summaryrefslogtreecommitdiff
path: root/examples/ReducedDeformableDemo/ReducedCollide.cpp
blob: dd84946ae69d3349c3beccba407815f541ccab3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/*
 Bullet Continuous Collision Detection and Physics Library
 Copyright (c) 2019 Google Inc. http://bulletphysics.org
 This software is provided 'as-is', without any express or implied warranty.
 In no event will the authors be held liable for any damages arising from the use of this software.
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it freely,
 subject to the following restrictions:
 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 3. This notice may not be removed or altered from any source distribution.
 */

#include "ReducedCollide.h"
///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files.
#include "btBulletDynamicsCommon.h"
#include "BulletSoftBody/btDeformableMultiBodyDynamicsWorld.h"
#include "BulletSoftBody/BulletReducedDeformableBody/btReducedDeformableBody.h"
#include "BulletSoftBody/BulletReducedDeformableBody/btReducedDeformableBodyHelpers.h"
#include "BulletSoftBody/BulletReducedDeformableBody/btReducedDeformableBodySolver.h"
#include "BulletSoftBody/btSoftBodyRigidBodyCollisionConfiguration.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
#include "../CommonInterfaces/CommonParameterInterface.h"
#include <stdio.h>  //printf debugging

#include "../CommonInterfaces/CommonDeformableBodyBase.h"
#include "../Utils/b3ResourcePath.h"

///The BasicTest shows the contact between volumetric deformable objects and rigid objects.
// static btScalar E = 50;
// static btScalar nu = 0.3;
static btScalar damping_alpha = 0.0;
static btScalar damping_beta = 0.0;
static btScalar COLLIDING_VELOCITY = 4;
static int num_modes = 20;

class ReducedCollide : public CommonDeformableBodyBase
{
public:
    ReducedCollide(struct GUIHelperInterface* helper)
        : CommonDeformableBodyBase(helper)
    {
    }
    virtual ~ReducedCollide()
    {
    }
    void initPhysics();

    void exitPhysics();

	btMultiBody* createFeatherstoneMultiBody_testMultiDof(class btMultiBodyDynamicsWorld* world, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical = false, bool floating = false);
	void addColliders_testMultiDof(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents);

    // TODO: disable pick force, non-interactive for now.
    bool pickBody(const btVector3& rayFromWorld, const btVector3& rayToWorld) {
        return false;
    } 

    void resetCamera()
    {
        // float dist = 20;
        // float pitch = -10;
        float dist = 10;
        float pitch = -5;
        float yaw = 90;
        float targetPos[3] = {0, 0, 0};

        // float dist = 5;
		// float pitch = -35;
		// float yaw = 50;
		// float targetPos[3] = {-3, 2.8, -2.5};
        m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
    }
    
    void Ctor_RbUpStack()
    {
        float mass = 10;

        btCollisionShape* shape = new btBoxShape(btVector3(0.5, 0.5, 0.5));
        // btCollisionShape* shape = new btBoxShape(btVector3(1, 1, 1));
        btVector3 localInertia(0, 0, 0);
		if (mass != 0.f)
			shape->calculateLocalInertia(mass, localInertia);

        btTransform startTransform;
        startTransform.setIdentity();
        startTransform.setOrigin(btVector3(0,-2,0));
        // startTransform.setRotation(btQuaternion(btVector3(1, 0, 1), SIMD_PI / 3.0));
        btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);

		btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, shape, localInertia);
		btRigidBody* body = new btRigidBody(rbInfo);

		m_dynamicsWorld->addRigidBody(body, 1, 1+2);

        body->setActivationState(DISABLE_DEACTIVATION);
        body->setLinearVelocity(btVector3(0, COLLIDING_VELOCITY, 0));
        // body->setFriction(1);
    }

    void rigidBar()
    {
        float mass = 10;

        btCollisionShape* shape = new btBoxShape(btVector3(0.5, 0.25, 2));
        btVector3 localInertia(0, 0, 0);
		if (mass != 0.f)
			shape->calculateLocalInertia(mass, localInertia);

        btTransform startTransform;
        startTransform.setIdentity();
        startTransform.setOrigin(btVector3(0,10,0));
        // startTransform.setRotation(btQuaternion(btVector3(1, 0, 1), SIMD_PI / 3.0));
        btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);

		btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, shape, localInertia);
		btRigidBody* body = new btRigidBody(rbInfo);

		m_dynamicsWorld->addRigidBody(body, 1, 1+2);

        body->setActivationState(DISABLE_DEACTIVATION);
        body->setLinearVelocity(btVector3(0, 0, 0));
        // body->setFriction(0);
    }

    void createGround()
    {
        // float mass = 55;
        float mass = 0;

