diff options
Diffstat (limited to 'lib/StaticAnalyzer/Core/RegionStore.cpp')
-rw-r--r-- | lib/StaticAnalyzer/Core/RegionStore.cpp | 1917 |
1 files changed, 1917 insertions, 0 deletions
diff --git a/lib/StaticAnalyzer/Core/RegionStore.cpp b/lib/StaticAnalyzer/Core/RegionStore.cpp new file mode 100644 index 0000000000..d5af1c2747 --- /dev/null +++ b/lib/StaticAnalyzer/Core/RegionStore.cpp @@ -0,0 +1,1917 @@ +//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a basic region store model. In this model, we do have field +// sensitivity. But we assume nothing about the heap shape. So recursive data +// structures are largely ignored. Basically we do 1-limiting analysis. +// Parameter pointers are assumed with no aliasing. Pointee objects of +// parameters are created lazily. +// +//===----------------------------------------------------------------------===// +#include "clang/AST/CharUnits.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/ExprCXX.h" +#include "clang/Analysis/Analyses/LiveVariables.h" +#include "clang/Analysis/AnalysisContext.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/StaticAnalyzer/PathSensitive/GRState.h" +#include "clang/StaticAnalyzer/PathSensitive/GRStateTrait.h" +#include "clang/StaticAnalyzer/PathSensitive/MemRegion.h" +#include "llvm/ADT/ImmutableList.h" +#include "llvm/ADT/ImmutableMap.h" +#include "llvm/ADT/Optional.h" +#include "llvm/Support/raw_ostream.h" + +using namespace clang; +using namespace ento; +using llvm::Optional; + +//===----------------------------------------------------------------------===// +// Representation of binding keys. +//===----------------------------------------------------------------------===// + +namespace { +class BindingKey { +public: + enum Kind { Direct = 0x0, Default = 0x1 }; +private: + llvm ::PointerIntPair<const MemRegion*, 1> P; + uint64_t Offset; + + explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) + : P(r, (unsigned) k), Offset(offset) {} +public: + + bool isDirect() const { return P.getInt() == Direct; } + + const MemRegion *getRegion() const { return P.getPointer(); } + uint64_t getOffset() const { return Offset; } + + void Profile(llvm::FoldingSetNodeID& ID) const { + ID.AddPointer(P.getOpaqueValue()); + ID.AddInteger(Offset); + } + + static BindingKey Make(const MemRegion *R, Kind k); + + bool operator<(const BindingKey &X) const { + if (P.getOpaqueValue() < X.P.getOpaqueValue()) + return true; + if (P.getOpaqueValue() > X.P.getOpaqueValue()) + return false; + return Offset < X.Offset; + } + + bool operator==(const BindingKey &X) const { + return P.getOpaqueValue() == X.P.getOpaqueValue() && + Offset == X.Offset; + } + + bool isValid() const { + return getRegion() != NULL; + } +}; +} // end anonymous namespace + +BindingKey BindingKey::Make(const MemRegion *R, Kind k) { + if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { + const RegionRawOffset &O = ER->getAsArrayOffset(); + + // FIXME: There are some ElementRegions for which we cannot compute + // raw offsets yet, including regions with symbolic offsets. These will be + // ignored by the store. + return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k); + } + + return BindingKey(R, 0, k); +} + +namespace llvm { + static inline + llvm::raw_ostream& operator<<(llvm::raw_ostream& os, BindingKey K) { + os << '(' << K.getRegion() << ',' << K.getOffset() + << ',' << (K.isDirect() ? "direct" : "default") + << ')'; + return os; + } +} // end llvm namespace + +//===----------------------------------------------------------------------===// +// Actual Store type. +//===----------------------------------------------------------------------===// + +typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings; + +//===----------------------------------------------------------------------===// +// Fine-grained control of RegionStoreManager. +//===----------------------------------------------------------------------===// + +namespace { +struct minimal_features_tag {}; +struct maximal_features_tag {}; + +class RegionStoreFeatures { + bool SupportsFields; +public: + RegionStoreFeatures(minimal_features_tag) : + SupportsFields(false) {} + + RegionStoreFeatures(maximal_features_tag) : + SupportsFields(true) {} + + void enableFields(bool t) { SupportsFields = t; } + + bool supportsFields() const { return SupportsFields; } +}; +} + +//===----------------------------------------------------------------------===// +// Main RegionStore logic. +//===----------------------------------------------------------------------===// + +namespace { + +class RegionStoreSubRegionMap : public SubRegionMap { +public: + typedef llvm::ImmutableSet<const MemRegion*> Set; + typedef llvm::DenseMap<const MemRegion*, Set> Map; +private: + Set::Factory F; + Map M; +public: + bool add(const MemRegion* Parent, const MemRegion* SubRegion) { + Map::iterator I = M.find(Parent); + + if (I == M.end()) { + M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion))); + return true; + } + + I->second = F.add(I->second, SubRegion); + return false; + } + + void process(llvm::SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R); + + ~RegionStoreSubRegionMap() {} + + const Set *getSubRegions(const MemRegion *Parent) const { + Map::const_iterator I = M.find(Parent); + return I == M.end() ? NULL : &I->second; + } + + bool iterSubRegions(const MemRegion* Parent, Visitor& V) const { + Map::const_iterator I = M.find(Parent); + + if (I == M.end()) + return true; + + Set S = I->second; + for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) { + if (!V.Visit(Parent, *SI)) + return false; + } + + return true; + } +}; + +void +RegionStoreSubRegionMap::process(llvm::SmallVectorImpl<const SubRegion*> &WL, + const SubRegion *R) { + const MemRegion *superR = R->getSuperRegion(); + if (add(superR, R)) + if (const SubRegion *sr = dyn_cast<SubRegion>(superR)) + WL.push_back(sr); +} + +class RegionStoreManager : public StoreManager { + const RegionStoreFeatures Features; + RegionBindings::Factory RBFactory; + +public: + RegionStoreManager(GRStateManager& mgr, const RegionStoreFeatures &f) + : StoreManager(mgr), + Features(f), + RBFactory(mgr.getAllocator()) {} + + SubRegionMap *getSubRegionMap(Store store) { + return getRegionStoreSubRegionMap(store); + } + + RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store); + + Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R); + /// getDefaultBinding - Returns an SVal* representing an optional default + /// binding associated with a region and its subregions. + Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R); + + /// setImplicitDefaultValue - Set the default binding for the provided + /// MemRegion to the value implicitly defined for compound literals when + /// the value is not specified. + Store setImplicitDefaultValue(Store store, const MemRegion *R, QualType T); + + /// ArrayToPointer - Emulates the "decay" of an array to a pointer + /// type. 