summaryrefslogtreecommitdiff
path: root/bfd/elflink.c
diff options
context:
space:
mode:
Diffstat (limited to 'bfd/elflink.c')
-rw-r--r--bfd/elflink.c13064
1 files changed, 13064 insertions, 0 deletions
diff --git a/bfd/elflink.c b/bfd/elflink.c
new file mode 100644
index 0000000..94ab762
--- /dev/null
+++ b/bfd/elflink.c
@@ -0,0 +1,13064 @@
+/* ELF linking support for BFD.
+ Copyright (C) 1995-2014 Free Software Foundation, Inc.
+
+ This file is part of BFD, the Binary File Descriptor library.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
+ MA 02110-1301, USA. */
+
+#include "sysdep.h"
+#include "bfd.h"
+#include "bfdlink.h"
+#include "libbfd.h"
+#define ARCH_SIZE 0
+#include "elf-bfd.h"
+#include "safe-ctype.h"
+#include "libiberty.h"
+#include "objalloc.h"
+
+/* This struct is used to pass information to routines called via
+ elf_link_hash_traverse which must return failure. */
+
+struct elf_info_failed
+{
+ struct bfd_link_info *info;
+ bfd_boolean failed;
+};
+
+/* This structure is used to pass information to
+ _bfd_elf_link_find_version_dependencies. */
+
+struct elf_find_verdep_info
+{
+ /* General link information. */
+ struct bfd_link_info *info;
+ /* The number of dependencies. */
+ unsigned int vers;
+ /* Whether we had a failure. */
+ bfd_boolean failed;
+};
+
+static bfd_boolean _bfd_elf_fix_symbol_flags
+ (struct elf_link_hash_entry *, struct elf_info_failed *);
+
+/* Define a symbol in a dynamic linkage section. */
+
+struct elf_link_hash_entry *
+_bfd_elf_define_linkage_sym (bfd *abfd,
+ struct bfd_link_info *info,
+ asection *sec,
+ const char *name)
+{
+ struct elf_link_hash_entry *h;
+ struct bfd_link_hash_entry *bh;
+ const struct elf_backend_data *bed;
+
+ h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
+ if (h != NULL)
+ {
+ /* Zap symbol defined in an as-needed lib that wasn't linked.
+ This is a symptom of a larger problem: Absolute symbols
+ defined in shared libraries can't be overridden, because we
+ lose the link to the bfd which is via the symbol section. */
+ h->root.type = bfd_link_hash_new;
+ }
+
+ bh = &h->root;
+ if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
+ sec, 0, NULL, FALSE,
+ get_elf_backend_data (abfd)->collect,
+ &bh))
+ return NULL;
+ h = (struct elf_link_hash_entry *) bh;
+ h->def_regular = 1;
+ h->non_elf = 0;
+ h->type = STT_OBJECT;
+ if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
+ h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
+
+ bed = get_elf_backend_data (abfd);
+ (*bed->elf_backend_hide_symbol) (info, h, TRUE);
+ return h;
+}
+
+bfd_boolean
+_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
+{
+ flagword flags;
+ asection *s;
+ struct elf_link_hash_entry *h;
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ struct elf_link_hash_table *htab = elf_hash_table (info);
+
+ /* This function may be called more than once. */
+ s = bfd_get_linker_section (abfd, ".got");
+ if (s != NULL)
+ return TRUE;
+
+ flags = bed->dynamic_sec_flags;
+
+ s = bfd_make_section_anyway_with_flags (abfd,
+ (bed->rela_plts_and_copies_p
+ ? ".rela.got" : ".rel.got"),
+ (bed->dynamic_sec_flags
+ | SEC_READONLY));
+ if (s == NULL
+ || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
+ return FALSE;
+ htab->srelgot = s;
+
+ s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
+ if (s == NULL
+ || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
+ return FALSE;
+ htab->sgot = s;
+
+ if (bed->want_got_plt)
+ {
+ s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
+ if (s == NULL
+ || !bfd_set_section_alignment (abfd, s,
+ bed->s->log_file_align))
+ return FALSE;
+ htab->sgotplt = s;
+ }
+
+ /* The first bit of the global offset table is the header. */
+ s->size += bed->got_header_size;
+
+ if (bed->want_got_sym)
+ {
+ /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
+ (or .got.plt) section. We don't do this in the linker script
+ because we don't want to define the symbol if we are not creating
+ a global offset table. */
+ h = _bfd_elf_define_linkage_sym (abfd, info, s,
+ "_GLOBAL_OFFSET_TABLE_");
+ elf_hash_table (info)->hgot = h;
+ if (h == NULL)
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+/* Create a strtab to hold the dynamic symbol names. */
+static bfd_boolean
+_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
+{
+ struct elf_link_hash_table *hash_table;
+
+ hash_table = elf_hash_table (info);
+ if (hash_table->dynobj == NULL)
+ hash_table->dynobj = abfd;
+
+ if (hash_table->dynstr == NULL)
+ {
+ hash_table->dynstr = _bfd_elf_strtab_init ();
+ if (hash_table->dynstr == NULL)
+ return FALSE;
+ }
+ return TRUE;
+}
+
+/* Create some sections which will be filled in with dynamic linking
+ information. ABFD is an input file which requires dynamic sections
+ to be created. The dynamic sections take up virtual memory space
+ when the final executable is run, so we need to create them before
+ addresses are assigned to the output sections. We work out the
+ actual contents and size of these sections later. */
+
+bfd_boolean
+_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
+{
+ flagword flags;
+ asection *s;
+ const struct elf_backend_data *bed;
+ struct elf_link_hash_entry *h;
+
+ if (! is_elf_hash_table (info->hash))
+ return FALSE;
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ return TRUE;
+
+ if (!_bfd_elf_link_create_dynstrtab (abfd, info))
+ return FALSE;
+
+ abfd = elf_hash_table (info)->dynobj;
+ bed = get_elf_backend_data (abfd);
+
+ flags = bed->dynamic_sec_flags;
+
+ /* A dynamically linked executable has a .interp section, but a
+ shared library does not. */
+ if (info->executable)
+ {
+ s = bfd_make_section_anyway_with_flags (abfd, ".interp",
+ flags | SEC_READONLY);
+ if (s == NULL)
+ return FALSE;
+ }
+
+ /* Create sections to hold version informations. These are removed
+ if they are not needed. */
+ s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
+ flags | SEC_READONLY);
+ if (s == NULL
+ || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
+ return FALSE;
+
+ s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
+ flags | SEC_READONLY);
+ if (s == NULL
+ || ! bfd_set_section_alignment (abfd, s, 1))
+ return FALSE;
+
+ s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
+ flags | SEC_READONLY);
+ if (s == NULL
+ || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
+ return FALSE;
+
+ s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
+ flags | SEC_READONLY);
+ if (s == NULL
+ || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
+ return FALSE;
+
+ s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
+ flags | SEC_READONLY);
+ if (s == NULL)
+ return FALSE;
+
+ s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
+ if (s == NULL
+ || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
+ return FALSE;
+
+ /* The special symbol _DYNAMIC is always set to the start of the
+ .dynamic section. We could set _DYNAMIC in a linker script, but we
+ only want to define it if we are, in fact, creating a .dynamic
+ section. We don't want to define it if there is no .dynamic
+ section, since on some ELF platforms the start up code examines it
+ to decide how to initialize the process. */
+ h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
+ elf_hash_table (info)->hdynamic = h;
+ if (h == NULL)
+ return FALSE;
+
+ if (info->emit_hash)
+ {
+ s = bfd_make_section_anyway_with_flags (abfd, ".hash",
+ flags | SEC_READONLY);
+ if (s == NULL
+ || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
+ return FALSE;
+ elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
+ }
+
+ if (info->emit_gnu_hash)
+ {
+ s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
+ flags | SEC_READONLY);
+ if (s == NULL
+ || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
+ return FALSE;
+ /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
+ 4 32-bit words followed by variable count of 64-bit words, then
+ variable count of 32-bit words. */
+ if (bed->s->arch_size == 64)
+ elf_section_data (s)->this_hdr.sh_entsize = 0;
+ else
+ elf_section_data (s)->this_hdr.sh_entsize = 4;
+ }
+
+ /* Let the backend create the rest of the sections. This lets the
+ backend set the right flags. The backend will normally create
+ the .got and .plt sections. */
+ if (bed->elf_backend_create_dynamic_sections == NULL
+ || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
+ return FALSE;
+
+ elf_hash_table (info)->dynamic_sections_created = TRUE;
+
+ return TRUE;
+}
+
+/* Create dynamic sections when linking against a dynamic object. */
+
+bfd_boolean
+_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
+{
+ flagword flags, pltflags;
+ struct elf_link_hash_entry *h;
+ asection *s;
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ struct elf_link_hash_table *htab = elf_hash_table (info);
+
+ /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
+ .rel[a].bss sections. */
+ flags = bed->dynamic_sec_flags;
+
+ pltflags = flags;
+ if (bed->plt_not_loaded)
+ /* We do not clear SEC_ALLOC here because we still want the OS to
+ allocate space for the section; it's just that there's nothing
+ to read in from the object file. */
+ pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
+ else
+ pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
+ if (bed->plt_readonly)
+ pltflags |= SEC_READONLY;
+
+ s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
+ if (s == NULL
+ || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
+ return FALSE;
+ htab->splt = s;
+
+ /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
+ .plt section. */
+ if (bed->want_plt_sym)
+ {
+ h = _bfd_elf_define_linkage_sym (abfd, info, s,
+ "_PROCEDURE_LINKAGE_TABLE_");
+ elf_hash_table (info)->hplt = h;
+ if (h == NULL)
+ return FALSE;
+ }
+
+ s = bfd_make_section_anyway_with_flags (abfd,
+ (bed->rela_plts_and_copies_p
+ ? ".rela.plt" : ".rel.plt"),
+ flags | SEC_READONLY);
+ if (s == NULL
+ || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
+ return FALSE;
+ htab->srelplt = s;
+
+ if (! _bfd_elf_create_got_section (abfd, info))
+ return FALSE;
+
+ if (bed->want_dynbss)
+ {
+ /* The .dynbss section is a place to put symbols which are defined
+ by dynamic objects, are referenced by regular objects, and are
+ not functions. We must allocate space for them in the process
+ image and use a R_*_COPY reloc to tell the dynamic linker to
+ initialize them at run time. The linker script puts the .dynbss
+ section into the .bss section of the final image. */
+ s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
+ (SEC_ALLOC | SEC_LINKER_CREATED));
+ if (s == NULL)
+ return FALSE;
+
+ /* The .rel[a].bss section holds copy relocs. This section is not
+ normally needed. We need to create it here, though, so that the
+ linker will map it to an output section. We can't just create it
+ only if we need it, because we will not know whether we need it
+ until we have seen all the input files, and the first time the
+ main linker code calls BFD after examining all the input files
+ (size_dynamic_sections) the input sections have already been
+ mapped to the output sections. If the section turns out not to
+ be needed, we can discard it later. We will never need this
+ section when generating a shared object, since they do not use
+ copy relocs. */
+ if (! info->shared)
+ {
+ s = bfd_make_section_anyway_with_flags (abfd,
+ (bed->rela_plts_and_copies_p
+ ? ".rela.bss" : ".rel.bss"),
+ flags | SEC_READONLY);
+ if (s == NULL
+ || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
+ return FALSE;
+ }
+ }
+
+ return TRUE;
+}
+
+/* Record a new dynamic symbol. We record the dynamic symbols as we
+ read the input files, since we need to have a list of all of them
+ before we can determine the final sizes of the output sections.
+ Note that we may actually call this function even though we are not
+ going to output any dynamic symbols; in some cases we know that a
+ symbol should be in the dynamic symbol table, but only if there is
+ one. */
+
+bfd_boolean
+bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
+ struct elf_link_hash_entry *h)
+{
+ if (h->dynindx == -1)
+ {
+ struct elf_strtab_hash *dynstr;
+ char *p;
+ const char *name;
+ bfd_size_type indx;
+
+ /* XXX: The ABI draft says the linker must turn hidden and
+ internal symbols into STB_LOCAL symbols when producing the
+ DSO. However, if ld.so honors st_other in the dynamic table,
+ this would not be necessary. */
+ switch (ELF_ST_VISIBILITY (h->other))
+ {
+ case STV_INTERNAL:
+ case STV_HIDDEN:
+ if (h->root.type != bfd_link_hash_undefined
+ && h->root.type != bfd_link_hash_undefweak)
+ {
+ h->forced_local = 1;
+ if (!elf_hash_table (info)->is_relocatable_executable)
+ return TRUE;
+ }
+
+ default:
+ break;
+ }
+
+ h->dynindx = elf_hash_table (info)->dynsymcount;
+ ++elf_hash_table (info)->dynsymcount;
+
+ dynstr = elf_hash_table (info)->dynstr;
+ if (dynstr == NULL)
+ {
+ /* Create a strtab to hold the dynamic symbol names. */
+ elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
+ if (dynstr == NULL)
+ return FALSE;
+ }
+
+ /* We don't put any version information in the dynamic string
+ table. */
+ name = h->root.root.string;
+ p = strchr (name, ELF_VER_CHR);
+ if (p != NULL)
+ /* We know that the p points into writable memory. In fact,
+ there are only a few symbols that have read-only names, being
+ those like _GLOBAL_OFFSET_TABLE_ that are created specially
+ by the backends. Most symbols will have names pointing into
+ an ELF string table read from a file, or to objalloc memory. */
+ *p = 0;
+
+ indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
+
+ if (p != NULL)
+ *p = ELF_VER_CHR;
+
+ if (indx == (bfd_size_type) -1)
+ return FALSE;
+ h->dynstr_index = indx;
+ }
+
+ return TRUE;
+}
+
+/* Mark a symbol dynamic. */
+
+static void
+bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
+ struct elf_link_hash_entry *h,
+ Elf_Internal_Sym *sym)
+{
+ struct bfd_elf_dynamic_list *d = info->dynamic_list;
+
+ /* It may be called more than once on the same H. */
+ if(h->dynamic || info->relocatable)
+ return;
+
+ if ((info->dynamic_data
+ && (h->type == STT_OBJECT
+ || (sym != NULL
+ && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
+ || (d != NULL
+ && h->root.type == bfd_link_hash_new
+ && (*d->match) (&d->head, NULL, h->root.root.string)))
+ h->dynamic = 1;
+}
+
+/* Record an assignment to a symbol made by a linker script. We need
+ this in case some dynamic object refers to this symbol. */
+
+bfd_boolean
+bfd_elf_record_link_assignment (bfd *output_bfd,
+ struct bfd_link_info *info,
+ const char *name,
+ bfd_boolean provide,
+ bfd_boolean hidden)
+{
+ struct elf_link_hash_entry *h, *hv;
+ struct elf_link_hash_table *htab;
+ const struct elf_backend_data *bed;
+
+ if (!is_elf_hash_table (info->hash))
+ return TRUE;
+
+ htab = elf_hash_table (info);
+ h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
+ if (h == NULL)
+ return provide;
+
+ switch (h->root.type)
+ {
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ case bfd_link_hash_common:
+ break;
+ case bfd_link_hash_undefweak:
+ case bfd_link_hash_undefined:
+ /* Since we're defining the symbol, don't let it seem to have not
+ been defined. record_dynamic_symbol and size_dynamic_sections
+ may depend on this. */
+ h->root.type = bfd_link_hash_new;
+ if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
+ bfd_link_repair_undef_list (&htab->root);
+ break;
+ case bfd_link_hash_new:
+ bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
+ h->non_elf = 0;
+ break;
+ case bfd_link_hash_indirect:
+ /* We had a versioned symbol in a dynamic library. We make the
+ the versioned symbol point to this one. */
+ bed = get_elf_backend_data (output_bfd);
+ hv = h;
+ while (hv->root.type == bfd_link_hash_indirect
+ || hv->root.type == bfd_link_hash_warning)
+ hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
+ /* We don't need to update h->root.u since linker will set them
+ later. */
+ h->root.type = bfd_link_hash_undefined;
+ hv->root.type = bfd_link_hash_indirect;
+ hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
+ (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
+ break;
+ case bfd_link_hash_warning:
+ abort ();
+ break;
+ }
+
+ /* If this symbol is being provided by the linker script, and it is
+ currently defined by a dynamic object, but not by a regular
+ object, then mark it as undefined so that the generic linker will
+ force the correct value. */
+ if (provide
+ && h->def_dynamic
+ && !h->def_regular)
+ h->root.type = bfd_link_hash_undefined;
+
+ /* If this symbol is not being provided by the linker script, and it is
+ currently defined by a dynamic object, but not by a regular object,
+ then clear out any version information because the symbol will not be
+ associated with the dynamic object any more. */
+ if (!provide
+ && h->def_dynamic
+ && !h->def_regular)
+ h->verinfo.verdef = NULL;
+
+ h->def_regular = 1;
+
+ if (hidden)
+ {
+ bed = get_elf_backend_data (output_bfd);
+ if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
+ h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
+ (*bed->elf_backend_hide_symbol) (info, h, TRUE);
+ }
+
+ /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
+ and executables. */
+ if (!info->relocatable
+ && h->dynindx != -1
+ && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
+ || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
+ h->forced_local = 1;
+
+ if ((h->def_dynamic
+ || h->ref_dynamic
+ || info->shared
+ || (info->executable && elf_hash_table (info)->is_relocatable_executable))
+ && h->dynindx == -1)
+ {
+ if (! bfd_elf_link_record_dynamic_symbol (info, h))
+ return FALSE;
+
+ /* If this is a weak defined symbol, and we know a corresponding
+ real symbol from the same dynamic object, make sure the real
+ symbol is also made into a dynamic symbol. */
+ if (h->u.weakdef != NULL
+ && h->u.weakdef->dynindx == -1)
+ {
+ if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
+ return FALSE;
+ }
+ }
+
+ return TRUE;
+}
+
+/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
+ success, and 2 on a failure caused by attempting to record a symbol
+ in a discarded section, eg. a discarded link-once section symbol. */
+
+int
+bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
+ bfd *input_bfd,
+ long input_indx)
+{
+ bfd_size_type amt;
+ struct elf_link_local_dynamic_entry *entry;
+ struct elf_link_hash_table *eht;
+ struct elf_strtab_hash *dynstr;
+ unsigned long dynstr_index;
+ char *name;
+ Elf_External_Sym_Shndx eshndx;
+ char esym[sizeof (Elf64_External_Sym)];
+
+ if (! is_elf_hash_table (info->hash))
+ return 0;
+
+ /* See if the entry exists already. */
+ for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
+ if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
+ return 1;
+
+ amt = sizeof (*entry);
+ entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
+ if (entry == NULL)
+ return 0;
+
+ /* Go find the symbol, so that we can find it's name. */
+ if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
+ 1, input_indx, &entry->isym, esym, &eshndx))
+ {
+ bfd_release (input_bfd, entry);
+ return 0;
+ }
+
+ if (entry->isym.st_shndx != SHN_UNDEF
+ && entry->isym.st_shndx < SHN_LORESERVE)
+ {
+ asection *s;
+
+ s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
+ if (s == NULL || bfd_is_abs_section (s->output_section))
+ {
+ /* We can still bfd_release here as nothing has done another
+ bfd_alloc. We can't do this later in this function. */
+ bfd_release (input_bfd, entry);
+ return 2;
+ }
+ }
+
+ name = (bfd_elf_string_from_elf_section
+ (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
+ entry->isym.st_name));
+
+ dynstr = elf_hash_table (info)->dynstr;
+ if (dynstr == NULL)
+ {
+ /* Create a strtab to hold the dynamic symbol names. */
+ elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
+ if (dynstr == NULL)
+ return 0;
+ }
+
+ dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
+ if (dynstr_index == (unsigned long) -1)
+ return 0;
+ entry->isym.st_name = dynstr_index;
+
+ eht = elf_hash_table (info);
+
+ entry->next = eht->dynlocal;
+ eht->dynlocal = entry;
+ entry->input_bfd = input_bfd;
+ entry->input_indx = input_indx;
+ eht->dynsymcount++;
+
+ /* Whatever binding the symbol had before, it's now local. */
+ entry->isym.st_info
+ = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
+
+ /* The dynindx will be set at the end of size_dynamic_sections. */
+
+ return 1;
+}
+
+/* Return the dynindex of a local dynamic symbol. */
+
+long
+_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
+ bfd *input_bfd,
+ long input_indx)
+{
+ struct elf_link_local_dynamic_entry *e;
+
+ for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
+ if (e->input_bfd == input_bfd && e->input_indx == input_indx)
+ return e->dynindx;
+ return -1;
+}
+
+/* This function is used to renumber the dynamic symbols, if some of
+ them are removed because they are marked as local. This is called
+ via elf_link_hash_traverse. */
+
+static bfd_boolean
+elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
+ void *data)
+{
+ size_t *count = (size_t *) data;
+
+ if (h->forced_local)
+ return TRUE;
+
+ if (h->dynindx != -1)
+ h->dynindx = ++(*count);
+
+ return TRUE;
+}
+
+
+/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
+ STB_LOCAL binding. */
+
+static bfd_boolean
+elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
+ void *data)
+{
+ size_t *count = (size_t *) data;
+
+ if (!h->forced_local)
+ return TRUE;
+
+ if (h->dynindx != -1)
+ h->dynindx = ++(*count);
+
+ return TRUE;
+}
+
+/* Return true if the dynamic symbol for a given section should be
+ omitted when creating a shared library. */
+bfd_boolean
+_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
+ struct bfd_link_info *info,
+ asection *p)
+{
+ struct elf_link_hash_table *htab;
+
+ switch (elf_section_data (p)->this_hdr.sh_type)
+ {
+ case SHT_PROGBITS:
+ case SHT_NOBITS:
+ /* If sh_type is yet undecided, assume it could be
+ SHT_PROGBITS/SHT_NOBITS. */
+ case SHT_NULL:
+ htab = elf_hash_table (info);
+ if (p == htab->tls_sec)
+ return FALSE;
+
+ if (htab->text_index_section != NULL)
+ return p != htab->text_index_section && p != htab->data_index_section;
+
+ if (strcmp (p->name, ".got") == 0
+ || strcmp (p->name, ".got.plt") == 0
+ || strcmp (p->name, ".plt") == 0)
+ {
+ asection *ip;
+
+ if (htab->dynobj != NULL
+ && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
+ && ip->output_section == p)
+ return TRUE;
+ }
+ return FALSE;
+
+ /* There shouldn't be section relative relocations
+ against any other section. */
+ default:
+ return TRUE;
+ }
+}
+
+/* Assign dynsym indices. In a shared library we generate a section
+ symbol for each output section, which come first. Next come symbols
+ which have been forced to local binding. Then all of the back-end
+ allocated local dynamic syms, followed by the rest of the global
+ symbols. */
+
+static unsigned long
+_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
+ struct bfd_link_info *info,
+ unsigned long *section_sym_count)
+{
+ unsigned long dynsymcount = 0;
+
+ if (info->shared || elf_hash_table (info)->is_relocatable_executable)
+ {
+ const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
+ asection *p;
+ for (p = output_bfd->sections; p ; p = p->next)
+ if ((p->flags & SEC_EXCLUDE) == 0
+ && (p->flags & SEC_ALLOC) != 0
+ && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
+ elf_section_data (p)->dynindx = ++dynsymcount;
+ else
+ elf_section_data (p)->dynindx = 0;
+ }
+ *section_sym_count = dynsymcount;
+
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_link_renumber_local_hash_table_dynsyms,
+ &dynsymcount);
+
+ if (elf_hash_table (info)->dynlocal)
+ {
+ struct elf_link_local_dynamic_entry *p;
+ for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
+ p->dynindx = ++dynsymcount;
+ }
+
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_link_renumber_hash_table_dynsyms,
+ &dynsymcount);
+
+ /* There is an unused NULL entry at the head of the table which
+ we must account for in our count. Unless there weren't any
+ symbols, which means we'll have no table at all. */
+ if (dynsymcount != 0)
+ ++dynsymcount;
+
+ elf_hash_table (info)->dynsymcount = dynsymcount;
+ return dynsymcount;
+}
+
+/* Merge st_other field. */
+
+static void
+elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
+ const Elf_Internal_Sym *isym,
+ bfd_boolean definition, bfd_boolean dynamic)
+{
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+
+ /* If st_other has a processor-specific meaning, specific
+ code might be needed here. */
+ if (bed->elf_backend_merge_symbol_attribute)
+ (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
+ dynamic);
+
+ if (!dynamic)
+ {
+ unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
+ unsigned hvis = ELF_ST_VISIBILITY (h->other);
+
+ /* Keep the most constraining visibility. Leave the remainder
+ of the st_other field to elf_backend_merge_symbol_attribute. */
+ if (symvis - 1 < hvis - 1)
+ h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
+ }
+}
+
+/* This function is called when we want to merge a new symbol with an
+ existing symbol. It handles the various cases which arise when we
+ find a definition in a dynamic object, or when there is already a
+ definition in a dynamic object. The new symbol is described by
+ NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
+ entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
+ if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
+ of an old common symbol. We set OVERRIDE if the old symbol is
+ overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
+ the type to change. We set SIZE_CHANGE_OK if it is OK for the size
+ to change. By OK to change, we mean that we shouldn't warn if the
+ type or size does change. */
+
+static bfd_boolean
+_bfd_elf_merge_symbol (bfd *abfd,
+ struct bfd_link_info *info,
+ const char *name,
+ Elf_Internal_Sym *sym,
+ asection **psec,
+ bfd_vma *pvalue,
+ struct elf_link_hash_entry **sym_hash,
+ bfd **poldbfd,
+ bfd_boolean *pold_weak,
+ unsigned int *pold_alignment,
+ bfd_boolean *skip,
+ bfd_boolean *override,
+ bfd_boolean *type_change_ok,
+ bfd_boolean *size_change_ok)
+{
+ asection *sec, *oldsec;
+ struct elf_link_hash_entry *h;
+ struct elf_link_hash_entry *hi;
+ struct elf_link_hash_entry *flip;
+ int bind;
+ bfd *oldbfd;
+ bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
+ bfd_boolean newweak, oldweak, newfunc, oldfunc;
+ const struct elf_backend_data *bed;
+
+ *skip = FALSE;
+ *override = FALSE;
+
+ sec = *psec;
+ bind = ELF_ST_BIND (sym->st_info);
+
+ if (! bfd_is_und_section (sec))
+ h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
+ else
+ h = ((struct elf_link_hash_entry *)
+ bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
+ if (h == NULL)
+ return FALSE;
+ *sym_hash = h;
+
+ bed = get_elf_backend_data (abfd);
+
+ /* For merging, we only care about real symbols. But we need to make
+ sure that indirect symbol dynamic flags are updated. */
+ hi = h;
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
+ existing symbol. */
+
+ oldbfd = NULL;
+ oldsec = NULL;
+ switch (h->root.type)
+ {
+ default:
+ break;
+
+ case bfd_link_hash_undefined:
+ case bfd_link_hash_undefweak:
+ oldbfd = h->root.u.undef.abfd;
+ break;
+
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ oldbfd = h->root.u.def.section->owner;
+ oldsec = h->root.u.def.section;
+ break;
+
+ case bfd_link_hash_common:
+ oldbfd = h->root.u.c.p->section->owner;
+ oldsec = h->root.u.c.p->section;
+ if (pold_alignment)
+ *pold_alignment = h->root.u.c.p->alignment_power;
+ break;
+ }
+ if (poldbfd && *poldbfd == NULL)
+ *poldbfd = oldbfd;
+
+ /* Differentiate strong and weak symbols. */
+ newweak = bind == STB_WEAK;
+ oldweak = (h->root.type == bfd_link_hash_defweak
+ || h->root.type == bfd_link_hash_undefweak);
+ if (pold_weak)
+ *pold_weak = oldweak;
+
+ /* This code is for coping with dynamic objects, and is only useful
+ if we are doing an ELF link. */
+ if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
+ return TRUE;
+
+ /* We have to check it for every instance since the first few may be
+ references and not all compilers emit symbol type for undefined
+ symbols. */
+ bfd_elf_link_mark_dynamic_symbol (info, h, sym);
+
+ /* NEWDYN and OLDDYN indicate whether the new or old symbol,
+ respectively, is from a dynamic object. */
+
+ newdyn = (abfd->flags & DYNAMIC) != 0;
+
+ /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
+ syms and defined syms in dynamic libraries respectively.
+ ref_dynamic on the other hand can be set for a symbol defined in
+ a dynamic library, and def_dynamic may not be set; When the
+ definition in a dynamic lib is overridden by a definition in the
+ executable use of the symbol in the dynamic lib becomes a
+ reference to the executable symbol. */
+ if (newdyn)
+ {
+ if (bfd_is_und_section (sec))
+ {
+ if (bind != STB_WEAK)
+ {
+ h->ref_dynamic_nonweak = 1;
+ hi->ref_dynamic_nonweak = 1;
+ }
+ }
+ else
+ {
+ h->dynamic_def = 1;
+ hi->dynamic_def = 1;
+ }
+ }
+
+ /* If we just created the symbol, mark it as being an ELF symbol.
+ Other than that, there is nothing to do--there is no merge issue
+ with a newly defined symbol--so we just return. */
+
+ if (h->root.type == bfd_link_hash_new)
+ {
+ h->non_elf = 0;
+ return TRUE;
+ }
+
+ /* In cases involving weak versioned symbols, we may wind up trying
+ to merge a symbol with itself. Catch that here, to avoid the
+ confusion that results if we try to override a symbol with
+ itself. The additional tests catch cases like
+ _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
+ dynamic object, which we do want to handle here. */
+ if (abfd == oldbfd
+ && (newweak || oldweak)
+ && ((abfd->flags & DYNAMIC) == 0
+ || !h->def_regular))
+ return TRUE;
+
+ olddyn = FALSE;
+ if (oldbfd != NULL)
+ olddyn = (oldbfd->flags & DYNAMIC) != 0;
+ else if (oldsec != NULL)
+ {
+ /* This handles the special SHN_MIPS_{TEXT,DATA} section
+ indices used by MIPS ELF. */
+ olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
+ }
+
+ /* NEWDEF and OLDDEF indicate whether the new or old symbol,
+ respectively, appear to be a definition rather than reference. */
+
+ newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
+
+ olddef = (h->root.type != bfd_link_hash_undefined
+ && h->root.type != bfd_link_hash_undefweak
+ && h->root.type != bfd_link_hash_common);
+
+ /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
+ respectively, appear to be a function. */
+
+ newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
+ && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
+
+ oldfunc = (h->type != STT_NOTYPE
+ && bed->is_function_type (h->type));
+
+ /* When we try to create a default indirect symbol from the dynamic
+ definition with the default version, we skip it if its type and
+ the type of existing regular definition mismatch. */
+ if (pold_alignment == NULL
+ && newdyn
+ && newdef
+ && !olddyn
+ && (((olddef || h->root.type == bfd_link_hash_common)
+ && ELF_ST_TYPE (sym->st_info) != h->type
+ && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
+ && h->type != STT_NOTYPE
+ && !(newfunc && oldfunc))
+ || (olddef
+ && ((h->type == STT_GNU_IFUNC)
+ != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
+ {
+ *skip = TRUE;
+ return TRUE;
+ }
+
+ /* Check TLS symbols. We don't check undefined symbols introduced
+ by "ld -u" which have no type (and oldbfd NULL), and we don't
+ check symbols from plugins because they also have no type. */
+ if (oldbfd != NULL
+ && (oldbfd->flags & BFD_PLUGIN) == 0
+ && (abfd->flags & BFD_PLUGIN) == 0
+ && ELF_ST_TYPE (sym->st_info) != h->type
+ && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
+ {
+ bfd *ntbfd, *tbfd;
+ bfd_boolean ntdef, tdef;
+ asection *ntsec, *tsec;
+
+ if (h->type == STT_TLS)
+ {
+ ntbfd = abfd;
+ ntsec = sec;
+ ntdef = newdef;
+ tbfd = oldbfd;
+ tsec = oldsec;
+ tdef = olddef;
+ }
+ else
+ {
+ ntbfd = oldbfd;
+ ntsec = oldsec;
+ ntdef = olddef;
+ tbfd = abfd;
+ tsec = sec;
+ tdef = newdef;
+ }
+
+ if (tdef && ntdef)
+ (*_bfd_error_handler)
+ (_("%s: TLS definition in %B section %A "
+ "mismatches non-TLS definition in %B section %A"),
+ tbfd, tsec, ntbfd, ntsec, h->root.root.string);
+ else if (!tdef && !ntdef)
+ (*_bfd_error_handler)
+ (_("%s: TLS reference in %B "
+ "mismatches non-TLS reference in %B"),
+ tbfd, ntbfd, h->root.root.string);
+ else if (tdef)
+ (*_bfd_error_handler)
+ (_("%s: TLS definition in %B section %A "
+ "mismatches non-TLS reference in %B"),
+ tbfd, tsec, ntbfd, h->root.root.string);
+ else
+ (*_bfd_error_handler)
+ (_("%s: TLS reference in %B "
+ "mismatches non-TLS definition in %B section %A"),
+ tbfd, ntbfd, ntsec, h->root.root.string);
+
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+
+ /* If the old symbol has non-default visibility, we ignore the new
+ definition from a dynamic object. */
+ if (newdyn
+ && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
+ && !bfd_is_und_section (sec))
+ {
+ *skip = TRUE;
+ /* Make sure this symbol is dynamic. */
+ h->ref_dynamic = 1;
+ hi->ref_dynamic = 1;
+ /* A protected symbol has external availability. Make sure it is
+ recorded as dynamic.
