summaryrefslogtreecommitdiff
path: root/AST/Type.cpp
blob: cd06c7e7832bbad9d4c847e8353fff2c4079f5a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
//===--- Type.cpp - Type representation and manipulation ------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements type-related functionality.
//
//===----------------------------------------------------------------------===//

#include "clang/Lex/IdentifierTable.h"
#include "clang/AST/Type.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;

Type::~Type() {}

/// isVoidType - Helper method to determine if this is the 'void' type.
bool Type::isVoidType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::Void;
  return false;
}

bool Type::isObjectType() const {
  if (isa<FunctionType>(CanonicalType))
    return false;
  else if (CanonicalType->isIncompleteType())
    return false;
  else
    return true;
}

bool Type::isDerivedType() const {
  switch (CanonicalType->getTypeClass()) {
  case Pointer:
  case Array:
  case FunctionProto:
  case FunctionNoProto:
  case Reference:
    return true;
  case Tagged: {
    const TagType *TT = cast<TagType>(CanonicalType);
    const Decl::Kind Kind = TT->getDecl()->getKind();
    return Kind == Decl::Struct || Kind == Decl::Union;
  }
  default:
    return false;
  }
}

bool Type::isFunctionType() const {
  return isa<FunctionType>(CanonicalType);
}

bool Type::isPointerType() const {
  return isa<PointerType>(CanonicalType);
}

bool Type::isReferenceType() const {
  return isa<ReferenceType>(CanonicalType);
}

bool Type::isArrayType() const {
  return isa<ArrayType>(CanonicalType);
}

bool Type::isStructureType() const {
  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
    if (TT->getDecl()->getKind() == Decl::Struct)
      return true;
  }
  return false;
}

bool Type::isUnionType() const { 
  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
    if (TT->getDecl()->getKind() == Decl::Union)
      return true;
  }
  return false;
}

// C99 6.2.7p1: If both are complete types, then the following additional
// requirements apply...FIXME (handle compatibility across source files).
bool Type::tagTypesAreCompatible(QualType lhs, QualType rhs) {
  TagDecl *ldecl = cast<TagType>(lhs.getCanonicalType())->getDecl();
  TagDecl *rdecl = cast<TagType>(rhs.getCanonicalType())->getDecl();
  
  if (ldecl->getKind() == Decl::Struct && rdecl->getKind() == Decl::Struct) {
    if (ldecl->getIdentifier() == rdecl->getIdentifier())
      return true;
  }
  if (ldecl->getKind() == Decl::Union && rdecl->getKind() == Decl::Union) {
    if (ldecl->getIdentifier() == rdecl->getIdentifier())
      return true;
  }
  return false;
}

bool Type::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
  // C99 6.7.5.1p2: For two pointer types to be compatible, both shall be 
  // identically qualified and both shall be pointers to compatible types.
  if (lhs.getQualifiers() != rhs.getQualifiers())
    return false;
    
  QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
  QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
  
  return typesAreCompatible(ltype, rtype);
}

// C++ 5.17p6: When the left opperand of an assignment operator denotes a
// reference to T, the operation assigns to the object of type T denoted by the
// reference.
bool Type::referenceTypesAreCompatible(QualType lhs, QualType rhs) {
  QualType ltype = lhs;

  if (lhs->isReferenceType())
    ltype = cast<ReferenceType>(lhs.getCanonicalType())->getReferenceeType();

  QualType rtype = rhs;

  if (rhs->isReferenceType())
    rtype = cast<ReferenceType>(rhs.getCanonicalType())->getReferenceeType();

  return typesAreCompatible(ltype, rtype);
}

bool Type::functionTypesAreCompatible(QualType lhs, QualType rhs) {
  const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
  const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);

  // first check the return types (common between C99 and K&R).
  if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
    return false;

  if (lproto && rproto) { // two C99 style function prototypes
    unsigned lproto_nargs = lproto->getNumArgs();
    unsigned rproto_nargs = rproto->getNumArgs();
    
    if (lproto_nargs != rproto_nargs)
      return false;
      
    // both prototypes have the same number of arguments.
    if ((lproto->isVariadic() && !rproto->isVariadic()) ||
        (rproto->isVariadic() && !lproto->isVariadic()))
      return false;
      