'Array' represents the lvalue of the array being decayed + /// to a pointer, and the returned SVal represents the decayed + /// version of that lvalue (i.e., a pointer to the first element of + /// the array). This is called by ExprEngine when evaluating + /// casts from arrays to pointers. + SVal ArrayToPointer(Loc Array); + + /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it. + virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType); + + SVal evalBinOp(BinaryOperator::Opcode Op,Loc L, NonLoc R, QualType resultTy); + + Store getInitialStore(const LocationContext *InitLoc) { + return RBFactory.getEmptyMap().getRoot(); + } + + //===-------------------------------------------------------------------===// + // Binding values to regions. + //===-------------------------------------------------------------------===// + + Store InvalidateRegions(Store store, + const MemRegion * const *Begin, + const MemRegion * const *End, + const Expr *E, unsigned Count, + InvalidatedSymbols *IS, + bool invalidateGlobals, + InvalidatedRegions *Regions); + +public: // Made public for helper classes. + + void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R, + RegionStoreSubRegionMap &M); + + RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V); + + RegionBindings addBinding(RegionBindings B, const MemRegion *R, + BindingKey::Kind k, SVal V); + + const SVal *lookup(RegionBindings B, BindingKey K); + const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k); + + RegionBindings removeBinding(RegionBindings B, BindingKey K); + RegionBindings removeBinding(RegionBindings B, const MemRegion *R, + BindingKey::Kind k); + + RegionBindings removeBinding(RegionBindings B, const MemRegion *R) { + return removeBinding(removeBinding(B, R, BindingKey::Direct), R, + BindingKey::Default); + } + +public: // Part of public interface to class. + + Store Bind(Store store, Loc LV, SVal V); + + // BindDefault is only used to initialize a region with a default value. + Store BindDefault(Store store, const MemRegion *R, SVal V) { + RegionBindings B = GetRegionBindings(store); + assert(!lookup(B, R, BindingKey::Default)); + assert(!lookup(B, R, BindingKey::Direct)); + return addBinding(B, R, BindingKey::Default, V).getRoot(); + } + + Store BindCompoundLiteral(Store store, const CompoundLiteralExpr* CL, + const LocationContext *LC, SVal V); + + Store BindDecl(Store store, const VarRegion *VR, SVal InitVal); + + Store BindDeclWithNoInit(Store store, const VarRegion *) { + return store; + } + + /// BindStruct - Bind a compound value to a structure. + Store BindStruct(Store store, const TypedRegion* R, SVal V); + + Store BindArray(Store store, const TypedRegion* R, SVal V); + + /// KillStruct - Set the entire struct to unknown. + Store KillStruct(Store store, const TypedRegion* R, SVal DefaultVal); + + Store Remove(Store store, Loc LV); + + + //===------------------------------------------------------------------===// + // Loading values from regions. + //===------------------------------------------------------------------===// + + /// The high level logic for this method is this: + /// Retrieve (L) + /// if L has binding + /// return L's binding + /// else if L is in killset + /// return unknown + /// else + /// if L is on stack or heap + /// return undefined + /// else + /// return symbolic + SVal Retrieve(Store store, Loc L, QualType T = QualType()); + + SVal RetrieveElement(Store store, const ElementRegion *R); + + SVal RetrieveField(Store store, const FieldRegion *R); + + SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R); + + SVal RetrieveVar(Store store, const VarRegion *R); + + SVal RetrieveLazySymbol(const TypedRegion *R); + + SVal RetrieveFieldOrElementCommon(Store store, const TypedRegion *R, + QualType Ty, const MemRegion *superR); + + /// Retrieve the values in a struct and return a CompoundVal, used when doing + /// struct copy: + /// struct s x, y; + /// x = y; + /// y's value is retrieved by this method. + SVal RetrieveStruct(Store store, const TypedRegion* R); + + SVal RetrieveArray(Store store, const TypedRegion* R); + + /// Used to lazily generate derived symbols for bindings that are defined + /// implicitly by default bindings in a super region. + Optional<SVal> RetrieveDerivedDefaultValue(RegionBindings B, + const MemRegion *superR, + const TypedRegion *R, QualType Ty); + + /// Get the state and region whose binding this region R corresponds to. + std::pair<Store, const MemRegion*> + GetLazyBinding(RegionBindings B, const MemRegion *R); + + Store CopyLazyBindings(nonloc::LazyCompoundVal V, Store store, + const TypedRegion *R); + + //===------------------------------------------------------------------===// + // State pruning. + //===------------------------------------------------------------------===// + + /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. + /// It returns a new Store with these values removed. + Store removeDeadBindings(Store store, const StackFrameContext *LCtx, + SymbolReaper& SymReaper, + llvm::SmallVectorImpl<const MemRegion*>& RegionRoots); + + Store enterStackFrame(const GRState *state, const StackFrameContext *frame); + + //===------------------------------------------------------------------===// + // Region "extents". + //===------------------------------------------------------------------===// + + // FIXME: This method will soon be eliminated; see the note in Store.h. + DefinedOrUnknownSVal getSizeInElements(const GRState *state, + const MemRegion* R, QualType EleTy); + + //===------------------------------------------------------------------===// + // Utility methods. + //===------------------------------------------------------------------===// + + static inline RegionBindings GetRegionBindings(Store store) { + return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store)); + } + + void print(Store store, llvm::raw_ostream& Out, const char* nl, + const char *sep); + + void iterBindings(Store store, BindingsHandler& f) { + RegionBindings B = GetRegionBindings(store); + for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) { + const BindingKey &K = I.getKey(); + if (!K.isDirect()) + continue; + if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) { + // FIXME: Possibly incorporate the offset? + if (!f.HandleBinding(*this, store, R, I.getData())) + return; + } + } + } +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// RegionStore creation. +//===----------------------------------------------------------------------===// + +StoreManager *ento::CreateRegionStoreManager(GRStateManager& StMgr) { + RegionStoreFeatures F = maximal_features_tag(); + return new RegionStoreManager(StMgr, F); +} + +StoreManager *ento::CreateFieldsOnlyRegionStoreManager(GRStateManager &StMgr) { + RegionStoreFeatures F = minimal_features_tag(); + F.enableFields(true); + return new RegionStoreManager(StMgr, F); +} + + +RegionStoreSubRegionMap* +RegionStoreManager::getRegionStoreSubRegionMap(Store store) { + RegionBindings B = GetRegionBindings(store); + RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap(); + + llvm::SmallVector<const SubRegion*, 10> WL; + + for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) + if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) + M->process(WL, R); + + // We also need to record in the subregion map "intermediate" regions that + // don't have direct bindings but are super regions of those that do. + while (!WL.empty()) { + const SubRegion *R = WL.back(); + WL.pop_back(); + M->process(WL, R); + } + + return M; +} + +//===----------------------------------------------------------------------===// +// Region Cluster analysis. +//===----------------------------------------------------------------------===// + +namespace { +template <typename DERIVED> +class ClusterAnalysis { +protected: + typedef BumpVector<BindingKey> RegionCluster; + typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap; + llvm::DenseMap<const RegionCluster*, unsigned> Visited; + typedef llvm::SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10> + WorkList; + + BumpVectorContext BVC; + ClusterMap ClusterM; + WorkList WL; + + RegionStoreManager &RM; + ASTContext &Ctx; + SValBuilder &svalBuilder; + + RegionBindings B; + + const bool includeGlobals; + +public: + ClusterAnalysis(RegionStoreManager &rm, GRStateManager &StateMgr, + RegionBindings b, const bool