+
+ FIXME: Should we check type and size for protected symbol? */
+ if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
+ return bfd_elf_link_record_dynamic_symbol (info, h);
+ else
+ return TRUE;
+ }
+ else if (!newdyn
+ && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
+ && h->def_dynamic)
+ {
+ /* If the new symbol with non-default visibility comes from a
+ relocatable file and the old definition comes from a dynamic
+ object, we remove the old definition. */
+ if (hi->root.type == bfd_link_hash_indirect)
+ {
+ /* Handle the case where the old dynamic definition is
+ default versioned. We need to copy the symbol info from
+ the symbol with default version to the normal one if it
+ was referenced before. */
+ if (h->ref_regular)
+ {
+ hi->root.type = h->root.type;
+ h->root.type = bfd_link_hash_indirect;
+ (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
+
+ h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
+ if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
+ {
+ /* If the new symbol is hidden or internal, completely undo
+ any dynamic link state. */
+ (*bed->elf_backend_hide_symbol) (info, h, TRUE);
+ h->forced_local = 0;
+ h->ref_dynamic = 0;
+ }
+ else
+ h->ref_dynamic = 1;
+
+ h->def_dynamic = 0;
+ /* FIXME: Should we check type and size for protected symbol? */
+ h->size = 0;
+ h->type = 0;
+
+ h = hi;
+ }
+ else
+ h = hi;
+ }
+
+ /* If the old symbol was undefined before, then it will still be
+ on the undefs list. If the new symbol is undefined or
+ common, we can't make it bfd_link_hash_new here, because new
+ undefined or common symbols will be added to the undefs list
+ by _bfd_generic_link_add_one_symbol. Symbols may not be
+ added twice to the undefs list. Also, if the new symbol is
+ undefweak then we don't want to lose the strong undef. */
+ if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
+ {
+ h->root.type = bfd_link_hash_undefined;
+ h->root.u.undef.abfd = abfd;
+ }
+ else
+ {
+ h->root.type = bfd_link_hash_new;
+ h->root.u.undef.abfd = NULL;
+ }
+
+ if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
+ {
+ /* If the new symbol is hidden or internal, completely undo
+ any dynamic link state. */
+ (*bed->elf_backend_hide_symbol) (info, h, TRUE);
+ h->forced_local = 0;
+ h->ref_dynamic = 0;
+ }
+ else
+ h->ref_dynamic = 1;
+ h->def_dynamic = 0;
+ /* FIXME: Should we check type and size for protected symbol? */
+ h->size = 0;
+ h->type = 0;
+ return TRUE;
+ }
+
+ /* If a new weak symbol definition comes from a regular file and the
+ old symbol comes from a dynamic library, we treat the new one as
+ strong. Similarly, an old weak symbol definition from a regular
+ file is treated as strong when the new symbol comes from a dynamic
+ library. Further, an old weak symbol from a dynamic library is
+ treated as strong if the new symbol is from a dynamic library.
+ This reflects the way glibc's ld.so works.
+
+ Do this before setting *type_change_ok or *size_change_ok so that
+ we warn properly when dynamic library symbols are overridden. */
+
+ if (newdef && !newdyn && olddyn)
+ newweak = FALSE;
+ if (olddef && newdyn)
+ oldweak = FALSE;
+
+ /* Allow changes between different types of function symbol. */
+ if (newfunc && oldfunc)
+ *type_change_ok = TRUE;
+
+ /* It's OK to change the type if either the existing symbol or the
+ new symbol is weak. A type change is also OK if the old symbol
+ is undefined and the new symbol is defined. */
+
+ if (oldweak
+ || newweak
+ || (newdef
+ && h->root.type == bfd_link_hash_undefined))
+ *type_change_ok = TRUE;
+
+ /* It's OK to change the size if either the existing symbol or the
+ new symbol is weak, or if the old symbol is undefined. */
+
+ if (*type_change_ok
+ || h->root.type == bfd_link_hash_undefined)
+ *size_change_ok = TRUE;
+
+ /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
+ symbol, respectively, appears to be a common symbol in a dynamic
+ object. If a symbol appears in an uninitialized section, and is
+ not weak, and is not a function, then it may be a common symbol
+ which was resolved when the dynamic object was created. We want
+ to treat such symbols specially, because they raise special
+ considerations when setting the symbol size: if the symbol
+ appears as a common symbol in a regular object, and the size in
+ the regular object is larger, we must make sure that we use the
+ larger size. This problematic case can always be avoided in C,
+ but it must be handled correctly when using Fortran shared
+ libraries.
+
+ Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
+ likewise for OLDDYNCOMMON and OLDDEF.
+
+ Note that this test is just a heuristic, and that it is quite
+ possible to have an uninitialized symbol in a shared object which
+ is really a definition, rather than a common symbol. This could
+ lead to some minor confusion when the symbol really is a common
+ symbol in some regular object. However, I think it will be
+ harmless. */
+
+ if (newdyn
+ && newdef
+ && !newweak
+ && (sec->flags & SEC_ALLOC) != 0
+ && (sec->flags & SEC_LOAD) == 0
+ && sym->st_size > 0
+ && !newfunc)
+ newdyncommon = TRUE;
+ else
+ newdyncommon = FALSE;
+
+ if (olddyn
+ && olddef
+ && h->root.type == bfd_link_hash_defined
+ && h->def_dynamic
+ && (h->root.u.def.section->flags & SEC_ALLOC) != 0
+ && (h->root.u.def.section->flags & SEC_LOAD) == 0
+ && h->size > 0
+ && !oldfunc)
+ olddyncommon = TRUE;
+ else
+ olddyncommon = FALSE;
+
+ /* We now know everything about the old and new symbols. We ask the
+ backend to check if we can merge them. */
+ if (bed->merge_symbol != NULL)
+ {
+ if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
+ return FALSE;
+ sec = *psec;
+ }
+
+ /* If both the old and the new symbols look like common symbols in a
+ dynamic object, set the size of the symbol to the larger of the
+ two. */
+
+ if (olddyncommon
+ && newdyncommon
+ && sym->st_size != h->size)
+ {
+ /* Since we think we have two common symbols, issue a multiple
+ common warning if desired. Note that we only warn if the
+ size is different. If the size is the same, we simply let
+ the old symbol override the new one as normally happens with
+ symbols defined in dynamic objects. */
+
+ if (! ((*info->callbacks->multiple_common)
+ (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
+ return FALSE;
+
+ if (sym->st_size > h->size)
+ h->size = sym->st_size;
+
+ *size_change_ok = TRUE;
+ }
+
+ /* If we are looking at a dynamic object, and we have found a
+ definition, we need to see if the symbol was already defined by
+ some other object. If so, we want to use the existing
+ definition, and we do not want to report a multiple symbol
+ definition error; we do this by clobbering *PSEC to be
+ bfd_und_section_ptr.
+
+ We treat a common symbol as a definition if the symbol in the
+ shared library is a function, since common symbols always
+ represent variables; this can cause confusion in principle, but
+ any such confusion would seem to indicate an erroneous program or
+ shared library. We also permit a common symbol in a regular
+ object to override a weak symbol in a shared object. */
+
+ if (newdyn
+ && newdef
+ && (olddef
+ || (h->root.type == bfd_link_hash_common
+ && (newweak || newfunc))))
+ {
+ *override = TRUE;
+ newdef = FALSE;
+ newdyncommon = FALSE;
+
+ *psec = sec = bfd_und_section_ptr;
+ *size_change_ok = TRUE;
+
+ /* If we get here when the old symbol is a common symbol, then
+ we are explicitly letting it override a weak symbol or
+ function in a dynamic object, and we don't want to warn about
+ a type change. If the old symbol is a defined symbol, a type
+ change warning may still be appropriate. */
+
+ if (h->root.type == bfd_link_hash_common)
+ *type_change_ok = TRUE;
+ }
+
+ /* Handle the special case of an old common symbol merging with a
+ new symbol which looks like a common symbol in a shared object.
+ We change *PSEC and *PVALUE to make the new symbol look like a
+ common symbol, and let _bfd_generic_link_add_one_symbol do the
+ right thing. */
+
+ if (newdyncommon
+ && h->root.type == bfd_link_hash_common)
+ {
+ *override = TRUE;
+ newdef = FALSE;
+ newdyncommon = FALSE;
+ *pvalue = sym->st_size;
+ *psec = sec = bed->common_section (oldsec);
+ *size_change_ok = TRUE;
+ }
+
+ /* Skip weak definitions of symbols that are already defined. */
+ if (newdef && olddef && newweak)
+ {
+ /* Don't skip new non-IR weak syms. */
+ if (!(oldbfd != NULL
+ && (oldbfd->flags & BFD_PLUGIN) != 0
+ && (abfd->flags & BFD_PLUGIN) == 0))
+ {
+ newdef = FALSE;
+ *skip = TRUE;
+ }
+
+ /* Merge st_other. If the symbol already has a dynamic index,
+ but visibility says it should not be visible, turn it into a
+ local symbol. */
+ elf_merge_st_other (abfd, h, sym, newdef, newdyn);
+ if (h->dynindx != -1)
+ switch (ELF_ST_VISIBILITY (h->other))
+ {
+ case STV_INTERNAL:
+ case STV_HIDDEN:
+ (*bed->elf_backend_hide_symbol) (info, h, TRUE);
+ break;
+ }
+ }
+
+ /* If the old symbol is from a dynamic object, and the new symbol is
+ a definition which is not from a dynamic object, then the new
+ symbol overrides the old symbol. Symbols from regular files
+ always take precedence over symbols from dynamic objects, even if
+ they are defined after the dynamic object in the link.
+
+ As above, we again permit a common symbol in a regular object to
+ override a definition in a shared object if the shared object
+ symbol is a function or is weak. */
+
+ flip = NULL;
+ if (!newdyn
+ && (newdef
+ || (bfd_is_com_section (sec)
+ && (oldweak || oldfunc)))
+ && olddyn
+ && olddef
+ && h->def_dynamic)
+ {
+ /* Change the hash table entry to undefined, and let
+ _bfd_generic_link_add_one_symbol do the right thing with the
+ new definition. */
+
+ h->root.type = bfd_link_hash_undefined;
+ h->root.u.undef.abfd = h->root.u.def.section->owner;
+ *size_change_ok = TRUE;
+
+ olddef = FALSE;
+ olddyncommon = FALSE;
+
+ /* We again permit a type change when a common symbol may be
+ overriding a function. */
+
+ if (bfd_is_com_section (sec))
+ {
+ if (oldfunc)
+ {
+ /* If a common symbol overrides a function, make sure
+ that it isn't defined dynamically nor has type
+ function. */
+ h->def_dynamic = 0;
+ h->type = STT_NOTYPE;
+ }
+ *type_change_ok = TRUE;
+ }
+
+ if (hi->root.type == bfd_link_hash_indirect)
+ flip = hi;
+ else
+ /* This union may have been set to be non-NULL when this symbol
+ was seen in a dynamic object. We must force the union to be
+ NULL, so that it is correct for a regular symbol. */
+ h->verinfo.vertree = NULL;
+ }
+
+ /* Handle the special case of a new common symbol merging with an
+ old symbol that looks like it might be a common symbol defined in
+ a shared object. Note that we have already handled the case in
+ which a new common symbol should simply override the definition
+ in the shared library. */
+
+ if (! newdyn
+ && bfd_is_com_section (sec)
+ && olddyncommon)
+ {
+ /* It would be best if we could set the hash table entry to a
+ common symbol, but we don't know what to use for the section
+ or the alignment. */
+ if (! ((*info->callbacks->multiple_common)
+ (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
+ return FALSE;
+
+ /* If the presumed common symbol in the dynamic object is
+ larger, pretend that the new symbol has its size. */
+
+ if (h->size > *pvalue)
+ *pvalue = h->size;
+
+ /* We need to remember the alignment required by the symbol
+ in the dynamic object. */
+ BFD_ASSERT (pold_alignment);
+ *pold_alignment = h->root.u.def.section->alignment_power;
+
+ olddef = FALSE;
+ olddyncommon = FALSE;
+
+ h->root.type = bfd_link_hash_undefined;
+ h->root.u.undef.abfd = h->root.u.def.section->owner;
+
+ *size_change_ok = TRUE;
+ *type_change_ok = TRUE;
+
+ if (hi->root.type == bfd_link_hash_indirect)
+ flip = hi;
+ else
+ h->verinfo.vertree = NULL;
+ }
+
+ if (flip != NULL)
+ {
+ /* Handle the case where we had a versioned symbol in a dynamic
+ library and now find a definition in a normal object. In this
+ case, we make the versioned symbol point to the normal one. */
+ flip->root.type = h->root.type;
+ flip->root.u.undef.abfd = h->root.u.undef.abfd;
+ h->root.type = bfd_link_hash_indirect;
+ h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
+ (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
+ if (h->def_dynamic)
+ {
+ h->def_dynamic = 0;
+ flip->ref_dynamic = 1;
+ }
+ }
+
+ return TRUE;
+}
+
+/* This function is called to create an indirect symbol from the
+ default for the symbol with the default version if needed. The
+ symbol is described by H, NAME, SYM, SEC, and VALUE. We
+ set DYNSYM if the new indirect symbol is dynamic. */
+
+static bfd_boolean
+_bfd_elf_add_default_symbol (bfd *abfd,
+ struct bfd_link_info *info,
+ struct elf_link_hash_entry *h,
+ const char *name,
+ Elf_Internal_Sym *sym,
+ asection *sec,
+ bfd_vma value,
+ bfd **poldbfd,
+ bfd_boolean *dynsym)
+{
+ bfd_boolean type_change_ok;
+ bfd_boolean size_change_ok;
+ bfd_boolean skip;
+ char *shortname;
+ struct elf_link_hash_entry *hi;
+ struct bfd_link_hash_entry *bh;
+ const struct elf_backend_data *bed;
+ bfd_boolean collect;
+ bfd_boolean dynamic;
+ bfd_boolean override;
+ char *p;
+ size_t len, shortlen;
+ asection *tmp_sec;
+
+ /* If this symbol has a version, and it is the default version, we
+ create an indirect symbol from the default name to the fully
+ decorated name. This will cause external references which do not
+ specify a version to be bound to this version of the symbol. */
+ p = strchr (name, ELF_VER_CHR);
+ if (p == NULL || p[1] != ELF_VER_CHR)
+ return TRUE;
+
+ bed = get_elf_backend_data (abfd);
+ collect = bed->collect;
+ dynamic = (abfd->flags & DYNAMIC) != 0;
+
+ shortlen = p - name;
+ shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
+ if (shortname == NULL)
+ return FALSE;
+ memcpy (shortname, name, shortlen);
+ shortname[shortlen] = '\0';
+
+ /* We are going to create a new symbol. Merge it with any existing
+ symbol with this name. For the purposes of the merge, act as
+ though we were defining the symbol we just defined, although we
+ actually going to define an indirect symbol. */
+ type_change_ok = FALSE;
+ size_change_ok = FALSE;
+ tmp_sec = sec;
+ if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
+ &hi, poldbfd, NULL, NULL, &skip, &override,
+ &type_change_ok, &size_change_ok))
+ return FALSE;
+
+ if (skip)
+ goto nondefault;
+
+ if (! override)
+ {
+ bh = &hi->root;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
+ 0, name, FALSE, collect, &bh)))
+ return FALSE;
+ hi = (struct elf_link_hash_entry *) bh;
+ }
+ else
+ {
+ /* In this case the symbol named SHORTNAME is overriding the
+ indirect symbol we want to add. We were planning on making
+ SHORTNAME an indirect symbol referring to NAME. SHORTNAME
+ is the name without a version. NAME is the fully versioned
+ name, and it is the default version.
+
+ Overriding means that we already saw a definition for the
+ symbol SHORTNAME in a regular object, and it is overriding
+ the symbol defined in the dynamic object.
+
+ When this happens, we actually want to change NAME, the
+ symbol we just added, to refer to SHORTNAME. This will cause
+ references to NAME in the shared object to become references
+ to SHORTNAME in the regular object. This is what we expect
+ when we override a function in a shared object: that the
+ references in the shared object will be mapped to the
+ definition in the regular object. */
+
+ while (hi->root.type == bfd_link_hash_indirect
+ || hi->root.type == bfd_link_hash_warning)
+ hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
+
+ h->root.type = bfd_link_hash_indirect;
+ h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
+ if (h->def_dynamic)
+ {
+ h->def_dynamic = 0;
+ hi->ref_dynamic = 1;
+ if (hi->ref_regular
+ || hi->def_regular)
+ {
+ if (! bfd_elf_link_record_dynamic_symbol (info, hi))
+ return FALSE;
+ }
+ }
+
+ /* Now set HI to H, so that the following code will set the
+ other fields correctly. */
+ hi = h;
+ }
+
+ /* Check if HI is a warning symbol. */
+ if (hi->root.type == bfd_link_hash_warning)
+ hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
+
+ /* If there is a duplicate definition somewhere, then HI may not
+ point to an indirect symbol. We will have reported an error to
+ the user in that case. */
+
+ if (hi->root.type == bfd_link_hash_indirect)
+ {
+ struct elf_link_hash_entry *ht;
+
+ ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
+ (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
+
+ /* A reference to the SHORTNAME symbol from a dynamic library
+ will be satisfied by the versioned symbol at runtime. In
+ effect, we have a reference to the versioned symbol. */
+ ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
+ hi->dynamic_def |= ht->dynamic_def;
+
+ /* See if the new flags lead us to realize that the symbol must
+ be dynamic. */
+ if (! *dynsym)
+ {
+ if (! dynamic)
+ {
+ if (! info->executable
+ || hi->def_dynamic
+ || hi->ref_dynamic)
+ *dynsym = TRUE;
+ }
+ else
+ {
+ if (hi->ref_regular)
+ *dynsym = TRUE;
+ }
+ }
+ }
+
+ /* We also need to define an indirection from the nondefault version
+ of the symbol. */
+
+nondefault:
+ len = strlen (name);
+ shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
+ if (shortname == NULL)
+ return FALSE;
+ memcpy (shortname, name, shortlen);
+ memcpy (shortname + shortlen, p + 1, len - shortlen);
+
+ /* Once again, merge with any existing symbol. */
+ type_change_ok = FALSE;
+ size_change_ok = FALSE;
+ tmp_sec = sec;
+ if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
+ &hi, poldbfd, NULL, NULL, &skip, &override,
+ &type_change_ok, &size_change_ok))
+ return FALSE;
+
+ if (skip)
+ return TRUE;
+
+ if (override)
+ {
+ /* Here SHORTNAME is a versioned name, so we don't expect to see
+ the type of override we do in the case above unless it is
+ overridden by a versioned definition. */
+ if (hi->root.type != bfd_link_hash_defined
+ && hi->root.type != bfd_link_hash_defweak)
+ (*_bfd_error_handler)
+ (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
+ abfd, shortname);
+ }
+ else
+ {
+ bh = &hi->root;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, shortname, BSF_INDIRECT,
+ bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
+ return FALSE;
+ hi = (struct elf_link_hash_entry *) bh;
+
+ /* If there is a duplicate definition somewhere, then HI may not
+ point to an indirect symbol. We will have reported an error
+ to the user in that case. */
+
+ if (hi->root.type == bfd_link_hash_indirect)
+ {
+ (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
+ h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
+ hi->dynamic_def |= h->dynamic_def;
+
+ /* See if the new flags lead us to realize that the symbol
+ must be dynamic. */
+ if (! *dynsym)
+ {
+ if (! dynamic)
+ {
+ if (! info->executable
+ || hi->ref_dynamic)
+ *dynsym = TRUE;
+ }
+ else
+ {
+ if (hi->ref_regular)
+ *dynsym = TRUE;
+ }
+ }
+ }
+ }
+
+ return TRUE;
+}
+
+/* This routine is used to export all defined symbols into the dynamic
+ symbol table. It is called via elf_link_hash_traverse. */
+
+static bfd_boolean
+_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
+{
+ struct elf_info_failed *eif = (struct elf_info_failed *) data;
+
+ /* Ignore indirect symbols. These are added by the versioning code. */
+ if (h->root.type == bfd_link_hash_indirect)
+ return TRUE;
+
+ /* Ignore this if we won't export it. */
+ if (!eif->info->export_dynamic && !h->dynamic)
+ return TRUE;
+
+ if (h->dynindx == -1
+ && (h->def_regular || h->ref_regular)
+ && ! bfd_hide_sym_by_version (eif->info->version_info,
+ h->root.root.string))
+ {
+ if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
+ {
+ eif->failed = TRUE;
+ return FALSE;
+ }
+ }
+
+ return TRUE;
+}
+
+/* Look through the symbols which are defined in other shared
+ libraries and referenced here. Update the list of version
+ dependencies. This will be put into the .gnu.version_r section.
+ This function is called via elf_link_hash_traverse. */
+
+static bfd_boolean
+_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
+ void *data)
+{
+ struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
+ Elf_Internal_Verneed *t;
+ Elf_Internal_Vernaux *a;
+ bfd_size_type amt;
+
+ /* We only care about symbols defined in shared objects with version
+ information. */
+ if (!h->def_dynamic
+ || h->def_regular
+ || h->dynindx == -1
+ || h->verinfo.verdef == NULL
+ || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
+ & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
+ return TRUE;
+
+ /* See if we already know about this version. */
+ for (t = elf_tdata (rinfo->info->output_bfd)->verref;
+ t != NULL;
+ t = t->vn_nextref)
+ {
+ if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
+ continue;
+
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
+ return TRUE;
+
+ break;
+ }
+
+ /* This is a new version. Add it to tree we are building. */
+
+ if (t == NULL)
+ {
+ amt = sizeof *t;
+ t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
+ if (t == NULL)
+ {
+ rinfo->failed = TRUE;
+ return FALSE;
+ }
+
+ t->vn_bfd = h->verinfo.verdef->vd_bfd;
+ t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
+ elf_tdata (rinfo->info->output_bfd)->verref = t;
+ }
+
+ amt = sizeof *a;
+ a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
+ if (a == NULL)
+ {
+ rinfo->failed = TRUE;
+ return FALSE;
+ }
+
+ /* Note that we are copying a string pointer here, and testing it
+ above. If bfd_elf_string_from_elf_section is ever changed to
+ discard the string data when low in memory, this will have to be
+ fixed. */
+ a->vna_nodename = h->verinfo.verdef->vd_nodename;
+
+ a->vna_flags = h->verinfo.verdef->vd_flags;
+ a->vna_nextptr = t->vn_auxptr;
+
+ h->verinfo.verdef->vd_exp_refno = rinfo->vers;
+ ++rinfo->vers;
+
+ a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
+
+ t->vn_auxptr = a;
+
+ return TRUE;
+}
+
+/* Figure out appropriate versions for all the symbols. We may not
+ have the version number script until we have read all of the input
+ files, so until that point we don't know which symbols should be
+ local. This function is called via elf_link_hash_traverse. */
+
+static bfd_boolean
+_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
+{
+ struct elf_info_failed *sinfo;
+ struct bfd_link_info *info;
+ const struct elf_backend_data *bed;
+ struct elf_info_failed eif;
+ char *p;
+ bfd_size_type amt;
+
+ sinfo = (struct elf_info_failed *) data;
+ info = sinfo->info;
+
+ /* Fix the symbol flags. */
+ eif.failed = FALSE;
+ eif.info = info;
+ if (! _bfd_elf_fix_symbol_flags (h, &eif))
+ {
+ if (eif.failed)
+ sinfo->failed = TRUE;
+ return FALSE;
+ }
+
+ /* We only need version numbers for symbols defined in regular
+ objects. */
+ if (!h->def_regular)
+ return TRUE;
+
+ bed = get_elf_backend_data (info->output_bfd);
+ p = strchr (h->root.root.string, ELF_VER_CHR);
+ if (p != NULL && h->verinfo.vertree == NULL)
+ {
+ struct bfd_elf_version_tree *t;
+ bfd_boolean hidden;
+
+ hidden = TRUE;
+
+ /* There are two consecutive ELF_VER_CHR characters if this is
+ not a hidden symbol. */
+ ++p;
+ if (*p == ELF_VER_CHR)
+ {
+ hidden = FALSE;
+ ++p;
+ }
+
+ /* If there is no version string, we can just return out. */
+ if (*p == '\0')
+ {
+ if (hidden)
+ h->hidden = 1;
+ return TRUE;
+ }
+
+ /* Look for the version. If we find it, it is no longer weak. */
+ for (t = sinfo->info->version_info; t != NULL; t = t->next)
+ {
+ if (strcmp (t->name, p) == 0)
+ {
+ size_t len;
+ char *alc;
+ struct bfd_elf_version_expr *d;
+
+ len = p - h->root.root.string;
+ alc = (char *) bfd_malloc (len);
+ if (alc == NULL)
+ {
+ sinfo->failed = TRUE;
+ return FALSE;
+ }
+ memcpy (alc, h->root.root.string, len - 1);
+ alc[len - 1] = '\0';
+ if (alc[len - 2] == ELF_VER_CHR)
+ alc[len - 2] = '\0';
+
+ h->verinfo.vertree = t;
+ t->used = TRUE;
+ d = NULL;
+
+ if (t->globals.list != NULL)
+ d = (*t->match) (&t->globals, NULL, alc);
+
+ /* See if there is anything to force this symbol to
+ local scope. */
+ if (d == NULL && t->locals.list != NULL)
+ {
+ d = (*t->match) (&t->locals, NULL, alc);
+ if (d != NULL
+ && h->dynindx != -1
+ && ! info->export_dynamic)
+ (*bed->elf_backend_hide_symbol) (info, h, TRUE);
+ }
+
+ free (alc);
+ break;
+ }
+ }
+
+ /* If we are building an application, we need to create a
+ version node for this version. */
+ if (t == NULL && info->executable)
+ {
+ struct bfd_elf_version_tree **pp;
+ int version_index;
+
+ /* If we aren't going to export this symbol, we don't need
+ to worry about it. */
+ if (h->dynindx == -1)
+ return TRUE;
+
+ amt = sizeof *t;
+ t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
+ if (t == NULL)
+ {
+ sinfo->failed = TRUE;
+ return FALSE;
+ }
+
+ t->name = p;
+ t->name_indx = (unsigned int) -1;
+ t->used = TRUE;
+
+ version_index = 1;
+ /* Don't count anonymous version tag. */
+ if (sinfo->info->version_info != NULL
+ && sinfo->info->version_info->vernum == 0)
+ version_index = 0;
+ for (pp = &sinfo->info->version_info;
+ *pp != NULL;
+ pp = &(*pp)->next)
+ ++version_index;
+ t->vernum = version_index;
+
+ *pp = t;
+
+ h->verinfo.vertree = t;
+ }
+ else if (t == NULL)
+ {
+ /* We could not find the version for a symbol when
+ generating a shared archive. Return an error. */
+ (*_bfd_error_handler)
+ (_("%B: version node not found for symbol %s"),
+ info->output_bfd, h->root.root.string);
+ bfd_set_error (bfd_error_bad_value);
+ sinfo->failed = TRUE;
+ return FALSE;
+ }
+
+ if (hidden)
+ h->hidden = 1;
+ }
+
+ /* If we don't have a version for this symbol, see if we can find
+ something. */
+ if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
+ {
+ bfd_boolean hide;
+
+ h->verinfo.vertree
+ = bfd_find_version_for_sym (sinfo->info->version_info,
+ h->root.root.string, &hide);
+ if (h->verinfo.vertree != NULL && hide)
+ (*bed->elf_backend_hide_symbol) (info, h, TRUE);
+ }
+
+ return TRUE;
+}
+
+/* Read and swap the relocs from the section indicated by SHDR. This
+ may be either a REL or a RELA section. The relocations are
+ translated into RELA relocations and stored in INTERNAL_RELOCS,
+ which should have already been allocated to contain enough space.
+ The EXTERNAL_RELOCS are a buffer where the external form of the
+ relocations should be stored.
+
+ Returns FALSE if something goes wrong. */
+
+static bfd_boolean
+elf_link_read_relocs_from_section (bfd *abfd,
+ asection *sec,
+ Elf_Internal_Shdr *shdr,
+ void *external_relocs,
+ Elf_Internal_Rela *internal_relocs)
+{
+ const struct elf_backend_data *bed;
+ void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
+ const bfd_byte *erela;
+ const bfd_byte *erelaend;
+ Elf_Internal_Rela *irela;
+ Elf_Internal_Shdr *symtab_hdr;
+ size_t nsyms;
+
+ /* Position ourselves at the start of the section. */
+ if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
+ return FALSE;
+
+ /* Read the relocations. */
+ if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
+ return FALSE;
+
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
+
+ bed = get_elf_backend_data (abfd);
+
+ /* Convert the external relocations to the internal format. */
+ if (shdr->sh_entsize == bed->s->sizeof_rel)
+ swap_in = bed->s->swap_reloc_in;
+ else if (shdr->sh_entsize == bed->s->sizeof_rela)
+ swap_in = bed->s->swap_reloca_in;
+ else
+ {
+ bfd_set_error (bfd_error_wrong_format);
+ return FALSE;
+ }
+
+ erela = (const bfd_byte *) external_relocs;
+ erelaend = erela + shdr->sh_size;
+ irela = internal_relocs;
+ while (erela < erelaend)
+ {
+ bfd_vma r_symndx;
+
+ (*swap_in) (abfd, erela, irela);
+ r_symndx = ELF32_R_SYM (irela->r_info);
+ if (bed->s->arch_size == 64)
+ r_symndx >>= 24;
+ if (nsyms > 0)
+ {
+ if ((size_t) r_symndx >= nsyms)
+ {
+ (*_bfd_error_handler)
+ (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
+ " for offset 0x%lx in section `%A'"),
+ abfd, sec,
+ (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+ }
+ else if (r_symndx != STN_UNDEF)
+ {
+ (*_bfd_error_handler)
+ (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
+ " when the object file has no symbol table"),
+ abfd, sec,
+ (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+ irela += bed->s->int_rels_per_ext_rel;
+ erela += shdr->sh_entsize;
+ }
+
+ return TRUE;
+}
+
+/* Read and swap the relocs for a section O. They may have been
+ cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
+ not NULL, they are used as buffers to read into. They are known to
+ be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
+ the return value is allocated using either malloc or bfd_alloc,
+ according to the KEEP_MEMORY argument. If O has two relocation
+ sections (both REL and RELA relocations), then the REL_HDR
+ relocations will appear first in INTERNAL_RELOCS, followed by the
+ RELA_HDR relocations. */
+
+Elf_Internal_Rela *
+_bfd_elf_link_read_relocs (bfd *abfd,
+ asection *o,
+ void *external_relocs,
+ Elf_Internal_Rela *internal_relocs,
+ bfd_boolean keep_memory)
+{
+ void *alloc1 = NULL;
+ Elf_Internal_Rela *alloc2 = NULL;
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ struct bfd_elf_section_data *esdo = elf_section_data (o);
+ Elf_Internal_Rela *internal_rela_relocs;
+
+ if (esdo->relocs != NULL)
+ return esdo->relocs;
+
+ if (o->reloc_count == 0)
+ return NULL;
+
+ if (internal_relocs == NULL)
+ {
+ bfd_size_type size;
+
+ size = o->reloc_count;
+ size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
+ if (keep_memory)
+ internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
+ else
+ internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
+ if (internal_relocs == NULL)
+ goto error_return;
+ }
+
+ if (external_relocs == NULL)
+ {
+ bfd_size_type size = 0;
+
+ if (esdo->rel.hdr)
+ size += esdo->rel.hdr->sh_size;
+ if (esdo->rela.hdr)
+ size += esdo->rela.hdr->sh_size;
+
+ alloc1 = bfd_malloc (size);
+ if (alloc1 == NULL)
+ goto error_return;
+ external_relocs = alloc1;
+ }
+
+ internal_rela_relocs = internal_relocs;
+ if (esdo->rel.hdr)
+ {
+ if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
+ external_relocs,
+ internal_relocs))
+ goto error_return;
+ external_relocs = (((bfd_byte *) external_relocs)
+ + esdo->rel.hdr->sh_size);
+ internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
+ * bed->s->int_rels_per_ext_rel);
+ }
+
+ if (esdo->rela.hdr
+ && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
+ external_relocs,
+ internal_rela_relocs)))
+ goto error_return;
+
+ /* Cache the results for next time, if we can. */
+ if (keep_memory)
+ esdo->relocs = internal_relocs;
+
+ if (alloc1 != NULL)
+ free (alloc1);
+
+ /* Don't free alloc2, since if it was allocated we are passing it
+ back (under the name of internal_relocs). */
+
+ return internal_relocs;
+
+ error_return:
+ if (alloc1 != NULL)
+ free (alloc1);
+ if (alloc2 != NULL)
+ {
+ if (keep_memory)
+ bfd_release (abfd, alloc2);
+ else
+ free (alloc2);
+ }
+ return NULL;
+}
+
+/* Compute the size of, and allocate space for, REL_HDR which is the
+ section header for a section containing relocations for O. */
+
+static bfd_boolean
+_bfd_elf_link_size_reloc_section (bfd *abfd,
+ struct bfd_elf_section_reloc_data *reldata)
+{
+ Elf_Internal_Shdr *rel_hdr = reldata->hdr;
+
+ /* That allows us to calculate the size of the section. */
+ rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
+
+ /* The contents field must last into write_object_contents, so we
+ allocate it with bfd_alloc rather than malloc. Also since we
+ cannot be sure that the contents will actually be filled in,
+ we zero the allocated space. */
+ rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
+ if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
+ return FALSE;
+
+ if (reldata->hashes == NULL && reldata->count)
+ {
+ struct elf_link_hash_entry **p;
+
+ p = (struct elf_link_hash_entry **)
+ bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
+ if (p == NULL)
+ return FALSE;
+
+ reldata->hashes = p;
+ }
+
+ return TRUE;
+}
+
+/* Copy the relocations indicated by the INTERNAL_RELOCS (which
+ originated from the section given by INPUT_REL_HDR) to the
+ OUTPUT_BFD. */
+
+bfd_boolean
+_bfd_elf_link_output_relocs (bfd *output_bfd,
+ asection *input_section,
+ Elf_Internal_Shdr *input_rel_hdr,
+ Elf_Internal_Rela *internal_relocs,
+ struct elf_link_hash_entry **rel_hash
+ ATTRIBUTE_UNUSED)
+{
+ Elf_Internal_Rela *irela;
+ Elf_Internal_Rela *irelaend;
+ bfd_byte *erel;
+ struct bfd_elf_section_reloc_data *output_reldata;
+ asection *output_section;
+ const struct elf_backend_data *bed;
+ void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
+ struct bfd_elf_section_data *esdo;
+
+ output_section = input_section->output_section;
+
+ bed = get_elf_backend_data (output_bfd);
+ esdo = elf_section_data (output_section);
+ if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
+ {
+ output_reldata = &esdo->rel;
+ swap_out = bed->s->swap_reloc_out;
+ }
+ else if (esdo->rela.hdr
+ && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
+ {
+ output_reldata = &esdo->rela;
+ swap_out = bed->s->swap_reloca_out;
+ }
+ else
+ {
+ (*_bfd_error_handler)
+ (_("%B: relocation size mismatch in %B section %A"),
+ output_bfd, input_section->owner, input_section);
+ bfd_set_error (bfd_error_wrong_format);
+ return FALSE;
+ }
+
+ erel = output_reldata->hdr->contents;
+ erel += output_reldata->count * input_rel_hdr->sh_entsize;
+ irela = internal_relocs;
+ irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
+ * bed->s->int_rels_per_ext_rel);
+ while (irela < irelaend)
+ {
+ (*swap_out) (output_bfd, irela, erel);
+ irela += bed->s->int_rels_per_ext_rel;
+ erel += input_rel_hdr->sh_entsize;
+ }
+
+ /* Bump the counter, so that we know where to add the next set of
+ relocations. */
+ output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
+
+ return TRUE;
+}
+
+/* Make weak undefined symbols in PIE dynamic. */
+
+bfd_boolean
+_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
+ struct elf_link_hash_entry *h)
+{
+ if (info->pie
+ && h->dynindx == -1
+ && h->root.type == bfd_link_hash_undefweak)
+ return bfd_elf_link_record_dynamic_symbol (info, h);
+
+ return TRUE;
+}
+
+/* Fix up the flags for a symbol. This handles various cases which
+ can only be fixed after all the input files are seen. This is
+ currently called by both adjust_dynamic_symbol and
+ assign_sym_version, which is unnecessary but perhaps more robust in
+ the face of future changes. */
+
+static bfd_boolean
+_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
+ struct elf_info_failed *eif)
+{
+ const struct elf_backend_data *bed;
+
+ /* If this symbol was mentioned in a non-ELF file, try to set
+ DEF_REGULAR and REF_REGULAR correctly. This is the only way to
+ permit a non-ELF file to correctly refer to a symbol defined in
+ an ELF dynamic object. */
+ if (h->non_elf)
+ {
+ while (h->root.type == bfd_link_hash_indirect)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ if (h->root.type != bfd_link_hash_defined
+ && h->root.type != bfd_link_hash_defweak)
+ {
+ h->ref_regular = 1;
+ h->ref_regular_nonweak = 1;
+ }
+ else
+ {
+ if (h->root.u.def.section->owner != NULL
+ && (bfd_get_flavour (h->root.u.def.section->owner)
+ == bfd_target_elf_flavour))
+ {
+ h->ref_regular = 1;
+ h->ref_regular_nonweak = 1;
+ }
+ else
+ h->def_regular = 1;
+ }
+
+ if (h->dynindx == -1
+ && (h->def_dynamic
+ || h->ref_dynamic))
+ {
+ if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
+ {
+ eif->failed = TRUE;
+ return FALSE;
+ }
+ }
+ }
+ else
+ {
+ /* Unfortunately, NON_ELF is only correct if the symbol
+ was first seen in a non-ELF file. Fortunately, if the symbol
+ was first seen in an ELF file, we're probably OK unless the
+ symbol was defined in a non-ELF file. Catch that case here.