    // The use of ellipsis agree...now check the argument types.
    for (unsigned i = 0; i < lproto_nargs; i++)
      if (!typesAreCompatible(lproto->getArgType(i), rproto->getArgType(i)))
        return false;
    return true;
  }
  if (!lproto && !rproto) // two K&R style function decls, nothing to do.
    return true;

  // we have a mixture of K&R style with C99 prototypes
  const FunctionTypeProto *proto = lproto ? lproto : rproto;
  
  if (proto->isVariadic())
    return false;
    
  // FIXME: Each parameter type T in the prototype must be compatible with the
  // type resulting from applying the usual argument conversions to T.
  return true;
}

bool Type::arrayTypesAreCompatible(QualType lhs, QualType rhs) {
  QualType ltype = cast<ArrayType>(lhs.getCanonicalType())->getElementType();
  QualType rtype = cast<ArrayType>(rhs.getCanonicalType())->getElementType();
  
  if (!typesAreCompatible(ltype, rtype))
    return false;
    
  // FIXME: If both types specify constant sizes, then the sizes must also be 
  // the same. Even if the sizes are the same, GCC produces an error.
  return true;
}

/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, 
/// both shall have the identically qualified version of a compatible type.
/// C99 6.2.7p1: Two types have compatible types if their types are the 
/// same. See 6.7.[2,3,5] for additional rules.
bool Type::typesAreCompatible(QualType lhs, QualType rhs) {
  QualType lcanon = lhs.getCanonicalType();
  QualType rcanon = rhs.getCanonicalType();

  // If two types are identical, they are are compatible
  if (lcanon == rcanon)
    return true;
  
  // If the canonical type classes don't match, they can't be compatible
  if (lcanon->getTypeClass() != rcanon->getTypeClass())
    return false;

  switch (lcanon->getTypeClass()) {
    case Type::Pointer:
      return pointerTypesAreCompatible(lcanon, rcanon);
    case Type::Reference:
      return referenceTypesAreCompatible(lcanon, rcanon);
    case Type::Array:
      return arrayTypesAreCompatible(lcanon, rcanon);
    case Type::FunctionNoProto:
    case Type::FunctionProto:
      return functionTypesAreCompatible(lcanon, rcanon);
    case Type::Tagged: // handle structures, unions
      return tagTypesAreCompatible(lcanon, rcanon);
    case Type::Builtin:
      return false; 
    default:
      assert(0 && "unexpected type");
  }
  return true; // should never get here...
}

bool Type::isIntegerType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Bool &&
           BT->getKind() <= BuiltinType::LongLong;
  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
    if (TT->getDecl()->getKind() == Decl::Enum)
      return true;
  return false;
}

bool Type::isSignedIntegerType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    return BT->getKind() >= BuiltinType::Char_S &&
           BT->getKind() <= BuiltinType::LongLong;
  }
  return false;
}

bool Type::isUnsignedIntegerType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    return BT->getKind() >= BuiltinType::Bool &&
           BT->getKind() <= BuiltinType::ULongLong;
  }
  return false;
}

bool Type::isFloatingType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Float &&
           BT->getKind() <= BuiltinType::LongDouble;
  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
    return CT->isFloatingType();
  return false;
}

bool Type::isRealFloatingType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Float &&
           BT->getKind() <= BuiltinType::LongDouble;
  return false;
}

bool Type::isRealType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Bool &&
           BT->getKind() <= BuiltinType::LongDouble;
  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
    return TT->getDecl()->getKind() == Decl::Enum;
  return false;
}

bool Type::isComplexType() const {
  return isa<ComplexType>(CanonicalType);
}

bool Type::isVectorType() const {
  return isa<VectorType>(CanonicalType);
}

bool Type::isArithmeticType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() != BuiltinType::Void;
  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
    if (TT->getDecl()->getKind() == Decl::Enum)
      return true;
  return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
}

bool Type::isScalarType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() != BuiltinType::Void;
  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
    if (TT->getDecl()->getKind() == Decl::Enum)
      return true;
    return false;
  }
  return isa<PointerType>(CanonicalType) || isa<ComplexType>(CanonicalType);
}

bool Type::isAggregateType() const {
  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
    if (TT->getDecl()->getKind() == Decl::Struct)
      return true;
    return false;
  }
  return CanonicalType->getTypeClass() == Array;
}