        btCollisionShape* shape = new btBoxShape(btVector3(10, 2, 10));
        btVector3 localInertia(0, 0, 0);
		if (mass != 0.f)
			shape->calculateLocalInertia(mass, localInertia);

        btTransform startTransform;
        startTransform.setIdentity();
        startTransform.setOrigin(btVector3(0,-2,0));
        // startTransform.setRotation(btQuaternion(btVector3(1, 0, 1), SIMD_PI / 3.0));
        btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);

		btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, shape, localInertia);
		btRigidBody* body = new btRigidBody(rbInfo);

		m_dynamicsWorld->addRigidBody(body, 1, 1+2);

        body->setActivationState(DISABLE_DEACTIVATION);
        body->setLinearVelocity(btVector3(0, 0, 0));
        // body->setFriction(1);
    }
    
    void stepSimulation(float deltaTime)
    {
      float internalTimeStep = 1. / 60.f;
      m_dynamicsWorld->stepSimulation(deltaTime, 1, internalTimeStep);
    }
    
    virtual void renderScene()
    {
        CommonDeformableBodyBase::renderScene();
        btDeformableMultiBodyDynamicsWorld* deformableWorld = getDeformableDynamicsWorld();
        
        for (int i = 0; i < deformableWorld->getSoftBodyArray().size(); i++)
        {
            btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(deformableWorld->getSoftBodyArray()[i]);
            {
                btSoftBodyHelpers::DrawFrame(rsb, deformableWorld->getDebugDrawer());
                btSoftBodyHelpers::Draw(rsb, deformableWorld->getDebugDrawer(), deformableWorld->getDrawFlags()); 
            }

            for (int p = 0; p < rsb->m_contactNodesList.size(); ++p)
            {
                int index = rsb->m_contactNodesList[p];
                deformableWorld->getDebugDrawer()->drawSphere(rsb->m_nodes[index].m_x, 0.2, btVector3(0, 1, 0));
            }
        }
    }
};

void ReducedCollide::initPhysics()
{
    m_guiHelper->setUpAxis(1);

    ///collision configuration contains default setup for memory, collision setup
    m_collisionConfiguration = new btSoftBodyRigidBodyCollisionConfiguration();

    ///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
    m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);

    m_broadphase = new btDbvtBroadphase();
    btReducedDeformableBodySolver* reducedSoftBodySolver = new btReducedDeformableBodySolver();
    btVector3 gravity = btVector3(0, 0, 0);
    reducedSoftBodySolver->setGravity(gravity);

    btDeformableMultiBodyConstraintSolver* sol = new btDeformableMultiBodyConstraintSolver();
    sol->setDeformableSolver(reducedSoftBodySolver);
    m_solver = sol;

    m_dynamicsWorld = new btDeformableMultiBodyDynamicsWorld(m_dispatcher, m_broadphase, sol, m_collisionConfiguration, reducedSoftBodySolver);
    m_dynamicsWorld->setGravity(gravity);
	m_dynamicsWorld->getSolverInfo().m_globalCfm = 1e-3;
    m_dynamicsWorld->getSolverInfo().m_solverMode |= SOLVER_RANDMIZE_ORDER;
    m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);

    // create volumetric reduced deformable body
    {   
        std::string file_path("../../../data/reduced_cube/");
        std::string vtk_file("cube_mesh.vtk");
        btReducedDeformableBody* rsb = btReducedDeformableBodyHelpers::createReducedDeformableObject(
                                            getDeformableDynamicsWorld()->getWorldInfo(),
                                            file_path,
                                            vtk_file,
                                            num_modes,
                                            false);
                                            
        getDeformableDynamicsWorld()->addSoftBody(rsb);
        rsb->getCollisionShape()->setMargin(0.1);
        // rsb->scale(btVector3(0.5, 0.5, 0.5));

        rsb->setStiffnessScale(100);
        rsb->setDamping(damping_alpha, damping_beta);

        rsb->setTotalMass(15);

        btTransform init_transform;
        init_transform.setIdentity();
        init_transform.setOrigin(btVector3(0, 4, 0));
        // init_transform.setRotation(btQuaternion(0, SIMD_PI / 2.0, SIMD_PI / 2.0));
        rsb->transformTo(init_transform);

        rsb->m_cfg.kKHR = 1; // collision hardness with kinematic objects
        rsb->m_cfg.kCHR = 1; // collision hardness with rigid body
        rsb->m_cfg.kDF = 0;
        rsb->m_cfg.collisions = btSoftBody::fCollision::SDF_RD;
        rsb->m_cfg.collisions |= btSoftBody::fCollision::SDF_RDN;
        rsb->m_sleepingThreshold = 0;
        btSoftBodyHelpers::generateBoundaryFaces(rsb);
        
        rsb->setRigidVelocity(btVector3(0, -COLLIDING_VELOCITY, 0));
        // rsb->setRigidAngularVelocity(btVector3(1, 0, 0));
        b3Printf("total mass: %e", rsb->getTotalMass());
    }
    // rigidBar();