+ FIXME: We're still in trouble if the symbol was first seen in
+ a dynamic object, and then later in a non-ELF regular object. */
+ if ((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && !h->def_regular
+ && (h->root.u.def.section->owner != NULL
+ ? (bfd_get_flavour (h->root.u.def.section->owner)
+ != bfd_target_elf_flavour)
+ : (bfd_is_abs_section (h->root.u.def.section)
+ && !h->def_dynamic)))
+ h->def_regular = 1;
+ }
+
+ /* Backend specific symbol fixup. */
+ bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
+ if (bed->elf_backend_fixup_symbol
+ && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
+ return FALSE;
+
+ /* If this is a final link, and the symbol was defined as a common
+ symbol in a regular object file, and there was no definition in
+ any dynamic object, then the linker will have allocated space for
+ the symbol in a common section but the DEF_REGULAR
+ flag will not have been set. */
+ if (h->root.type == bfd_link_hash_defined
+ && !h->def_regular
+ && h->ref_regular
+ && !h->def_dynamic
+ && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
+ h->def_regular = 1;
+
+ /* If -Bsymbolic was used (which means to bind references to global
+ symbols to the definition within the shared object), and this
+ symbol was defined in a regular object, then it actually doesn't
+ need a PLT entry. Likewise, if the symbol has non-default
+ visibility. If the symbol has hidden or internal visibility, we
+ will force it local. */
+ if (h->needs_plt
+ && eif->info->shared
+ && is_elf_hash_table (eif->info->hash)
+ && (SYMBOLIC_BIND (eif->info, h)
+ || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
+ && h->def_regular)
+ {
+ bfd_boolean force_local;
+
+ force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
+ || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
+ (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
+ }
+
+ /* If a weak undefined symbol has non-default visibility, we also
+ hide it from the dynamic linker. */
+ if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
+ && h->root.type == bfd_link_hash_undefweak)
+ (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
+
+ /* If this is a weak defined symbol in a dynamic object, and we know
+ the real definition in the dynamic object, copy interesting flags
+ over to the real definition. */
+ if (h->u.weakdef != NULL)
+ {
+ /* If the real definition is defined by a regular object file,
+ don't do anything special. See the longer description in
+ _bfd_elf_adjust_dynamic_symbol, below. */
+ if (h->u.weakdef->def_regular)
+ h->u.weakdef = NULL;
+ else
+ {
+ struct elf_link_hash_entry *weakdef = h->u.weakdef;
+
+ while (h->root.type == bfd_link_hash_indirect)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ BFD_ASSERT (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak);
+ BFD_ASSERT (weakdef->def_dynamic);
+ BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
+ || weakdef->root.type == bfd_link_hash_defweak);
+ (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
+ }
+ }
+
+ return TRUE;
+}
+
+/* Make the backend pick a good value for a dynamic symbol. This is
+ called via elf_link_hash_traverse, and also calls itself
+ recursively. */
+
+static bfd_boolean
+_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
+{
+ struct elf_info_failed *eif = (struct elf_info_failed *) data;
+ bfd *dynobj;
+ const struct elf_backend_data *bed;
+
+ if (! is_elf_hash_table (eif->info->hash))
+ return FALSE;
+
+ /* Ignore indirect symbols. These are added by the versioning code. */
+ if (h->root.type == bfd_link_hash_indirect)
+ return TRUE;
+
+ /* Fix the symbol flags. */
+ if (! _bfd_elf_fix_symbol_flags (h, eif))
+ return FALSE;
+
+ /* If this symbol does not require a PLT entry, and it is not
+ defined by a dynamic object, or is not referenced by a regular
+ object, ignore it. We do have to handle a weak defined symbol,
+ even if no regular object refers to it, if we decided to add it
+ to the dynamic symbol table. FIXME: Do we normally need to worry
+ about symbols which are defined by one dynamic object and
+ referenced by another one? */
+ if (!h->needs_plt
+ && h->type != STT_GNU_IFUNC
+ && (h->def_regular
+ || !h->def_dynamic
+ || (!h->ref_regular
+ && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
+ {
+ h->plt = elf_hash_table (eif->info)->init_plt_offset;
+ return TRUE;
+ }
+
+ /* If we've already adjusted this symbol, don't do it again. This
+ can happen via a recursive call. */
+ if (h->dynamic_adjusted)
+ return TRUE;
+
+ /* Don't look at this symbol again. Note that we must set this
+ after checking the above conditions, because we may look at a
+ symbol once, decide not to do anything, and then get called
+ recursively later after REF_REGULAR is set below. */
+ h->dynamic_adjusted = 1;
+
+ /* If this is a weak definition, and we know a real definition, and
+ the real symbol is not itself defined by a regular object file,
+ then get a good value for the real definition. We handle the
+ real symbol first, for the convenience of the backend routine.
+
+ Note that there is a confusing case here. If the real definition
+ is defined by a regular object file, we don't get the real symbol
+ from the dynamic object, but we do get the weak symbol. If the
+ processor backend uses a COPY reloc, then if some routine in the
+ dynamic object changes the real symbol, we will not see that
+ change in the corresponding weak symbol. This is the way other
+ ELF linkers work as well, and seems to be a result of the shared
+ library model.
+
+ I will clarify this issue. Most SVR4 shared libraries define the
+ variable _timezone and define timezone as a weak synonym. The
+ tzset call changes _timezone. If you write
+ extern int timezone;
+ int _timezone = 5;
+ int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
+ you might expect that, since timezone is a synonym for _timezone,
+ the same number will print both times. However, if the processor
+ backend uses a COPY reloc, then actually timezone will be copied
+ into your process image, and, since you define _timezone
+ yourself, _timezone will not. Thus timezone and _timezone will
+ wind up at different memory locations. The tzset call will set
+ _timezone, leaving timezone unchanged. */
+
+ if (h->u.weakdef != NULL)
+ {
+ /* If we get to this point, there is an implicit reference to
+ H->U.WEAKDEF by a regular object file via the weak symbol H. */
+ h->u.weakdef->ref_regular = 1;
+
+ /* Ensure that the backend adjust_dynamic_symbol function sees
+ H->U.WEAKDEF before H by recursively calling ourselves. */
+ if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
+ return FALSE;
+ }
+
+ /* If a symbol has no type and no size and does not require a PLT
+ entry, then we are probably about to do the wrong thing here: we
+ are probably going to create a COPY reloc for an empty object.
+ This case can arise when a shared object is built with assembly
+ code, and the assembly code fails to set the symbol type. */
+ if (h->size == 0
+ && h->type == STT_NOTYPE
+ && !h->needs_plt)
+ (*_bfd_error_handler)
+ (_("warning: type and size of dynamic symbol `%s' are not defined"),
+ h->root.root.string);
+
+ dynobj = elf_hash_table (eif->info)->dynobj;
+ bed = get_elf_backend_data (dynobj);
+
+ if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
+ {
+ eif->failed = TRUE;
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
+ DYNBSS. */
+
+bfd_boolean
+_bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
+ asection *dynbss)
+{
+ unsigned int power_of_two;
+ bfd_vma mask;
+ asection *sec = h->root.u.def.section;
+
+ /* The section aligment of definition is the maximum alignment
+ requirement of symbols defined in the section. Since we don't
+ know the symbol alignment requirement, we start with the
+ maximum alignment and check low bits of the symbol address
+ for the minimum alignment. */
+ power_of_two = bfd_get_section_alignment (sec->owner, sec);
+ mask = ((bfd_vma) 1 << power_of_two) - 1;
+ while ((h->root.u.def.value & mask) != 0)
+ {
+ mask >>= 1;
+ --power_of_two;
+ }
+
+ if (power_of_two > bfd_get_section_alignment (dynbss->owner,
+ dynbss))
+ {
+ /* Adjust the section alignment if needed. */
+ if (! bfd_set_section_alignment (dynbss->owner, dynbss,
+ power_of_two))
+ return FALSE;
+ }
+
+ /* We make sure that the symbol will be aligned properly. */
+ dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
+
+ /* Define the symbol as being at this point in DYNBSS. */
+ h->root.u.def.section = dynbss;
+ h->root.u.def.value = dynbss->size;
+
+ /* Increment the size of DYNBSS to make room for the symbol. */
+ dynbss->size += h->size;
+
+ return TRUE;
+}
+
+/* Adjust all external symbols pointing into SEC_MERGE sections
+ to reflect the object merging within the sections. */
+
+static bfd_boolean
+_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
+{
+ asection *sec;
+
+ if ((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
+ && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
+ {
+ bfd *output_bfd = (bfd *) data;
+
+ h->root.u.def.value =
+ _bfd_merged_section_offset (output_bfd,
+ &h->root.u.def.section,
+ elf_section_data (sec)->sec_info,
+ h->root.u.def.value);
+ }
+
+ return TRUE;
+}
+
+/* Returns false if the symbol referred to by H should be considered
+ to resolve local to the current module, and true if it should be
+ considered to bind dynamically. */
+
+bfd_boolean
+_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
+ struct bfd_link_info *info,
+ bfd_boolean not_local_protected)
+{
+ bfd_boolean binding_stays_local_p;
+ const struct elf_backend_data *bed;
+ struct elf_link_hash_table *hash_table;
+
+ if (h == NULL)
+ return FALSE;
+
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* If it was forced local, then clearly it's not dynamic. */
+ if (h->dynindx == -1)
+ return FALSE;
+ if (h->forced_local)
+ return FALSE;
+
+ /* Identify the cases where name binding rules say that a
+ visible symbol resolves locally. */
+ binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
+
+ switch (ELF_ST_VISIBILITY (h->other))
+ {
+ case STV_INTERNAL:
+ case STV_HIDDEN:
+ return FALSE;
+
+ case STV_PROTECTED:
+ hash_table = elf_hash_table (info);
+ if (!is_elf_hash_table (hash_table))
+ return FALSE;
+
+ bed = get_elf_backend_data (hash_table->dynobj);
+
+ /* Proper resolution for function pointer equality may require
+ that these symbols perhaps be resolved dynamically, even though
+ we should be resolving them to the current module. */
+ if (!not_local_protected || !bed->is_function_type (h->type))
+ binding_stays_local_p = TRUE;
+ break;
+
+ default:
+ break;
+ }
+
+ /* If it isn't defined locally, then clearly it's dynamic. */
+ if (!h->def_regular && !ELF_COMMON_DEF_P (h))
+ return TRUE;
+
+ /* Otherwise, the symbol is dynamic if binding rules don't tell
+ us that it remains local. */
+ return !binding_stays_local_p;
+}
+
+/* Return true if the symbol referred to by H should be considered
+ to resolve local to the current module, and false otherwise. Differs
+ from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
+ undefined symbols. The two functions are virtually identical except
+ for the place where forced_local and dynindx == -1 are tested. If
+ either of those tests are true, _bfd_elf_dynamic_symbol_p will say
+ the symbol is local, while _bfd_elf_symbol_refs_local_p will say
+ the symbol is local only for defined symbols.
+ It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
+ !_bfd_elf_symbol_refs_local_p, except that targets differ in their
+ treatment of undefined weak symbols. For those that do not make
+ undefined weak symbols dynamic, both functions may return false. */
+
+bfd_boolean
+_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
+ struct bfd_link_info *info,
+ bfd_boolean local_protected)
+{
+ const struct elf_backend_data *bed;
+ struct elf_link_hash_table *hash_table;
+
+ /* If it's a local sym, of course we resolve locally. */
+ if (h == NULL)
+ return TRUE;
+
+ /* STV_HIDDEN or STV_INTERNAL ones must be local. */
+ if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
+ || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
+ return TRUE;
+
+ /* Common symbols that become definitions don't get the DEF_REGULAR
+ flag set, so test it first, and don't bail out. */
+ if (ELF_COMMON_DEF_P (h))
+ /* Do nothing. */;
+ /* If we don't have a definition in a regular file, then we can't
+ resolve locally. The sym is either undefined or dynamic. */
+ else if (!h->def_regular)
+ return FALSE;
+
+ /* Forced local symbols resolve locally. */
+ if (h->forced_local)
+ return TRUE;
+
+ /* As do non-dynamic symbols. */
+ if (h->dynindx == -1)
+ return TRUE;
+
+ /* At this point, we know the symbol is defined and dynamic. In an
+ executable it must resolve locally, likewise when building symbolic
+ shared libraries. */
+ if (info->executable || SYMBOLIC_BIND (info, h))
+ return TRUE;
+
+ /* Now deal with defined dynamic symbols in shared libraries. Ones
+ with default visibility might not resolve locally. */
+ if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
+ return FALSE;
+
+ hash_table = elf_hash_table (info);
+ if (!is_elf_hash_table (hash_table))
+ return TRUE;
+
+ bed = get_elf_backend_data (hash_table->dynobj);
+
+ /* STV_PROTECTED non-function symbols are local. */
+ if (!bed->is_function_type (h->type))
+ return TRUE;
+
+ /* Function pointer equality tests may require that STV_PROTECTED
+ symbols be treated as dynamic symbols. If the address of a
+ function not defined in an executable is set to that function's
+ plt entry in the executable, then the address of the function in
+ a shared library must also be the plt entry in the executable. */
+ return local_protected;
+}
+
+/* Caches some TLS segment info, and ensures that the TLS segment vma is
+ aligned. Returns the first TLS output section. */
+
+struct bfd_section *
+_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
+{
+ struct bfd_section *sec, *tls;
+ unsigned int align = 0;
+
+ for (sec = obfd->sections; sec != NULL; sec = sec->next)
+ if ((sec->flags & SEC_THREAD_LOCAL) != 0)
+ break;
+ tls = sec;
+
+ for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
+ if (sec->alignment_power > align)
+ align = sec->alignment_power;
+
+ elf_hash_table (info)->tls_sec = tls;
+
+ /* Ensure the alignment of the first section is the largest alignment,
+ so that the tls segment starts aligned. */
+ if (tls != NULL)
+ tls->alignment_power = align;
+
+ return tls;
+}
+
+/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
+static bfd_boolean
+is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
+ Elf_Internal_Sym *sym)
+{
+ const struct elf_backend_data *bed;
+
+ /* Local symbols do not count, but target specific ones might. */
+ if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
+ && ELF_ST_BIND (sym->st_info) < STB_LOOS)
+ return FALSE;
+
+ bed = get_elf_backend_data (abfd);
+ /* Function symbols do not count. */
+ if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
+ return FALSE;
+
+ /* If the section is undefined, then so is the symbol. */
+ if (sym->st_shndx == SHN_UNDEF)
+ return FALSE;
+
+ /* If the symbol is defined in the common section, then
+ it is a common definition and so does not count. */
+ if (bed->common_definition (sym))
+ return FALSE;
+
+ /* If the symbol is in a target specific section then we
+ must rely upon the backend to tell us what it is. */
+ if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
+ /* FIXME - this function is not coded yet:
+
+ return _bfd_is_global_symbol_definition (abfd, sym);
+
+ Instead for now assume that the definition is not global,
+ Even if this is wrong, at least the linker will behave
+ in the same way that it used to do. */
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Search the symbol table of the archive element of the archive ABFD
+ whose archive map contains a mention of SYMDEF, and determine if
+ the symbol is defined in this element. */
+static bfd_boolean
+elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
+{
+ Elf_Internal_Shdr * hdr;
+ bfd_size_type symcount;
+ bfd_size_type extsymcount;
+ bfd_size_type extsymoff;
+ Elf_Internal_Sym *isymbuf;
+ Elf_Internal_Sym *isym;
+ Elf_Internal_Sym *isymend;
+ bfd_boolean result;
+
+ abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
+ if (abfd == NULL)
+ return FALSE;
+
+ if (! bfd_check_format (abfd, bfd_object))
+ return FALSE;
+
+ /* Select the appropriate symbol table. */
+ if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
+ hdr = &elf_tdata (abfd)->symtab_hdr;
+ else
+ hdr = &elf_tdata (abfd)->dynsymtab_hdr;
+
+ symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
+
+ /* The sh_info field of the symtab header tells us where the
+ external symbols start. We don't care about the local symbols. */
+ if (elf_bad_symtab (abfd))
+ {
+ extsymcount = symcount;
+ extsymoff = 0;
+ }
+ else
+ {
+ extsymcount = symcount - hdr->sh_info;
+ extsymoff = hdr->sh_info;
+ }
+
+ if (extsymcount == 0)
+ return FALSE;
+
+ /* Read in the symbol table. */
+ isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
+ NULL, NULL, NULL);
+ if (isymbuf == NULL)
+ return FALSE;
+
+ /* Scan the symbol table looking for SYMDEF. */
+ result = FALSE;
+ for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
+ {
+ const char *name;
+
+ name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
+ isym->st_name);
+ if (name == NULL)
+ break;
+
+ if (strcmp (name, symdef->name) == 0)
+ {
+ result = is_global_data_symbol_definition (abfd, isym);
+ break;
+ }
+ }
+
+ free (isymbuf);
+
+ return result;
+}
+
+/* Add an entry to the .dynamic table. */
+
+bfd_boolean
+_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
+ bfd_vma tag,
+ bfd_vma val)
+{
+ struct elf_link_hash_table *hash_table;
+ const struct elf_backend_data *bed;
+ asection *s;
+ bfd_size_type newsize;
+ bfd_byte *newcontents;
+ Elf_Internal_Dyn dyn;
+
+ hash_table = elf_hash_table (info);
+ if (! is_elf_hash_table (hash_table))
+ return FALSE;
+
+ bed = get_elf_backend_data (hash_table->dynobj);
+ s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
+ BFD_ASSERT (s != NULL);
+
+ newsize = s->size + bed->s->sizeof_dyn;
+ newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
+ if (newcontents == NULL)
+ return FALSE;
+
+ dyn.d_tag = tag;
+ dyn.d_un.d_val = val;
+ bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
+
+ s->size = newsize;
+ s->contents = newcontents;
+
+ return TRUE;
+}
+
+/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
+ otherwise just check whether one already exists. Returns -1 on error,
+ 1 if a DT_NEEDED tag already exists, and 0 on success. */
+
+static int
+elf_add_dt_needed_tag (bfd *abfd,
+ struct bfd_link_info *info,
+ const char *soname,
+ bfd_boolean do_it)
+{
+ struct elf_link_hash_table *hash_table;
+ bfd_size_type strindex;
+
+ if (!_bfd_elf_link_create_dynstrtab (abfd, info))
+ return -1;
+
+ hash_table = elf_hash_table (info);
+ strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
+ if (strindex == (bfd_size_type) -1)
+ return -1;
+
+ if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
+ {
+ asection *sdyn;
+ const struct elf_backend_data *bed;
+ bfd_byte *extdyn;
+
+ bed = get_elf_backend_data (hash_table->dynobj);
+ sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
+ if (sdyn != NULL)
+ for (extdyn = sdyn->contents;
+ extdyn < sdyn->contents + sdyn->size;
+ extdyn += bed->s->sizeof_dyn)
+ {
+ Elf_Internal_Dyn dyn;
+
+ bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
+ if (dyn.d_tag == DT_NEEDED
+ && dyn.d_un.d_val == strindex)
+ {
+ _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
+ return 1;
+ }
+ }
+ }
+
+ if (do_it)
+ {
+ if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
+ return -1;
+
+ if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
+ return -1;
+ }
+ else
+ /* We were just checking for existence of the tag. */
+ _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
+
+ return 0;
+}
+
+static bfd_boolean
+on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
+{
+ for (; needed != NULL; needed = needed->next)
+ if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
+ && strcmp (soname, needed->name) == 0)
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Sort symbol by value, section, and size. */
+static int
+elf_sort_symbol (const void *arg1, const void *arg2)
+{
+ const struct elf_link_hash_entry *h1;
+ const struct elf_link_hash_entry *h2;
+ bfd_signed_vma vdiff;
+
+ h1 = *(const struct elf_link_hash_entry **) arg1;
+ h2 = *(const struct elf_link_hash_entry **) arg2;
+ vdiff = h1->root.u.def.value - h2->root.u.def.value;
+ if (vdiff != 0)
+ return vdiff > 0 ? 1 : -1;
+ else
+ {
+ long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
+ if (sdiff != 0)
+ return sdiff > 0 ? 1 : -1;
+ }
+ vdiff = h1->size - h2->size;
+ return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
+}
+
+/* This function is used to adjust offsets into .dynstr for
+ dynamic symbols. This is called via elf_link_hash_traverse. */
+
+static bfd_boolean
+elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
+{
+ struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
+
+ if (h->dynindx != -1)
+ h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
+ return TRUE;
+}
+
+/* Assign string offsets in .dynstr, update all structures referencing
+ them. */
+
+static bfd_boolean
+elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
+{
+ struct elf_link_hash_table *hash_table = elf_hash_table (info);
+ struct elf_link_local_dynamic_entry *entry;
+ struct elf_strtab_hash *dynstr = hash_table->dynstr;
+ bfd *dynobj = hash_table->dynobj;
+ asection *sdyn;
+ bfd_size_type size;
+ const struct elf_backend_data *bed;
+ bfd_byte *extdyn;
+
+ _bfd_elf_strtab_finalize (dynstr);
+ size = _bfd_elf_strtab_size (dynstr);
+
+ bed = get_elf_backend_data (dynobj);
+ sdyn = bfd_get_linker_section (dynobj, ".dynamic");
+ BFD_ASSERT (sdyn != NULL);
+
+ /* Update all .dynamic entries referencing .dynstr strings. */
+ for (extdyn = sdyn->contents;
+ extdyn < sdyn->contents + sdyn->size;
+ extdyn += bed->s->sizeof_dyn)
+ {
+ Elf_Internal_Dyn dyn;
+
+ bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
+ switch (dyn.d_tag)
+ {
+ case DT_STRSZ:
+ dyn.d_un.d_val = size;
+ break;
+ case DT_NEEDED:
+ case DT_SONAME:
+ case DT_RPATH:
+ case DT_RUNPATH:
+ case DT_FILTER:
+ case DT_AUXILIARY:
+ case DT_AUDIT:
+ case DT_DEPAUDIT:
+ dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
+ break;
+ default:
+ continue;
+ }
+ bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
+ }
+
+ /* Now update local dynamic symbols. */
+ for (entry = hash_table->dynlocal; entry ; entry = entry->next)
+ entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
+ entry->isym.st_name);
+
+ /* And the rest of dynamic symbols. */
+ elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
+
+ /* Adjust version definitions. */
+ if (elf_tdata (output_bfd)->cverdefs)
+ {
+ asection *s;
+ bfd_byte *p;
+ bfd_size_type i;
+ Elf_Internal_Verdef def;
+ Elf_Internal_Verdaux defaux;
+
+ s = bfd_get_linker_section (dynobj, ".gnu.version_d");
+ p = s->contents;
+ do
+ {
+ _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
+ &def);
+ p += sizeof (Elf_External_Verdef);
+ if (def.vd_aux != sizeof (Elf_External_Verdef))
+ continue;
+ for (i = 0; i < def.vd_cnt; ++i)
+ {
+ _bfd_elf_swap_verdaux_in (output_bfd,
+ (Elf_External_Verdaux *) p, &defaux);
+ defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
+ defaux.vda_name);
+ _bfd_elf_swap_verdaux_out (output_bfd,
+ &defaux, (Elf_External_Verdaux *) p);
+ p += sizeof (Elf_External_Verdaux);
+ }
+ }
+ while (def.vd_next);
+ }
+
+ /* Adjust version references. */
+ if (elf_tdata (output_bfd)->verref)
+ {
+ asection *s;
+ bfd_byte *p;
+ bfd_size_type i;
+ Elf_Internal_Verneed need;
+ Elf_Internal_Vernaux needaux;
+
+ s = bfd_get_linker_section (dynobj, ".gnu.version_r");
+ p = s->contents;
+ do
+ {
+ _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
+ &need);
+ need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
+ _bfd_elf_swap_verneed_out (output_bfd, &need,
+ (Elf_External_Verneed *) p);
+ p += sizeof (Elf_External_Verneed);
+ for (i = 0; i < need.vn_cnt; ++i)
+ {
+ _bfd_elf_swap_vernaux_in (output_bfd,
+ (Elf_External_Vernaux *) p, &needaux);
+ needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
+ needaux.vna_name);
+ _bfd_elf_swap_vernaux_out (output_bfd,
+ &needaux,
+ (Elf_External_Vernaux *) p);
+ p += sizeof (Elf_External_Vernaux);
+ }
+ }
+ while (need.vn_next);
+ }
+
+ return TRUE;
+}
+
+/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
+ The default is to only match when the INPUT and OUTPUT are exactly
+ the same target. */
+
+bfd_boolean
+_bfd_elf_default_relocs_compatible (const bfd_target *input,
+ const bfd_target *output)
+{
+ return input == output;
+}
+
+/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
+ This version is used when different targets for the same architecture
+ are virtually identical. */
+
+bfd_boolean
+_bfd_elf_relocs_compatible (const bfd_target *input,
+ const bfd_target *output)
+{
+ const struct elf_backend_data *obed, *ibed;
+
+ if (input == output)
+ return TRUE;
+
+ ibed = xvec_get_elf_backend_data (input);
+ obed = xvec_get_elf_backend_data (output);
+
+ if (ibed->arch != obed->arch)
+ return FALSE;
+
+ /* If both backends are using this function, deem them compatible. */
+ return ibed->relocs_compatible == obed->relocs_compatible;
+}
+
+/* Make a special call to the linker "notice" function to tell it that
+ we are about to handle an as-needed lib, or have finished
+ processing the lib. */
+
+bfd_boolean
+_bfd_elf_notice_as_needed (bfd *ibfd,
+ struct bfd_link_info *info,
+ enum notice_asneeded_action act)
+{
+ return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
+}
+
+/* Add symbols from an ELF object file to the linker hash table. */
+
+static bfd_boolean
+elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
+{
+ Elf_Internal_Ehdr *ehdr;
+ Elf_Internal_Shdr *hdr;
+ bfd_size_type symcount;
+ bfd_size_type extsymcount;
+ bfd_size_type extsymoff;
+ struct elf_link_hash_entry **sym_hash;
+ bfd_boolean dynamic;
+ Elf_External_Versym *extversym = NULL;
+ Elf_External_Versym *ever;
+ struct elf_link_hash_entry *weaks;
+ struct elf_link_hash_entry **nondeflt_vers = NULL;
+ bfd_size_type nondeflt_vers_cnt = 0;
+ Elf_Internal_Sym *isymbuf = NULL;
+ Elf_Internal_Sym *isym;
+ Elf_Internal_Sym *isymend;
+ const struct elf_backend_data *bed;
+ bfd_boolean add_needed;
+ struct elf_link_hash_table *htab;
+ bfd_size_type amt;
+ void *alloc_mark = NULL;
+ struct bfd_hash_entry **old_table = NULL;
+ unsigned int old_size = 0;
+ unsigned int old_count = 0;
+ void *old_tab = NULL;
+ void *old_ent;
+ struct bfd_link_hash_entry *old_undefs = NULL;
+ struct bfd_link_hash_entry *old_undefs_tail = NULL;
+ long old_dynsymcount = 0;
+ bfd_size_type old_dynstr_size = 0;
+ size_t tabsize = 0;
+ asection *s;
+ bfd_boolean just_syms;
+
+ htab = elf_hash_table (info);
+ bed = get_elf_backend_data (abfd);
+
+ if ((abfd->flags & DYNAMIC) == 0)
+ dynamic = FALSE;
+ else
+ {
+ dynamic = TRUE;
+
+ /* You can't use -r against a dynamic object. Also, there's no
+ hope of using a dynamic object which does not exactly match
+ the format of the output file. */
+ if (info->relocatable
+ || !is_elf_hash_table (htab)
+ || info->output_bfd->xvec != abfd->xvec)
+ {
+ if (info->relocatable)
+ bfd_set_error (bfd_error_invalid_operation);
+ else
+ bfd_set_error (bfd_error_wrong_format);
+ goto error_return;
+ }
+ }
+
+ ehdr = elf_elfheader (abfd);
+ if (info->warn_alternate_em
+ && bed->elf_machine_code != ehdr->e_machine
+ && ((bed->elf_machine_alt1 != 0
+ && ehdr->e_machine == bed->elf_machine_alt1)
+ || (bed->elf_machine_alt2 != 0
+ && ehdr->e_machine == bed->elf_machine_alt2)))
+ info->callbacks->einfo
+ (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
+ ehdr->e_machine, abfd, bed->elf_machine_code);
+
+ /* As a GNU extension, any input sections which are named
+ .gnu.warning.SYMBOL are treated as warning symbols for the given
+ symbol. This differs from .gnu.warning sections, which generate
+ warnings when they are included in an output file. */
+ /* PR 12761: Also generate this warning when building shared libraries. */
+ for (s = abfd->sections; s != NULL; s = s->next)
+ {
+ const char *name;
+
+ name = bfd_get_section_name (abfd, s);
+ if (CONST_STRNEQ (name, ".gnu.warning."))
+ {
+ char *msg;
+ bfd_size_type sz;
+
+ name += sizeof ".gnu.warning." - 1;
+
+ /* If this is a shared object, then look up the symbol
+ in the hash table. If it is there, and it is already
+ been defined, then we will not be using the entry
+ from this shared object, so we don't need to warn.
+ FIXME: If we see the definition in a regular object
+ later on, we will warn, but we shouldn't. The only
+ fix is to keep track of what warnings we are supposed
+ to emit, and then handle them all at the end of the
+ link. */
+ if (dynamic)
+ {
+ struct elf_link_hash_entry *h;
+
+ h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
+
+ /* FIXME: What about bfd_link_hash_common? */
+ if (h != NULL
+ && (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak))
+ continue;
+ }
+
+ sz = s->size;
+ msg = (char *) bfd_alloc (abfd, sz + 1);
+ if (msg == NULL)
+ goto error_return;
+
+ if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
+ goto error_return;
+
+ msg[sz] = '\0';
+
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, name, BSF_WARNING, s, 0, msg,
+ FALSE, bed->collect, NULL)))
+ goto error_return;
+
+ if (!info->relocatable && info->executable)
+ {
+ /* Clobber the section size so that the warning does
+ not get copied into the output file. */
+ s->size = 0;
+
+ /* Also set SEC_EXCLUDE, so that symbols defined in
+ the warning section don't get copied to the output. */
+ s->flags |= SEC_EXCLUDE;
+ }
+ }
+ }
+
+ just_syms = ((s = abfd->sections) != NULL
+ && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
+
+ add_needed = TRUE;
+ if (! dynamic)
+ {
+ /* If we are creating a shared library, create all the dynamic
+ sections immediately. We need to attach them to something,
+ so we attach them to this BFD, provided it is the right
+ format and is not from ld --just-symbols. FIXME: If there
+ are no input BFD's of the same format as the output, we can't
+ make a shared library. */
+ if (!just_syms
+ && info->shared
+ && is_elf_hash_table (htab)
+ && info->output_bfd->xvec == abfd->xvec
+ && !htab->dynamic_sections_created)
+ {
+ if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
+ goto error_return;
+ }
+ }
+ else if (!is_elf_hash_table (htab))
+ goto error_return;
+ else
+ {
+ const char *soname = NULL;
+ char *audit = NULL;
+ struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
+ int ret;
+
+ /* ld --just-symbols and dynamic objects don't mix very well.