// The only variable size types are auto arrays within a function. Structures 
// cannot contain a VLA member. They can have a flexible array member, however
// the structure is still constant size (C99 6.7.2.1p16).
bool Type::isConstantSizeType(SourceLocation *loc) const {
  if (const ArrayType *Ary = dyn_cast<ArrayType>(CanonicalType)) {
    assert(Ary->getSize() && "Incomplete types don't have a size at all!");
    return Ary->getSize()->isIntegerConstantExpr(loc); // Variable Length Array?
  }
  return true;
}

/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
/// - a type that can describe objects, but which lacks information needed to
/// determine its size.
bool Type::isIncompleteType() const { 
  switch (CanonicalType->getTypeClass()) { 
  default: return false;
  case Builtin:
    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
    // be completed.
    return isVoidType();
  case Tagged:
    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
    // forward declaration, but not a full definition (C99 6.2.5p22).
    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
  case Array:
    // An array of unknown size is an incomplete type (C99 6.2.5p22).
    return cast<ArrayType>(CanonicalType)->getSize() == 0;
  }
}

bool Type::isPromotableIntegerType() const {
  const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
  if (!BT) return false;
  switch (BT->getKind()) {
  case BuiltinType::Bool:
  case BuiltinType::Char_S:
  case BuiltinType::Char_U:
  case BuiltinType::SChar:
  case BuiltinType::UChar:
  case BuiltinType::Short:
  case BuiltinType::UShort:
    return true;
  default: 
    return false;
  }
}

const char *BuiltinType::getName() const {
  switch (getKind()) {
  default: assert(0 && "Unknown builtin type!");
  case Void:              return "void";
  case Bool:              return "_Bool";
  case Char_S:            return "char";
  case Char_U:            return "char";
  case SChar:             return "signed char";
  case Short:             return "short";
  case Int:               return "int";
  case Long:              return "long";
  case LongLong:          return "long long";
  case UChar:             return "unsigned char";
  case UShort:            return "unsigned short";
  case UInt:              return "unsigned int";
  case ULong:             return "unsigned long";
  case ULongLong:         return "unsigned long long";
  case Float:             return "float";
  case Double:            return "double";
  case LongDouble:        return "long double";
  }
}

// FIXME: need to use TargetInfo to derive the target specific sizes. This
// implementation will suffice for play with vector support.
unsigned BuiltinType::getSize() const {
  switch (getKind()) {
  default: assert(0 && "Unknown builtin type!");
  case Void:              return 0;
  case Bool:
  case Char_S:
  case Char_U:            return sizeof(char) * 8;
  case SChar:             return sizeof(signed char) * 8;
  case Short:             return sizeof(short) * 8;
  case Int:               return sizeof(int) * 8;
  case Long:              return sizeof(long) * 8;
  case LongLong:          return sizeof(long long) * 8;
  case UChar:             return sizeof(unsigned char) * 8;
  case UShort:            return sizeof(unsigned short) * 8;
  case UInt:              return sizeof(unsigned int) * 8;
  case ULong:             return sizeof(unsigned long) * 8;
  case ULongLong:         return sizeof(unsigned long long) * 8;
  case Float:             return sizeof(float) * 8;
  case Double:            return sizeof(double) * 8;
  case LongDouble:        return sizeof(long double) * 8;
  }
}

void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
                                QualType* ArgTys,
                                unsigned NumArgs, bool isVariadic) {
  ID.AddPointer(Result.getAsOpaquePtr());
  for (unsigned i = 0; i != NumArgs; ++i)
    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
  ID.AddInteger(isVariadic);
}

void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID) {
  Profile(ID, getResultType(), ArgInfo, NumArgs, isVariadic());
}


bool RecordType::classof(const Type *T) {
  if (const TagType *TT = dyn_cast<TagType>(T))
    return isa<RecordDecl>(TT->getDecl());
  return false;
}


//===----------------------------------------------------------------------===//
// Type Printing
//===----------------------------------------------------------------------===//

void QualType::dump(const char *msg) const {
  std::string R = "foo";
  getAsStringInternal(R);
  if (msg)
    fprintf(stderr, "%s: %s\n", msg, R.c_str());
  else
    fprintf(stderr, "%s\n", R.c_str());
}

static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
  // Note: funkiness to ensure we get a space only between quals.
  bool NonePrinted = true;
  if (TypeQuals & QualType::Const)
    S += "const", NonePrinted = false;
  if (TypeQuals & QualType::Volatile)
    S += (NonePrinted+" volatile"), NonePrinted = false;
  if (TypeQuals & QualType::Restrict)
    S += (NonePrinted+" restrict"), NonePrinted = false;
}

void QualType::getAsStringInternal(std::string &S) const {
  if (isNull()) {
    S += "NULL TYPE\n";
    return;
  }
  