includeGlobals) + : RM(rm), Ctx(StateMgr.getContext()), + svalBuilder(StateMgr.getSValBuilder()), + B(b), includeGlobals(includeGlobals) {} + + RegionBindings getRegionBindings() const { return B; } + + RegionCluster &AddToCluster(BindingKey K) { + const MemRegion *R = K.getRegion(); + const MemRegion *baseR = R->getBaseRegion(); + RegionCluster &C = getCluster(baseR); + C.push_back(K, BVC); + static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C); + return C; + } + + bool isVisited(const MemRegion *R) { + return (bool) Visited[&getCluster(R->getBaseRegion())]; + } + + RegionCluster& getCluster(const MemRegion *R) { + RegionCluster *&CRef = ClusterM[R]; + if (!CRef) { + void *Mem = BVC.getAllocator().template Allocate<RegionCluster>(); + CRef = new (Mem) RegionCluster(BVC, 10); + } + return *CRef; + } + + void GenerateClusters() { + // Scan the entire set of bindings and make the region clusters. + for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ + RegionCluster &C = AddToCluster(RI.getKey()); + if (const MemRegion *R = RI.getData().getAsRegion()) { + // Generate a cluster, but don't add the region to the cluster + // if there aren't any bindings. + getCluster(R->getBaseRegion()); + } + if (includeGlobals) { + const MemRegion *R = RI.getKey().getRegion(); + if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace())) + AddToWorkList(R, C); + } + } + } + + bool AddToWorkList(const MemRegion *R, RegionCluster &C) { + if (unsigned &visited = Visited[&C]) + return false; + else + visited = 1; + + WL.push_back(std::make_pair(R, &C)); + return true; + } + + bool AddToWorkList(BindingKey K) { + return AddToWorkList(K.getRegion()); + } + + bool AddToWorkList(const MemRegion *R) { + const MemRegion *baseR = R->getBaseRegion(); + return AddToWorkList(baseR, getCluster(baseR)); + } + + void RunWorkList() { + while (!WL.empty()) { + const MemRegion *baseR; + RegionCluster *C; + llvm::tie(baseR, C) = WL.back(); + WL.pop_back(); + + // First visit the cluster. + static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end()); + + // Next, visit the base region. + static_cast<DERIVED*>(this)->VisitBaseRegion(baseR); + } + } + +public: + void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {} + void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {} + void VisitBaseRegion(const MemRegion *baseR) {} +}; +} + +//===----------------------------------------------------------------------===// +// Binding invalidation. +//===----------------------------------------------------------------------===// + +void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B, + const MemRegion *R, + RegionStoreSubRegionMap &M) { + + if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R)) + for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end(); + I != E; ++I) + RemoveSubRegionBindings(B, *I, M); + + B = removeBinding(B, R); +} + +namespace { +class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker> +{ + const Expr *Ex; + unsigned Count; + StoreManager::InvalidatedSymbols *IS; + StoreManager::InvalidatedRegions *Regions; +public: + InvalidateRegionsWorker(RegionStoreManager &rm, + GRStateManager &stateMgr, + RegionBindings b, + const Expr *ex, unsigned count, + StoreManager::InvalidatedSymbols *is, + StoreManager::InvalidatedRegions *r, + bool includeGlobals) + : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b, includeGlobals), + Ex(ex), Count(count), IS(is), Regions(r) {} + + void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E); + void VisitBaseRegion(const MemRegion *baseR); + +private: + void VisitBinding(SVal V); +}; +} + +void InvalidateRegionsWorker::VisitBinding(SVal V) { + // A symbol? Mark it touched by the invalidation. + if (IS) + if (SymbolRef Sym = V.getAsSymbol()) + IS->insert(Sym); + + if (const MemRegion *R = V.getAsRegion()) { + AddToWorkList(R); + return; + } + + // Is it a LazyCompoundVal? All references get invalidated as well. + if (const nonloc::LazyCompoundVal *LCS = + dyn_cast<nonloc::LazyCompoundVal>(&V)) { + + const MemRegion *LazyR = LCS->getRegion(); + RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore()); + + for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ + const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion()); + if (baseR && baseR->isSubRegionOf(LazyR)) + VisitBinding(RI.getData()); + } + + return; + } +} + +void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR, + BindingKey *I, BindingKey *E) { + for ( ; I != E; ++I) { + // Get the old binding. Is it a region? If so, add it to the worklist. + const BindingKey &K = *I; + if (const SVal *V = RM.lookup(B, K)) + VisitBinding(*V); + + B = RM.removeBinding(B, K); + } +} + +void InvalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) { + if (IS) { + // Symbolic region? Mark that symbol touched by the invalidation. + if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) + IS->insert(SR->getSymbol()); + } + + // BlockDataRegion? If so, invalidate captured variables that are passed + // by reference. + if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) { + for (BlockDataRegion::referenced_vars_iterator + BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ; + BI != BE; ++BI) { + const VarRegion *VR = *BI; + const VarDecl *VD = VR->getDecl(); + if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) + AddToWorkList(VR); + } + return; + } + + // Otherwise, we have a normal data region. Record that we touched the region. + if (Regions) + Regions->push_back(baseR); + + if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) { + // Invalidate the region by setting its default value to + // conjured symbol. The type of the symbol is irrelavant. + DefinedOrUnknownSVal V = + svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count); + B = RM.addBinding(B, baseR, BindingKey::Default, V); + return; + } + + if (!baseR->isBoundable()) + return; + + const TypedRegion *TR = cast<TypedRegion>(baseR); + QualType T = TR->getValueType(); + + // Invalidate the binding. + if (T->isStructureType()) { + // Invalidate the region by setting its default value to + // conjured symbol. The type of the symbol is irrelavant. + DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, + Count); + B = RM.addBinding(B, baseR, BindingKey::Default, V); + return; + } + + if (const ArrayType *AT = Ctx.getAsArrayType(T)) { + // Set the default value of the array to conjured symbol. + DefinedOrUnknownSVal V = + svalBuilder.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count); + B = RM.addBinding(B, baseR, BindingKey::Default, V); + return; + } + + if (includeGlobals && + isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) { + // If the region is a global and we are invalidating all globals, + // just erase the entry. This causes all globals to be lazily + // symbolicated from the same base symbol. + B = RM.removeBinding(B, baseR); + return; + } + + + DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, T, Count); + assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); + B = RM.addBinding(B, baseR, BindingKey::Direct, V); +} + +Store RegionStoreManager::InvalidateRegions(Store store, + const MemRegion * const *I, + const MemRegion * const *E, + const Expr *Ex, unsigned Count, + InvalidatedSymbols *IS, + bool invalidateGlobals, + InvalidatedRegions *Regions) { + InvalidateRegionsWorker W(*this, StateMgr, + RegionStoreManager::GetRegionBindings(store), + Ex, Count, IS, Regions, invalidateGlobals); + + // Scan the bindings and generate the clusters. + W.GenerateClusters(); + + // Add I .. E to the worklist. + for ( ; I != E; ++I) + W.AddToWorkList(*I); + + W.RunWorkList(); + + // Return the new bindings. + RegionBindings B = W.getRegionBindings(); + + if (invalidateGlobals) { + // Bind