+ ld shouldn't allow it. */
+ if (just_syms)
+ abort ();
+
+ /* If this dynamic lib was specified on the command line with
+ --as-needed in effect, then we don't want to add a DT_NEEDED
+ tag unless the lib is actually used. Similary for libs brought
+ in by another lib's DT_NEEDED. When --no-add-needed is used
+ on a dynamic lib, we don't want to add a DT_NEEDED entry for
+ any dynamic library in DT_NEEDED tags in the dynamic lib at
+ all. */
+ add_needed = (elf_dyn_lib_class (abfd)
+ & (DYN_AS_NEEDED | DYN_DT_NEEDED
+ | DYN_NO_NEEDED)) == 0;
+
+ s = bfd_get_section_by_name (abfd, ".dynamic");
+ if (s != NULL)
+ {
+ bfd_byte *dynbuf;
+ bfd_byte *extdyn;
+ unsigned int elfsec;
+ unsigned long shlink;
+
+ if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
+ {
+error_free_dyn:
+ free (dynbuf);
+ goto error_return;
+ }
+
+ elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
+ if (elfsec == SHN_BAD)
+ goto error_free_dyn;
+ shlink = elf_elfsections (abfd)[elfsec]->sh_link;
+
+ for (extdyn = dynbuf;
+ extdyn < dynbuf + s->size;
+ extdyn += bed->s->sizeof_dyn)
+ {
+ Elf_Internal_Dyn dyn;
+
+ bed->s->swap_dyn_in (abfd, extdyn, &dyn);
+ if (dyn.d_tag == DT_SONAME)
+ {
+ unsigned int tagv = dyn.d_un.d_val;
+ soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
+ if (soname == NULL)
+ goto error_free_dyn;
+ }
+ if (dyn.d_tag == DT_NEEDED)
+ {
+ struct bfd_link_needed_list *n, **pn;
+ char *fnm, *anm;
+ unsigned int tagv = dyn.d_un.d_val;
+
+ amt = sizeof (struct bfd_link_needed_list);
+ n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
+ fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
+ if (n == NULL || fnm == NULL)
+ goto error_free_dyn;
+ amt = strlen (fnm) + 1;
+ anm = (char *) bfd_alloc (abfd, amt);
+ if (anm == NULL)
+ goto error_free_dyn;
+ memcpy (anm, fnm, amt);
+ n->name = anm;
+ n->by = abfd;
+ n->next = NULL;
+ for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
+ ;
+ *pn = n;
+ }
+ if (dyn.d_tag == DT_RUNPATH)
+ {
+ struct bfd_link_needed_list *n, **pn;
+ char *fnm, *anm;
+ unsigned int tagv = dyn.d_un.d_val;
+
+ amt = sizeof (struct bfd_link_needed_list);
+ n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
+ fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
+ if (n == NULL || fnm == NULL)
+ goto error_free_dyn;
+ amt = strlen (fnm) + 1;
+ anm = (char *) bfd_alloc (abfd, amt);
+ if (anm == NULL)
+ goto error_free_dyn;
+ memcpy (anm, fnm, amt);
+ n->name = anm;
+ n->by = abfd;
+ n->next = NULL;
+ for (pn = & runpath;
+ *pn != NULL;
+ pn = &(*pn)->next)
+ ;
+ *pn = n;
+ }
+ /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
+ if (!runpath && dyn.d_tag == DT_RPATH)
+ {
+ struct bfd_link_needed_list *n, **pn;
+ char *fnm, *anm;
+ unsigned int tagv = dyn.d_un.d_val;
+
+ amt = sizeof (struct bfd_link_needed_list);
+ n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
+ fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
+ if (n == NULL || fnm == NULL)
+ goto error_free_dyn;
+ amt = strlen (fnm) + 1;
+ anm = (char *) bfd_alloc (abfd, amt);
+ if (anm == NULL)
+ goto error_free_dyn;
+ memcpy (anm, fnm, amt);
+ n->name = anm;
+ n->by = abfd;
+ n->next = NULL;
+ for (pn = & rpath;
+ *pn != NULL;
+ pn = &(*pn)->next)
+ ;
+ *pn = n;
+ }
+ if (dyn.d_tag == DT_AUDIT)
+ {
+ unsigned int tagv = dyn.d_un.d_val;
+ audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
+ }
+ }
+
+ free (dynbuf);
+ }
+
+ /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
+ frees all more recently bfd_alloc'd blocks as well. */
+ if (runpath)
+ rpath = runpath;
+
+ if (rpath)
+ {
+ struct bfd_link_needed_list **pn;
+ for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
+ ;
+ *pn = rpath;
+ }
+
+ /* We do not want to include any of the sections in a dynamic
+ object in the output file. We hack by simply clobbering the
+ list of sections in the BFD. This could be handled more
+ cleanly by, say, a new section flag; the existing
+ SEC_NEVER_LOAD flag is not the one we want, because that one
+ still implies that the section takes up space in the output
+ file. */
+ bfd_section_list_clear (abfd);
+
+ /* Find the name to use in a DT_NEEDED entry that refers to this
+ object. If the object has a DT_SONAME entry, we use it.
+ Otherwise, if the generic linker stuck something in
+ elf_dt_name, we use that. Otherwise, we just use the file
+ name. */
+ if (soname == NULL || *soname == '\0')
+ {
+ soname = elf_dt_name (abfd);
+ if (soname == NULL || *soname == '\0')
+ soname = bfd_get_filename (abfd);
+ }
+
+ /* Save the SONAME because sometimes the linker emulation code
+ will need to know it. */
+ elf_dt_name (abfd) = soname;
+
+ ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
+ if (ret < 0)
+ goto error_return;
+
+ /* If we have already included this dynamic object in the
+ link, just ignore it. There is no reason to include a
+ particular dynamic object more than once. */
+ if (ret > 0)
+ return TRUE;
+
+ /* Save the DT_AUDIT entry for the linker emulation code. */
+ elf_dt_audit (abfd) = audit;
+ }
+
+ /* If this is a dynamic object, we always link against the .dynsym
+ symbol table, not the .symtab symbol table. The dynamic linker
+ will only see the .dynsym symbol table, so there is no reason to
+ look at .symtab for a dynamic object. */
+
+ if (! dynamic || elf_dynsymtab (abfd) == 0)
+ hdr = &elf_tdata (abfd)->symtab_hdr;
+ else
+ hdr = &elf_tdata (abfd)->dynsymtab_hdr;
+
+ symcount = hdr->sh_size / bed->s->sizeof_sym;
+
+ /* The sh_info field of the symtab header tells us where the
+ external symbols start. We don't care about the local symbols at
+ this point. */
+ if (elf_bad_symtab (abfd))
+ {
+ extsymcount = symcount;
+ extsymoff = 0;
+ }
+ else
+ {
+ extsymcount = symcount - hdr->sh_info;
+ extsymoff = hdr->sh_info;
+ }
+
+ sym_hash = elf_sym_hashes (abfd);
+ if (extsymcount != 0)
+ {
+ isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
+ NULL, NULL, NULL);
+ if (isymbuf == NULL)
+ goto error_return;
+
+ if (sym_hash == NULL)
+ {
+ /* We store a pointer to the hash table entry for each
+ external symbol. */
+ amt = extsymcount * sizeof (struct elf_link_hash_entry *);
+ sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
+ if (sym_hash == NULL)
+ goto error_free_sym;
+ elf_sym_hashes (abfd) = sym_hash;
+ }
+ }
+
+ if (dynamic)
+ {
+ /* Read in any version definitions. */
+ if (!_bfd_elf_slurp_version_tables (abfd,
+ info->default_imported_symver))
+ goto error_free_sym;
+
+ /* Read in the symbol versions, but don't bother to convert them
+ to internal format. */
+ if (elf_dynversym (abfd) != 0)
+ {
+ Elf_Internal_Shdr *versymhdr;
+
+ versymhdr = &elf_tdata (abfd)->dynversym_hdr;
+ extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
+ if (extversym == NULL)
+ goto error_free_sym;
+ amt = versymhdr->sh_size;
+ if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
+ || bfd_bread (extversym, amt, abfd) != amt)
+ goto error_free_vers;
+ }
+ }
+
+ /* If we are loading an as-needed shared lib, save the symbol table
+ state before we start adding symbols. If the lib turns out
+ to be unneeded, restore the state. */
+ if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
+ {
+ unsigned int i;
+ size_t entsize;
+
+ for (entsize = 0, i = 0; i < htab->root.table.size; i++)
+ {
+ struct bfd_hash_entry *p;
+ struct elf_link_hash_entry *h;
+
+ for (p = htab->root.table.table[i]; p != NULL; p = p->next)
+ {
+ h = (struct elf_link_hash_entry *) p;
+ entsize += htab->root.table.entsize;
+ if (h->root.type == bfd_link_hash_warning)
+ entsize += htab->root.table.entsize;
+ }
+ }
+
+ tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
+ old_tab = bfd_malloc (tabsize + entsize);
+ if (old_tab == NULL)
+ goto error_free_vers;
+
+ /* Remember the current objalloc pointer, so that all mem for
+ symbols added can later be reclaimed. */
+ alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
+ if (alloc_mark == NULL)
+ goto error_free_vers;
+
+ /* Make a special call to the linker "notice" function to
+ tell it that we are about to handle an as-needed lib. */
+ if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
+ goto error_free_vers;
+
+ /* Clone the symbol table. Remember some pointers into the
+ symbol table, and dynamic symbol count. */
+ old_ent = (char *) old_tab + tabsize;
+ memcpy (old_tab, htab->root.table.table, tabsize);
+ old_undefs = htab->root.undefs;
+ old_undefs_tail = htab->root.undefs_tail;
+ old_table = htab->root.table.table;
+ old_size = htab->root.table.size;
+ old_count = htab->root.table.count;
+ old_dynsymcount = htab->dynsymcount;
+ old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
+
+ for (i = 0; i < htab->root.table.size; i++)
+ {
+ struct bfd_hash_entry *p;
+ struct elf_link_hash_entry *h;
+
+ for (p = htab->root.table.table[i]; p != NULL; p = p->next)
+ {
+ memcpy (old_ent, p, htab->root.table.entsize);
+ old_ent = (char *) old_ent + htab->root.table.entsize;
+ h = (struct elf_link_hash_entry *) p;
+ if (h->root.type == bfd_link_hash_warning)
+ {
+ memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
+ old_ent = (char *) old_ent + htab->root.table.entsize;
+ }
+ }
+ }
+ }
+
+ weaks = NULL;
+ ever = extversym != NULL ? extversym + extsymoff : NULL;
+ for (isym = isymbuf, isymend = isymbuf + extsymcount;
+ isym < isymend;
+ isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
+ {
+ int bind;
+ bfd_vma value;
+ asection *sec, *new_sec;
+ flagword flags;
+ const char *name;
+ struct elf_link_hash_entry *h;
+ struct elf_link_hash_entry *hi;
+ bfd_boolean definition;
+ bfd_boolean size_change_ok;
+ bfd_boolean type_change_ok;
+ bfd_boolean new_weakdef;
+ bfd_boolean new_weak;
+ bfd_boolean old_weak;
+ bfd_boolean override;
+ bfd_boolean common;
+ unsigned int old_alignment;
+ bfd *old_bfd;
+
+ override = FALSE;
+
+ flags = BSF_NO_FLAGS;
+ sec = NULL;
+ value = isym->st_value;
+ common = bed->common_definition (isym);
+
+ bind = ELF_ST_BIND (isym->st_info);
+ switch (bind)
+ {
+ case STB_LOCAL:
+ /* This should be impossible, since ELF requires that all
+ global symbols follow all local symbols, and that sh_info
+ point to the first global symbol. Unfortunately, Irix 5
+ screws this up. */
+ continue;
+
+ case STB_GLOBAL:
+ if (isym->st_shndx != SHN_UNDEF && !common)
+ flags = BSF_GLOBAL;
+ break;
+
+ case STB_WEAK:
+ flags = BSF_WEAK;
+ break;
+
+ case STB_GNU_UNIQUE:
+ flags = BSF_GNU_UNIQUE;
+ break;
+
+ default:
+ /* Leave it up to the processor backend. */
+ break;
+ }
+
+ if (isym->st_shndx == SHN_UNDEF)
+ sec = bfd_und_section_ptr;
+ else if (isym->st_shndx == SHN_ABS)
+ sec = bfd_abs_section_ptr;
+ else if (isym->st_shndx == SHN_COMMON)
+ {
+ sec = bfd_com_section_ptr;
+ /* What ELF calls the size we call the value. What ELF
+ calls the value we call the alignment. */
+ value = isym->st_size;
+ }
+ else
+ {
+ sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
+ if (sec == NULL)
+ sec = bfd_abs_section_ptr;
+ else if (discarded_section (sec))
+ {
+ /* Symbols from discarded section are undefined. We keep
+ its visibility. */
+ sec = bfd_und_section_ptr;
+ isym->st_shndx = SHN_UNDEF;
+ }
+ else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
+ value -= sec->vma;
+ }
+
+ name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
+ isym->st_name);
+ if (name == NULL)
+ goto error_free_vers;
+
+ if (isym->st_shndx == SHN_COMMON
+ && (abfd->flags & BFD_PLUGIN) != 0)
+ {
+ asection *xc = bfd_get_section_by_name (abfd, "COMMON");
+
+ if (xc == NULL)
+ {
+ flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
+ | SEC_EXCLUDE);
+ xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
+ if (xc == NULL)
+ goto error_free_vers;
+ }
+ sec = xc;
+ }
+ else if (isym->st_shndx == SHN_COMMON
+ && ELF_ST_TYPE (isym->st_info) == STT_TLS
+ && !info->relocatable)
+ {
+ asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
+
+ if (tcomm == NULL)
+ {
+ flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
+ | SEC_LINKER_CREATED);
+ tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
+ if (tcomm == NULL)
+ goto error_free_vers;
+ }
+ sec = tcomm;
+ }
+ else if (bed->elf_add_symbol_hook)
+ {
+ if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
+ &sec, &value))
+ goto error_free_vers;
+
+ /* The hook function sets the name to NULL if this symbol
+ should be skipped for some reason. */
+ if (name == NULL)
+ continue;
+ }
+
+ /* Sanity check that all possibilities were handled. */
+ if (sec == NULL)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ goto error_free_vers;
+ }
+
+ /* Silently discard TLS symbols from --just-syms. There's
+ no way to combine a static TLS block with a new TLS block
+ for this executable. */
+ if (ELF_ST_TYPE (isym->st_info) == STT_TLS
+ && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
+ continue;
+
+ if (bfd_is_und_section (sec)
+ || bfd_is_com_section (sec))
+ definition = FALSE;
+ else
+ definition = TRUE;
+
+ size_change_ok = FALSE;
+ type_change_ok = bed->type_change_ok;
+ old_weak = FALSE;
+ old_alignment = 0;
+ old_bfd = NULL;
+ new_sec = sec;
+
+ if (is_elf_hash_table (htab))
+ {
+ Elf_Internal_Versym iver;
+ unsigned int vernum = 0;
+ bfd_boolean skip;
+
+ if (ever == NULL)
+ {
+ if (info->default_imported_symver)
+ /* Use the default symbol version created earlier. */
+ iver.vs_vers = elf_tdata (abfd)->cverdefs;
+ else
+ iver.vs_vers = 0;
+ }
+ else
+ _bfd_elf_swap_versym_in (abfd, ever, &iver);
+
+ vernum = iver.vs_vers & VERSYM_VERSION;
+
+ /* If this is a hidden symbol, or if it is not version
+ 1, we append the version name to the symbol name.
+ However, we do not modify a non-hidden absolute symbol
+ if it is not a function, because it might be the version
+ symbol itself. FIXME: What if it isn't? */
+ if ((iver.vs_vers & VERSYM_HIDDEN) != 0
+ || (vernum > 1
+ && (!bfd_is_abs_section (sec)
+ || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
+ {
+ const char *verstr;
+ size_t namelen, verlen, newlen;
+ char *newname, *p;
+
+ if (isym->st_shndx != SHN_UNDEF)
+ {
+ if (vernum > elf_tdata (abfd)->cverdefs)
+ verstr = NULL;
+ else if (vernum > 1)
+ verstr =
+ elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
+ else
+ verstr = "";
+
+ if (verstr == NULL)
+ {
+ (*_bfd_error_handler)
+ (_("%B: %s: invalid version %u (max %d)"),
+ abfd, name, vernum,
+ elf_tdata (abfd)->cverdefs);
+ bfd_set_error (bfd_error_bad_value);
+ goto error_free_vers;
+ }
+ }
+ else
+ {
+ /* We cannot simply test for the number of
+ entries in the VERNEED section since the
+ numbers for the needed versions do not start
+ at 0. */
+ Elf_Internal_Verneed *t;
+
+ verstr = NULL;
+ for (t = elf_tdata (abfd)->verref;
+ t != NULL;
+ t = t->vn_nextref)
+ {
+ Elf_Internal_Vernaux *a;
+
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ {
+ if (a->vna_other == vernum)
+ {
+ verstr = a->vna_nodename;
+ break;
+ }
+ }
+ if (a != NULL)
+ break;
+ }
+ if (verstr == NULL)
+ {
+ (*_bfd_error_handler)
+ (_("%B: %s: invalid needed version %d"),
+ abfd, name, vernum);
+ bfd_set_error (bfd_error_bad_value);
+ goto error_free_vers;
+ }
+ }
+
+ namelen = strlen (name);
+ verlen = strlen (verstr);
+ newlen = namelen + verlen + 2;
+ if ((iver.vs_vers & VERSYM_HIDDEN) == 0
+ && isym->st_shndx != SHN_UNDEF)
+ ++newlen;
+
+ newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
+ if (newname == NULL)
+ goto error_free_vers;
+ memcpy (newname, name, namelen);
+ p = newname + namelen;
+ *p++ = ELF_VER_CHR;
+ /* If this is a defined non-hidden version symbol,
+ we add another @ to the name. This indicates the
+ default version of the symbol. */
+ if ((iver.vs_vers & VERSYM_HIDDEN) == 0
+ && isym->st_shndx != SHN_UNDEF)
+ *p++ = ELF_VER_CHR;
+ memcpy (p, verstr, verlen + 1);
+
+ name = newname;
+ }
+
+ /* If this symbol has default visibility and the user has
+ requested we not re-export it, then mark it as hidden. */
+ if (definition
+ && !dynamic
+ && (abfd->no_export
+ || (abfd->my_archive && abfd->my_archive->no_export))
+ && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
+ isym->st_other = (STV_HIDDEN
+ | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
+
+ if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
+ sym_hash, &old_bfd, &old_weak,
+ &old_alignment, &skip, &override,
+ &type_change_ok, &size_change_ok))
+ goto error_free_vers;
+
+ if (skip)
+ continue;
+
+ if (override)
+ definition = FALSE;
+
+ h = *sym_hash;
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ if (elf_tdata (abfd)->verdef != NULL
+ && vernum > 1
+ && definition)
+ h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
+ }
+
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
+ (struct bfd_link_hash_entry **) sym_hash)))
+ goto error_free_vers;
+
+ h = *sym_hash;
+ /* We need to make sure that indirect symbol dynamic flags are
+ updated. */
+ hi = h;
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ *sym_hash = h;
+
+ new_weak = (flags & BSF_WEAK) != 0;
+ new_weakdef = FALSE;
+ if (dynamic
+ && definition
+ && new_weak
+ && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
+ && is_elf_hash_table (htab)
+ && h->u.weakdef == NULL)
+ {
+ /* Keep a list of all weak defined non function symbols from
+ a dynamic object, using the weakdef field. Later in this
+ function we will set the weakdef field to the correct
+ value. We only put non-function symbols from dynamic
+ objects on this list, because that happens to be the only
+ time we need to know the normal symbol corresponding to a
+ weak symbol, and the information is time consuming to
+ figure out. If the weakdef field is not already NULL,
+ then this symbol was already defined by some previous
+ dynamic object, and we will be using that previous
+ definition anyhow. */
+
+ h->u.weakdef = weaks;
+ weaks = h;
+ new_weakdef = TRUE;
+ }
+
+ /* Set the alignment of a common symbol. */
+ if ((common || bfd_is_com_section (sec))
+ && h->root.type == bfd_link_hash_common)
+ {
+ unsigned int align;
+
+ if (common)
+ align = bfd_log2 (isym->st_value);
+ else
+ {
+ /* The new symbol is a common symbol in a shared object.
+ We need to get the alignment from the section. */
+ align = new_sec->alignment_power;
+ }
+ if (align > old_alignment)
+ h->root.u.c.p->alignment_power = align;
+ else
+ h->root.u.c.p->alignment_power = old_alignment;
+ }
+
+ if (is_elf_hash_table (htab))
+ {
+ /* Set a flag in the hash table entry indicating the type of
+ reference or definition we just found. A dynamic symbol
+ is one which is referenced or defined by both a regular
+ object and a shared object. */
+ bfd_boolean dynsym = FALSE;
+
+ /* Plugin symbols aren't normal. Don't set def_regular or
+ ref_regular for them, or make them dynamic. */
+ if ((abfd->flags & BFD_PLUGIN) != 0)
+ ;
+ else if (! dynamic)
+ {
+ if (! definition)
+ {
+ h->ref_regular = 1;
+ if (bind != STB_WEAK)
+ h->ref_regular_nonweak = 1;
+ }
+ else
+ {
+ h->def_regular = 1;
+ if (h->def_dynamic)
+ {
+ h->def_dynamic = 0;
+ h->ref_dynamic = 1;
+ }
+ }
+
+ /* If the indirect symbol has been forced local, don't
+ make the real symbol dynamic. */
+ if ((h == hi || !hi->forced_local)
+ && (! info->executable
+ || h->def_dynamic
+ || h->ref_dynamic))
+ dynsym = TRUE;
+ }
+ else
+ {
+ if (! definition)
+ {
+ h->ref_dynamic = 1;
+ hi->ref_dynamic = 1;
+ }
+ else
+ {
+ h->def_dynamic = 1;
+ hi->def_dynamic = 1;
+ }
+
+ /* If the indirect symbol has been forced local, don't
+ make the real symbol dynamic. */
+ if ((h == hi || !hi->forced_local)
+ && (h->def_regular
+ || h->ref_regular
+ || (h->u.weakdef != NULL
+ && ! new_weakdef
+ && h->u.weakdef->dynindx != -1)))
+ dynsym = TRUE;
+ }
+
+ /* Check to see if we need to add an indirect symbol for
+ the default name. */
+ if (definition
+ || (!override && h->root.type == bfd_link_hash_common))
+ if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
+ sec, value, &old_bfd, &dynsym))
+ goto error_free_vers;
+
+ /* Check the alignment when a common symbol is involved. This
+ can change when a common symbol is overridden by a normal
+ definition or a common symbol is ignored due to the old
+ normal definition. We need to make sure the maximum
+ alignment is maintained. */
+ if ((old_alignment || common)
+ && h->root.type != bfd_link_hash_common)
+ {
+ unsigned int common_align;
+ unsigned int normal_align;
+ unsigned int symbol_align;
+ bfd *normal_bfd;
+ bfd *common_bfd;
+
+ BFD_ASSERT (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak);
+
+ symbol_align = ffs (h->root.u.def.value) - 1;
+ if (h->root.u.def.section->owner != NULL
+ && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
+ {
+ normal_align = h->root.u.def.section->alignment_power;
+ if (normal_align > symbol_align)
+ normal_align = symbol_align;
+ }
+ else
+ normal_align = symbol_align;
+
+ if (old_alignment)
+ {
+ common_align = old_alignment;
+ common_bfd = old_bfd;
+ normal_bfd = abfd;
+ }
+ else
+ {
+ common_align = bfd_log2 (isym->st_value);
+ common_bfd = abfd;
+ normal_bfd = old_bfd;
+ }
+
+ if (normal_align < common_align)
+ {
+ /* PR binutils/2735 */
+ if (normal_bfd == NULL)
+ (*_bfd_error_handler)
+ (_("Warning: alignment %u of common symbol `%s' in %B is"
+ " greater than the alignment (%u) of its section %A"),
+ common_bfd, h->root.u.def.section,
+ 1 << common_align, name, 1 << normal_align);
+ else
+ (*_bfd_error_handler)
+ (_("Warning: alignment %u of symbol `%s' in %B"
+ " is smaller than %u in %B"),
+ normal_bfd, common_bfd,
+ 1 << normal_align, name, 1 << common_align);
+ }
+ }
+
+ /* Remember the symbol size if it isn't undefined. */
+ if (isym->st_size != 0
+ && isym->st_shndx != SHN_UNDEF
+ && (definition || h->size == 0))
+ {
+ if (h->size != 0
+ && h->size != isym->st_size
+ && ! size_change_ok)
+ (*_bfd_error_handler)
+ (_("Warning: size of symbol `%s' changed"
+ " from %lu in %B to %lu in %B"),
+ old_bfd, abfd,
+ name, (unsigned long) h->size,
+ (unsigned long) isym->st_size);
+
+ h->size = isym->st_size;
+ }
+
+ /* If this is a common symbol, then we always want H->SIZE
+ to be the size of the common symbol. The code just above
+ won't fix the size if a common symbol becomes larger. We
+ don't warn about a size change here, because that is
+ covered by --warn-common. Allow changes between different
+ function types. */
+ if (h->root.type == bfd_link_hash_common)
+ h->size = h->root.u.c.size;
+
+ if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
+ && ((definition && !new_weak)
+ || (old_weak && h->root.type == bfd_link_hash_common)
+ || h->type == STT_NOTYPE))
+ {
+ unsigned int type = ELF_ST_TYPE (isym->st_info);
+
+ /* Turn an IFUNC symbol from a DSO into a normal FUNC
+ symbol. */
+ if (type == STT_GNU_IFUNC
+ && (abfd->flags & DYNAMIC) != 0)
+ type = STT_FUNC;
+
+ if (h->type != type)
+ {
+ if (h->type != STT_NOTYPE && ! type_change_ok)
+ (*_bfd_error_handler)
+ (_("Warning: type of symbol `%s' changed"
+ " from %d to %d in %B"),
+ abfd, name, h->type, type);
+
+ h->type = type;
+ }
+ }
+
+ /* Merge st_other field. */
+ elf_merge_st_other (abfd, h, isym, definition, dynamic);
+
+ /* We don't want to make debug symbol dynamic. */
+ if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
+ dynsym = FALSE;
+
+ /* Nor should we make plugin symbols dynamic. */
+ if ((abfd->flags & BFD_PLUGIN) != 0)
+ dynsym = FALSE;
+
+ if (definition)
+ {
+ h->target_internal = isym->st_target_internal;
+ h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
+ }
+
+ if (definition && !dynamic)
+ {
+ char *p = strchr (name, ELF_VER_CHR);
+ if (p != NULL && p[1] != ELF_VER_CHR)
+ {
+ /* Queue non-default versions so that .symver x, x@FOO
+ aliases can be checked. */
+ if (!nondeflt_vers)
+ {
+ amt = ((isymend - isym + 1)
+ * sizeof (struct elf_link_hash_entry *));
+ nondeflt_vers =
+ (struct elf_link_hash_entry **) bfd_malloc (amt);
+ if (!nondeflt_vers)
+ goto error_free_vers;
+ }
+ nondeflt_vers[nondeflt_vers_cnt++] = h;
+ }
+ }
+
+ if (dynsym && h->dynindx == -1)
+ {
+ if (! bfd_elf_link_record_dynamic_symbol (info, h))
+ goto error_free_vers;
+ if (h->u.weakdef != NULL
+ && ! new_weakdef
+ && h->u.weakdef->dynindx == -1)
+ {
+ if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
+ goto error_free_vers;
+ }
+ }
+ else if (dynsym && h->dynindx != -1)
+ /* If the symbol already has a dynamic index, but
+ visibility says it should not be visible, turn it into
+ a local symbol. */
+ switch (ELF_ST_VISIBILITY (h->other))
+ {
+ case STV_INTERNAL:
+ case STV_HIDDEN:
+ (*bed->elf_backend_hide_symbol) (info, h, TRUE);
+ dynsym = FALSE;
+ break;
+ }
+
+ /* Don't add DT_NEEDED for references from the dummy bfd. */
+ if (!add_needed
+ && definition
+ && ((dynsym
+ && h->ref_regular_nonweak
+ && (old_bfd == NULL
+ || (old_bfd->flags & BFD_PLUGIN) == 0))
+ || (h->ref_dynamic_nonweak
+ && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
+ && !on_needed_list (elf_dt_name (abfd), htab->needed))))
+ {
+ int ret;
+ const char *soname = elf_dt_name (abfd);
+
+ info->callbacks->minfo ("%!", soname, old_bfd,
+ h->root.root.string);
+
+ /* A symbol from a library loaded via DT_NEEDED of some
+ other library is referenced by a regular object.
+ Add a DT_NEEDED entry for it. Issue an error if
+ --no-add-needed is used and the reference was not
+ a weak one. */
+ if (old_bfd != NULL
+ && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
+ {
+ (*_bfd_error_handler)
+ (_("%B: undefined reference to symbol '%s'"),
+ old_bfd, name);
+ bfd_set_error (bfd_error_missing_dso);
+ goto error_free_vers;
+ }
+
+ elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
+ (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
+
+ add_needed = TRUE;
+ ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
+ if (ret < 0)
+ goto error_free_vers;
+
+ BFD_ASSERT (ret == 0);
+ }
+ }
+ }
+
+ if (extversym != NULL)
+ {
+ free (extversym);
+ extversym = NULL;
+ }
+
+ if (isymbuf != NULL)
+ {
+ free (isymbuf);
+ isymbuf = NULL;
+ }
+
+ if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
+ {
+ unsigned int i;
+
+ /* Restore the symbol table. */
+ old_ent = (char *) old_tab + tabsize;
+ memset (elf_sym_hashes (abfd), 0,
+ extsymcount * sizeof (struct elf_link_hash_entry *));
+ htab->root.table.table = old_table;
+ htab->root.table.size = old_size;
+ htab->root.table.count = old_count;
+ memcpy (htab->root.table.table, old_tab, tabsize);
+ htab->root.undefs = old_undefs;
+ htab->root.undefs_tail = old_undefs_tail;
+ _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
+ for (i = 0; i < htab->root.table.size; i++)
+ {
+ struct bfd_hash_entry *p;
+ struct elf_link_hash_entry *h;
+ bfd_size_type size;
+ unsigned int alignment_power;
+
+ for (p = htab->root.table.table[i]; p != NULL; p = p->next)
+ {
+ h = (struct elf_link_hash_entry *) p;
+ if (h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ if (h->dynindx >= old_dynsymcount
+ && h->dynstr_index < old_dynstr_size)
+ _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
+
+ /* Preserve the maximum alignment and size for common
+ symbols even if this dynamic lib isn't on DT_NEEDED
+ since it can still be loaded at run time by another
+ dynamic lib. */
+ if (h->root.type == bfd_link_hash_common)
+ {
+ size = h->root.u.c.size;
+ alignment_power = h->root.u.c.p->alignment_power;
+ }
+ else
+ {
+ size = 0;
+ alignment_power = 0;
+ }
+ memcpy (p, old_ent, htab->root.table.entsize);
+ old_ent = (char *) old_ent + htab->root.table.entsize;
+ h = (struct elf_link_hash_entry *) p;
+ if (h->root.type == bfd_link_hash_warning)
+ {
+ memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
+ old_ent = (char *) old_ent + htab->root.table.entsize;
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ }
+ if (h->root.type == bfd_link_hash_common)
+ {
+ if (size > h->root.u.c.size)
+ h->root.u.c.size = size;
+ if (alignment_power > h->root.u.c.p->alignment_power)
+ h->root.u.c.p->alignment_power = alignment_power;
+ }
+ }
+ }
+
+ /* Make a special call to the linker "notice" function to
+ tell it that symbols added for crefs may need to be removed. */
+ if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
+ goto error_free_vers;
+
+ free (old_tab);
+ objalloc_free_block ((struct objalloc *) htab->root.table.memory,
+ alloc_mark);
+ if (nondeflt_vers != NULL)
+ free (nondeflt_vers);
+ return TRUE;
+ }
+
+ if (old_tab != NULL)
+ {
+ if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
+ goto error_free_vers;
+ free (old_tab);
+ old_tab = NULL;
+ }
+
+ /* Now that all the symbols from this input file are created, handle
+ .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
+ if (nondeflt_vers != NULL)
+ {
+ bfd_size_type cnt, symidx;
+
+ for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
+ {
+ struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
+ char *shortname, *p;
+
+ p = strchr (h->root.root.string, ELF_VER_CHR);
+ if (p == NULL
+ || (h->root.type != bfd_link_hash_defined
+ && h->root.type != bfd_link_hash_defweak))
+ continue;
+
+ amt = p - h->root.root.string;
+ shortname = (char *) bfd_malloc (amt + 1);
+ if (!shortname)
+ goto error_free_vers;
+ memcpy (shortname, h->root.root.string, amt);
+ shortname[amt] = '\0';
+
+ hi = (struct elf_link_hash_entry *)
+ bfd_link_hash_lookup (&htab->root, shortname,
+ FALSE, FALSE, FALSE);
+ if (hi != NULL
+ && hi->root.type == h->root.type
+ && hi->root.u.def.value == h->root.u.def.value
+ && hi->root.u.def.section == h->root.u.def.section)
+ {
+ (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
+ hi->root.type = bfd_link_hash_indirect;
+ hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
+ (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
+ sym_hash = elf_sym_hashes (abfd);
+ if (sym_hash)
+ for (symidx = 0; symidx < extsymcount; ++symidx)
+ if (sym_hash[symidx] == hi)
+ {
+ sym_hash[symidx] = h;
+ break;
+ }
+ }
+ free (shortname);
+ }
+ free (nondeflt_vers);
+ nondeflt_vers = NULL;
+ }
+
+ /* Now set the weakdefs field correctly for all the weak defined
+ symbols we found. The only way to do this is to search all the
+ symbols. Since we only need the information for non functions in
+ dynamic objects, that's the only time we actually put anything on
+ the list WEAKS. We need this information so that if a regular
+ object refers to a symbol defined weakly in a dynamic object, the
+ real symbol in the dynamic object is also put in the dynamic
+ symbols; we also must arrange for both symbols to point to the
+ same memory location. We could handle the general case of symbol
+ aliasing, but a general symbol alias can only be generated in
+ assembler code, handling it correctly would be very time
+ consuming, and other ELF linkers don't handle general aliasing
+ either. */
+ if (weaks != NULL)
+ {
+ struct elf_link_hash_entry **hpp;
+ struct elf_link_hash_entry **hppend;
+ struct elf_link_hash_entry **sorted_sym_hash;
+ struct elf_link_hash_entry *h;
+ size_t sym_count;
+
+ /* Since we have to search the whole symbol list for each weak
+ defined symbol, search time for N weak defined symbols will be
+ O(N^2). Binary search will cut it down to O(NlogN). */
+ amt = extsymcount * sizeof (struct elf_link_hash_entry *);
+ sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
+ if (sorted_sym_hash == NULL)
+ goto error_return;
+ sym_hash = sorted_sym_hash;
+ hpp = elf_sym_hashes (abfd);
+ hppend = hpp + extsymcount;
+ sym_count = 0;
+ for (; hpp < hppend; hpp++)
+ {
+ h = *hpp;
+ if (h != NULL
+ && h->root.type == bfd_link_hash_defined
+ && !bed->is_function_type (h->type))
+ {
+ *sym_hash = h;
+ sym_hash++;
+ sym_count++;
+ }
+ }
+
+ qsort (sorted_sym_hash, sym_count,
+ sizeof (struct elf_link_hash_entry *),
+ elf_sort_symbol);
+
+ while (weaks != NULL)
+ {
+ struct elf_link_hash_entry *hlook;
+ asection *slook;
+ bfd_vma vlook;
+ size_t i, j, idx = 0;
+
+ hlook = weaks;
+ weaks = hlook->u.weakdef;
+ hlook->u.weakdef = NULL;
+
+ BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
+ || hlook->root.type == bfd_link_hash_defweak
+ || hlook->root.type == bfd_link_hash_common
+ || hlook->root.type == bfd_link_hash_indirect);
+ slook = hlook->root.u.def.section;
+ vlook = hlook->root.u.def.value;
+
+ i = 0;
+ j = sym_count;
+ while (i != j)
+ {
+ bfd_signed_vma vdiff;
+ idx = (i + j) / 2;
+ h = sorted_sym_hash[idx];
+ vdiff = vlook - h->root.u.def.value;
+ if (vdiff < 0)
+ j = idx;
+ else if (vdiff > 0)
+ i = idx + 1;
+ else
+ {
+ long sdiff = slook->id - h->root.u.def.section->id;
+ if (sdiff < 0)
+ j = idx;
+ else if (sdiff > 0)
+ i = idx + 1;
+ else
+ break;
+ }
+ }
+
+ /* We didn't find a value/section match. */
+ if (i == j)
+ continue;
+
+ /* With multiple aliases, or when the weak symbol is already
+ strongly defined, we have multiple matching symbols and
+ the binary search above may land on any of them. Step
+ one past the matching symbol(s). */
+ while (++idx != j)
+ {
+ h = sorted_sym_hash[idx];
+ if (h->root.u.def.section != slook
+ || h->root.u.def.value != vlook)
+ break;
+ }
+
+ /* Now look back over the aliases. Since we sorted by size
+ as well as value and section, we'll choose the one with
+ the largest size. */
+ while (idx-- != i)
+ {
+ h = sorted_sym_hash[idx];
+
+ /* Stop if value or section doesn't match. */
+ if (h->root.u.def.section != slook
+ || h->root.u.def.value != vlook)
+ break;
+ else if (h != hlook)
+ {
+ hlook->u.weakdef = h;
+
+ /* If the weak definition is in the list of dynamic
+ symbols, make sure the real definition is put
+ there as well. */
+ if (hlook->dynindx != -1 && h->dynindx == -1)
+ {
+ if (! bfd_elf_link_record_dynamic_symbol (info, h))
+ {
+ err_free_sym_hash:
+ free (sorted_sym_hash);
+ goto error_return;
+ }
+ }
+
+ /* If the real definition is in the list of dynamic
+ symbols, make sure the weak definition is put
+ there as well. If we don't do this, then the
+ dynamic loader might not merge the entries for the
+ real definition and the weak definition. */
+ if (h->dynindx != -1 && hlook->dynindx == -1)
+ {
+ if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
+ goto err_free_sym_hash;
+ }
+ break;
+ }
+ }
+ }
+
+ free (sorted_sym_hash);
+ }
+
+ if (bed->check_directives
+ && !(*bed->check_directives) (abfd, info))
+ return FALSE;
+
+ /* If this object is the same format as the output object, and it is
+ not a shared library, then let the backend look through the
+ relocs.