    // add a few rigid bodies
    Ctor_RbUpStack();
    
    // create ground
    // createGround();

    // create multibody
    // {
    //     bool damping = false;
    //     bool gyro = true;
    //     int numLinks = 0;
    //     bool spherical = true;  //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
    //     bool multibodyOnly = true;
    //     bool canSleep = false;
    //     bool selfCollide = true;
    //     bool multibodyConstraint = false;
    //     btVector3 linkHalfExtents(0.05, 0.37, 0.1);
    //     btVector3 baseHalfExtents(1, 1, 1);
    //     // btVector3 baseHalfExtents(2.5, 0.5, 2.5);
    //     // btVector3 baseHalfExtents(0.05, 0.37, 0.1);

    //     bool g_floatingBase = true;
    //     // btMultiBody* mbC = createFeatherstoneMultiBody_testMultiDof(m_dynamicsWorld, numLinks, btVector3(0, 4, 0), linkHalfExtents, baseHalfExtents, spherical, g_floatingBase);
    //     btMultiBody* mbC = createFeatherstoneMultiBody_testMultiDof(m_dynamicsWorld, numLinks, btVector3(0.f, 4.f, 0.f), baseHalfExtents, linkHalfExtents, spherical, g_floatingBase);
    //     //mbC->forceMultiDof();							//if !spherical, you can comment this line to check the 1DoF algorithm

    //     mbC->setCanSleep(canSleep);
    //     mbC->setHasSelfCollision(selfCollide);
    //     mbC->setUseGyroTerm(gyro);
    //     //
    //     if (!damping)
    //     {
    //         mbC->setLinearDamping(0.f);
    //         mbC->setAngularDamping(0.f);
    //     }
    //     else
    //     {
    //         mbC->setLinearDamping(0.1f);
    //         mbC->setAngularDamping(0.9f);
    //     }
    //     //
    //     //////////////////////////////////////////////
    //     // if (numLinks > 0)
    //     // {
    //     //     btScalar q0 = 45.f * SIMD_PI / 180.f;
    //     //     if (!spherical)
    //     //     {
    //     //         mbC->setJointPosMultiDof(0, &q0);
    //     //     }
    //     //     else
    //     //     {
    //     //         btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
    //     //         quat0.normalize();
    //     //         mbC->setJointPosMultiDof(0, quat0);
    //     //     }
    //     // }
    //     ///
    //     addColliders_testMultiDof(mbC, m_dynamicsWorld, baseHalfExtents, linkHalfExtents);
    // }

    getDeformableDynamicsWorld()->setImplicit(false);
    getDeformableDynamicsWorld()->setLineSearch(false);
    getDeformableDynamicsWorld()->setUseProjection(false);
    getDeformableDynamicsWorld()->getSolverInfo().m_friction = 1;
    getDeformableDynamicsWorld()->getSolverInfo().m_deformable_erp = 0.2;
    getDeformableDynamicsWorld()->getSolverInfo().m_deformable_cfm = 0.2;
    getDeformableDynamicsWorld()->getSolverInfo().m_deformable_maxErrorReduction = btScalar(200);
    getDeformableDynamicsWorld()->getSolverInfo().m_leastSquaresResidualThreshold = 1e-3;
    getDeformableDynamicsWorld()->getSolverInfo().m_splitImpulse = false;
    getDeformableDynamicsWorld()->getSolverInfo().m_numIterations = 100;
    m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
    
    // {
    //     SliderParams slider("Young's Modulus", &E);
    //     slider.m_minVal = 0;
    //     slider.m_maxVal = 2000;
    //     if (m_guiHelper->getParameterInterface())
    //         m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
    // }
    // {
    //     SliderParams slider("Poisson Ratio", &nu);
    //     slider.m_minVal = 0.05;
    //     slider.m_maxVal = 0.49;
    //     if (m_guiHelper->getParameterInterface())
    //         m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
    // }
    // {
    //     SliderParams slider("Mass Damping", &damping_alpha);
    //     slider.m_minVal = 0;
    //     slider.m_maxVal = 1;
    //     if (m_guiHelper->getParameterInterface())
    //         m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
    // }
    // {
    //     SliderParams slider("Stiffness Damping", &damping_beta);
    //     slider.m_minVal = 0;
    //     slider.m_maxVal = 0.1;
    //     if (m_guiHelper->getParameterInterface())
    //         m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
    // }
}

void ReducedCollide::exitPhysics()
{
    //cleanup in the reverse order of creation/initialization
    removePickingConstraint();
    //remove the rigidbodies from the dynamics world and delete them
    int i;
    for (i = m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--)
    {
        btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
        btRigidBody* body = btRigidBody::upcast(obj);
        if (body && body->getMotionState())
        {
            delete body->getMotionState();
        }
        m_dynamicsWorld->removeCollisionObject(obj);
        delete obj;
    }
    // delete forces
    for (int j = 0; j < m_forces.size(); j++)
    {
        btDeformableLagrangianForce* force = m_forces[j];
        delete force;
    }
    m_forces.clear();
    