the non-static globals memory space to a new symbol that we will + // use to derive the bindings for all non-static globals. + const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(); + SVal V = + svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex, + /* symbol type, doesn't matter */ Ctx.IntTy, + Count); + B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V); + + // Even if there are no bindings in the global scope, we still need to + // record that we touched it. + if (Regions) + Regions->push_back(GS); + } + + return B.getRoot(); +} + +//===----------------------------------------------------------------------===// +// Extents for regions. +//===----------------------------------------------------------------------===// + +DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const GRState *state, + const MemRegion *R, + QualType EleTy) { + SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder); + const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size); + if (!SizeInt) + return UnknownVal(); + + CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue()); + + if (Ctx.getAsVariableArrayType(EleTy)) { + // FIXME: We need to track extra state to properly record the size + // of VLAs. Returning UnknownVal here, however, is a stop-gap so that + // we don't have a divide-by-zero below. + return UnknownVal(); + } + + CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy); + + // If a variable is reinterpreted as a type that doesn't fit into a larger + // type evenly, round it down. + // This is a signed value, since it's used in arithmetic with signed indices. + return svalBuilder.makeIntVal(RegionSize / EleSize, false); +} + +//===----------------------------------------------------------------------===// +// Location and region casting. +//===----------------------------------------------------------------------===// + +/// ArrayToPointer - Emulates the "decay" of an array to a pointer +/// type. 'Array' represents the lvalue of the array being decayed +/// to a pointer, and the returned SVal represents the decayed +/// version of that lvalue (i.e., a pointer to the first element of +/// the array). This is called by ExprEngine when evaluating casts +/// from arrays to pointers. +SVal RegionStoreManager::ArrayToPointer(Loc Array) { + if (!isa<loc::MemRegionVal>(Array)) + return UnknownVal(); + + const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion(); + const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R); + + if (!ArrayR) + return UnknownVal(); + + // Strip off typedefs from the ArrayRegion's ValueType. + QualType T = ArrayR->getValueType().getDesugaredType(Ctx); + const ArrayType *AT = cast<ArrayType>(T); + T = AT->getElementType(); + + NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); + return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx)); +} + +SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) { + const CXXRecordDecl *baseDecl; + if (baseType->isPointerType()) + baseDecl = baseType->getCXXRecordDeclForPointerType(); + else + baseDecl = baseType->getAsCXXRecordDecl(); + + assert(baseDecl && "not a CXXRecordDecl?"); + + loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived); + if (!derivedRegVal) + return derived; + + const MemRegion *baseReg = + MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion()); + + return loc::MemRegionVal(baseReg); +} +//===----------------------------------------------------------------------===// +// Pointer arithmetic. +//===----------------------------------------------------------------------===// + +SVal RegionStoreManager::evalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R, + QualType resultTy) { + // Assume the base location is MemRegionVal. + if (!isa<loc::MemRegionVal>(L)) + return UnknownVal(); + + // Special case for zero RHS. + if (R.isZeroConstant()) { + switch (Op) { + default: + // Handle it normally. + break; + case BO_Add: + case BO_Sub: + // FIXME: does this need to be casted to match resultTy? + return L; + } + } + + const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion(); + const ElementRegion *ER = 0; + + switch (MR->getKind()) { + case MemRegion::SymbolicRegionKind: { + const SymbolicRegion *SR = cast<SymbolicRegion>(MR); + SymbolRef Sym = SR->getSymbol(); + QualType T = Sym->getType(Ctx); + QualType EleTy; + + if (const PointerType *PT = T->getAs<PointerType>()) + EleTy = PT->getPointeeType(); + else + EleTy = T->getAs<ObjCObjectPointerType>()->getPointeeType(); + + const NonLoc &ZeroIdx = svalBuilder.makeZeroArrayIndex(); + ER = MRMgr.getElementRegion(EleTy, ZeroIdx, SR, Ctx); + break; + } + case MemRegion::AllocaRegionKind: { + const AllocaRegion *AR = cast<AllocaRegion>(MR); + QualType EleTy = Ctx.CharTy; // Create an ElementRegion of bytes. + NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); + ER = MRMgr.getElementRegion(EleTy, ZeroIdx, AR, Ctx); + break; + } + + case MemRegion::ElementRegionKind: { + ER = cast<ElementRegion>(MR); + break; + } + + // Not yet handled. + case MemRegion::VarRegionKind: + case MemRegion::StringRegionKind: { + + } + // Fall-through. + case MemRegion::CompoundLiteralRegionKind: + case MemRegion::FieldRegionKind: + case MemRegion::ObjCIvarRegionKind: + case MemRegion::CXXTempObjectRegionKind: + case MemRegion::CXXBaseObjectRegionKind: + return UnknownVal(); + + case MemRegion::FunctionTextRegionKind: + case MemRegion::BlockTextRegionKind: + case MemRegion::BlockDataRegionKind: + // Technically this can happen if people do funny things with casts. + return UnknownVal(); + + case MemRegion::CXXThisRegionKind: + assert(0 && + "Cannot perform pointer arithmetic on implicit argument 'this'"); + case MemRegion::GenericMemSpaceRegionKind: + case MemRegion::StackLocalsSpaceRegionKind: + case MemRegion::StackArgumentsSpaceRegionKind: + case MemRegion::HeapSpaceRegionKind: + case MemRegion::NonStaticGlobalSpaceRegionKind: + case MemRegion::StaticGlobalSpaceRegionKind: + case MemRegion::UnknownSpaceRegionKind: + assert(0 && "Cannot perform pointer arithmetic on a MemSpace"); + return UnknownVal(); + } + + SVal Idx = ER->getIndex(); + nonloc::ConcreteInt* Base = dyn_cast<nonloc::ConcreteInt>(&Idx); + + // For now, only support: + // (a) concrete integer indices that can easily be resolved + // (b) 0 + symbolic index + if (Base) { + if (nonloc::ConcreteInt *Offset = dyn_cast<nonloc::ConcreteInt>(&R)) { + // FIXME: Should use SValBuilder here. + SVal NewIdx = + Base->evalBinOp(svalBuilder, Op, + cast<nonloc::ConcreteInt>(svalBuilder.convertToArrayIndex(*Offset))); + + if (!isa<NonLoc>(NewIdx)) + return UnknownVal(); + + const MemRegion* NewER = + MRMgr.getElementRegion(ER->getElementType(), cast<NonLoc>(NewIdx), + ER->getSuperRegion(), Ctx); + return svalBuilder.makeLoc(NewER); + } + if (0 == Base->getValue()) { + const MemRegion* NewER = + MRMgr.getElementRegion(ER->getElementType(), R, + ER->getSuperRegion(), Ctx); + return svalBuilder.makeLoc(NewER); + } + } + + return UnknownVal(); +} + +//===----------------------------------------------------------------------===// +// Loading values from regions. +//===----------------------------------------------------------------------===// + +Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B, + const MemRegion *R) { + + if (const SVal *V = lookup(B, R, BindingKey::Direct)) + return *V; + + return Optional<SVal>(); +} + +Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B, + const MemRegion *R) { + if (R->isBoundable()) + if (const TypedRegion *TR = dyn_cast<TypedRegion>(R)) + if (TR->getValueType()->isUnionType()) + return UnknownVal(); + + if (const SVal *V = lookup(B, R, BindingKey::Default)) + return *V; + + return Optional<SVal>(); +} + +SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) { + assert(!isa<UnknownVal>(L) && "location unknown"); + assert(!isa<UndefinedVal>(L) && "location undefined"); + + // For access to concrete addresses, return UnknownVal. Checks + // for null dereferences (and similar errors) are done by checkers, not + // the Store. + // FIXME: We can consider lazily symbolicating such memory, but we really + // should defer this when we can reason easily about symbolicating arrays + // of bytes. + if (isa<loc::ConcreteInt>(L)) { + return UnknownVal(); + } + if (!isa<loc::MemRegionVal>(L)) { + return UnknownVal(); + } + + const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion(); + + if (isa<AllocaRegion>(MR) || isa<SymbolicRegion>(MR)) { + if (T.isNull()) { + const SymbolicRegion *SR = cast<SymbolicRegion>(MR); + T = SR->getSymbol()->getType(Ctx); + } + MR = GetElementZeroRegion(MR, T); + } + + if (isa<CodeTextRegion>(MR)) { + assert(0 && "Why load from a code text region?"); + return UnknownVal(); + } + + // FIXME: Perhaps this method should just take a 'const MemRegion*' argument + // instead of 'Loc', and have the other Loc cases handled at a higher level. + const TypedRegion *R = cast<TypedRegion>(MR); + QualType RTy = R->getValueType(); + + // FIXME: We should eventually handle funny addressing. e.g.: + // + // int x = ...; + // int *p = &x; + // char *q = (char*) p; + // char c = *q; // returns the first byte of 'x'. + // + // Such funny addressing will occur due to layering of regions. + + if (RTy->isStructureOrClassType()) + return RetrieveStruct(store, R); + + // FIXME: Handle unions. + if (RTy->isUnionType()) + return UnknownVal(); + + if (RTy->isArrayType()) + return RetrieveArray(store, R); + + // FIXME: handle Vector types. + if (RTy->isVectorType()) + return UnknownVal(); + + if (const FieldRegion* FR = dyn_cast<FieldRegion>(R)) + return CastRetrievedVal(RetrieveField(store, FR), FR, T, false); + + if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) { + // FIXME: Here we actually perform an implicit conversion from the loaded + // value to the element type. Eventually we want to compose these values + // more intelligently. For example, an 'element' can encompass multiple + // bound regions (e.g., several bound bytes), or could be a subset of + // a larger value. + return CastRetrievedVal(RetrieveElement(store, ER), ER, T, false); + } + + if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) { + // FIXME: Here we actually perform an implicit conversion from the loaded + // value to the ivar type. What we should model is stores to ivars + // that blow past the extent of the ivar. If the address of the ivar is + // reinterpretted, it is possible we stored a different value that could + // fit within the ivar. Either we need to cast these when storing them + // or reinterpret them lazily (as we do here). + return CastRetrievedVal(RetrieveObjCIvar(store, IVR), IVR, T, false); + } + + if (const VarRegion *VR = dyn_cast<VarRegion>(R)) { + // FIXME: Here we actually perform an implicit conversion from the loaded + // value to the variable type. What we should model is stores to variables + // that blow past the extent of the variable. If the address of the + // variable is reinterpretted, it is possible we stored a different value + // that could fit within the variable. Either we need to cast these when + // storing them or reinterpret them lazily (as we do here). + return CastRetrievedVal(RetrieveVar(store, VR), VR, T, false); + } + + RegionBindings B = GetRegionBindings(store); + const SVal *V = lookup(B, R, BindingKey::Direct); + + // Check if the region has a binding. + if (V) + return *V; + + // The location does not have a bound value. This means that it has + // the value it had upon its creation and/or entry to the analyzed + // function/method. These are either symbolic values or 'undefined'. + if (R->hasStackNonParametersStorage()) { + // All stack variables are considered to have undefined values + // upon creation. All heap allocated blocks are considered to + // have undefined values as well unless they are explicitly bound + // to specific values. + return UndefinedVal(); + } + + // All other values are symbolic. + return svalBuilder.getRegionValueSymbolVal(R); +} + +std::pair<Store, const MemRegion *> +RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R) { + if (Optional<SVal> OV = getDirectBinding(B, R)) + if (const nonloc::LazyCompoundVal *V = + dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer())) + return std::make_pair(V->getStore(), V->getRegion()); + + if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { + const std::pair<Store, const MemRegion *> &X = + GetLazyBinding(B, ER->getSuperRegion()); + + if (X.second) + return std::make_pair(X.first, + MRMgr.getElementRegionWithSuper(ER, X.second)); + } + else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) { + const std::pair<Store, const MemRegion *> &X = + GetLazyBinding(B, FR->getSuperRegion()); + + if (X.second) + return std::make_pair(X.first, + MRMgr.getFieldRegionWithSuper(FR, X.second)); + } + // C++ base object region is another kind of region that we should blast + // through to look for lazy compound value. It is like a field region. + else if (const CXXBaseObjectRegion *baseReg = + dyn_cast<CXXBaseObjectRegion>(R)) { + const std::pair<Store, const MemRegion *> &X = + GetLazyBinding(B, baseReg->getSuperRegion()); + + if (X.second) + return std::make_pair(X.first, + MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second)); + } + // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is + // possible for a valid lazy binding. + return std::make_pair((Store) 0, (const MemRegion *) 0); +} + +SVal RegionStoreManager::RetrieveElement(Store store, + const ElementRegion* R) { + // Check if the region has a binding. + RegionBindings B = GetRegionBindings(store); + if (const Optional<SVal> &V = getDirectBinding(B, R)) + return *V; + + const MemRegion* superR = R->getSuperRegion(); + + // Check if the region is an element region of a string literal. + if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) { + // FIXME: Handle loads from strings where the literal is treated as + // an integer, e.g., *((unsigned int*)"hello") + QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType(); + if (T != Ctx.getCanonicalType(R->getElementType())) + return UnknownVal(); + + const StringLiteral *Str = StrR->getStringLiteral(); + SVal Idx = R->getIndex(); + if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) { + int64_t i = CI->getValue().getSExtValue(); + int64_t byteLength = Str->getByteLength(); + // Technically, only i == byteLength is guaranteed to be null. + // However, such overflows should be caught before reaching this point; + // the only time such an access would be made is if a string literal was + // used to initialize a larger array. + char c = (i >= byteLength) ? '\0' : Str->getString()[i]; + return svalBuilder.makeIntVal(c, T); + } + } + + // Check for loads from a code text region. For such loads, just give up. + if (isa<CodeTextRegion>(superR)) + return UnknownVal(); + + // Handle the case where we are indexing into a larger scalar object. + // For example, this handles: + // int x = ... + // char *y = &x; + // return *y; + // FIXME: This is a hack, and doesn't do anything really intelligent yet. + const RegionRawOffset &O = R->getAsArrayOffset(); + if (const TypedRegion *baseR = dyn_cast_or_null<TypedRegion>(O.getRegion())) { + QualType baseT = baseR->getValueType(); + if (baseT->isScalarType()) { + QualType elemT = R->getElementType(); + if (elemT->isScalarType()) { + if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) { + if (const Optional<SVal> &V = getDirectBinding(B, superR)) { + if (SymbolRef parentSym = V->getAsSymbol()) + return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); + + if (V->isUnknownOrUndef()) + return *V; + // Other cases: give up. We are indexing into a larger object + // that has some value, but we don't know how to handle that yet. + return UnknownVal(); + } + } + } + } + } + return RetrieveFieldOrElementCommon(store, R, R->getElementType(), superR); +} + +SVal RegionStoreManager::RetrieveField(Store store, + const FieldRegion* R) { + + // Check if the region has a binding. + RegionBindings B = GetRegionBindings(store); + if (const Optional<SVal> &V = getDirectBinding(B, R)) + return *V; + + QualType Ty = R->getValueType(); + return RetrieveFieldOrElementCommon(store, R, Ty, R->getSuperRegion()); +} + +Optional<SVal> +RegionStoreManager::RetrieveDerivedDefaultValue(RegionBindings B, + const MemRegion *superR, + const TypedRegion *R, + QualType Ty) { + + if (const Optional<SVal> &D = getDefaultBinding(B, superR)) { + if (SymbolRef parentSym = D->getAsSymbol()) + return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); + + if (D->isZeroConstant()) + return svalBuilder.makeZeroVal(Ty); + + if (D->isUnknownOrUndef()) + return *D; + + assert(0 && "Unknown default value"); + } + + return Optional<SVal>(); +} + +SVal RegionStoreManager::RetrieveFieldOrElementCommon(Store store, + const TypedRegion *R, + QualType Ty, + const MemRegion *superR) { + + // At this point we have already checked in either RetrieveElement or + // RetrieveField if 'R' has a direct binding. + + RegionBindings B = GetRegionBindings(store); + + while (superR) { + if (const Optional<SVal> &D = + RetrieveDerivedDefaultValue(B, superR, R, Ty)) + return *D; + + // If our super region is a field or element itself, walk up the region + // hierarchy to see if there is a default value installed in an ancestor. + if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) { + superR = SR->getSuperRegion(); + continue; + } + break; + } + + // Lazy binding? + Store lazyBindingStore = NULL; + const MemRegion *lazyBindingRegion = NULL; + llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R); + + if (lazyBindingRegion) { + if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion)) + return RetrieveElement(lazyBindingStore, ER); + return RetrieveField(lazyBindingStore, + cast<FieldRegion>(lazyBindingRegion)); + } + + if (R->hasStackNonParametersStorage()) { + if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { + // Currently we don't reason specially about Clang-style vectors. Check + // if superR is a vector and if so return Unknown. + if (const TypedRegion *typedSuperR = dyn_cast<TypedRegion>(superR)) { + if (typedSuperR->getValueType()->isVectorType()) + return UnknownVal(); + } + + // FIXME: We also need to take ElementRegions with symbolic indexes into + // account. + if (!ER->getIndex().isConstant()) + return UnknownVal(); + } + + return UndefinedVal(); + } + + // All other values are symbolic. + return svalBuilder.getRegionValueSymbolVal(R); +} + +SVal RegionStoreManager::RetrieveObjCIvar(Store store, const ObjCIvarRegion* R){ + + // Check if the region has a binding. + RegionBindings B = GetRegionBindings(store); + + if (const Optional<SVal> &V = getDirectBinding(B, R)) + return *V; + + const MemRegion *superR = R->getSuperRegion(); + + // Check if the super region has a default binding. + if (const Optional<SVal> &V = getDefaultBinding(B, superR)) { + if (SymbolRef parentSym = V->getAsSymbol()) + return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); + + // Other cases: give up. + return UnknownVal(); + } + + return RetrieveLazySymbol(R); +} + +SVal RegionStoreManager::RetrieveVar(Store store, const VarRegion *R) { + + // Check if the region has a binding. + RegionBindings B = GetRegionBindings(store); + + if (const Optional<SVal> &V = getDirectBinding(B, R)) + return *V; + + // Lazily derive a value for the VarRegion. + const VarDecl *VD = R->getDecl(); + QualType T = VD->getType(); + const MemSpaceRegion *MS = R->getMemorySpace(); + + if (isa<UnknownSpaceRegion>(MS) || + isa<StackArgumentsSpaceRegion>(MS)) + return svalBuilder.getRegionValueSymbolVal(R); + + if (isa<GlobalsSpaceRegion>(MS)) { + if (isa<NonStaticGlobalSpaceRegion>(MS)) { + // Is 'VD' declared constant? If so, retrieve the constant value. + QualType CT = Ctx.getCanonicalType(T); + if (CT.isConstQualified()) { + const Expr *Init = VD->getInit(); + // Do the null check first, as we want to call 'IgnoreParenCasts'. + if (Init) + if (const IntegerLiteral *IL = + dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) { + const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL); + return svalBuilder.evalCast(V, Init->getType(), IL->getType()); + } + } + + if (const Optional<SVal> &V = RetrieveDerivedDefaultValue(B, MS, R, CT)) + return V.getValue(); + + return svalBuilder.getRegionValueSymbolVal(R); + } + + if (T->isIntegerType()) + return svalBuilder.makeIntVal(0, T); + if (T->isPointerType()) + return svalBuilder.makeNull(); + + return UnknownVal(); + } + + return UndefinedVal(); +} + +SVal RegionStoreManager::RetrieveLazySymbol(const TypedRegion *R) { + // All other values are symbolic. + return svalBuilder.getRegionValueSymbolVal(R); +} + +SVal RegionStoreManager::RetrieveStruct(Store store, const TypedRegion* R) { + QualType T = R->getValueType(); + assert(T->isStructureOrClassType()); + return svalBuilder.makeLazyCompoundVal(store, R); +} + +SVal RegionStoreManager::RetrieveArray(Store store, const TypedRegion * R) { + assert(Ctx.getAsConstantArrayType(R->getValueType())); + return svalBuilder.makeLazyCompoundVal(store, R); +} + +//===----------------------------------------------------------------------===// +// Binding values to regions. +//===----------------------------------------------------------------------===// + +Store RegionStoreManager::Remove(Store store, Loc L) { + if (isa<loc::MemRegionVal>(L)) + if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion()) + return removeBinding(GetRegionBindings(store), R).getRoot(); + + return store; +} + +Store RegionStoreManager::Bind(Store store, Loc L, SVal V) { + if (isa<loc::ConcreteInt>(L)) + return store; + + // If we get here, the location should be a region. + const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion(); + + // Check if the region is a struct region. + if (const TypedRegion* TR = dyn_cast<TypedRegion>(R)) + if (TR->getValueType()->isStructureOrClassType()) + return BindStruct(store, TR, V); + + if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { + if (ER->getIndex().isZeroConstant()) { + if (const TypedRegion *superR = + dyn_cast<TypedRegion>(ER->getSuperRegion())) { + QualType superTy = superR->getValueType(); + // For now, just invalidate the fields of the struct/union/class. + // This is for test rdar_test_7185607 in misc-ps-region-store.m. + // FIXME: Precisely handle the fields of the record. + if (superTy->isStructureOrClassType()) + return KillStruct(store, superR, UnknownVal()); + } + } + } + else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) { + // Binding directly to a symbolic region should be treated as binding + // to element 0. + QualType T = SR->getSymbol()->getType(Ctx); + + // FIXME: Is this the right way to handle symbols that are references? + if (const PointerType *PT = T->getAs<PointerType>()) + T = PT->getPointeeType(); + else + T = T->getAs<ReferenceType>()->getPointeeType(); + + R = GetElementZeroRegion(SR, T); + } + + // Perform the binding. + RegionBindings B = GetRegionBindings(store); + return