+
+ This is required to build global offset table entries and to
+ arrange for dynamic relocs. It is not required for the
+ particular common case of linking non PIC code, even when linking
+ against shared libraries, but unfortunately there is no way of
+ knowing whether an object file has been compiled PIC or not.
+ Looking through the relocs is not particularly time consuming.
+ The problem is that we must either (1) keep the relocs in memory,
+ which causes the linker to require additional runtime memory or
+ (2) read the relocs twice from the input file, which wastes time.
+ This would be a good case for using mmap.
+
+ I have no idea how to handle linking PIC code into a file of a
+ different format. It probably can't be done. */
+ if (! dynamic
+ && is_elf_hash_table (htab)
+ && bed->check_relocs != NULL
+ && elf_object_id (abfd) == elf_hash_table_id (htab)
+ && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
+ {
+ asection *o;
+
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ Elf_Internal_Rela *internal_relocs;
+ bfd_boolean ok;
+
+ if ((o->flags & SEC_RELOC) == 0
+ || o->reloc_count == 0
+ || ((info->strip == strip_all || info->strip == strip_debugger)
+ && (o->flags & SEC_DEBUGGING) != 0)
+ || bfd_is_abs_section (o->output_section))
+ continue;
+
+ internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
+ info->keep_memory);
+ if (internal_relocs == NULL)
+ goto error_return;
+
+ ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
+
+ if (elf_section_data (o)->relocs != internal_relocs)
+ free (internal_relocs);
+
+ if (! ok)
+ goto error_return;
+ }
+ }
+
+ /* If this is a non-traditional link, try to optimize the handling
+ of the .stab/.stabstr sections. */
+ if (! dynamic
+ && ! info->traditional_format
+ && is_elf_hash_table (htab)
+ && (info->strip != strip_all && info->strip != strip_debugger))
+ {
+ asection *stabstr;
+
+ stabstr = bfd_get_section_by_name (abfd, ".stabstr");
+ if (stabstr != NULL)
+ {
+ bfd_size_type string_offset = 0;
+ asection *stab;
+
+ for (stab = abfd->sections; stab; stab = stab->next)
+ if (CONST_STRNEQ (stab->name, ".stab")
+ && (!stab->name[5] ||
+ (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
+ && (stab->flags & SEC_MERGE) == 0
+ && !bfd_is_abs_section (stab->output_section))
+ {
+ struct bfd_elf_section_data *secdata;
+
+ secdata = elf_section_data (stab);
+ if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
+ stabstr, &secdata->sec_info,
+ &string_offset))
+ goto error_return;
+ if (secdata->sec_info)
+ stab->sec_info_type = SEC_INFO_TYPE_STABS;
+ }
+ }
+ }
+
+ if (is_elf_hash_table (htab) && add_needed)
+ {
+ /* Add this bfd to the loaded list. */
+ struct elf_link_loaded_list *n;
+
+ n = (struct elf_link_loaded_list *)
+ bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
+ if (n == NULL)
+ goto error_return;
+ n->abfd = abfd;
+ n->next = htab->loaded;
+ htab->loaded = n;
+ }
+
+ return TRUE;
+
+ error_free_vers:
+ if (old_tab != NULL)
+ free (old_tab);
+ if (nondeflt_vers != NULL)
+ free (nondeflt_vers);
+ if (extversym != NULL)
+ free (extversym);
+ error_free_sym:
+ if (isymbuf != NULL)
+ free (isymbuf);
+ error_return:
+ return FALSE;
+}
+
+/* Return the linker hash table entry of a symbol that might be
+ satisfied by an archive symbol. Return -1 on error. */
+
+struct elf_link_hash_entry *
+_bfd_elf_archive_symbol_lookup (bfd *abfd,
+ struct bfd_link_info *info,
+ const char *name)
+{
+ struct elf_link_hash_entry *h;
+ char *p, *copy;
+ size_t len, first;
+
+ h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
+ if (h != NULL)
+ return h;
+
+ /* If this is a default version (the name contains @@), look up the
+ symbol again with only one `@' as well as without the version.
+ The effect is that references to the symbol with and without the
+ version will be matched by the default symbol in the archive. */
+
+ p = strchr (name, ELF_VER_CHR);
+ if (p == NULL || p[1] != ELF_VER_CHR)
+ return h;
+
+ /* First check with only one `@'. */
+ len = strlen (name);
+ copy = (char *) bfd_alloc (abfd, len);
+ if (copy == NULL)
+ return (struct elf_link_hash_entry *) 0 - 1;
+
+ first = p - name + 1;
+ memcpy (copy, name, first);
+ memcpy (copy + first, name + first + 1, len - first);
+
+ h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
+ if (h == NULL)
+ {
+ /* We also need to check references to the symbol without the
+ version. */
+ copy[first - 1] = '\0';
+ h = elf_link_hash_lookup (elf_hash_table (info), copy,
+ FALSE, FALSE, TRUE);
+ }
+
+ bfd_release (abfd, copy);
+ return h;
+}
+
+/* Add symbols from an ELF archive file to the linker hash table. We
+ don't use _bfd_generic_link_add_archive_symbols because we need to
+ handle versioned symbols.
+
+ Fortunately, ELF archive handling is simpler than that done by
+ _bfd_generic_link_add_archive_symbols, which has to allow for a.out
+ oddities. In ELF, if we find a symbol in the archive map, and the
+ symbol is currently undefined, we know that we must pull in that
+ object file.
+
+ Unfortunately, we do have to make multiple passes over the symbol
+ table until nothing further is resolved. */
+
+static bfd_boolean
+elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
+{
+ symindex c;
+ unsigned char *included = NULL;
+ carsym *symdefs;
+ bfd_boolean loop;
+ bfd_size_type amt;
+ const struct elf_backend_data *bed;
+ struct elf_link_hash_entry * (*archive_symbol_lookup)
+ (bfd *, struct bfd_link_info *, const char *);
+
+ if (! bfd_has_map (abfd))
+ {
+ /* An empty archive is a special case. */
+ if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
+ return TRUE;
+ bfd_set_error (bfd_error_no_armap);
+ return FALSE;
+ }
+
+ /* Keep track of all symbols we know to be already defined, and all
+ files we know to be already included. This is to speed up the
+ second and subsequent passes. */
+ c = bfd_ardata (abfd)->symdef_count;
+ if (c == 0)
+ return TRUE;
+ amt = c;
+ amt *= sizeof (*included);
+ included = (unsigned char *) bfd_zmalloc (amt);
+ if (included == NULL)
+ return FALSE;
+
+ symdefs = bfd_ardata (abfd)->symdefs;
+ bed = get_elf_backend_data (abfd);
+ archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
+
+ do
+ {
+ file_ptr last;
+ symindex i;
+ carsym *symdef;
+ carsym *symdefend;
+
+ loop = FALSE;
+ last = -1;
+
+ symdef = symdefs;
+ symdefend = symdef + c;
+ for (i = 0; symdef < symdefend; symdef++, i++)
+ {
+ struct elf_link_hash_entry *h;
+ bfd *element;
+ struct bfd_link_hash_entry *undefs_tail;
+ symindex mark;
+
+ if (included[i])
+ continue;
+ if (symdef->file_offset == last)
+ {
+ included[i] = TRUE;
+ continue;
+ }
+
+ h = archive_symbol_lookup (abfd, info, symdef->name);
+ if (h == (struct elf_link_hash_entry *) 0 - 1)
+ goto error_return;
+
+ if (h == NULL)
+ continue;
+
+ if (h->root.type == bfd_link_hash_common)
+ {
+ /* We currently have a common symbol. The archive map contains
+ a reference to this symbol, so we may want to include it. We
+ only want to include it however, if this archive element
+ contains a definition of the symbol, not just another common
+ declaration of it.
+
+ Unfortunately some archivers (including GNU ar) will put
+ declarations of common symbols into their archive maps, as
+ well as real definitions, so we cannot just go by the archive
+ map alone. Instead we must read in the element's symbol
+ table and check that to see what kind of symbol definition
+ this is. */
+ if (! elf_link_is_defined_archive_symbol (abfd, symdef))
+ continue;
+ }
+ else if (h->root.type != bfd_link_hash_undefined)
+ {
+ if (h->root.type != bfd_link_hash_undefweak)
+ /* Symbol must be defined. Don't check it again. */
+ included[i] = TRUE;
+ continue;
+ }
+
+ /* We need to include this archive member. */
+ element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
+ if (element == NULL)
+ goto error_return;
+
+ if (! bfd_check_format (element, bfd_object))
+ goto error_return;
+
+ undefs_tail = info->hash->undefs_tail;
+
+ if (!(*info->callbacks
+ ->add_archive_element) (info, element, symdef->name, &element))
+ goto error_return;
+ if (!bfd_link_add_symbols (element, info))
+ goto error_return;
+
+ /* If there are any new undefined symbols, we need to make
+ another pass through the archive in order to see whether
+ they can be defined. FIXME: This isn't perfect, because
+ common symbols wind up on undefs_tail and because an
+ undefined symbol which is defined later on in this pass
+ does not require another pass. This isn't a bug, but it
+ does make the code less efficient than it could be. */
+ if (undefs_tail != info->hash->undefs_tail)
+ loop = TRUE;
+
+ /* Look backward to mark all symbols from this object file
+ which we have already seen in this pass. */
+ mark = i;
+ do
+ {
+ included[mark] = TRUE;
+ if (mark == 0)
+ break;
+ --mark;
+ }
+ while (symdefs[mark].file_offset == symdef->file_offset);
+
+ /* We mark subsequent symbols from this object file as we go
+ on through the loop. */
+ last = symdef->file_offset;
+ }
+ }
+ while (loop);
+
+ free (included);
+
+ return TRUE;
+
+ error_return:
+ if (included != NULL)
+ free (included);
+ return FALSE;
+}
+
+/* Given an ELF BFD, add symbols to the global hash table as
+ appropriate. */
+
+bfd_boolean
+bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
+{
+ switch (bfd_get_format (abfd))
+ {
+ case bfd_object:
+ return elf_link_add_object_symbols (abfd, info);
+ case bfd_archive:
+ return elf_link_add_archive_symbols (abfd, info);
+ default:
+ bfd_set_error (bfd_error_wrong_format);
+ return FALSE;
+ }
+}
+
+struct hash_codes_info
+{
+ unsigned long *hashcodes;
+ bfd_boolean error;
+};
+
+/* This function will be called though elf_link_hash_traverse to store
+ all hash value of the exported symbols in an array. */
+
+static bfd_boolean
+elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
+{
+ struct hash_codes_info *inf = (struct hash_codes_info *) data;
+ const char *name;
+ char *p;
+ unsigned long ha;
+ char *alc = NULL;
+
+ /* Ignore indirect symbols. These are added by the versioning code. */
+ if (h->dynindx == -1)
+ return TRUE;
+
+ name = h->root.root.string;
+ p = strchr (name, ELF_VER_CHR);
+ if (p != NULL)
+ {
+ alc = (char *) bfd_malloc (p - name + 1);
+ if (alc == NULL)
+ {
+ inf->error = TRUE;
+ return FALSE;
+ }
+ memcpy (alc, name, p - name);
+ alc[p - name] = '\0';
+ name = alc;
+ }
+
+ /* Compute the hash value. */
+ ha = bfd_elf_hash (name);
+
+ /* Store the found hash value in the array given as the argument. */
+ *(inf->hashcodes)++ = ha;
+
+ /* And store it in the struct so that we can put it in the hash table
+ later. */
+ h->u.elf_hash_value = ha;
+
+ if (alc != NULL)
+ free (alc);
+
+ return TRUE;
+}
+
+struct collect_gnu_hash_codes
+{
+ bfd *output_bfd;
+ const struct elf_backend_data *bed;
+ unsigned long int nsyms;
+ unsigned long int maskbits;
+ unsigned long int *hashcodes;
+ unsigned long int *hashval;
+ unsigned long int *indx;
+ unsigned long int *counts;
+ bfd_vma *bitmask;
+ bfd_byte *contents;
+ long int min_dynindx;
+ unsigned long int bucketcount;
+ unsigned long int symindx;
+ long int local_indx;
+ long int shift1, shift2;
+ unsigned long int mask;
+ bfd_boolean error;
+};
+
+/* This function will be called though elf_link_hash_traverse to store
+ all hash value of the exported symbols in an array. */
+
+static bfd_boolean
+elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
+{
+ struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
+ const char *name;
+ char *p;
+ unsigned long ha;
+ char *alc = NULL;
+
+ /* Ignore indirect symbols. These are added by the versioning code. */
+ if (h->dynindx == -1)
+ return TRUE;
+
+ /* Ignore also local symbols and undefined symbols. */
+ if (! (*s->bed->elf_hash_symbol) (h))
+ return TRUE;
+
+ name = h->root.root.string;
+ p = strchr (name, ELF_VER_CHR);
+ if (p != NULL)
+ {
+ alc = (char *) bfd_malloc (p - name + 1);
+ if (alc == NULL)
+ {
+ s->error = TRUE;
+ return FALSE;
+ }
+ memcpy (alc, name, p - name);
+ alc[p - name] = '\0';
+ name = alc;
+ }
+
+ /* Compute the hash value. */
+ ha = bfd_elf_gnu_hash (name);
+
+ /* Store the found hash value in the array for compute_bucket_count,
+ and also for .dynsym reordering purposes. */
+ s->hashcodes[s->nsyms] = ha;
+ s->hashval[h->dynindx] = ha;
+ ++s->nsyms;
+ if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
+ s->min_dynindx = h->dynindx;
+
+ if (alc != NULL)
+ free (alc);
+
+ return TRUE;
+}
+
+/* This function will be called though elf_link_hash_traverse to do
+ final dynaminc symbol renumbering. */
+
+static bfd_boolean
+elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
+{
+ struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
+ unsigned long int bucket;
+ unsigned long int val;
+
+ /* Ignore indirect symbols. */
+ if (h->dynindx == -1)
+ return TRUE;
+
+ /* Ignore also local symbols and undefined symbols. */
+ if (! (*s->bed->elf_hash_symbol) (h))
+ {
+ if (h->dynindx >= s->min_dynindx)
+ h->dynindx = s->local_indx++;
+ return TRUE;
+ }
+
+ bucket = s->hashval[h->dynindx] % s->bucketcount;
+ val = (s->hashval[h->dynindx] >> s->shift1)
+ & ((s->maskbits >> s->shift1) - 1);
+ s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
+ s->bitmask[val]
+ |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
+ val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
+ if (s->counts[bucket] == 1)
+ /* Last element terminates the chain. */
+ val |= 1;
+ bfd_put_32 (s->output_bfd, val,
+ s->contents + (s->indx[bucket] - s->symindx) * 4);
+ --s->counts[bucket];
+ h->dynindx = s->indx[bucket]++;
+ return TRUE;
+}
+
+/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
+
+bfd_boolean
+_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
+{
+ return !(h->forced_local
+ || h->root.type == bfd_link_hash_undefined
+ || h->root.type == bfd_link_hash_undefweak
+ || ((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && h->root.u.def.section->output_section == NULL));
+}
+
+/* Array used to determine the number of hash table buckets to use
+ based on the number of symbols there are. If there are fewer than
+ 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
+ fewer than 37 we use 17 buckets, and so forth. We never use more
+ than 32771 buckets. */
+
+static const size_t elf_buckets[] =
+{
+ 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
+ 16411, 32771, 0
+};
+
+/* Compute bucket count for hashing table. We do not use a static set
+ of possible tables sizes anymore. Instead we determine for all
+ possible reasonable sizes of the table the outcome (i.e., the
+ number of collisions etc) and choose the best solution. The
+ weighting functions are not too simple to allow the table to grow
+ without bounds. Instead one of the weighting factors is the size.
+ Therefore the result is always a good payoff between few collisions
+ (= short chain lengths) and table size. */
+static size_t
+compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
+ unsigned long int *hashcodes ATTRIBUTE_UNUSED,
+ unsigned long int nsyms,
+ int gnu_hash)
+{
+ size_t best_size = 0;
+ unsigned long int i;
+
+ /* We have a problem here. The following code to optimize the table
+ size requires an integer type with more the 32 bits. If
+ BFD_HOST_U_64_BIT is set we know about such a type. */
+#ifdef BFD_HOST_U_64_BIT
+ if (info->optimize)
+ {
+ size_t minsize;
+ size_t maxsize;
+ BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
+ bfd *dynobj = elf_hash_table (info)->dynobj;
+ size_t dynsymcount = elf_hash_table (info)->dynsymcount;
+ const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
+ unsigned long int *counts;
+ bfd_size_type amt;
+ unsigned int no_improvement_count = 0;
+
+ /* Possible optimization parameters: if we have NSYMS symbols we say
+ that the hashing table must at least have NSYMS/4 and at most
+ 2*NSYMS buckets. */
+ minsize = nsyms / 4;
+ if (minsize == 0)
+ minsize = 1;
+ best_size = maxsize = nsyms * 2;
+ if (gnu_hash)
+ {
+ if (minsize < 2)
+ minsize = 2;
+ if ((best_size & 31) == 0)
+ ++best_size;
+ }
+
+ /* Create array where we count the collisions in. We must use bfd_malloc
+ since the size could be large. */
+ amt = maxsize;
+ amt *= sizeof (unsigned long int);
+ counts = (unsigned long int *) bfd_malloc (amt);
+ if (counts == NULL)
+ return 0;
+
+ /* Compute the "optimal" size for the hash table. The criteria is a
+ minimal chain length. The minor criteria is (of course) the size
+ of the table. */
+ for (i = minsize; i < maxsize; ++i)
+ {
+ /* Walk through the array of hashcodes and count the collisions. */
+ BFD_HOST_U_64_BIT max;
+ unsigned long int j;
+ unsigned long int fact;
+
+ if (gnu_hash && (i & 31) == 0)
+ continue;
+
+ memset (counts, '\0', i * sizeof (unsigned long int));
+
+ /* Determine how often each hash bucket is used. */
+ for (j = 0; j < nsyms; ++j)
+ ++counts[hashcodes[j] % i];
+
+ /* For the weight function we need some information about the
+ pagesize on the target. This is information need not be 100%
+ accurate. Since this information is not available (so far) we
+ define it here to a reasonable default value. If it is crucial
+ to have a better value some day simply define this value. */
+# ifndef BFD_TARGET_PAGESIZE
+# define BFD_TARGET_PAGESIZE (4096)
+# endif
+
+ /* We in any case need 2 + DYNSYMCOUNT entries for the size values
+ and the chains. */
+ max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
+
+# if 1
+ /* Variant 1: optimize for short chains. We add the squares
+ of all the chain lengths (which favors many small chain
+ over a few long chains). */
+ for (j = 0; j < i; ++j)
+ max += counts[j] * counts[j];
+
+ /* This adds penalties for the overall size of the table. */
+ fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
+ max *= fact * fact;
+# else
+ /* Variant 2: Optimize a lot more for small table. Here we
+ also add squares of the size but we also add penalties for
+ empty slots (the +1 term). */
+ for (j = 0; j < i; ++j)
+ max += (1 + counts[j]) * (1 + counts[j]);
+
+ /* The overall size of the table is considered, but not as
+ strong as in variant 1, where it is squared. */
+ fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
+ max *= fact;
+# endif
+
+ /* Compare with current best results. */
+ if (max < best_chlen)
+ {
+ best_chlen = max;
+ best_size = i;
+ no_improvement_count = 0;
+ }
+ /* PR 11843: Avoid futile long searches for the best bucket size
+ when there are a large number of symbols. */
+ else if (++no_improvement_count == 100)
+ break;
+ }
+
+ free (counts);
+ }
+ else
+#endif /* defined (BFD_HOST_U_64_BIT) */
+ {
+ /* This is the fallback solution if no 64bit type is available or if we
+ are not supposed to spend much time on optimizations. We select the
+ bucket count using a fixed set of numbers. */
+ for (i = 0; elf_buckets[i] != 0; i++)
+ {
+ best_size = elf_buckets[i];
+ if (nsyms < elf_buckets[i + 1])
+ break;
+ }
+ if (gnu_hash && best_size < 2)
+ best_size = 2;
+ }
+
+ return best_size;
+}
+
+/* Size any SHT_GROUP section for ld -r. */
+
+bfd_boolean
+_bfd_elf_size_group_sections (struct bfd_link_info *info)
+{
+ bfd *ibfd;
+
+ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
+ if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
+ && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
+ return FALSE;
+ return TRUE;
+}
+
+/* Set a default stack segment size. The value in INFO wins. If it
+ is unset, LEGACY_SYMBOL's value is used, and if that symbol is
+ undefined it is initialized. */
+
+bfd_boolean
+bfd_elf_stack_segment_size (bfd *output_bfd,
+ struct bfd_link_info *info,
+ const char *legacy_symbol,
+ bfd_vma default_size)
+{
+ struct elf_link_hash_entry *h = NULL;
+
+ /* Look for legacy symbol. */
+ if (legacy_symbol)
+ h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
+ FALSE, FALSE, FALSE);
+ if (h && (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && h->def_regular
+ && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
+ {
+ /* The symbol has no type if specified on the command line. */
+ h->type = STT_OBJECT;
+ if (info->stacksize)
+ (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
+ output_bfd, legacy_symbol);
+ else if (h->root.u.def.section != bfd_abs_section_ptr)
+ (*_bfd_error_handler) (_("%B: %s not absolute"),
+ output_bfd, legacy_symbol);
+ else
+ info->stacksize = h->root.u.def.value;
+ }
+
+ if (!info->stacksize)
+ /* If the user didn't set a size, or explicitly inhibit the
+ size, set it now. */
+ info->stacksize = default_size;
+
+ /* Provide the legacy symbol, if it is referenced. */
+ if (h && (h->root.type == bfd_link_hash_undefined
+ || h->root.type == bfd_link_hash_undefweak))
+ {
+ struct bfd_link_hash_entry *bh = NULL;
+
+ if (!(_bfd_generic_link_add_one_symbol
+ (info, output_bfd, legacy_symbol,
+ BSF_GLOBAL, bfd_abs_section_ptr,
+ info->stacksize >= 0 ? info->stacksize : 0,
+ NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
+ return FALSE;
+
+ h = (struct elf_link_hash_entry *) bh;
+ h->def_regular = 1;
+ h->type = STT_OBJECT;
+ }
+
+ return TRUE;
+}
+
+/* Set up the sizes and contents of the ELF dynamic sections. This is
+ called by the ELF linker emulation before_allocation routine. We
+ must set the sizes of the sections before the linker sets the
+ addresses of the various sections. */
+
+bfd_boolean
+bfd_elf_size_dynamic_sections (bfd *output_bfd,
+ const char *soname,
+ const char *rpath,
+ const char *filter_shlib,
+ const char *audit,
+ const char *depaudit,
+ const char * const *auxiliary_filters,
+ struct bfd_link_info *info,
+ asection **sinterpptr)
+{
+ bfd_size_type soname_indx;
+ bfd *dynobj;
+ const struct elf_backend_data *bed;
+ struct elf_info_failed asvinfo;
+
+ *sinterpptr = NULL;
+
+ soname_indx = (bfd_size_type) -1;
+
+ if (!is_elf_hash_table (info->hash))
+ return TRUE;
+
+ bed = get_elf_backend_data (output_bfd);
+
+ /* Any syms created from now on start with -1 in
+ got.refcount/offset and plt.refcount/offset. */
+ elf_hash_table (info)->init_got_refcount
+ = elf_hash_table (info)->init_got_offset;
+ elf_hash_table (info)->init_plt_refcount
+ = elf_hash_table (info)->init_plt_offset;
+
+ if (info->relocatable
+ && !_bfd_elf_size_group_sections (info))
+ return FALSE;
+
+ /* The backend may have to create some sections regardless of whether
+ we're dynamic or not. */
+ if (bed->elf_backend_always_size_sections
+ && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
+ return FALSE;
+
+ /* Determine any GNU_STACK segment requirements, after the backend
+ has had a chance to set a default segment size. */
+ if (info->execstack)
+ elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
+ else if (info->noexecstack)
+ elf_stack_flags (output_bfd) = PF_R | PF_W;
+ else
+ {
+ bfd *inputobj;
+ asection *notesec = NULL;
+ int exec = 0;
+
+ for (inputobj = info->input_bfds;
+ inputobj;
+ inputobj = inputobj->link.next)
+ {
+ asection *s;
+
+ if (inputobj->flags
+ & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
+ continue;
+ s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
+ if (s)
+ {
+ if (s->flags & SEC_CODE)
+ exec = PF_X;
+ notesec = s;
+ }
+ else if (bed->default_execstack)
+ exec = PF_X;
+ }
+ if (notesec || info->stacksize > 0)
+ elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
+ if (notesec && exec && info->relocatable
+ && notesec->output_section != bfd_abs_section_ptr)
+ notesec->output_section->flags |= SEC_CODE;
+ }
+
+ dynobj = elf_hash_table (info)->dynobj;
+
+ if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
+ {
+ struct elf_info_failed eif;
+ struct elf_link_hash_entry *h;
+ asection *dynstr;
+ struct bfd_elf_version_tree *t;
+ struct bfd_elf_version_expr *d;
+ asection *s;
+ bfd_boolean all_defined;
+
+ *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
+ BFD_ASSERT (*sinterpptr != NULL || !info->executable);
+
+ if (soname != NULL)
+ {
+ soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
+ soname, TRUE);
+ if (soname_indx == (bfd_size_type) -1
+ || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
+ return FALSE;
+ }
+
+ if (info->symbolic)
+ {
+ if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
+ return FALSE;
+ info->flags |= DF_SYMBOLIC;
+ }
+
+ if (rpath != NULL)
+ {
+ bfd_size_type indx;
+ bfd_vma tag;
+
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
+ TRUE);
+ if (indx == (bfd_size_type) -1)
+ return FALSE;
+
+ tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
+ if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
+ return FALSE;
+ }
+
+ if (filter_shlib != NULL)
+ {
+ bfd_size_type indx;
+
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
+ filter_shlib, TRUE);
+ if (indx == (bfd_size_type) -1
+ || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
+ return FALSE;
+ }
+
+ if (auxiliary_filters != NULL)
+ {
+ const char * const *p;
+
+ for (p = auxiliary_filters; *p != NULL; p++)
+ {
+ bfd_size_type indx;
+
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
+ *p, TRUE);
+ if (indx == (bfd_size_type) -1
+ || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
+ return FALSE;
+ }
+ }
+
+ if (audit != NULL)
+ {
+ bfd_size_type indx;
+
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
+ TRUE);
+ if (indx == (bfd_size_type) -1
+ || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
+ return FALSE;
+ }
+
+ if (depaudit != NULL)
+ {
+ bfd_size_type indx;
+
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
+ TRUE);
+ if (indx == (bfd_size_type) -1
+ || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
+ return FALSE;
+ }
+
+ eif.info = info;
+ eif.failed = FALSE;
+
+ /* If we are supposed to export all symbols into the dynamic symbol
+ table (this is not the normal case), then do so. */
+ if (info->export_dynamic
+ || (info->executable && info->dynamic))
+ {
+ elf_link_hash_traverse (elf_hash_table (info),
+ _bfd_elf_export_symbol,
+ &eif);
+ if (eif.failed)
+ return FALSE;
+ }
+
+ /* Make all global versions with definition. */
+ for (t = info->version_info; t != NULL; t = t->next)
+ for (d = t->globals.list; d != NULL; d = d->next)
+ if (!d->symver && d->literal)
+ {
+ const char *verstr, *name;
+ size_t namelen, verlen, newlen;
+ char *newname, *p, leading_char;
+ struct elf_link_hash_entry *newh;
+
+ leading_char = bfd_get_symbol_leading_char (output_bfd);
+ name = d->pattern;
+ namelen = strlen (name) + (leading_char != '\0');
+ verstr = t->name;
+ verlen = strlen (verstr);
+ newlen = namelen + verlen + 3;
+
+ newname = (char *) bfd_malloc (newlen);
+ if (newname == NULL)
+ return FALSE;
+ newname[0] = leading_char;
+ memcpy (newname + (leading_char != '\0'), name, namelen);
+
+ /* Check the hidden versioned definition. */
+ p = newname + namelen;
+ *p++ = ELF_VER_CHR;
+ memcpy (p, verstr, verlen + 1);
+ newh = elf_link_hash_lookup (elf_hash_table (info),
+ newname, FALSE, FALSE,
+ FALSE);
+ if (newh == NULL
+ || (newh->root.type != bfd_link_hash_defined
+ && newh->root.type != bfd_link_hash_defweak))
+ {
+ /* Check the default versioned definition. */
+ *p++ = ELF_VER_CHR;
+ memcpy (p, verstr, verlen + 1);
+ newh = elf_link_hash_lookup (elf_hash_table (info),
+ newname, FALSE, FALSE,
+ FALSE);
+ }
+ free (newname);
+
+ /* Mark this version if there is a definition and it is
+ not defined in a shared object. */
+ if (newh != NULL
+ && !newh->def_dynamic
