint64_t Space[4];
(void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
llvm::APFloat::rmTowardZero);
Result = llvm::APInt(DestWidth, 4, Space);
Result.setIsUnsigned(!DestSigned);
return true;
}
//===----------------------------------------------------------------------===//
// Top level TryEvaluate.
//===----------------------------------------------------------------------===//
bool Expr::tryEvaluate(APValue &Result, ASTContext &Ctx) const {
llvm::APSInt sInt(32);
EvalInfo Info(Ctx);
if (getType()->isIntegerType()) {
if (EvaluateInteger(this, sInt, Info)) {
Result = APValue(sInt);
return true;
}
} else
return false;
return false;
}
|