addBinding(B, R, BindingKey::Direct, V).getRoot(); +} + +Store RegionStoreManager::BindDecl(Store store, const VarRegion *VR, + SVal InitVal) { + + QualType T = VR->getDecl()->getType(); + + if (T->isArrayType()) + return BindArray(store, VR, InitVal); + if (T->isStructureOrClassType()) + return BindStruct(store, VR, InitVal); + + return Bind(store, svalBuilder.makeLoc(VR), InitVal); +} + +// FIXME: this method should be merged into Bind(). +Store RegionStoreManager::BindCompoundLiteral(Store store, + const CompoundLiteralExpr *CL, + const LocationContext *LC, + SVal V) { + return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)), + V); +} + + +Store RegionStoreManager::setImplicitDefaultValue(Store store, + const MemRegion *R, + QualType T) { + RegionBindings B = GetRegionBindings(store); + SVal V; + + if (Loc::IsLocType(T)) + V = svalBuilder.makeNull(); + else if (T->isIntegerType()) + V = svalBuilder.makeZeroVal(T); + else if (T->isStructureOrClassType() || T->isArrayType()) { + // Set the default value to a zero constant when it is a structure + // or array. The type doesn't really matter. + V = svalBuilder.makeZeroVal(Ctx.IntTy); + } + else { + return store; + } + + return addBinding(B, R, BindingKey::Default, V).getRoot(); +} + +Store RegionStoreManager::BindArray(Store store, const TypedRegion* R, + SVal Init) { + + const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType())); + QualType ElementTy = AT->getElementType(); + Optional<uint64_t> Size; + + if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT)) + Size = CAT->getSize().getZExtValue(); + + // Check if the init expr is a string literal. + if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) { + const StringRegion *S = cast<StringRegion>(MRV->getRegion()); + + // Treat the string as a lazy compound value. + nonloc::LazyCompoundVal LCV = + cast<nonloc::LazyCompoundVal>(svalBuilder.makeLazyCompoundVal(store, S)); + return CopyLazyBindings(LCV, store, R); + } + + // Handle lazy compound values. + if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init)) + return CopyLazyBindings(*LCV, store, R); + + // Remaining case: explicit compound values. + + if (Init.isUnknown()) + return setImplicitDefaultValue(store, R, ElementTy); + + nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init); + nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); + uint64_t i = 0; + + for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) { + // The init list might be shorter than the array length. + if (VI == VE) + break; + + const NonLoc &Idx = svalBuilder.makeArrayIndex(i); + const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx); + + if (ElementTy->isStructureOrClassType()) + store = BindStruct(store, ER, *VI); + else if (ElementTy->isArrayType()) + store = BindArray(store, ER, *VI); + else + store = Bind(store, svalBuilder.makeLoc(ER), *VI); + } + + // If the init list is shorter than the array length, set the + // array default value. + if (Size.hasValue() && i < Size.getValue()) + store = setImplicitDefaultValue(store, R, ElementTy); + + return store; +} + +Store RegionStoreManager::BindStruct(Store store, const TypedRegion* R, + SVal V) { + + if (!Features.supportsFields()) + return store; + + QualType T = R->getValueType(); + assert(T->isStructureOrClassType()); + + const RecordType* RT = T->getAs<RecordType>(); + RecordDecl* RD = RT->getDecl(); + + if (!RD->isDefinition()) + return store; + + // Handle lazy compound values. + if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V)) + return CopyLazyBindings(*LCV, store, R); + + // We may get non-CompoundVal accidentally due to imprecise cast logic or + // that we are binding symbolic struct value. Kill the field values, and if + // the value is symbolic go and bind it as a "default" binding. + if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) { + SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal(); + return KillStruct(store, R, SV); + } + + nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V); + nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); + + RecordDecl::field_iterator FI, FE; + + for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI, ++VI) { + + if (VI == VE) + break; + + QualType FTy = (*FI)->getType(); + const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); + + if (FTy->isArrayType()) + store = BindArray(store, FR, *VI); + else if (FTy->isStructureOrClassType()) + store = BindStruct(store, FR, *VI); + else + store = Bind(store, svalBuilder.makeLoc(FR), *VI); + } + + // There may be fewer values in the initialize list than the fields of struct. + if (FI != FE) { + RegionBindings B = GetRegionBindings(store); + B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false)); + store = B.getRoot(); + } + + return store; +} + +Store RegionStoreManager::KillStruct(Store store, const TypedRegion* R, + SVal DefaultVal) { + BindingKey key = BindingKey::Make(R, BindingKey::Default); + + // The BindingKey may be "invalid" if we cannot handle the region binding + // explicitly. One example is something like array[index], where index + // is a symbolic value. In such cases, we want to invalidate the entire + // array, as the index assignment could have been to any element. In + // the case of nested symbolic indices, we need to march up the region + // hierarchy untile we reach a region whose binding we can reason about. + const SubRegion *subReg = R; + + while (!key.isValid()) { + if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) { + subReg = tmp; + key = BindingKey::Make(tmp, BindingKey::Default); + } + else + break; + } + + // Remove the old bindings, using 'subReg' as the root of all regions + // we will invalidate. + RegionBindings B = GetRegionBindings(store); + llvm::OwningPtr<RegionStoreSubRegionMap> + SubRegions(getRegionStoreSubRegionMap(store)); + RemoveSubRegionBindings(B, subReg, *SubRegions); + + // Set the default value of the struct region to "unknown". + if (!key.isValid()) + return B.getRoot(); + + return addBinding(B, key, DefaultVal).getRoot(); +} + +Store RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V, + Store store, const TypedRegion *R) { + + // Nuke the old bindings stemming from R. + RegionBindings B = GetRegionBindings(store); + + llvm::OwningPtr<RegionStoreSubRegionMap> + SubRegions(getRegionStoreSubRegionMap(store)); + + // B and DVM are updated after the call to RemoveSubRegionBindings. + RemoveSubRegionBindings(B, R, *SubRegions.get()); + + // Now copy the bindings. This amounts to just binding 'V' to 'R'. This + // results in a zero-copy algorithm. + return addBinding(B, R, BindingKey::Direct, V).getRoot(); +} + +//===----------------------------------------------------------------------===// +// "Raw" retrievals and bindings. +//===----------------------------------------------------------------------===// + + +RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K, + SVal V) { + if (!K.isValid()) + return B; + return RBFactory.add(B, K, V); +} + +RegionBindings RegionStoreManager::addBinding(RegionBindings B, + const MemRegion *R, + BindingKey::Kind k, SVal V) { + return addBinding(B, BindingKey::Make(R, k), V); +} + +const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) { + if (!K.isValid()) + return NULL; + return B.lookup(K); +} + +const SVal *RegionStoreManager::lookup(RegionBindings B, + const MemRegion *R, + BindingKey::Kind k) { + return lookup(B, BindingKey::Make(R, k)); +} + +RegionBindings RegionStoreManager::removeBinding(RegionBindings B, + BindingKey K) { + if (!K.isValid()) + return B; + return RBFactory.remove(B, K); +} + +RegionBindings RegionStoreManager::removeBinding(RegionBindings