+ && (newh->root.type == bfd_link_hash_defined
+ || newh->root.type == bfd_link_hash_defweak))
+ d->symver = 1;
+ }
+
+ /* Attach all the symbols to their version information. */
+ asvinfo.info = info;
+ asvinfo.failed = FALSE;
+
+ elf_link_hash_traverse (elf_hash_table (info),
+ _bfd_elf_link_assign_sym_version,
+ &asvinfo);
+ if (asvinfo.failed)
+ return FALSE;
+
+ if (!info->allow_undefined_version)
+ {
+ /* Check if all global versions have a definition. */
+ all_defined = TRUE;
+ for (t = info->version_info; t != NULL; t = t->next)
+ for (d = t->globals.list; d != NULL; d = d->next)
+ if (d->literal && !d->symver && !d->script)
+ {
+ (*_bfd_error_handler)
+ (_("%s: undefined version: %s"),
+ d->pattern, t->name);
+ all_defined = FALSE;
+ }
+
+ if (!all_defined)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+ }
+
+ /* Find all symbols which were defined in a dynamic object and make
+ the backend pick a reasonable value for them. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ _bfd_elf_adjust_dynamic_symbol,
+ &eif);
+ if (eif.failed)
+ return FALSE;
+
+ /* Add some entries to the .dynamic section. We fill in some of the
+ values later, in bfd_elf_final_link, but we must add the entries
+ now so that we know the final size of the .dynamic section. */
+
+ /* If there are initialization and/or finalization functions to
+ call then add the corresponding DT_INIT/DT_FINI entries. */
+ h = (info->init_function
+ ? elf_link_hash_lookup (elf_hash_table (info),
+ info->init_function, FALSE,
+ FALSE, FALSE)
+ : NULL);
+ if (h != NULL
+ && (h->ref_regular
+ || h->def_regular))
+ {
+ if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
+ return FALSE;
+ }
+ h = (info->fini_function
+ ? elf_link_hash_lookup (elf_hash_table (info),
+ info->fini_function, FALSE,
+ FALSE, FALSE)
+ : NULL);
+ if (h != NULL
+ && (h->ref_regular
+ || h->def_regular))
+ {
+ if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
+ return FALSE;
+ }
+
+ s = bfd_get_section_by_name (output_bfd, ".preinit_array");
+ if (s != NULL && s->linker_has_input)
+ {
+ /* DT_PREINIT_ARRAY is not allowed in shared library. */
+ if (! info->executable)
+ {
+ bfd *sub;
+ asection *o;
+
+ for (sub = info->input_bfds; sub != NULL;
+ sub = sub->link.next)
+ if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
+ for (o = sub->sections; o != NULL; o = o->next)
+ if (elf_section_data (o)->this_hdr.sh_type
+ == SHT_PREINIT_ARRAY)
+ {
+ (*_bfd_error_handler)
+ (_("%B: .preinit_array section is not allowed in DSO"),
+ sub);
+ break;
+ }
+
+ bfd_set_error (bfd_error_nonrepresentable_section);
+ return FALSE;
+ }
+
+ if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
+ || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
+ return FALSE;
+ }
+ s = bfd_get_section_by_name (output_bfd, ".init_array");
+ if (s != NULL && s->linker_has_input)
+ {
+ if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
+ || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
+ return FALSE;
+ }
+ s = bfd_get_section_by_name (output_bfd, ".fini_array");
+ if (s != NULL && s->linker_has_input)
+ {
+ if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
+ || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
+ return FALSE;
+ }
+
+ dynstr = bfd_get_linker_section (dynobj, ".dynstr");
+ /* If .dynstr is excluded from the link, we don't want any of
+ these tags. Strictly, we should be checking each section
+ individually; This quick check covers for the case where
+ someone does a /DISCARD/ : { *(*) }. */
+ if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
+ {
+ bfd_size_type strsize;
+
+ strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
+ if ((info->emit_hash
+ && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
+ || (info->emit_gnu_hash
+ && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
+ || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
+ || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
+ || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
+ || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
+ bed->s->sizeof_sym))
+ return FALSE;
+ }
+ }
+
+ /* The backend must work out the sizes of all the other dynamic
+ sections. */
+ if (dynobj != NULL
+ && bed->elf_backend_size_dynamic_sections != NULL
+ && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
+ return FALSE;
+
+ if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
+ return FALSE;
+
+ if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
+ {
+ unsigned long section_sym_count;
+ struct bfd_elf_version_tree *verdefs;
+ asection *s;
+
+ /* Set up the version definition section. */
+ s = bfd_get_linker_section (dynobj, ".gnu.version_d");
+ BFD_ASSERT (s != NULL);
+
+ /* We may have created additional version definitions if we are
+ just linking a regular application. */
+ verdefs = info->version_info;
+
+ /* Skip anonymous version tag. */
+ if (verdefs != NULL && verdefs->vernum == 0)
+ verdefs = verdefs->next;
+
+ if (verdefs == NULL && !info->create_default_symver)
+ s->flags |= SEC_EXCLUDE;
+ else
+ {
+ unsigned int cdefs;
+ bfd_size_type size;
+ struct bfd_elf_version_tree *t;
+ bfd_byte *p;
+ Elf_Internal_Verdef def;
+ Elf_Internal_Verdaux defaux;
+ struct bfd_link_hash_entry *bh;
+ struct elf_link_hash_entry *h;
+ const char *name;
+
+ cdefs = 0;
+ size = 0;
+
+ /* Make space for the base version. */
+ size += sizeof (Elf_External_Verdef);
+ size += sizeof (Elf_External_Verdaux);
+ ++cdefs;
+
+ /* Make space for the default version. */
+ if (info->create_default_symver)
+ {
+ size += sizeof (Elf_External_Verdef);
+ ++cdefs;
+ }
+
+ for (t = verdefs; t != NULL; t = t->next)
+ {
+ struct bfd_elf_version_deps *n;
+
+ /* Don't emit base version twice. */
+ if (t->vernum == 0)
+ continue;
+
+ size += sizeof (Elf_External_Verdef);
+ size += sizeof (Elf_External_Verdaux);
+ ++cdefs;
+
+ for (n = t->deps; n != NULL; n = n->next)
+ size += sizeof (Elf_External_Verdaux);
+ }
+
+ s->size = size;
+ s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
+ if (s->contents == NULL && s->size != 0)
+ return FALSE;
+
+ /* Fill in the version definition section. */
+
+ p = s->contents;
+
+ def.vd_version = VER_DEF_CURRENT;
+ def.vd_flags = VER_FLG_BASE;
+ def.vd_ndx = 1;
+ def.vd_cnt = 1;
+ if (info->create_default_symver)
+ {
+ def.vd_aux = 2 * sizeof (Elf_External_Verdef);
+ def.vd_next = sizeof (Elf_External_Verdef);
+ }
+ else
+ {
+ def.vd_aux = sizeof (Elf_External_Verdef);
+ def.vd_next = (sizeof (Elf_External_Verdef)
+ + sizeof (Elf_External_Verdaux));
+ }
+
+ if (soname_indx != (bfd_size_type) -1)
+ {
+ _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
+ soname_indx);
+ def.vd_hash = bfd_elf_hash (soname);
+ defaux.vda_name = soname_indx;
+ name = soname;
+ }
+ else
+ {
+ bfd_size_type indx;
+
+ name = lbasename (output_bfd->filename);
+ def.vd_hash = bfd_elf_hash (name);
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
+ name, FALSE);
+ if (indx == (bfd_size_type) -1)
+ return FALSE;
+ defaux.vda_name = indx;
+ }
+ defaux.vda_next = 0;
+
+ _bfd_elf_swap_verdef_out (output_bfd, &def,
+ (Elf_External_Verdef *) p);
+ p += sizeof (Elf_External_Verdef);
+ if (info->create_default_symver)
+ {
+ /* Add a symbol representing this version. */
+ bh = NULL;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
+ 0, NULL, FALSE,
+ get_elf_backend_data (dynobj)->collect, &bh)))
+ return FALSE;
+ h = (struct elf_link_hash_entry *) bh;
+ h->non_elf = 0;
+ h->def_regular = 1;
+ h->type = STT_OBJECT;
+ h->verinfo.vertree = NULL;
+
+ if (! bfd_elf_link_record_dynamic_symbol (info, h))
+ return FALSE;
+
+ /* Create a duplicate of the base version with the same
+ aux block, but different flags. */
+ def.vd_flags = 0;
+ def.vd_ndx = 2;
+ def.vd_aux = sizeof (Elf_External_Verdef);
+ if (verdefs)
+ def.vd_next = (sizeof (Elf_External_Verdef)
+ + sizeof (Elf_External_Verdaux));
+ else
+ def.vd_next = 0;
+ _bfd_elf_swap_verdef_out (output_bfd, &def,
+ (Elf_External_Verdef *) p);
+ p += sizeof (Elf_External_Verdef);
+ }
+ _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
+ (Elf_External_Verdaux *) p);
+ p += sizeof (Elf_External_Verdaux);
+
+ for (t = verdefs; t != NULL; t = t->next)
+ {
+ unsigned int cdeps;
+ struct bfd_elf_version_deps *n;
+
+ /* Don't emit the base version twice. */
+ if (t->vernum == 0)
+ continue;
+
+ cdeps = 0;
+ for (n = t->deps; n != NULL; n = n->next)
+ ++cdeps;
+
+ /* Add a symbol representing this version. */
+ bh = NULL;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
+ 0, NULL, FALSE,
+ get_elf_backend_data (dynobj)->collect, &bh)))
+ return FALSE;
+ h = (struct elf_link_hash_entry *) bh;
+ h->non_elf = 0;
+ h->def_regular = 1;
+ h->type = STT_OBJECT;
+ h->verinfo.vertree = t;
+
+ if (! bfd_elf_link_record_dynamic_symbol (info, h))
+ return FALSE;
+
+ def.vd_version = VER_DEF_CURRENT;
+ def.vd_flags = 0;
+ if (t->globals.list == NULL
+ && t->locals.list == NULL
+ && ! t->used)
+ def.vd_flags |= VER_FLG_WEAK;
+ def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
+ def.vd_cnt = cdeps + 1;
+ def.vd_hash = bfd_elf_hash (t->name);
+ def.vd_aux = sizeof (Elf_External_Verdef);
+ def.vd_next = 0;
+
+ /* If a basever node is next, it *must* be the last node in
+ the chain, otherwise Verdef construction breaks. */
+ if (t->next != NULL && t->next->vernum == 0)
+ BFD_ASSERT (t->next->next == NULL);
+
+ if (t->next != NULL && t->next->vernum != 0)
+ def.vd_next = (sizeof (Elf_External_Verdef)
+ + (cdeps + 1) * sizeof (Elf_External_Verdaux));
+
+ _bfd_elf_swap_verdef_out (output_bfd, &def,
+ (Elf_External_Verdef *) p);
+ p += sizeof (Elf_External_Verdef);
+
+ defaux.vda_name = h->dynstr_index;
+ _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
+ h->dynstr_index);
+ defaux.vda_next = 0;
+ if (t->deps != NULL)
+ defaux.vda_next = sizeof (Elf_External_Verdaux);
+ t->name_indx = defaux.vda_name;
+
+ _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
+ (Elf_External_Verdaux *) p);
+ p += sizeof (Elf_External_Verdaux);
+
+ for (n = t->deps; n != NULL; n = n->next)
+ {
+ if (n->version_needed == NULL)
+ {
+ /* This can happen if there was an error in the
+ version script. */
+ defaux.vda_name = 0;
+ }
+ else
+ {
+ defaux.vda_name = n->version_needed->name_indx;
+ _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
+ defaux.vda_name);
+ }
+ if (n->next == NULL)
+ defaux.vda_next = 0;
+ else
+ defaux.vda_next = sizeof (Elf_External_Verdaux);
+
+ _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
+ (Elf_External_Verdaux *) p);
+ p += sizeof (Elf_External_Verdaux);
+ }
+ }
+
+ if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
+ || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
+ return FALSE;
+
+ elf_tdata (output_bfd)->cverdefs = cdefs;
+ }
+
+ if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
+ {
+ if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
+ return FALSE;
+ }
+ else if (info->flags & DF_BIND_NOW)
+ {
+ if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
+ return FALSE;
+ }
+
+ if (info->flags_1)
+ {
+ if (info->executable)
+ info->flags_1 &= ~ (DF_1_INITFIRST
+ | DF_1_NODELETE
+ | DF_1_NOOPEN);
+ if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
+ return FALSE;
+ }
+
+ /* Work out the size of the version reference section. */
+
+ s = bfd_get_linker_section (dynobj, ".gnu.version_r");
+ BFD_ASSERT (s != NULL);
+ {
+ struct elf_find_verdep_info sinfo;
+
+ sinfo.info = info;
+ sinfo.vers = elf_tdata (output_bfd)->cverdefs;
+ if (sinfo.vers == 0)
+ sinfo.vers = 1;
+ sinfo.failed = FALSE;
+
+ elf_link_hash_traverse (elf_hash_table (info),
+ _bfd_elf_link_find_version_dependencies,
+ &sinfo);
+ if (sinfo.failed)
+ return FALSE;
+
+ if (elf_tdata (output_bfd)->verref == NULL)
+ s->flags |= SEC_EXCLUDE;
+ else
+ {
+ Elf_Internal_Verneed *t;
+ unsigned int size;
+ unsigned int crefs;
+ bfd_byte *p;
+
+ /* Build the version dependency section. */
+ size = 0;
+ crefs = 0;
+ for (t = elf_tdata (output_bfd)->verref;
+ t != NULL;
+ t = t->vn_nextref)
+ {
+ Elf_Internal_Vernaux *a;
+
+ size += sizeof (Elf_External_Verneed);
+ ++crefs;
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ size += sizeof (Elf_External_Vernaux);
+ }
+
+ s->size = size;
+ s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
+ if (s->contents == NULL)
+ return FALSE;
+
+ p = s->contents;
+ for (t = elf_tdata (output_bfd)->verref;
+ t != NULL;
+ t = t->vn_nextref)
+ {
+ unsigned int caux;
+ Elf_Internal_Vernaux *a;
+ bfd_size_type indx;
+
+ caux = 0;
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ ++caux;
+
+ t->vn_version = VER_NEED_CURRENT;
+ t->vn_cnt = caux;
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
+ elf_dt_name (t->vn_bfd) != NULL
+ ? elf_dt_name (t->vn_bfd)
+ : lbasename (t->vn_bfd->filename),
+ FALSE);
+ if (indx == (bfd_size_type) -1)
+ return FALSE;
+ t->vn_file = indx;
+ t->vn_aux = sizeof (Elf_External_Verneed);
+ if (t->vn_nextref == NULL)
+ t->vn_next = 0;
+ else
+ t->vn_next = (sizeof (Elf_External_Verneed)
+ + caux * sizeof (Elf_External_Vernaux));
+
+ _bfd_elf_swap_verneed_out (output_bfd, t,
+ (Elf_External_Verneed *) p);
+ p += sizeof (Elf_External_Verneed);
+
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ {
+ a->vna_hash = bfd_elf_hash (a->vna_nodename);
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
+ a->vna_nodename, FALSE);
+ if (indx == (bfd_size_type) -1)
+ return FALSE;
+ a->vna_name = indx;
+ if (a->vna_nextptr == NULL)
+ a->vna_next = 0;
+ else
+ a->vna_next = sizeof (Elf_External_Vernaux);
+
+ _bfd_elf_swap_vernaux_out (output_bfd, a,
+ (Elf_External_Vernaux *) p);
+ p += sizeof (Elf_External_Vernaux);
+ }
+ }
+
+ if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
+ || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
+ return FALSE;
+
+ elf_tdata (output_bfd)->cverrefs = crefs;
+ }
+ }
+
+ if ((elf_tdata (output_bfd)->cverrefs == 0
+ && elf_tdata (output_bfd)->cverdefs == 0)
+ || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
+ &section_sym_count) == 0)
+ {
+ s = bfd_get_linker_section (dynobj, ".gnu.version");
+ s->flags |= SEC_EXCLUDE;
+ }
+ }
+ return TRUE;
+}
+
+/* Find the first non-excluded output section. We'll use its
+ section symbol for some emitted relocs. */
+void
+_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
+{
+ asection *s;
+
+ for (s = output_bfd->sections; s != NULL; s = s->next)
+ if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
+ && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
+ {
+ elf_hash_table (info)->text_index_section = s;
+ break;
+ }
+}
+
+/* Find two non-excluded output sections, one for code, one for data.
+ We'll use their section symbols for some emitted relocs. */
+void
+_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
+{
+ asection *s;
+
+ /* Data first, since setting text_index_section changes
+ _bfd_elf_link_omit_section_dynsym. */
+ for (s = output_bfd->sections; s != NULL; s = s->next)
+ if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
+ && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
+ {
+ elf_hash_table (info)->data_index_section = s;
+ break;
+ }
+
+ for (s = output_bfd->sections; s != NULL; s = s->next)
+ if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
+ == (SEC_ALLOC | SEC_READONLY))
+ && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
+ {
+ elf_hash_table (info)->text_index_section = s;
+ break;
+ }
+
+ if (elf_hash_table (info)->text_index_section == NULL)
+ elf_hash_table (info)->text_index_section
+ = elf_hash_table (info)->data_index_section;
+}
+
+bfd_boolean
+bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
+{
+ const struct elf_backend_data *bed;
+
+ if (!is_elf_hash_table (info->hash))
+ return TRUE;
+
+ bed = get_elf_backend_data (output_bfd);
+ (*bed->elf_backend_init_index_section) (output_bfd, info);
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ bfd *dynobj;
+ asection *s;
+ bfd_size_type dynsymcount;
+ unsigned long section_sym_count;
+ unsigned int dtagcount;
+
+ dynobj = elf_hash_table (info)->dynobj;
+
+ /* Assign dynsym indicies. In a shared library we generate a
+ section symbol for each output section, which come first.
+ Next come all of the back-end allocated local dynamic syms,
+ followed by the rest of the global symbols. */
+
+ dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
+ &section_sym_count);
+
+ /* Work out the size of the symbol version section. */
+ s = bfd_get_linker_section (dynobj, ".gnu.version");
+ BFD_ASSERT (s != NULL);
+ if (dynsymcount != 0
+ && (s->flags & SEC_EXCLUDE) == 0)
+ {
+ s->size = dynsymcount * sizeof (Elf_External_Versym);
+ s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
+ if (s->contents == NULL)
+ return FALSE;
+
+ if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
+ return FALSE;
+ }
+
+ /* Set the size of the .dynsym and .hash sections. We counted
+ the number of dynamic symbols in elf_link_add_object_symbols.
+ We will build the contents of .dynsym and .hash when we build
+ the final symbol table, because until then we do not know the
+ correct value to give the symbols. We built the .dynstr
+ section as we went along in elf_link_add_object_symbols. */
+ s = bfd_get_linker_section (dynobj, ".dynsym");
+ BFD_ASSERT (s != NULL);
+ s->size = dynsymcount * bed->s->sizeof_sym;
+
+ if (dynsymcount != 0)
+ {
+ s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
+ if (s->contents == NULL)
+ return FALSE;
+
+ /* The first entry in .dynsym is a dummy symbol.
+ Clear all the section syms, in case we don't output them all. */
+ ++section_sym_count;
+ memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
+ }
+
+ elf_hash_table (info)->bucketcount = 0;
+
+ /* Compute the size of the hashing table. As a side effect this
+ computes the hash values for all the names we export. */
+ if (info->emit_hash)
+ {
+ unsigned long int *hashcodes;
+ struct hash_codes_info hashinf;
+ bfd_size_type amt;
+ unsigned long int nsyms;
+ size_t bucketcount;
+ size_t hash_entry_size;
+
+ /* Compute the hash values for all exported symbols. At the same
+ time store the values in an array so that we could use them for
+ optimizations. */
+ amt = dynsymcount * sizeof (unsigned long int);
+ hashcodes = (unsigned long int *) bfd_malloc (amt);
+ if (hashcodes == NULL)
+ return FALSE;
+ hashinf.hashcodes = hashcodes;
+ hashinf.error = FALSE;
+
+ /* Put all hash values in HASHCODES. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_collect_hash_codes, &hashinf);
+ if (hashinf.error)
+ {
+ free (hashcodes);
+ return FALSE;
+ }
+
+ nsyms = hashinf.hashcodes - hashcodes;
+ bucketcount
+ = compute_bucket_count (info, hashcodes, nsyms, 0);
+ free (hashcodes);
+
+ if (bucketcount == 0)
+ return FALSE;
+
+ elf_hash_table (info)->bucketcount = bucketcount;
+
+ s = bfd_get_linker_section (dynobj, ".hash");
+ BFD_ASSERT (s != NULL);
+ hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
+ s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
+ s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
+ if (s->contents == NULL)
+ return FALSE;
+
+ bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
+ bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
+ s->contents + hash_entry_size);
+ }
+
+ if (info->emit_gnu_hash)
+ {
+ size_t i, cnt;
+ unsigned char *contents;
+ struct collect_gnu_hash_codes cinfo;
+ bfd_size_type amt;
+ size_t bucketcount;
+
+ memset (&cinfo, 0, sizeof (cinfo));
+
+ /* Compute the hash values for all exported symbols. At the same
+ time store the values in an array so that we could use them for
+ optimizations. */
+ amt = dynsymcount * 2 * sizeof (unsigned long int);
+ cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
+ if (cinfo.hashcodes == NULL)
+ return FALSE;
+
+ cinfo.hashval = cinfo.hashcodes + dynsymcount;
+ cinfo.min_dynindx = -1;
+ cinfo.output_bfd = output_bfd;
+ cinfo.bed = bed;
+
+ /* Put all hash values in HASHCODES. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_collect_gnu_hash_codes, &cinfo);
+ if (cinfo.error)
+ {
+ free (cinfo.hashcodes);
+ return FALSE;
+ }
+
+ bucketcount
+ = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
+
+ if (bucketcount == 0)
+ {
+ free (cinfo.hashcodes);
+ return FALSE;
+ }
+
+ s = bfd_get_linker_section (dynobj, ".gnu.hash");
+ BFD_ASSERT (s != NULL);
+
+ if (cinfo.nsyms == 0)
+ {
+ /* Empty .gnu.hash section is special. */
+ BFD_ASSERT (cinfo.min_dynindx == -1);
+ free (cinfo.hashcodes);
+ s->size = 5 * 4 + bed->s->arch_size / 8;
+ contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
+ if (contents == NULL)
+ return FALSE;
+ s->contents = contents;
+ /* 1 empty bucket. */
+ bfd_put_32 (output_bfd, 1, contents);
+ /* SYMIDX above the special symbol 0. */
+ bfd_put_32 (output_bfd, 1, contents + 4);
+ /* Just one word for bitmask. */
+ bfd_put_32 (output_bfd, 1, contents + 8);
+ /* Only hash fn bloom filter. */
+ bfd_put_32 (output_bfd, 0, contents + 12);
+ /* No hashes are valid - empty bitmask. */
+ bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
+ /* No hashes in the only bucket. */
+ bfd_put_32 (output_bfd, 0,
+ contents + 16 + bed->s->arch_size / 8);
+ }
+ else
+ {
+ unsigned long int maskwords, maskbitslog2, x;
+ BFD_ASSERT (cinfo.min_dynindx != -1);
+
+ x = cinfo.nsyms;
+ maskbitslog2 = 1;
+ while ((x >>= 1) != 0)
+ ++maskbitslog2;
+ if (maskbitslog2 < 3)
+ maskbitslog2 = 5;
+ else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
+ maskbitslog2 = maskbitslog2 + 3;
+ else
+ maskbitslog2 = maskbitslog2 + 2;
+ if (bed->s->arch_size == 64)
+ {
+ if (maskbitslog2 == 5)
+ maskbitslog2 = 6;
+ cinfo.shift1 = 6;
+ }
+ else
+ cinfo.shift1 = 5;
+ cinfo.mask = (1 << cinfo.shift1) - 1;
+ cinfo.shift2 = maskbitslog2;
+ cinfo.maskbits = 1 << maskbitslog2;
+ maskwords = 1 << (maskbitslog2 - cinfo.shift1);
+ amt = bucketcount * sizeof (unsigned long int) * 2;
+ amt += maskwords * sizeof (bfd_vma);
+ cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
+ if (cinfo.bitmask == NULL)
+ {
+ free (cinfo.hashcodes);
+ return FALSE;
+ }
+
+ cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
+ cinfo.indx = cinfo.counts + bucketcount;
+ cinfo.symindx = dynsymcount - cinfo.nsyms;
+ memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
+
+ /* Determine how often each hash bucket is used. */
+ memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
+ for (i = 0; i < cinfo.nsyms; ++i)
+ ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
+
+ for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
+ if (cinfo.counts[i] != 0)
+ {
+ cinfo.indx[i] = cnt;
+ cnt += cinfo.counts[i];
+ }
+ BFD_ASSERT (cnt == dynsymcount);
+ cinfo.bucketcount = bucketcount;
+ cinfo.local_indx = cinfo.min_dynindx;
+
+ s->size = (4 + bucketcount + cinfo.nsyms) * 4;
+ s->size += cinfo.maskbits / 8;
+ contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
+ if (contents == NULL)
+ {
+ free (cinfo.bitmask);
+ free (cinfo.hashcodes);
+ return FALSE;
+ }
+
+ s->contents = contents;
+ bfd_put_32 (output_bfd, bucketcount, contents);
+ bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
+ bfd_put_32 (output_bfd, maskwords, contents + 8);
+ bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
+ contents += 16 + cinfo.maskbits / 8;
+
+ for (i = 0; i < bucketcount; ++i)
+ {
+ if (cinfo.counts[i] == 0)
+ bfd_put_32 (output_bfd, 0, contents);
+ else
+ bfd_put_32 (output_bfd, cinfo.indx[i], contents);
+ contents += 4;
+ }
+
+ cinfo.contents = contents;
+
+ /* Renumber dynamic symbols, populate .gnu.hash section. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_renumber_gnu_hash_syms, &cinfo);
+
+ contents = s->contents + 16;
+ for (i = 0; i < maskwords; ++i)
+ {
+ bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
+ contents);
+ contents += bed->s->arch_size / 8;
+ }
+
+ free (cinfo.bitmask);
+ free (cinfo.hashcodes);
+ }
+ }
+
+ s = bfd_get_linker_section (dynobj, ".dynstr");
+ BFD_ASSERT (s != NULL);
+
+ elf_finalize_dynstr (output_bfd, info);
+
+ s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
+
+ for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
+ if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+/* Make sure sec_info_type is cleared if sec_info is cleared too. */
+
+static void
+merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
+ asection *sec)
+{
+ BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
+ sec->sec_info_type = SEC_INFO_TYPE_NONE;
+}
+
+/* Finish SHF_MERGE section merging. */
+
+bfd_boolean
+_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
+{
+ bfd *ibfd;
+ asection *sec;
+
+ if (!is_elf_hash_table (info->hash))
+ return FALSE;
+
+ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
+ if ((ibfd->flags & DYNAMIC) == 0)
+ for (sec = ibfd->sections; sec != NULL; sec = sec->next)
+ if ((sec->flags & SEC_MERGE) != 0
+ && !bfd_is_abs_section (sec->output_section))
+ {
+ struct bfd_elf_section_data *secdata;
+
+ secdata = elf_section_data (sec);
+ if (! _bfd_add_merge_section (abfd,
+ &elf_hash_table (info)->merge_info,
+ sec, &secdata->sec_info))
+ return FALSE;
+ else if (secdata->sec_info)
+ sec->sec_info_type = SEC_INFO_TYPE_MERGE;
+ }
+
+ if (elf_hash_table (info)->merge_info != NULL)
+ _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
+ merge_sections_remove_hook);
+ return TRUE;
+}
+
+/* Create an entry in an ELF linker hash table. */
+
+struct bfd_hash_entry *
+_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
+ struct bfd_hash_table *table,
+ const char *string)
+{
+ /* Allocate the structure if it has not already been allocated by a
+ subclass. */
+ if (entry == NULL)
+ {
+ entry = (struct bfd_hash_entry *)
+ bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
+ if (entry == NULL)
+ return entry;
+ }
+
+ /* Call the allocation method of the superclass. */
+ entry = _bfd_link_hash_newfunc (entry, table, string);
+ if (entry != NULL)
+ {
+ struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
+ struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
+
+ /* Set local fields. */
+ ret->indx = -1;
+ ret->dynindx = -1;
+ ret->got = htab->init_got_refcount;
+ ret->plt = htab->init_plt_refcount;
+ memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
+ - offsetof (struct elf_link_hash_entry, size)));
+ /* Assume that we have been called by a non-ELF symbol reader.
+ This flag is then reset by the code which reads an ELF input
+ file. This ensures that a symbol created by a non-ELF symbol
+ reader will have the flag set correctly. */
+ ret->non_elf = 1;
+ }
+
+ return entry;
+}
+
+/* Copy data from an indirect symbol to its direct symbol, hiding the
+ old indirect symbol. Also used for copying flags to a weakdef. */
+
+void
+_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
+ struct elf_link_hash_entry *dir,
+ struct elf_link_hash_entry *ind)
+{
+ struct elf_link_hash_table *htab;
+
+ /* Copy down any references that we may have already seen to the
+ symbol which just became indirect. */
+
+ dir->ref_dynamic |= ind->ref_dynamic;
+ dir->ref_regular |= ind->ref_regular;
+ dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
+ dir->non_got_ref |= ind->non_got_ref;
+ dir->needs_plt |= ind->needs_plt;
+ dir->pointer_equality_needed |= ind->pointer_equality_needed;
+
+ if (ind->root.type != bfd_link_hash_indirect)
+ return;
+
+ /* Copy over the global and procedure linkage table refcount entries.