  // Print qualifiers as appropriate.
  if (unsigned TQ = getQualifiers()) {
    std::string TQS;
    AppendTypeQualList(TQS, TQ);
    if (!S.empty())
      S = TQS + ' ' + S;
    else
      S = TQS;
  }

  getTypePtr()->getAsStringInternal(S);
}

void BuiltinType::getAsStringInternal(std::string &S) const {
  if (S.empty()) {
    S = getName();
  } else {
    // Prefix the basic type, e.g. 'int X'.
    S = ' ' + S;
    S = getName() + S;
  }
}

void ComplexType::getAsStringInternal(std::string &S) const {
  ElementType->getAsStringInternal(S);
  S = "_Complex " + S;
}

void PointerType::getAsStringInternal(std::string &S) const {
  S = '*' + S;
  
  // Handle things like 'int (*A)[4];' correctly.
  // FIXME: this should include vectors, but vectors use attributes I guess.
  if (isa<ArrayType>(PointeeType.getTypePtr()))
    S = '(' + S + ')';
  
  PointeeType.getAsStringInternal(S);
}

void ReferenceType::getAsStringInternal(std::string &S) const {
  S = '&' + S;
  
  // Handle things like 'int (&A)[4];' correctly.
  // FIXME: this should include vectors, but vectors use attributes I guess.
  if (isa<ArrayType>(ReferenceeType.getTypePtr()))
    S = '(' + S + ')';
  
  ReferenceeType.getAsStringInternal(S);
}

void ArrayType::getAsStringInternal(std::string &S) const {
  S += '[';
  
  if (IndexTypeQuals) {
    AppendTypeQualList(S, IndexTypeQuals);
    S += ' ';
  }
  
  if (SizeModifier == Static)
    S += "static";
  else if (SizeModifier == Star)
    S += '*';
  
  S += ']';
  
  ElementType.getAsStringInternal(S);
}

void VectorType::getAsStringInternal(std::string &S) const {
  S += " __attribute__(( vector_size(";
  // FIXME: handle types that are != 32 bits.
  S += llvm::utostr_32(NumElements*4); // convert back to bytes.
  S += ") ))";
  ElementType.getAsStringInternal(S);
}

void FunctionTypeNoProto::getAsStringInternal(std::string &S) const {
  // If needed for precedence reasons, wrap the inner part in grouping parens.
  if (!S.empty())
    S = "(" + S + ")";
  
  S += "()";
  getResultType().getAsStringInternal(S);
}

void FunctionTypeProto::getAsStringInternal(std::string &S) const {
  // If needed for precedence reasons, wrap the inner part in grouping parens.
  if (!S.empty())
    S = "(" + S + ")";
  
  S += "(";
  std::string Tmp;
  for (unsigned i = 0, e = getNumArgs(); i != e; ++i) {
    if (i) S += ", ";
    getArgType(i).getAsStringInternal(Tmp);
    S += Tmp;
    Tmp.clear();
  }
  
  if (isVariadic()) {
    if (getNumArgs())
      S += ", ";
    S += "...";
  } else if (getNumArgs() == 0) {
    // Do not emit int() if we have a proto, emit 'int(void)'.
    S += "void";
  }
  
  S += ")";
  getResultType().getAsStringInternal(S);
}


void TypedefType::getAsStringInternal(std::string &InnerString) const {
  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typedefname X'.
    InnerString = ' ' + InnerString;
  InnerString = getDecl()->getIdentifier()->getName() + InnerString;
}

void TagType::getAsStringInternal(std::string &InnerString) const {
  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typedefname X'.
    InnerString = ' ' + InnerString;
  
  const char *Kind = getDecl()->getKindName();
  const char *ID;
  if (const IdentifierInfo *II = getDecl()->getIdentifier())
    ID = II->getName();
  else
    ID = "<anonymous>";

  InnerString = std::string(Kind) + " " + ID + InnerString;
}