B, + const MemRegion *R, + BindingKey::Kind k){ + return removeBinding(B, BindingKey::Make(R, k)); +} + +//===----------------------------------------------------------------------===// +// State pruning. +//===----------------------------------------------------------------------===// + +namespace { +class removeDeadBindingsWorker : + public ClusterAnalysis<removeDeadBindingsWorker> { + llvm::SmallVector<const SymbolicRegion*, 12> Postponed; + SymbolReaper &SymReaper; + const StackFrameContext *CurrentLCtx; + +public: + removeDeadBindingsWorker(RegionStoreManager &rm, GRStateManager &stateMgr, + RegionBindings b, SymbolReaper &symReaper, + const StackFrameContext *LCtx) + : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b, + /* includeGlobals = */ false), + SymReaper(symReaper), CurrentLCtx(LCtx) {} + + // Called by ClusterAnalysis. + void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C); + void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E); + + void VisitBindingKey(BindingKey K); + bool UpdatePostponed(); + void VisitBinding(SVal V); +}; +} + +void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, + RegionCluster &C) { + + if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) { + if (SymReaper.isLive(VR)) + AddToWorkList(baseR, C); + + return; + } + + if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) { + if (SymReaper.isLive(SR->getSymbol())) + AddToWorkList(SR, C); + else + Postponed.push_back(SR); + + return; + } + + if (isa<NonStaticGlobalSpaceRegion>(baseR)) { + AddToWorkList(baseR, C); + return; + } + + // CXXThisRegion in the current or parent location context is live. + if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) { + const StackArgumentsSpaceRegion *StackReg = + cast<StackArgumentsSpaceRegion>(TR->getSuperRegion()); + const StackFrameContext *RegCtx = StackReg->getStackFrame(); + if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)) + AddToWorkList(TR, C); + } +} + +void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR, + BindingKey *I, BindingKey *E) { + for ( ; I != E; ++I) + VisitBindingKey(*I); +} + +void removeDeadBindingsWorker::VisitBinding(SVal V) { + // Is it a LazyCompoundVal? All referenced regions are live as well. + if (const nonloc::LazyCompoundVal *LCS = + dyn_cast<nonloc::LazyCompoundVal>(&V)) { + + const MemRegion *LazyR = LCS->getRegion(); + RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore()); + for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ + const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion()); + if (baseR && baseR->isSubRegionOf(LazyR)) + VisitBinding(RI.getData()); + } + return; + } + + // If V is a region, then add it to the worklist. + if (const MemRegion *R = V.getAsRegion()) + AddToWorkList(R); + + // Update the set of live symbols. + for (SVal::symbol_iterator SI=V.symbol_begin(), SE=V.symbol_end(); + SI!=SE;++SI) + SymReaper.markLive(*SI); +} + +void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) { + const MemRegion *R = K.getRegion(); + + // Mark this region "live" by adding it to the worklist. This will cause + // use to visit all regions in the cluster (if we haven't visited them + // already). + if (AddToWorkList(R)) { + // Mark the symbol for any live SymbolicRegion as "live". This means we + // should continue to track that symbol. + if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R)) + SymReaper.markLive(SymR->getSymbol()); + + // For BlockDataRegions, enqueue the VarRegions for variables marked + // with __block (passed-by-reference). + // via BlockDeclRefExprs. + if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) { + for (BlockDataRegion::referenced_vars_iterator + RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end(); + RI != RE; ++RI) { + if ((*RI)->getDecl()->getAttr<BlocksAttr>()) + AddToWorkList(*RI); + } + + // No possible data bindings on a BlockDataRegion. + return; + } + } + + // Visit the data binding for K. + if (const SVal *V = RM.lookup(B, K)) + VisitBinding(*V); +} + +bool removeDeadBindingsWorker::UpdatePostponed() { + // See if any postponed SymbolicRegions are actually live now, after + // having done a scan. + bool changed = false; + + for (llvm::SmallVectorImpl<const SymbolicRegion*>::iterator + I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) { + if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) { + if (SymReaper.isLive(SR->getSymbol())) { + changed |= AddToWorkList(SR); + *I = NULL; + } + } + } + + return changed; +} + +Store RegionStoreManager::removeDeadBindings(Store store, + const StackFrameContext *LCtx, + SymbolReaper& SymReaper, + llvm::SmallVectorImpl<const MemRegion*>& RegionRoots) +{ + RegionBindings B = GetRegionBindings(store); + removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx); + W.GenerateClusters(); + + // Enqueue the region roots onto the worklist. + for (llvm::SmallVectorImpl<const MemRegion*>::iterator I=RegionRoots.begin(), + E=RegionRoots.end(); I!=E; ++I) + W.AddToWorkList(*I); + + do W.RunWorkList(); while (W.UpdatePostponed()); + + // We have now scanned the store, marking reachable regions and symbols + // as live. We now remove all the regions that are dead from the store + // as well as update DSymbols with the set symbols that are now dead. + for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) { + const BindingKey &K = I.getKey(); + + // If the cluster has been visited, we know the region has been marked. + if (W.isVisited(K.getRegion())) + continue; + + // Remove the dead entry. + B = removeBinding(B, K); + + // Mark all non-live symbols that this binding references as dead. + if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion())) + SymReaper.maybeDead(SymR->getSymbol()); + + SVal X = I.getData(); + SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); + for (; SI != SE; ++SI) + SymReaper.maybeDead(*SI); + } + + return B.getRoot(); +} + + +Store RegionStoreManager::enterStackFrame(const GRState *state, + const StackFrameContext *frame) { + FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl()); + FunctionDecl::param_const_iterator PI = FD->param_begin(), + PE = FD->param_end(); + Store store = state->getStore(); + + if (CallExpr const *CE = dyn_cast<CallExpr>(frame->getCallSite())) { + CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end(); + + // Copy the arg expression value to the arg variables. We check that + // PI != PE because the actual number of arguments may be different than + // the function declaration. + for (; AI != AE && PI != PE; ++AI, ++PI) { + SVal ArgVal = state->getSVal(*AI); + store = Bind(store, + svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, frame)), ArgVal); + } + } else if (const CXXConstructExpr *CE = + dyn_cast<CXXConstructExpr>(frame->getCallSite())) { + CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(), + AE = CE->arg_end(); + + // Copy the arg expression value to the arg variables. + for (; AI != AE; ++AI, ++PI) { + SVal ArgVal = state->getSVal(*AI); + store = Bind(store, + svalBuilder.makeLoc(MRMgr.getVarRegion(*PI,frame)), ArgVal); + } + } else + assert(isa<CXXDestructorDecl>(frame->getDecl())); + + return store; +} + +//===----------------------------------------------------------------------===// +// Utility methods. +//===----------------------------------------------------------------------===// + +void RegionStoreManager::print(Store store, llvm::raw_ostream& OS, + const char* nl, const char *sep) { + RegionBindings B = GetRegionBindings(store); + OS << "Store (direct and default bindings):" << nl; + + for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) + OS << ' ' << I.getKey() << " : " << I.getData() << nl; +} |