+ These may have been already set up by a check_relocs routine. */
+ htab = elf_hash_table (info);
+ if (ind->got.refcount > htab->init_got_refcount.refcount)
+ {
+ if (dir->got.refcount < 0)
+ dir->got.refcount = 0;
+ dir->got.refcount += ind->got.refcount;
+ ind->got.refcount = htab->init_got_refcount.refcount;
+ }
+
+ if (ind->plt.refcount > htab->init_plt_refcount.refcount)
+ {
+ if (dir->plt.refcount < 0)
+ dir->plt.refcount = 0;
+ dir->plt.refcount += ind->plt.refcount;
+ ind->plt.refcount = htab->init_plt_refcount.refcount;
+ }
+
+ if (ind->dynindx != -1)
+ {
+ if (dir->dynindx != -1)
+ _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
+ dir->dynindx = ind->dynindx;
+ dir->dynstr_index = ind->dynstr_index;
+ ind->dynindx = -1;
+ ind->dynstr_index = 0;
+ }
+}
+
+void
+_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
+ struct elf_link_hash_entry *h,
+ bfd_boolean force_local)
+{
+ /* STT_GNU_IFUNC symbol must go through PLT. */
+ if (h->type != STT_GNU_IFUNC)
+ {
+ h->plt = elf_hash_table (info)->init_plt_offset;
+ h->needs_plt = 0;
+ }
+ if (force_local)
+ {
+ h->forced_local = 1;
+ if (h->dynindx != -1)
+ {
+ h->dynindx = -1;
+ _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
+ h->dynstr_index);
+ }
+ }
+}
+
+/* Initialize an ELF linker hash table. *TABLE has been zeroed by our
+ caller. */
+
+bfd_boolean
+_bfd_elf_link_hash_table_init
+ (struct elf_link_hash_table *table,
+ bfd *abfd,
+ struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
+ struct bfd_hash_table *,
+ const char *),
+ unsigned int entsize,
+ enum elf_target_id target_id)
+{
+ bfd_boolean ret;
+ int can_refcount = get_elf_backend_data (abfd)->can_refcount;
+
+ table->init_got_refcount.refcount = can_refcount - 1;
+ table->init_plt_refcount.refcount = can_refcount - 1;
+ table->init_got_offset.offset = -(bfd_vma) 1;
+ table->init_plt_offset.offset = -(bfd_vma) 1;
+ /* The first dynamic symbol is a dummy. */
+ table->dynsymcount = 1;
+
+ ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
+
+ table->root.type = bfd_link_elf_hash_table;
+ table->hash_table_id = target_id;
+
+ return ret;
+}
+
+/* Create an ELF linker hash table. */
+
+struct bfd_link_hash_table *
+_bfd_elf_link_hash_table_create (bfd *abfd)
+{
+ struct elf_link_hash_table *ret;
+ bfd_size_type amt = sizeof (struct elf_link_hash_table);
+
+ ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
+ if (ret == NULL)
+ return NULL;
+
+ if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
+ sizeof (struct elf_link_hash_entry),
+ GENERIC_ELF_DATA))
+ {
+ free (ret);
+ return NULL;
+ }
+ ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
+
+ return &ret->root;
+}
+
+/* Destroy an ELF linker hash table. */
+
+void
+_bfd_elf_link_hash_table_free (bfd *obfd)
+{
+ struct elf_link_hash_table *htab;
+
+ htab = (struct elf_link_hash_table *) obfd->link.hash;
+ if (htab->dynstr != NULL)
+ _bfd_elf_strtab_free (htab->dynstr);
+ _bfd_merge_sections_free (htab->merge_info);
+ _bfd_generic_link_hash_table_free (obfd);
+}
+
+/* This is a hook for the ELF emulation code in the generic linker to
+ tell the backend linker what file name to use for the DT_NEEDED
+ entry for a dynamic object. */
+
+void
+bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
+{
+ if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
+ && bfd_get_format (abfd) == bfd_object)
+ elf_dt_name (abfd) = name;
+}
+
+int
+bfd_elf_get_dyn_lib_class (bfd *abfd)
+{
+ int lib_class;
+ if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
+ && bfd_get_format (abfd) == bfd_object)
+ lib_class = elf_dyn_lib_class (abfd);
+ else
+ lib_class = 0;
+ return lib_class;
+}
+
+void
+bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
+{
+ if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
+ && bfd_get_format (abfd) == bfd_object)
+ elf_dyn_lib_class (abfd) = lib_class;
+}
+
+/* Get the list of DT_NEEDED entries for a link. This is a hook for
+ the linker ELF emulation code. */
+
+struct bfd_link_needed_list *
+bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
+ struct bfd_link_info *info)
+{
+ if (! is_elf_hash_table (info->hash))
+ return NULL;
+ return elf_hash_table (info)->needed;
+}
+
+/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
+ hook for the linker ELF emulation code. */
+
+struct bfd_link_needed_list *
+bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
+ struct bfd_link_info *info)
+{
+ if (! is_elf_hash_table (info->hash))
+ return NULL;
+ return elf_hash_table (info)->runpath;
+}
+
+/* Get the name actually used for a dynamic object for a link. This
+ is the SONAME entry if there is one. Otherwise, it is the string
+ passed to bfd_elf_set_dt_needed_name, or it is the filename. */
+
+const char *
+bfd_elf_get_dt_soname (bfd *abfd)
+{
+ if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
+ && bfd_get_format (abfd) == bfd_object)
+ return elf_dt_name (abfd);
+ return NULL;
+}
+
+/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
+ the ELF linker emulation code. */
+
+bfd_boolean
+bfd_elf_get_bfd_needed_list (bfd *abfd,
+ struct bfd_link_needed_list **pneeded)
+{
+ asection *s;
+ bfd_byte *dynbuf = NULL;
+ unsigned int elfsec;
+ unsigned long shlink;
+ bfd_byte *extdyn, *extdynend;
+ size_t extdynsize;
+ void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
+
+ *pneeded = NULL;
+
+ if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
+ || bfd_get_format (abfd) != bfd_object)
+ return TRUE;
+
+ s = bfd_get_section_by_name (abfd, ".dynamic");
+ if (s == NULL || s->size == 0)
+ return TRUE;
+
+ if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
+ goto error_return;
+
+ elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
+ if (elfsec == SHN_BAD)
+ goto error_return;
+
+ shlink = elf_elfsections (abfd)[elfsec]->sh_link;
+
+ extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
+ swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
+
+ extdyn = dynbuf;
+ extdynend = extdyn + s->size;
+ for (; extdyn < extdynend; extdyn += extdynsize)
+ {
+ Elf_Internal_Dyn dyn;
+
+ (*swap_dyn_in) (abfd, extdyn, &dyn);
+
+ if (dyn.d_tag == DT_NULL)
+ break;
+
+ if (dyn.d_tag == DT_NEEDED)
+ {
+ const char *string;
+ struct bfd_link_needed_list *l;
+ unsigned int tagv = dyn.d_un.d_val;
+ bfd_size_type amt;
+
+ string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
+ if (string == NULL)
+ goto error_return;
+
+ amt = sizeof *l;
+ l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
+ if (l == NULL)
+ goto error_return;
+
+ l->by = abfd;
+ l->name = string;
+ l->next = *pneeded;
+ *pneeded = l;
+ }
+ }
+
+ free (dynbuf);
+
+ return TRUE;
+
+ error_return:
+ if (dynbuf != NULL)
+ free (dynbuf);
+ return FALSE;
+}
+
+struct elf_symbuf_symbol
+{
+ unsigned long st_name; /* Symbol name, index in string tbl */
+ unsigned char st_info; /* Type and binding attributes */
+ unsigned char st_other; /* Visibilty, and target specific */
+};
+
+struct elf_symbuf_head
+{
+ struct elf_symbuf_symbol *ssym;
+ bfd_size_type count;
+ unsigned int st_shndx;
+};
+
+struct elf_symbol
+{
+ union
+ {
+ Elf_Internal_Sym *isym;
+ struct elf_symbuf_symbol *ssym;
+ } u;
+ const char *name;
+};
+
+/* Sort references to symbols by ascending section number. */
+
+static int
+elf_sort_elf_symbol (const void *arg1, const void *arg2)
+{
+ const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
+ const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
+
+ return s1->st_shndx - s2->st_shndx;
+}
+
+static int
+elf_sym_name_compare (const void *arg1, const void *arg2)
+{
+ const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
+ const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
+ return strcmp (s1->name, s2->name);
+}
+
+static struct elf_symbuf_head *
+elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
+{
+ Elf_Internal_Sym **ind, **indbufend, **indbuf;
+ struct elf_symbuf_symbol *ssym;
+ struct elf_symbuf_head *ssymbuf, *ssymhead;
+ bfd_size_type i, shndx_count, total_size;
+
+ indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
+ if (indbuf == NULL)
+ return NULL;
+
+ for (ind = indbuf, i = 0; i < symcount; i++)
+ if (isymbuf[i].st_shndx != SHN_UNDEF)
+ *ind++ = &isymbuf[i];
+ indbufend = ind;
+
+ qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
+ elf_sort_elf_symbol);
+
+ shndx_count = 0;
+ if (indbufend > indbuf)
+ for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
+ if (ind[0]->st_shndx != ind[1]->st_shndx)
+ shndx_count++;
+
+ total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
+ + (indbufend - indbuf) * sizeof (*ssym));
+ ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
+ if (ssymbuf == NULL)
+ {
+ free (indbuf);
+ return NULL;
+ }
+
+ ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
+ ssymbuf->ssym = NULL;
+ ssymbuf->count = shndx_count;
+ ssymbuf->st_shndx = 0;
+ for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
+ {
+ if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
+ {
+ ssymhead++;
+ ssymhead->ssym = ssym;
+ ssymhead->count = 0;
+ ssymhead->st_shndx = (*ind)->st_shndx;
+ }
+ ssym->st_name = (*ind)->st_name;
+ ssym->st_info = (*ind)->st_info;
+ ssym->st_other = (*ind)->st_other;
+ ssymhead->count++;
+ }
+ BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
+ && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
+ == total_size));
+
+ free (indbuf);
+ return ssymbuf;
+}
+
+/* Check if 2 sections define the same set of local and global
+ symbols. */
+
+static bfd_boolean
+bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
+ struct bfd_link_info *info)
+{
+ bfd *bfd1, *bfd2;
+ const struct elf_backend_data *bed1, *bed2;
+ Elf_Internal_Shdr *hdr1, *hdr2;
+ bfd_size_type symcount1, symcount2;
+ Elf_Internal_Sym *isymbuf1, *isymbuf2;
+ struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
+ Elf_Internal_Sym *isym, *isymend;
+ struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
+ bfd_size_type count1, count2, i;
+ unsigned int shndx1, shndx2;
+ bfd_boolean result;
+
+ bfd1 = sec1->owner;
+ bfd2 = sec2->owner;
+
+ /* Both sections have to be in ELF. */
+ if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
+ || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
+ return FALSE;
+
+ if (elf_section_type (sec1) != elf_section_type (sec2))
+ return FALSE;
+
+ shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
+ shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
+ if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
+ return FALSE;
+
+ bed1 = get_elf_backend_data (bfd1);
+ bed2 = get_elf_backend_data (bfd2);
+ hdr1 = &elf_tdata (bfd1)->symtab_hdr;
+ symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
+ hdr2 = &elf_tdata (bfd2)->symtab_hdr;
+ symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
+
+ if (symcount1 == 0 || symcount2 == 0)
+ return FALSE;
+
+ result = FALSE;
+ isymbuf1 = NULL;
+ isymbuf2 = NULL;
+ ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
+ ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
+
+ if (ssymbuf1 == NULL)
+ {
+ isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
+ NULL, NULL, NULL);
+ if (isymbuf1 == NULL)
+ goto done;
+
+ if (!info->reduce_memory_overheads)
+ elf_tdata (bfd1)->symbuf = ssymbuf1
+ = elf_create_symbuf (symcount1, isymbuf1);
+ }
+
+ if (ssymbuf1 == NULL || ssymbuf2 == NULL)
+ {
+ isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
+ NULL, NULL, NULL);
+ if (isymbuf2 == NULL)
+ goto done;
+
+ if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
+ elf_tdata (bfd2)->symbuf = ssymbuf2
+ = elf_create_symbuf (symcount2, isymbuf2);
+ }
+
+ if (ssymbuf1 != NULL && ssymbuf2 != NULL)
+ {
+ /* Optimized faster version. */
+ bfd_size_type lo, hi, mid;
+ struct elf_symbol *symp;
+ struct elf_symbuf_symbol *ssym, *ssymend;
+
+ lo = 0;
+ hi = ssymbuf1->count;
+ ssymbuf1++;
+ count1 = 0;
+ while (lo < hi)
+ {
+ mid = (lo + hi) / 2;
+ if (shndx1 < ssymbuf1[mid].st_shndx)
+ hi = mid;
+ else if (shndx1 > ssymbuf1[mid].st_shndx)
+ lo = mid + 1;
+ else
+ {
+ count1 = ssymbuf1[mid].count;
+ ssymbuf1 += mid;
+ break;
+ }
+ }
+
+ lo = 0;
+ hi = ssymbuf2->count;
+ ssymbuf2++;
+ count2 = 0;
+ while (lo < hi)
+ {
+ mid = (lo + hi) / 2;
+ if (shndx2 < ssymbuf2[mid].st_shndx)
+ hi = mid;
+ else if (shndx2 > ssymbuf2[mid].st_shndx)
+ lo = mid + 1;
+ else
+ {
+ count2 = ssymbuf2[mid].count;
+ ssymbuf2 += mid;
+ break;
+ }
+ }
+
+ if (count1 == 0 || count2 == 0 || count1 != count2)
+ goto done;
+
+ symtable1 = (struct elf_symbol *)
+ bfd_malloc (count1 * sizeof (struct elf_symbol));
+ symtable2 = (struct elf_symbol *)
+ bfd_malloc (count2 * sizeof (struct elf_symbol));
+ if (symtable1 == NULL || symtable2 == NULL)
+ goto done;
+
+ symp = symtable1;
+ for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
+ ssym < ssymend; ssym++, symp++)
+ {
+ symp->u.ssym = ssym;
+ symp->name = bfd_elf_string_from_elf_section (bfd1,
+ hdr1->sh_link,
+ ssym->st_name);
+ }
+
+ symp = symtable2;
+ for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
+ ssym < ssymend; ssym++, symp++)
+ {
+ symp->u.ssym = ssym;
+ symp->name = bfd_elf_string_from_elf_section (bfd2,
+ hdr2->sh_link,
+ ssym->st_name);
+ }
+
+ /* Sort symbol by name. */
+ qsort (symtable1, count1, sizeof (struct elf_symbol),
+ elf_sym_name_compare);
+ qsort (symtable2, count1, sizeof (struct elf_symbol),
+ elf_sym_name_compare);
+
+ for (i = 0; i < count1; i++)
+ /* Two symbols must have the same binding, type and name. */
+ if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
+ || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
+ || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
+ goto done;
+
+ result = TRUE;
+ goto done;
+ }
+
+ symtable1 = (struct elf_symbol *)
+ bfd_malloc (symcount1 * sizeof (struct elf_symbol));
+ symtable2 = (struct elf_symbol *)
+ bfd_malloc (symcount2 * sizeof (struct elf_symbol));
+ if (symtable1 == NULL || symtable2 == NULL)
+ goto done;
+
+ /* Count definitions in the section. */
+ count1 = 0;
+ for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
+ if (isym->st_shndx == shndx1)
+ symtable1[count1++].u.isym = isym;
+
+ count2 = 0;
+ for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
+ if (isym->st_shndx == shndx2)
+ symtable2[count2++].u.isym = isym;
+
+ if (count1 == 0 || count2 == 0 || count1 != count2)
+ goto done;
+
+ for (i = 0; i < count1; i++)
+ symtable1[i].name
+ = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
+ symtable1[i].u.isym->st_name);
+
+ for (i = 0; i < count2; i++)
+ symtable2[i].name
+ = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
+ symtable2[i].u.isym->st_name);
+
+ /* Sort symbol by name. */
+ qsort (symtable1, count1, sizeof (struct elf_symbol),
+ elf_sym_name_compare);
+ qsort (symtable2, count1, sizeof (struct elf_symbol),
+ elf_sym_name_compare);
+
+ for (i = 0; i < count1; i++)
+ /* Two symbols must have the same binding, type and name. */
+ if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
+ || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
+ || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
+ goto done;
+
+ result = TRUE;
+
+done:
+ if (symtable1)
+ free (symtable1);
+ if (symtable2)
+ free (symtable2);
+ if (isymbuf1)
+ free (isymbuf1);
+ if (isymbuf2)
+ free (isymbuf2);
+
+ return result;
+}
+
+/* Return TRUE if 2 section types are compatible. */
+
+bfd_boolean
+_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
+ bfd *bbfd, const asection *bsec)
+{
+ if (asec == NULL
+ || bsec == NULL
+ || abfd->xvec->flavour != bfd_target_elf_flavour
+ || bbfd->xvec->flavour != bfd_target_elf_flavour)
+ return TRUE;
+
+ return elf_section_type (asec) == elf_section_type (bsec);
+}
+
+/* Final phase of ELF linker. */
+
+/* A structure we use to avoid passing large numbers of arguments. */
+
+struct elf_final_link_info
+{
+ /* General link information. */
+ struct bfd_link_info *info;
+ /* Output BFD. */
+ bfd *output_bfd;
+ /* Symbol string table. */
+ struct bfd_strtab_hash *symstrtab;
+ /* .dynsym section. */
+ asection *dynsym_sec;
+ /* .hash section. */
+ asection *hash_sec;
+ /* symbol version section (.gnu.version). */
+ asection *symver_sec;
+ /* Buffer large enough to hold contents of any section. */
+ bfd_byte *contents;
+ /* Buffer large enough to hold external relocs of any section. */
+ void *external_relocs;
+ /* Buffer large enough to hold internal relocs of any section. */
+ Elf_Internal_Rela *internal_relocs;
+ /* Buffer large enough to hold external local symbols of any input
+ BFD. */
+ bfd_byte *external_syms;
+ /* And a buffer for symbol section indices. */
+ Elf_External_Sym_Shndx *locsym_shndx;
+ /* Buffer large enough to hold internal local symbols of any input
+ BFD. */
+ Elf_Internal_Sym *internal_syms;
+ /* Array large enough to hold a symbol index for each local symbol
+ of any input BFD. */
+ long *indices;
+ /* Array large enough to hold a section pointer for each local
+ symbol of any input BFD. */
+ asection **sections;
+ /* Buffer to hold swapped out symbols. */
+ bfd_byte *symbuf;
+ /* And one for symbol section indices. */
+ Elf_External_Sym_Shndx *symshndxbuf;
+ /* Number of swapped out symbols in buffer. */
+ size_t symbuf_count;
+ /* Number of symbols which fit in symbuf. */
+ size_t symbuf_size;
+ /* And same for symshndxbuf. */
+ size_t shndxbuf_size;
+ /* Number of STT_FILE syms seen. */
+ size_t filesym_count;
+};
+
+/* This struct is used to pass information to elf_link_output_extsym. */
+
+struct elf_outext_info
+{
+ bfd_boolean failed;
+ bfd_boolean localsyms;
+ bfd_boolean need_second_pass;
+ bfd_boolean second_pass;
+ bfd_boolean file_sym_done;
+ struct elf_final_link_info *flinfo;
+};
+
+
+/* Support for evaluating a complex relocation.
+
+ Complex relocations are generalized, self-describing relocations. The
+ implementation of them consists of two parts: complex symbols, and the
+ relocations themselves.
+
+ The relocations are use a reserved elf-wide relocation type code (R_RELC
+ external / BFD_RELOC_RELC internal) and an encoding of relocation field
+ information (start bit, end bit, word width, etc) into the addend. This
+ information is extracted from CGEN-generated operand tables within gas.
+
+ Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
+ internal) representing prefix-notation expressions, including but not
+ limited to those sorts of expressions normally encoded as addends in the
+ addend field. The symbol mangling format is:
+
+ <node> := <literal>
+ | <unary-operator> ':' <node>
+ | <binary-operator> ':' <node> ':' <node>
+ ;
+
+ <literal> := 's' <digits=N> ':' <N character symbol name>
+ | 'S' <digits=N> ':' <N character section name>
+ | '#' <hexdigits>
+ ;
+
+ <binary-operator> := as in C
+ <unary-operator> := as in C, plus "0-" for unambiguous negation. */
+
+static void
+set_symbol_value (bfd *bfd_with_globals,
+ Elf_Internal_Sym *isymbuf,
+ size_t locsymcount,
+ size_t symidx,
+ bfd_vma val)
+{
+ struct elf_link_hash_entry **sym_hashes;
+ struct elf_link_hash_entry *h;
+ size_t extsymoff = locsymcount;
+
+ if (symidx < locsymcount)
+ {
+ Elf_Internal_Sym *sym;
+
+ sym = isymbuf + symidx;
+ if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
+ {
+ /* It is a local symbol: move it to the
+ "absolute" section and give it a value. */
+ sym->st_shndx = SHN_ABS;
+ sym->st_value = val;
+ return;
+ }
+ BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
+ extsymoff = 0;
+ }
+
+ /* It is a global symbol: set its link type
+ to "defined" and give it a value. */
+
+ sym_hashes = elf_sym_hashes (bfd_with_globals);
+ h = sym_hashes [symidx - extsymoff];
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ h->root.type = bfd_link_hash_defined;
+ h->root.u.def.value = val;
+ h->root.u.def.section = bfd_abs_section_ptr;
+}
+
+static bfd_boolean
+resolve_symbol (const char *name,
+ bfd *input_bfd,
+ struct elf_final_link_info *flinfo,
+ bfd_vma *result,
+ Elf_Internal_Sym *isymbuf,
+ size_t locsymcount)
+{
+ Elf_Internal_Sym *sym;
+ struct bfd_link_hash_entry *global_entry;
+ const char *candidate = NULL;
+ Elf_Internal_Shdr *symtab_hdr;
+ size_t i;
+
+ symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
+
+ for (i = 0; i < locsymcount; ++ i)
+ {
+ sym = isymbuf + i;
+
+ if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
+ continue;
+
+ candidate = bfd_elf_string_from_elf_section (input_bfd,
+ symtab_hdr->sh_link,
+ sym->st_name);
+#ifdef DEBUG
+ printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
+ name, candidate, (unsigned long) sym->st_value);
+#endif
+ if (candidate && strcmp (candidate, name) == 0)
+ {
+ asection *sec = flinfo->sections [i];
+
+ *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
+ *result += sec->output_offset + sec->output_section->vma;
+#ifdef DEBUG
+ printf ("Found symbol with value %8.8lx\n",
+ (unsigned long) *result);
+#endif
+ return TRUE;
+ }
+ }
+
+ /* Hmm, haven't found it yet. perhaps it is a global. */
+ global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
+ FALSE, FALSE, TRUE);
+ if (!global_entry)
+ return FALSE;
+
+ if (global_entry->type == bfd_link_hash_defined
+ || global_entry->type == bfd_link_hash_defweak)
+ {
+ *result = (global_entry->u.def.value
+ + global_entry->u.def.section->output_section->vma
+ + global_entry->u.def.section->output_offset);
+#ifdef DEBUG
+ printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
+ global_entry->root.string, (unsigned long) *result);
+#endif
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+static bfd_boolean
+resolve_section (const char *name,
+ asection *sections,
+ bfd_vma *result)
+{
+ asection *curr;
+ unsigned int len;
+
+ for (curr = sections; curr; curr = curr->next)
+ if (strcmp (curr->name, name) == 0)
+ {
+ *result = curr->vma;
+ return TRUE;
+ }
+
+ /* Hmm. still haven't found it. try pseudo-section names. */
+ for (curr = sections; curr; curr = curr->next)
+ {
+ len = strlen (curr->name);
+ if (len > strlen (name))
+ continue;
+
+ if (strncmp (curr->name, name, len) == 0)
+ {
+ if (strncmp (".end", name + len, 4) == 0)
+ {
+ *result = curr->vma + curr->size;
+ return TRUE;
+ }
+
+ /* Insert more pseudo-section names here, if you like. */
+ }
+ }
+
+ return FALSE;
+}
+
+static void
+undefined_reference (const char *reftype, const char *name)
+{
+ _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
+ reftype, name);
+}
+
+static bfd_boolean
+eval_symbol (bfd_vma *result,
+ const char **symp,
+ bfd *input_bfd,
+ struct elf_final_link_info *flinfo,
+ bfd_vma dot,
+ Elf_Internal_Sym *isymbuf,
+ size_t locsymcount,
+ int signed_p)
+{
+ size_t len;
+ size_t symlen;
+ bfd_vma a;
+ bfd_vma b;
+ char symbuf[4096];
+ const char *sym = *symp;
+ const char *symend;
+ bfd_boolean symbol_is_section = FALSE;
+
+ len = strlen (sym);
+ symend = sym + len;
+
+ if (len < 1 || len > sizeof (symbuf))
+ {
+ bfd_set_error (bfd_error_invalid_operation);
+ return FALSE;
+ }
+
+ switch (* sym)
+ {
+ case '.':
+ *result = dot;
+ *symp = sym + 1;
+ return TRUE;
+
+ case '#':
+ ++sym;
+ *result = strtoul (sym, (char **) symp, 16);
+ return TRUE;
+
+ case 'S':
+ symbol_is_section = TRUE;
+ case 's':
+ ++sym;
+ symlen = strtol (sym, (char **) symp, 10);
+ sym = *symp + 1; /* Skip the trailing ':'. */
+
+ if (symend < sym || symlen + 1 > sizeof (symbuf))
+ {
+ bfd_set_error (bfd_error_invalid_operation);
+ return FALSE;
+ }
+
+ memcpy (symbuf, sym, symlen);
+ symbuf[symlen] = '\0';
+ *symp = sym + symlen;
+
+ /* Is it always possible, with complex symbols, that gas "mis-guessed"
+ the symbol as a section, or vice-versa. so we're pretty liberal in our
+ interpretation here; section means "try section first", not "must be a
+ section", and likewise with symbol. */
+
+ if (symbol_is_section)
+ {
+ if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
+ && !resolve_symbol (symbuf, input_bfd, flinfo, result,
+ isymbuf, locsymcount))
+ {
+ undefined_reference ("section", symbuf);
+ return FALSE;
+ }
+ }
+ else
+ {
+ if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
+ isymbuf, locsymcount)
+ && !resolve_section (symbuf, flinfo->output_bfd->sections,
+ result))
+ {
+ undefined_reference ("symbol", symbuf);
+ return FALSE;
+ }
+ }
+
+ return TRUE;
+
+ /* All that remains are operators. */
+
+#define UNARY_OP(op) \
+ if (strncmp (sym, #op, strlen (#op)) == 0) \
+ { \
+ sym += strlen (#op); \
+ if (*sym == ':') \
+ ++sym; \
+ *symp = sym; \
+ if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
+ isymbuf, locsymcount, signed_p)) \
+ return FALSE; \
+ if (signed_p) \
+ *result = op ((bfd_signed_vma) a); \
+ else \
+ *result = op a; \
+ return TRUE; \
+ }
+
+#define BINARY_OP(op) \
+ if (strncmp (sym, #op, strlen (#op)) == 0) \
+ { \
+ sym += strlen (#op); \
+ if (*sym == ':') \
+ ++sym; \
+ *symp = sym; \
+ if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
+ isymbuf, locsymcount, signed_p)) \
+ return FALSE; \
+ ++*symp; \
+ if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
+ isymbuf, locsymcount, signed_p)) \
+ return FALSE; \
+ if (signed_p) \
+ *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
+ else \
+ *result = a op b; \
+ return TRUE; \
+ }
+
+ default:
+ UNARY_OP (0-);
+ BINARY_OP (<<);
+ BINARY_OP (>>);
+ BINARY_OP (==);
+ BINARY_OP (!=);
+ BINARY_OP (<=);
+ BINARY_OP (>=);
+ BINARY_OP (&&);
+ BINARY_OP (||);
+ UNARY_OP (~);
+ UNARY_OP (!);
+ BINARY_OP (*);
+ BINARY_OP (/);
+ BINARY_OP (%);
+ BINARY_OP (^);
+ BINARY_OP (|);
+ BINARY_OP (&);
+ BINARY_OP (+);
+ BINARY_OP (-);
+ BINARY_OP (<);
+ BINARY_OP (>);
+#undef UNARY_OP
+#undef BINARY_OP
+ _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
+ bfd_set_error (bfd_error_invalid_operation);
+ return FALSE;
+ }
+}
+
+static void
+put_value (bfd_vma size,
+ unsigned long chunksz,
+ bfd *input_bfd,
+ bfd_vma x,
+ bfd_byte *location)
+{
+ location += (size - chunksz);
+
+ for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
+ {
+ switch (chunksz)
+ {
+ default:
+ case 0:
+ abort ();
+ case 1:
+ bfd_put_8 (input_bfd, x, location);
+ break;
+ case 2:
+ bfd_put_16 (input_bfd, x, location);
+ break;
+ case 4:
+ bfd_put_32 (input_bfd, x, location);
+ break;
+ case 8:
+#ifdef BFD64
+ bfd_put_64 (input_bfd, x, location);
+#else
+ abort ();
+#endif
+ break;
+ }
+ }
+}
+
+static bfd_vma
+get_value (bfd_vma size,
+ unsigned long chunksz,
+ bfd *input_bfd,
+ bfd_byte *location)
+{
+ int shift;
+ bfd_vma x = 0;
+
+ /* Sanity checks. */
+ BFD_ASSERT (chunksz <= sizeof (x)
+ && size >= chunksz
+ && chunksz != 0
+ && (size % chunksz) == 0
+ && input_bfd != NULL
+ && location != NULL);
+
+ if (chunksz == sizeof (x))
+ {
+ BFD_ASSERT (size == chunksz);
+
+ /* Make sure that we do not perform an undefined shift operation.
+ We know that size == chunksz so there will only be one iteration
+ of the loop below. */
+ shift = 0;
+ }
+ else
+ shift = 8 * chunksz;
+
+ for (; size; size -= chunksz, location += chunksz)
+ {
+ switch (chunksz)
+ {
+ case 1:
+ x = (x << shift) | bfd_get_8 (input_bfd, location);
+ break;
+ case 2:
+ x = (x << shift) | bfd_get_16 (input_bfd, location);
+ break;
+ case 4:
+ x = (x << shift) | bfd_get_32 (input_bfd, location);
+ break;
+#ifdef BFD64
+ case 8:
+ x = (x << shift) | bfd_get_64 (input_bfd, location);
+ break;
+#endif
+ default:
+ abort ();
+ }
+ }
+ return x;
+}
+
+static void
+decode_complex_addend (unsigned long *start, /* in bits */
+ unsigned long *oplen, /* in bits */
+ unsigned long *len, /* in bits */
+ unsigned long *wordsz, /* in bytes */
+ unsigned long *chunksz, /* in bytes */
+ unsigned long *lsb0_p,
+ unsigned long *signed_p,
+ unsigned long *trunc_p,
+ unsigned long encoded)
+{
+ * start = encoded & 0x3F;
+ * len = (encoded >> 6) & 0x3F;
+ * oplen = (encoded >> 12) & 0x3F;
+ * wordsz = (encoded >> 18) & 0xF;
+ * chunksz = (encoded >> 22) & 0xF;
+ * lsb0_p = (encoded >> 27) & 1;
+ * signed_p = (encoded >> 28) & 1;
+ * trunc_p = (encoded >> 29) & 1;
+}
+
+bfd_reloc_status_type
+bfd_elf_perform_complex_relocation (bfd *input_bfd,
+ asection *input_section ATTRIBUTE_UNUSED,
+ bfd_byte *contents,
+ Elf_Internal_Rela *rel,
+ bfd_vma relocation)
+{
+ bfd_vma shift, x, mask;
+ unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
+ bfd_reloc_status_type r;
+
+ /* Perform this reloc, since it is complex.
+ (this is not to say that it necessarily refers to a complex
+ symbol; merely that it is a self-describing CGEN based reloc.
+ i.e. the addend has the complete reloc information (bit start, end,
+ word size, etc) encoded within it.). */
+
+ decode_complex_addend (&start, &oplen, &len, &wordsz,
+ &chunksz, &lsb0_p, &signed_p,
+ &trunc_p, rel->r_addend);
+
+ mask = (((1L << (len - 1)) - 1) << 1) | 1;
+
+ if (lsb0_p)
+ shift = (start + 1) - len;
+ else
+ shift = (8 * wordsz) - (start + len);
+
+ /* FIXME: octets_per_byte. */
+ x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
+
+#ifdef DEBUG
+ printf ("Doing complex reloc: "
+ "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
+ "chunksz %ld, start %ld, len %ld, oplen %ld\n"
+ " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
+ lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
+ oplen, (unsigned long) x, (unsigned long) mask,
+ (unsigned long) relocation);
+#endif
+
+ r = bfd_reloc_ok;
+ if (! trunc_p)
+ /* Now do an overflow check. */
+ r = bfd_check_overflow ((signed_p
+ ? complain_overflow_signed
+ : complain_overflow_unsigned),
+ len, 0, (8 * wordsz),
+ relocation);
+
+ /* Do the deed. */
+ x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
+
+#ifdef DEBUG
+ printf (" relocation: %8.8lx\n"
+ " shifted mask: %8.8lx\n"
+ " shifted/masked reloc: %8.8lx\n"
+ " result: %8.8lx\n",
+ (unsigned long) relocation, (unsigned long) (mask << shift),
+ (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
+#endif
+ /* FIXME: octets_per_byte. */
+ put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
+ return r;
+}
+
+/* When performing a relocatable link, the input relocations are
+ preserved. But, if they reference global symbols, the indices
+ referenced must be updated. Update all the relocations found in
+ RELDATA. */
+
+static void
+elf_link_adjust_relocs (bfd *abfd,
+ struct bfd_elf_section_reloc_data *reldata)
+{
+ unsigned int i;
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ bfd_byte *erela;
+ void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
+ void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
+ bfd_vma r_type_mask;
+ int r_sym_shift;
+ unsigned int count = reldata->count;
+ struct elf_link_hash_entry **rel_hash = reldata->hashes;
+
+ if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
+ {
+ swap_in = bed->s->swap_reloc_in;
+ swap_out = bed->s->swap_reloc_out;
+ }
+ else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
+ {
+ swap_in = bed->s->swap_reloca_in;
+ swap_out = bed->s->swap_reloca_out;
+ }
+ else
+ abort ();
+
+ if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
+ abort ();
+
+ if (bed->s->arch_size == 32)
+ {
+ r_type_mask = 0xff;
+ r_sym_shift = 8;
+ }
+ else
+ {
+ r_type_mask = 0xffffffff;
+ r_sym_shift = 32;
+ }
+
+ erela = reldata->hdr->contents;
+ for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
+ {
+ Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
+ unsigned int j;
+
+ if (*rel_hash == NULL)
+ continue;
+
+ BFD_ASSERT ((*rel_hash)->indx >= 0);
+
+ (*swap_in) (abfd, erela, irela);
+ for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
+ irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
+ | (irela[j].r_info & r_type_mask));
+ (*swap_out) (abfd, irela, erela);
+ }
+}
+
+struct elf_link_sort_rela
+{
+ union {
+ bfd_vma offset;
+ bfd_vma sym_mask;
+ } u;
+ enum elf_reloc_type_class type;
+ /* We use this as an array of size int_rels_per_ext_rel. */
+ Elf_Internal_Rela rela[1];
+};
+
+static int
+elf_link_sort_cmp1 (const void *A, const void *B)
+{
+ const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
+ const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
+ int relativea, relativeb;
+
+ relativea = a->type == reloc_class_relative;
+ relativeb = b->type == reloc_class_relative;
+
+ if (relativea < relativeb)
+ return 1;
+ if (relativea > relativeb)
+ return -1;
+ if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
+ return -1;
+ if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
+ return 1;
+ if (a->rela->r_offset < b->rela->r_offset)
+ return -1;
+ if (a->rela->r_offset > b->rela->r_offset)
+ return 1;
+ return 0;
+}
+
+static int
+elf_link_sort_cmp2 (const void *A, const void *B)
+{
+ const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
+ const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
+
+ if (a->type < b->type)
+ return -1;
+ if (a->type > b->type)
+ return 1;
+ if (a->u.offset < b->u.offset)
+ return -1;
+ if (a->u.offset > b->u.offset)
+ return 1;
+ if (a->rela->r_offset < b->rela->r_offset)
+ return -1;
+ if (a->rela->r_offset > b->rela->r_offset)
+ return 1;
+ return 0;
+}
+
+static size_t
+elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
+{
+ asection *dynamic_relocs;
+ asection *rela_dyn;
+ asection *rel_dyn;
+ bfd_size_type count, size;
+ size_t i, ret, sort_elt, ext_size;
+ bfd_byte *sort, *s_non_relative, *p;
+ struct elf_link_sort_rela *sq;
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ int i2e = bed->s->int_rels_per_ext_rel;
+ void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
+ void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
+ struct bfd_link_order *lo;
+ bfd_vma r_sym_mask;
+ bfd_boolean use_rela;
+
+ /* Find a dynamic reloc section. */
+ rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
+ rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
+ if (rela_dyn != NULL && rela_dyn->size > 0
+ && rel_dyn != NULL && rel_dyn->size > 0)
+ {
+ bfd_boolean use_rela_initialised = FALSE;
+
+ /* This is just here to stop gcc from complaining.
+ It's initialization checking code is not perfect. */
+ use_rela = TRUE;
+
+ /* Both sections are present. Examine the sizes
+ of the indirect sections to help us choose. */
+ for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
+ if (lo->type == bfd_indirect_link_order)
+ {
+ asection *o = lo->u.indirect.section;
+
+ if ((o->size % bed->s->sizeof_rela) == 0)
+ {
+ if ((o->size % bed->s->sizeof_rel) == 0)
+ /* Section size is divisible by both rel and rela sizes.
+ It is of no help to us. */
+ ;
+ else
+ {
+ /* Section size is only divisible by rela. */
+ if (use_rela_initialised && (use_rela == FALSE))
+ {
+ _bfd_error_handler
+ (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
+ bfd_set_error (bfd_error_invalid_operation);
+ return 0;
+ }
+ else
+ {
+ use_rela = TRUE;
+ use_rela_initialised = TRUE;
+ }
+ }
+ }
+ else if ((o->size % bed->s->sizeof_rel) == 0)
+ {
+ /* Section size is only divisible by rel. */
+ if (use_rela_initialised && (use_rela == TRUE))
+ {
+ _bfd_error_handler
+ (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
+ bfd_set_error (bfd_error_invalid_operation);
+ return 0;
+ }
+ else
+ {
+ use_rela = FALSE;
+ use_rela_initialised = TRUE;
+ }
+ }
+ else
+ {
+ /* The section size is not divisible by either - something is wrong. */
+ _bfd_error_handler
+ (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
+ bfd_set_error (bfd_error_invalid_operation);
+ return 0;
+ }
+ }
+
+ for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
+ if (lo->type == bfd_indirect_link_order)
+ {
+ asection *o = lo->u.indirect.section;
+
+ if ((o->size % bed->s->sizeof_rela) == 0)
+ {
+ if ((o->size % bed->s->sizeof_rel) == 0)
+ /* Section size is divisible by both rel and rela sizes.
+ It is of no help to us. */
+ ;
+ else
+ {
+ /* Section size is only divisible by rela. */
+ if (use_rela_initialised && (use_rela == FALSE))
+ {
+ _bfd_error_handler
+ (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
+ bfd_set_error (bfd_error_invalid_operation);
+ return 0;
+ }
+ else
+ {
+ use_rela = TRUE;
+ use_rela_initialised = TRUE;
+ }
+ }
+ }
+ else if ((o->size % bed->s->sizeof_rel) == 0)
+ {
+ /* Section size is only divisible by rel. */
+ if (use_rela_initialised && (use_rela == TRUE))
+ {
+ _bfd_error_handler
+ (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
+ bfd_set_error (bfd_error_invalid_operation);
+ return 0;
+ }
+ else
+ {
+ use_rela = FALSE;
+ use_rela_initialised = TRUE;
+ }
+ }
+ else
+ {
+ /* The section size is not divisible by either - something is wrong. */
+ _bfd_error_handler
+ (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
+ bfd_set_error (bfd_error_invalid_operation);
+ return 0;
+ }
+ }
+
+ if (! use_rela_initialised)
+ /* Make a guess. */
+ use_rela = TRUE;
+ }
+ else if (rela_dyn != NULL && rela_dyn->size > 0)
+ use_rela = TRUE;
+ else if (rel_dyn != NULL && rel_dyn->size > 0)
+ use_rela = FALSE;
+ else
+ return 0;
+
+ if (use_rela)
+ {
+ dynamic_relocs = rela_dyn;
+ ext_size = bed->s->sizeof_rela;
+ swap_in = bed->s->swap_reloca_in;
+ swap_out = bed->s->swap_reloca_out;
+ }
+ else
+ {
+ dynamic_relocs = rel_dyn;
+ ext_size = bed->s->sizeof_rel;
+ swap_in = bed->s->swap_reloc_in;
+ swap_out = bed->s->swap_reloc_out;
+ }
+
+ size = 0;
+ for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
+ if (lo->type == bfd_indirect_link_order)
+ size += lo->u.indirect.section->size;
+
+ if (size != dynamic_relocs->size)
+ return 0;
+
+ sort_elt = (sizeof (struct elf_link_sort_rela)
+ + (i2e - 1) * sizeof (Elf_Internal_Rela));
+
+ count = dynamic_relocs->size / ext_size;
+ if (count == 0)
+ return 0;
+ sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
+
+ if (sort == NULL)
+ {
+ (*info->callbacks->warning)
+ (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
+ return 0;
+ }
+
+ if (bed->s->arch_size == 32)
+ r_sym_mask = ~(bfd_vma) 0xff;
+ else
+ r_sym_mask = ~(bfd_vma) 0xffffffff;
+
+ for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
+ if (lo->type == bfd_indirect_link_order)
+ {
+ bfd_byte *erel, *erelend;
+ asection *o = lo->u.indirect.section;
+
+ if (o->contents == NULL && o->size != 0)
+ {
+ /* This is a reloc section that is being handled as a normal
+ section. See bfd_section_from_shdr. We can't combine
+ relocs in this case. */
+ free (sort);
+ return 0;
+ }
+ erel = o->contents;
+ erelend = o->contents + o->size;
+ /* FIXME: octets_per_byte. */
+ p = sort + o->output_offset / ext_size * sort_elt;
+
+ while (erel < erelend)
+ {
+ struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
+
+ (*swap_in) (abfd, erel, s->rela);
+ s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
+ s->u.sym_mask = r_sym_mask;
+ p += sort_elt;
+ erel += ext_size;
+ }
+ }
+
+ qsort (sort, count, sort_elt, elf_link_sort_cmp1);
+
+ for (i = 0, p = sort; i < count; i++, p += sort_elt)
+ {
+ struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
+ if (s->type != reloc_class_relative)
+ break;
+ }
+ ret = i;
+ s_non_relative = p;
+
+ sq = (struct elf_link_sort_rela *) s_non_relative;
+ for (; i < count; i++, p += sort_elt)
+ {
+ struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
+ if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
+ sq = sp;
+ sp->u.offset = sq->rela->r_offset;
+ }
+
+ qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
+
+ for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
+ if (lo->type == bfd_indirect_link_order)
+ {
+ bfd_byte *erel, *erelend;
+ asection *o = lo->u.indirect.section;
+
+ erel = o->contents;
+ erelend = o->contents + o->size;
+ /* FIXME: octets_per_byte. */
+ p = sort + o->output_offset / ext_size * sort_elt;
+ while (erel < erelend)
+ {
+ struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
+ (*swap_out) (abfd, s->rela, erel);
+ p += sort_elt;
+ erel += ext_size;
+ }
+ }
+
+ free (sort);
+ *psec = dynamic_relocs;
+ return ret;
+}
+
+/* Flush the output symbols to the file. */
+
+static bfd_boolean
+elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
+ const struct elf_backend_data *bed)
+{
+ if (flinfo->symbuf_count > 0)
+ {
+ Elf_Internal_Shdr *hdr;
+ file_ptr pos;
+ bfd_size_type amt;
+
+ hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
+ pos = hdr->sh_offset + hdr->sh_size;
+ amt = flinfo->symbuf_count * bed->s->sizeof_sym;
+ if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
+ || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
+ return FALSE;
+
+ hdr->sh_size += amt;
+ flinfo->symbuf_count = 0;
+ }
+
+ return TRUE;
+}
+
+/* Add a symbol to the output symbol table. */
+
+static int
+elf_link_output_sym (struct elf_final_link_info *flinfo,
+ const char *name,
+ Elf_Internal_Sym *elfsym,
+ asection *input_sec,
+ struct elf_link_hash_entry *h)
+{
+ bfd_byte *dest;
+ Elf_External_Sym_Shndx *destshndx;
+ int (*output_symbol_hook)
+ (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
+ struct elf_link_hash_entry *);
+ const struct elf_backend_data *bed;
+
+ bed = get_elf_backend_data (flinfo->output_bfd);
+ output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
+ if (output_symbol_hook != NULL)
+ {
+ int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
+ if (ret != 1)
+ return ret;
+ }
+
+ if (name == NULL || *name == '\0')
+ elfsym->st_name = 0;
+ else if (input_sec->flags & SEC_EXCLUDE)
+ elfsym->st_name = 0;
+ else
+ {
+ elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
+ name, TRUE, FALSE);
+ if (elfsym->st_name == (unsigned long) -1)
+ return 0;
+ }
+
+ if (flinfo->symbuf_count >= flinfo->symbuf_size)
+ {
+ if (! elf_link_flush_output_syms (flinfo, bed))
+ return 0;
+ }
+
+ dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
+ destshndx = flinfo->symshndxbuf;
+ if (destshndx != NULL)
+ {
+ if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
+ {
+ bfd_size_type amt;
+
+ amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
+ destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
+ amt * 2);
+ if (destshndx == NULL)
+ return 0;
+ flinfo->symshndxbuf = destshndx;
+ memset ((char *) destshndx + amt, 0, amt);
+ flinfo->shndxbuf_size *= 2;
+ }
+ destshndx += bfd_get_symcount (flinfo->output_bfd);
+ }
+
+ bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
+ flinfo->symbuf_count += 1;
+ bfd_get_symcount (flinfo->output_bfd) += 1;
+
+ return 1;
+}
+
+/* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
+
+static bfd_boolean
+check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
+{
+ if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
+ && sym->st_shndx < SHN_LORESERVE)
+ {
+ /* The gABI doesn't support dynamic symbols in output sections
+ beyond 64k. */
+ (*_bfd_error_handler)
+ (_("%B: Too many sections: %d (>= %d)"),
+ abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
+ bfd_set_error (bfd_error_nonrepresentable_section);
+ return FALSE;
+ }
+ return TRUE;
+}
+
+/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
+ allowing an unsatisfied unversioned symbol in the DSO to match a
+ versioned symbol that would normally require an explicit version.