    //delete collision shapes
    for (int j = 0; j < m_collisionShapes.size(); j++)
    {
        btCollisionShape* shape = m_collisionShapes[j];
        delete shape;
    }
    m_collisionShapes.clear();

    delete m_dynamicsWorld;

    delete m_solver;

    delete m_broadphase;

    delete m_dispatcher;

    delete m_collisionConfiguration;
}

btMultiBody* ReducedCollide::createFeatherstoneMultiBody_testMultiDof(btMultiBodyDynamicsWorld* pWorld, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical, bool floating)
{
	//init the base
	btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
	float baseMass = 10;

	if (baseMass)
	{
		btCollisionShape* pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
		pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag);
		delete pTempBox;
	}

	bool canSleep = false;

	btMultiBody* pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep);

	btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
	// btQuaternion baseOriQuat(btVector3(0, 0, 1), -SIMD_PI / 6.0);
	pMultiBody->setBasePos(basePosition);
	pMultiBody->setWorldToBaseRot(baseOriQuat);
	btVector3 vel(0, 0, 0);

	//init the links
	btVector3 hingeJointAxis(1, 0, 0);
	float linkMass = 1.f;
	btVector3 linkInertiaDiag(0.f, 0.f, 0.f);

	btCollisionShape* pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));
	pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag);
	delete pTempBox;

	//y-axis assumed up
	btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0);                      //par body's COM to cur body's COM offset
	btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0);                         //cur body's COM to cur body's PIV offset
	btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom;  //par body's COM to cur body's PIV offset

	//////
	btScalar q0 = 0.f * SIMD_PI / 180.f;
	btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
	quat0.normalize();
	/////

	for (int i = 0; i < numLinks; ++i)
	{
		if (!spherical)
			pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, true);
		else
			//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
			pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, true);
	}

	pMultiBody->finalizeMultiDof();
    pMultiBody->setBaseVel(vel);

	///
	pWorld->addMultiBody(pMultiBody);
	///
	return pMultiBody;
}

void ReducedCollide::addColliders_testMultiDof(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents)
{
	btAlignedObjectArray<btQuaternion> world_to_local;
	world_to_local.resize(pMultiBody->getNumLinks() + 1);

	btAlignedObjectArray<btVector3> local_origin;
	local_origin.resize(pMultiBody->getNumLinks() + 1);
	world_to_local[0] = pMultiBody->getWorldToBaseRot();
	local_origin[0] = pMultiBody->getBasePos();

	{
		//	float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
		btScalar quat[4] = {-world_to_local[0].x(), -world_to_local[0].y(), -world_to_local[0].z(), world_to_local[0].w()};

		if (1)
		{
			btCollisionShape* box = new btBoxShape(baseHalfExtents);
			btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1);
			col->setCollisionShape(box);

			btTransform tr;
			tr.setIdentity();
			tr.setOrigin(local_origin[0]);
			tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
			col->setWorldTransform(tr);

			pWorld->addCollisionObject(col, 2, 1 + 2);

			col->setFriction(1);
			pMultiBody->setBaseCollider(col);
		}
	}

	for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
	{
		const int parent = pMultiBody->getParent(i);
		world_to_local[i + 1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent + 1];
		local_origin[i + 1] = local_origin[parent + 1] + (quatRotate(world_to_local[i + 1].inverse(), pMultiBody->getRVector(i)));
	}

	for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
	{
		btVector3 posr = local_origin[i + 1];
		//	float pos[4]={posr.x(),posr.y(),posr.z(),1};

		btScalar quat[4] = {-world_to_local[i + 1].x(), -world_to_local[i + 1].y(), -world_to_local[i + 1].z(), world_to_local[i + 1].w()};

		btCollisionShape* box = new btBoxShape(linkHalfExtents);
		btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);

		col->setCollisionShape(box);
		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(posr);
		tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
		col->setWorldTransform(tr);
		col->setFriction(1);
		pWorld->addCollisionObject(col, 2, 1 + 2);

		pMultiBody->getLink(i).m_collider = col;
	}
}



class CommonExampleInterface* ReducedCollideCreateFunc(struct CommonExampleOptions& options)
{
    return new ReducedCollide(options.m_guiHelper);
}