+ We also handle the case that a DSO references a hidden symbol
+ which may be satisfied by a versioned symbol in another DSO. */
+
+static bfd_boolean
+elf_link_check_versioned_symbol (struct bfd_link_info *info,
+ const struct elf_backend_data *bed,
+ struct elf_link_hash_entry *h)
+{
+ bfd *abfd;
+ struct elf_link_loaded_list *loaded;
+
+ if (!is_elf_hash_table (info->hash))
+ return FALSE;
+
+ /* Check indirect symbol. */
+ while (h->root.type == bfd_link_hash_indirect)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ switch (h->root.type)
+ {
+ default:
+ abfd = NULL;
+ break;
+
+ case bfd_link_hash_undefined:
+ case bfd_link_hash_undefweak:
+ abfd = h->root.u.undef.abfd;
+ if ((abfd->flags & DYNAMIC) == 0
+ || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
+ return FALSE;
+ break;
+
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ abfd = h->root.u.def.section->owner;
+ break;
+
+ case bfd_link_hash_common:
+ abfd = h->root.u.c.p->section->owner;
+ break;
+ }
+ BFD_ASSERT (abfd != NULL);
+
+ for (loaded = elf_hash_table (info)->loaded;
+ loaded != NULL;
+ loaded = loaded->next)
+ {
+ bfd *input;
+ Elf_Internal_Shdr *hdr;
+ bfd_size_type symcount;
+ bfd_size_type extsymcount;
+ bfd_size_type extsymoff;
+ Elf_Internal_Shdr *versymhdr;
+ Elf_Internal_Sym *isym;
+ Elf_Internal_Sym *isymend;
+ Elf_Internal_Sym *isymbuf;
+ Elf_External_Versym *ever;
+ Elf_External_Versym *extversym;
+
+ input = loaded->abfd;
+
+ /* We check each DSO for a possible hidden versioned definition. */
+ if (input == abfd
+ || (input->flags & DYNAMIC) == 0
+ || elf_dynversym (input) == 0)
+ continue;
+
+ hdr = &elf_tdata (input)->dynsymtab_hdr;
+
+ symcount = hdr->sh_size / bed->s->sizeof_sym;
+ if (elf_bad_symtab (input))
+ {
+ extsymcount = symcount;
+ extsymoff = 0;
+ }
+ else
+ {
+ extsymcount = symcount - hdr->sh_info;
+ extsymoff = hdr->sh_info;
+ }
+
+ if (extsymcount == 0)
+ continue;
+
+ isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
+ NULL, NULL, NULL);
+ if (isymbuf == NULL)
+ return FALSE;
+
+ /* Read in any version definitions. */
+ versymhdr = &elf_tdata (input)->dynversym_hdr;
+ extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
+ if (extversym == NULL)
+ goto error_ret;
+
+ if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
+ || (bfd_bread (extversym, versymhdr->sh_size, input)
+ != versymhdr->sh_size))
+ {
+ free (extversym);
+ error_ret:
+ free (isymbuf);
+ return FALSE;
+ }
+
+ ever = extversym + extsymoff;
+ isymend = isymbuf + extsymcount;
+ for (isym = isymbuf; isym < isymend; isym++, ever++)
+ {
+ const char *name;
+ Elf_Internal_Versym iver;
+ unsigned short version_index;
+
+ if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
+ || isym->st_shndx == SHN_UNDEF)
+ continue;
+
+ name = bfd_elf_string_from_elf_section (input,
+ hdr->sh_link,
+ isym->st_name);
+ if (strcmp (name, h->root.root.string) != 0)
+ continue;
+
+ _bfd_elf_swap_versym_in (input, ever, &iver);
+
+ if ((iver.vs_vers & VERSYM_HIDDEN) == 0
+ && !(h->def_regular
+ && h->forced_local))
+ {
+ /* If we have a non-hidden versioned sym, then it should
+ have provided a definition for the undefined sym unless
+ it is defined in a non-shared object and forced local.
+ */
+ abort ();
+ }
+
+ version_index = iver.vs_vers & VERSYM_VERSION;
+ if (version_index == 1 || version_index == 2)
+ {
+ /* This is the base or first version. We can use it. */
+ free (extversym);
+ free (isymbuf);
+ return TRUE;
+ }
+ }
+
+ free (extversym);
+ free (isymbuf);
+ }
+
+ return FALSE;
+}
+
+/* Add an external symbol to the symbol table. This is called from
+ the hash table traversal routine. When generating a shared object,
+ we go through the symbol table twice. The first time we output
+ anything that might have been forced to local scope in a version
+ script. The second time we output the symbols that are still
+ global symbols. */
+
+static bfd_boolean
+elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
+{
+ struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
+ struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
+ struct elf_final_link_info *flinfo = eoinfo->flinfo;
+ bfd_boolean strip;
+ Elf_Internal_Sym sym;
+ asection *input_sec;
+ const struct elf_backend_data *bed;
+ long indx;
+ int ret;
+
+ if (h->root.type == bfd_link_hash_warning)
+ {
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ if (h->root.type == bfd_link_hash_new)
+ return TRUE;
+ }
+
+ /* Decide whether to output this symbol in this pass. */
+ if (eoinfo->localsyms)
+ {
+ if (!h->forced_local)
+ return TRUE;
+ if (eoinfo->second_pass
+ && !((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && h->root.u.def.section->output_section != NULL))
+ return TRUE;
+
+ if (!eoinfo->file_sym_done
+ && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
+ : eoinfo->flinfo->filesym_count > 1))
+ {
+ /* Output a FILE symbol so that following locals are not associated
+ with the wrong input file. */
+ memset (&sym, 0, sizeof (sym));
+ sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
+ sym.st_shndx = SHN_ABS;
+ if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
+ bfd_und_section_ptr, NULL))
+ return FALSE;
+
+ eoinfo->file_sym_done = TRUE;
+ }
+ }
+ else
+ {
+ if (h->forced_local)
+ return TRUE;
+ }
+
+ bed = get_elf_backend_data (flinfo->output_bfd);
+
+ if (h->root.type == bfd_link_hash_undefined)
+ {
+ /* If we have an undefined symbol reference here then it must have
+ come from a shared library that is being linked in. (Undefined
+ references in regular files have already been handled unless
+ they are in unreferenced sections which are removed by garbage
+ collection). */
+ bfd_boolean ignore_undef = FALSE;
+
+ /* Some symbols may be special in that the fact that they're
+ undefined can be safely ignored - let backend determine that. */
+ if (bed->elf_backend_ignore_undef_symbol)
+ ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
+
+ /* If we are reporting errors for this situation then do so now. */
+ if (!ignore_undef
+ && h->ref_dynamic
+ && (!h->ref_regular || flinfo->info->gc_sections)
+ && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
+ && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
+ {
+ if (!(flinfo->info->callbacks->undefined_symbol
+ (flinfo->info, h->root.root.string,
+ h->ref_regular ? NULL : h->root.u.undef.abfd,
+ NULL, 0,
+ (flinfo->info->unresolved_syms_in_shared_libs
+ == RM_GENERATE_ERROR))))
+ {
+ bfd_set_error (bfd_error_bad_value);
+ eoinfo->failed = TRUE;
+ return FALSE;
+ }
+ }
+ }
+
+ /* We should also warn if a forced local symbol is referenced from
+ shared libraries. */
+ if (!flinfo->info->relocatable
+ && flinfo->info->executable
+ && h->forced_local
+ && h->ref_dynamic
+ && h->def_regular
+ && !h->dynamic_def
+ && h->ref_dynamic_nonweak
+ && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
+ {
+ bfd *def_bfd;
+ const char *msg;
+ struct elf_link_hash_entry *hi = h;
+
+ /* Check indirect symbol. */
+ while (hi->root.type == bfd_link_hash_indirect)
+ hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
+
+ if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
+ msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
+ else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
+ msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
+ else
+ msg = _("%B: local symbol `%s' in %B is referenced by DSO");
+ def_bfd = flinfo->output_bfd;
+ if (hi->root.u.def.section != bfd_abs_section_ptr)
+ def_bfd = hi->root.u.def.section->owner;
+ (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
+ h->root.root.string);
+ bfd_set_error (bfd_error_bad_value);
+ eoinfo->failed = TRUE;
+ return FALSE;
+ }
+
+ /* We don't want to output symbols that have never been mentioned by
+ a regular file, or that we have been told to strip. However, if
+ h->indx is set to -2, the symbol is used by a reloc and we must
+ output it. */
+ if (h->indx == -2)
+ strip = FALSE;
+ else if ((h->def_dynamic
+ || h->ref_dynamic
+ || h->root.type == bfd_link_hash_new)
+ && !h->def_regular
+ && !h->ref_regular)
+ strip = TRUE;
+ else if (flinfo->info->strip == strip_all)
+ strip = TRUE;
+ else if (flinfo->info->strip == strip_some
+ && bfd_hash_lookup (flinfo->info->keep_hash,
+ h->root.root.string, FALSE, FALSE) == NULL)
+ strip = TRUE;
+ else if ((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && ((flinfo->info->strip_discarded
+ && discarded_section (h->root.u.def.section))
+ || (h->root.u.def.section->owner != NULL
+ && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
+ strip = TRUE;
+ else if ((h->root.type == bfd_link_hash_undefined
+ || h->root.type == bfd_link_hash_undefweak)
+ && h->root.u.undef.abfd != NULL
+ && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
+ strip = TRUE;
+ else
+ strip = FALSE;
+
+ /* If we're stripping it, and it's not a dynamic symbol, there's
+ nothing else to do unless it is a forced local symbol or a
+ STT_GNU_IFUNC symbol. */
+ if (strip
+ && h->dynindx == -1
+ && h->type != STT_GNU_IFUNC
+ && !h->forced_local)
+ return TRUE;
+
+ sym.st_value = 0;
+ sym.st_size = h->size;
+ sym.st_other = h->other;
+ if (h->forced_local)
+ {
+ sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
+ /* Turn off visibility on local symbol. */
+ sym.st_other &= ~ELF_ST_VISIBILITY (-1);
+ }
+ /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
+ else if (h->unique_global && h->def_regular)
+ sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
+ else if (h->root.type == bfd_link_hash_undefweak
+ || h->root.type == bfd_link_hash_defweak)
+ sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
+ else
+ sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
+ sym.st_target_internal = h->target_internal;
+
+ switch (h->root.type)
+ {
+ default:
+ case bfd_link_hash_new:
+ case bfd_link_hash_warning:
+ abort ();
+ return FALSE;
+
+ case bfd_link_hash_undefined:
+ case bfd_link_hash_undefweak:
+ input_sec = bfd_und_section_ptr;
+ sym.st_shndx = SHN_UNDEF;
+ break;
+
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ {
+ input_sec = h->root.u.def.section;
+ if (input_sec->output_section != NULL)
+ {
+ if (eoinfo->localsyms && flinfo->filesym_count == 1)
+ {
+ bfd_boolean second_pass_sym
+ = (input_sec->owner == flinfo->output_bfd
+ || input_sec->owner == NULL
+ || (input_sec->flags & SEC_LINKER_CREATED) != 0
+ || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
+
+ eoinfo->need_second_pass |= second_pass_sym;
+ if (eoinfo->second_pass != second_pass_sym)
+ return TRUE;
+ }
+
+ sym.st_shndx =
+ _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
+ input_sec->output_section);
+ if (sym.st_shndx == SHN_BAD)
+ {
+ (*_bfd_error_handler)
+ (_("%B: could not find output section %A for input section %A"),
+ flinfo->output_bfd, input_sec->output_section, input_sec);
+ bfd_set_error (bfd_error_nonrepresentable_section);
+ eoinfo->failed = TRUE;
+ return FALSE;
+ }
+
+ /* ELF symbols in relocatable files are section relative,
+ but in nonrelocatable files they are virtual
+ addresses. */
+ sym.st_value = h->root.u.def.value + input_sec->output_offset;
+ if (!flinfo->info->relocatable)
+ {
+ sym.st_value += input_sec->output_section->vma;
+ if (h->type == STT_TLS)
+ {
+ asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
+ if (tls_sec != NULL)
+ sym.st_value -= tls_sec->vma;
+ else
+ {
+ /* The TLS section may have been garbage collected. */
+ BFD_ASSERT (flinfo->info->gc_sections
+ && !input_sec->gc_mark);
+ }
+ }
+ }
+ }
+ else
+ {
+ BFD_ASSERT (input_sec->owner == NULL
+ || (input_sec->owner->flags & DYNAMIC) != 0);
+ sym.st_shndx = SHN_UNDEF;
+ input_sec = bfd_und_section_ptr;
+ }
+ }
+ break;
+
+ case bfd_link_hash_common:
+ input_sec = h->root.u.c.p->section;
+ sym.st_shndx = bed->common_section_index (input_sec);
+ sym.st_value = 1 << h->root.u.c.p->alignment_power;
+ break;
+
+ case bfd_link_hash_indirect:
+ /* These symbols are created by symbol versioning. They point
+ to the decorated version of the name. For example, if the
+ symbol foo@@GNU_1.2 is the default, which should be used when
+ foo is used with no version, then we add an indirect symbol
+ foo which points to foo@@GNU_1.2. We ignore these symbols,
+ since the indirected symbol is already in the hash table. */
+ return TRUE;
+ }
+
+ /* Give the processor backend a chance to tweak the symbol value,
+ and also to finish up anything that needs to be done for this
+ symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
+ forced local syms when non-shared is due to a historical quirk.
+ STT_GNU_IFUNC symbol must go through PLT. */
+ if ((h->type == STT_GNU_IFUNC
+ && h->def_regular
+ && !flinfo->info->relocatable)
+ || ((h->dynindx != -1
+ || h->forced_local)
+ && ((flinfo->info->shared
+ && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
+ || h->root.type != bfd_link_hash_undefweak))
+ || !h->forced_local)
+ && elf_hash_table (flinfo->info)->dynamic_sections_created))
+ {
+ if (! ((*bed->elf_backend_finish_dynamic_symbol)
+ (flinfo->output_bfd, flinfo->info, h, &sym)))
+ {
+ eoinfo->failed = TRUE;
+ return FALSE;
+ }
+ }
+
+ /* If we are marking the symbol as undefined, and there are no
+ non-weak references to this symbol from a regular object, then
+ mark the symbol as weak undefined; if there are non-weak
+ references, mark the symbol as strong. We can't do this earlier,
+ because it might not be marked as undefined until the
+ finish_dynamic_symbol routine gets through with it. */
+ if (sym.st_shndx == SHN_UNDEF
+ && h->ref_regular
+ && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
+ || ELF_ST_BIND (sym.st_info) == STB_WEAK))
+ {
+ int bindtype;
+ unsigned int type = ELF_ST_TYPE (sym.st_info);
+
+ /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
+ if (type == STT_GNU_IFUNC)
+ type = STT_FUNC;
+
+ if (h->ref_regular_nonweak)
+ bindtype = STB_GLOBAL;
+ else
+ bindtype = STB_WEAK;
+ sym.st_info = ELF_ST_INFO (bindtype, type);
+ }
+
+ /* If this is a symbol defined in a dynamic library, don't use the
+ symbol size from the dynamic library. Relinking an executable
+ against a new library may introduce gratuitous changes in the
+ executable's symbols if we keep the size. */
+ if (sym.st_shndx == SHN_UNDEF
+ && !h->def_regular
+ && h->def_dynamic)
+ sym.st_size = 0;
+
+ /* If a non-weak symbol with non-default visibility is not defined
+ locally, it is a fatal error. */
+ if (!flinfo->info->relocatable
+ && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
+ && ELF_ST_BIND (sym.st_info) != STB_WEAK
+ && h->root.type == bfd_link_hash_undefined
+ && !h->def_regular)
+ {
+ const char *msg;
+
+ if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
+ msg = _("%B: protected symbol `%s' isn't defined");
+ else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
+ msg = _("%B: internal symbol `%s' isn't defined");
+ else
+ msg = _("%B: hidden symbol `%s' isn't defined");
+ (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
+ bfd_set_error (bfd_error_bad_value);
+ eoinfo->failed = TRUE;
+ return FALSE;
+ }
+
+ /* If this symbol should be put in the .dynsym section, then put it
+ there now. We already know the symbol index. We also fill in
+ the entry in the .hash section. */
+ if (flinfo->dynsym_sec != NULL
+ && h->dynindx != -1
+ && elf_hash_table (flinfo->info)->dynamic_sections_created)
+ {
+ bfd_byte *esym;
+
+ /* Since there is no version information in the dynamic string,
+ if there is no version info in symbol version section, we will
+ have a run-time problem. */
+ if (h->verinfo.verdef == NULL)
+ {
+ char *p = strrchr (h->root.root.string, ELF_VER_CHR);
+
+ if (p && p [1] != '\0')
+ {
+ (*_bfd_error_handler)
+ (_("%B: No symbol version section for versioned symbol `%s'"),
+ flinfo->output_bfd, h->root.root.string);
+ eoinfo->failed = TRUE;
+ return FALSE;
+ }
+ }
+
+ sym.st_name = h->dynstr_index;
+ esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
+ if (!check_dynsym (flinfo->output_bfd, &sym))
+ {
+ eoinfo->failed = TRUE;
+ return FALSE;
+ }
+ bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
+
+ if (flinfo->hash_sec != NULL)
+ {
+ size_t hash_entry_size;
+ bfd_byte *bucketpos;
+ bfd_vma chain;
+ size_t bucketcount;
+ size_t bucket;
+
+ bucketcount = elf_hash_table (flinfo->info)->bucketcount;
+ bucket = h->u.elf_hash_value % bucketcount;
+
+ hash_entry_size
+ = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
+ bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
+ + (bucket + 2) * hash_entry_size);
+ chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
+ bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
+ bucketpos);
+ bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
+ ((bfd_byte *) flinfo->hash_sec->contents
+ + (bucketcount + 2 + h->dynindx) * hash_entry_size));
+ }
+
+ if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
+ {
+ Elf_Internal_Versym iversym;
+ Elf_External_Versym *eversym;
+
+ if (!h->def_regular)
+ {
+ if (h->verinfo.verdef == NULL
+ || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
+ & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
+ iversym.vs_vers = 0;
+ else
+ iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
+ }
+ else
+ {
+ if (h->verinfo.vertree == NULL)
+ iversym.vs_vers = 1;
+ else
+ iversym.vs_vers = h->verinfo.vertree->vernum + 1;
+ if (flinfo->info->create_default_symver)
+ iversym.vs_vers++;
+ }
+
+ if (h->hidden)
+ iversym.vs_vers |= VERSYM_HIDDEN;
+
+ eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
+ eversym += h->dynindx;
+ _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
+ }
+ }
+
+ /* If we're stripping it, then it was just a dynamic symbol, and
+ there's nothing else to do. */
+ if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
+ return TRUE;
+
+ indx = bfd_get_symcount (flinfo->output_bfd);
+ ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
+ if (ret == 0)
+ {
+ eoinfo->failed = TRUE;
+ return FALSE;
+ }
+ else if (ret == 1)
+ h->indx = indx;
+ else if (h->indx == -2)
+ abort();
+
+ return TRUE;
+}
+
+/* Return TRUE if special handling is done for relocs in SEC against
+ symbols defined in discarded sections. */
+
+static bfd_boolean
+elf_section_ignore_discarded_relocs (asection *sec)
+{
+ const struct elf_backend_data *bed;
+
+ switch (sec->sec_info_type)
+ {
+ case SEC_INFO_TYPE_STABS:
+ case SEC_INFO_TYPE_EH_FRAME:
+ return TRUE;
+ default:
+ break;
+ }
+
+ bed = get_elf_backend_data (sec->owner);
+ if (bed->elf_backend_ignore_discarded_relocs != NULL
+ && (*bed->elf_backend_ignore_discarded_relocs) (sec))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return a mask saying how ld should treat relocations in SEC against
+ symbols defined in discarded sections. If this function returns
+ COMPLAIN set, ld will issue a warning message. If this function
+ returns PRETEND set, and the discarded section was link-once and the
+ same size as the kept link-once section, ld will pretend that the
+ symbol was actually defined in the kept section. Otherwise ld will
+ zero the reloc (at least that is the intent, but some cooperation by
+ the target dependent code is needed, particularly for REL targets). */
+
+unsigned int
+_bfd_elf_default_action_discarded (asection *sec)
+{
+ if (sec->flags & SEC_DEBUGGING)
+ return PRETEND;
+
+ if (strcmp (".eh_frame", sec->name) == 0)
+ return 0;
+
+ if (strcmp (".gcc_except_table", sec->name) == 0)
+ return 0;
+
+ return COMPLAIN | PRETEND;
+}
+
+/* Find a match between a section and a member of a section group. */
+
+static asection *
+match_group_member (asection *sec, asection *group,
+ struct bfd_link_info *info)
+{
+ asection *first = elf_next_in_group (group);
+ asection *s = first;
+
+ while (s != NULL)
+ {
+ if (bfd_elf_match_symbols_in_sections (s, sec, info))
+ return s;
+
+ s = elf_next_in_group (s);
+ if (s == first)
+ break;
+ }
+
+ return NULL;
+}
+
+/* Check if the kept section of a discarded section SEC can be used
+ to replace it. Return the replacement if it is OK. Otherwise return
+ NULL. */
+
+asection *
+_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
+{
+ asection *kept;
+
+ kept = sec->kept_section;
+ if (kept != NULL)
+ {
+ if ((kept->flags & SEC_GROUP) != 0)
+ kept = match_group_member (sec, kept, info);
+ if (kept != NULL
+ && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
+ != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
+ kept = NULL;
+ sec->kept_section = kept;
+ }
+ return kept;
+}
+
+/* Link an input file into the linker output file. This function
+ handles all the sections and relocations of the input file at once.
+ This is so that we only have to read the local symbols once, and
+ don't have to keep them in memory. */
+
+static bfd_boolean
+elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
+{
+ int (*relocate_section)
+ (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
+ Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
+ bfd *output_bfd;
+ Elf_Internal_Shdr *symtab_hdr;
+ size_t locsymcount;
+ size_t extsymoff;
+ Elf_Internal_Sym *isymbuf;
+ Elf_Internal_Sym *isym;
+ Elf_Internal_Sym *isymend;
+ long *pindex;
+ asection **ppsection;
+ asection *o;
+ const struct elf_backend_data *bed;
+ struct elf_link_hash_entry **sym_hashes;
+ bfd_size_type address_size;
+ bfd_vma r_type_mask;
+ int r_sym_shift;
+ bfd_boolean have_file_sym = FALSE;
+
+ output_bfd = flinfo->output_bfd;
+ bed = get_elf_backend_data (output_bfd);
+ relocate_section = bed->elf_backend_relocate_section;
+
+ /* If this is a dynamic object, we don't want to do anything here:
+ we don't want the local symbols, and we don't want the section
+ contents. */
+ if ((input_bfd->flags & DYNAMIC) != 0)
+ return TRUE;
+
+ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
+ if (elf_bad_symtab (input_bfd))
+ {
+ locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
+ extsymoff = 0;
+ }
+ else
+ {
+ locsymcount = symtab_hdr->sh_info;
+ extsymoff = symtab_hdr->sh_info;
+ }
+
+ /* Read the local symbols. */
+ isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
+ if (isymbuf == NULL && locsymcount != 0)
+ {
+ isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
+ flinfo->internal_syms,
+ flinfo->external_syms,
+ flinfo->locsym_shndx);
+ if (isymbuf == NULL)
+ return FALSE;
+ }
+
+ /* Find local symbol sections and adjust values of symbols in
+ SEC_MERGE sections. Write out those local symbols we know are
+ going into the output file. */
+ isymend = isymbuf + locsymcount;
+ for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
+ isym < isymend;
+ isym++, pindex++, ppsection++)
+ {
+ asection *isec;
+ const char *name;
+ Elf_Internal_Sym osym;
+ long indx;
+ int ret;
+
+ *pindex = -1;
+
+ if (elf_bad_symtab (input_bfd))
+ {
+ if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
+ {
+ *ppsection = NULL;
+ continue;
+ }
+ }
+
+ if (isym->st_shndx == SHN_UNDEF)
+ isec = bfd_und_section_ptr;
+ else if (isym->st_shndx == SHN_ABS)
+ isec = bfd_abs_section_ptr;
+ else if (isym->st_shndx == SHN_COMMON)
+ isec = bfd_com_section_ptr;
+ else
+ {
+ isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
+ if (isec == NULL)
+ {
+ /* Don't attempt to output symbols with st_shnx in the
+ reserved range other than SHN_ABS and SHN_COMMON. */
+ *ppsection = NULL;
+ continue;
+ }
+ else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
+ && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
+ isym->st_value =
+ _bfd_merged_section_offset (output_bfd, &isec,
+ elf_section_data (isec)->sec_info,
+ isym->st_value);
+ }
+
+ *ppsection = isec;
+
+ /* Don't output the first, undefined, symbol. */
+ if (ppsection == flinfo->sections)
+ continue;
+
+ if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
+ {
+ /* We never output section symbols. Instead, we use the
+ section symbol of the corresponding section in the output
+ file. */
+ continue;
+ }
+
+ /* If we are stripping all symbols, we don't want to output this
+ one. */
+ if (flinfo->info->strip == strip_all)
+ continue;
+
+ /* If we are discarding all local symbols, we don't want to
+ output this one. If we are generating a relocatable output
+ file, then some of the local symbols may be required by
+ relocs; we output them below as we discover that they are
+ needed. */
+ if (flinfo->info->discard == discard_all)
+ continue;
+
+ /* If this symbol is defined in a section which we are
+ discarding, we don't need to keep it. */
+ if (isym->st_shndx != SHN_UNDEF
+ && isym->st_shndx < SHN_LORESERVE
+ && bfd_section_removed_from_list (output_bfd,
+ isec->output_section))
+ continue;
+
+ /* Get the name of the symbol. */
+ name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
+ isym->st_name);
+ if (name == NULL)
+ return FALSE;
+
+ /* See if we are discarding symbols with this name. */
+ if ((flinfo->info->strip == strip_some
+ && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
+ == NULL))
+ || (((flinfo->info->discard == discard_sec_merge
+ && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
+ || flinfo->info->discard == discard_l)
+ && bfd_is_local_label_name (input_bfd, name)))
+ continue;
+
+ if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
+ {
+ have_file_sym = TRUE;
+ flinfo->filesym_count += 1;
+ }
+ if (!have_file_sym)
+ {
+ /* In the absence of debug info, bfd_find_nearest_line uses
+ FILE symbols to determine the source file for local
+ function symbols. Provide a FILE symbol here if input
+ files lack such, so that their symbols won't be
+ associated with a previous input file. It's not the
+ source file, but the best we can do. */
+ have_file_sym = TRUE;
+ flinfo->filesym_count += 1;
+ memset (&osym, 0, sizeof (osym));
+ osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
+ osym.st_shndx = SHN_ABS;
+ if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
+ bfd_abs_section_ptr, NULL))
+ return FALSE;
+ }
+
+ osym = *isym;
+
+ /* Adjust the section index for the output file. */
+ osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
+ isec->output_section);
+ if (osym.st_shndx == SHN_BAD)
+ return FALSE;
+
+ /* ELF symbols in relocatable files are section relative, but
+ in executable files they are virtual addresses. Note that
+ this code assumes that all ELF sections have an associated
+ BFD section with a reasonable value for output_offset; below
+ we assume that they also have a reasonable value for
+ output_section. Any special sections must be set up to meet
+ these requirements. */
+ osym.st_value += isec->output_offset;
+ if (!flinfo->info->relocatable)
+ {
+ osym.st_value += isec->output_section->vma;
+ if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
+ {
+ /* STT_TLS symbols are relative to PT_TLS segment base. */
+ BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
+ osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
+ }
+ }
+
+ indx = bfd_get_symcount (output_bfd);
+ ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
+ if (ret == 0)
+ return FALSE;
+ else if (ret == 1)
+ *pindex = indx;
+ }
+
+ if (bed->s->arch_size == 32)
+ {
+ r_type_mask = 0xff;
+ r_sym_shift = 8;
+ address_size = 4;
+ }
+ else
+ {
+ r_type_mask = 0xffffffff;
+ r_sym_shift = 32;
+ address_size = 8;
+ }
+
+ /* Relocate the contents of each section. */
+ sym_hashes = elf_sym_hashes (input_bfd);
+ for (o = input_bfd->sections; o != NULL; o = o->next)
+ {
+ bfd_byte *contents;
+
+ if (! o->linker_mark)
+ {
+ /* This section was omitted from the link. */
+ continue;
+ }
+
+ if (flinfo->info->relocatable
+ && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
+ {
+ /* Deal with the group signature symbol. */
+ struct bfd_elf_section_data *sec_data = elf_section_data (o);
+ unsigned long symndx = sec_data->this_hdr.sh_info;
+ asection *osec = o->output_section;
+
+ if (symndx >= locsymcount
+ || (elf_bad_symtab (input_bfd)
+ && flinfo->sections[symndx] == NULL))
+ {
+ struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ /* Arrange for symbol to be output. */
+ h->indx = -2;
+ elf_section_data (osec)->this_hdr.sh_info = -2;
+ }
+ else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
+ {
+ /* We'll use the output section target_index. */
+ asection *sec = flinfo->sections[symndx]->output_section;
+ elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
+ }
+ else
+ {
+ if (flinfo->indices[symndx] == -1)
+ {
+ /* Otherwise output the local symbol now. */
+ Elf_Internal_Sym sym = isymbuf[symndx];
+ asection *sec = flinfo->sections[symndx]->output_section;
+ const char *name;
+ long indx;
+ int ret;
+
+ name = bfd_elf_string_from_elf_section (input_bfd,
+ symtab_hdr->sh_link,
+ sym.st_name);
+ if (name == NULL)
+ return FALSE;
+
+ sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
+ sec);
+ if (sym.st_shndx == SHN_BAD)
+ return FALSE;
+
+ sym.st_value += o->output_offset;
+
+ indx = bfd_get_symcount (output_bfd);
+ ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
+ if (ret == 0)
+ return FALSE;
+ else if (ret == 1)
+ flinfo->indices[symndx] = indx;
+ else
+ abort ();
+ }
+ elf_section_data (osec)->this_hdr.sh_info
+ = flinfo->indices[symndx];
+ }
+ }
+
+ if ((o->flags & SEC_HAS_CONTENTS) == 0
+ || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
+ continue;
+
+ if ((o->flags & SEC_LINKER_CREATED) != 0)
+ {
+ /* Section was created by _bfd_elf_link_create_dynamic_sections
+ or somesuch. */
+ continue;
+ }
+
+ /* Get the contents of the section. They have been cached by a
+ relaxation routine. Note that o is a section in an input
+ file, so the contents field will not have been set by any of
+ the routines which work on output files. */
+ if (elf_section_data (o)->this_hdr.contents != NULL)
+ {
+ contents = elf_section_data (o)->this_hdr.contents;
+ if (bed->caches_rawsize
+ && o->rawsize != 0
+ && o->rawsize < o->size)
+ {
+ memcpy (flinfo->contents, contents, o->rawsize);
+ contents = flinfo->contents;
+ }
+ }
+ else
+ {
+ contents = flinfo->contents;
+ if (! bfd_get_full_section_contents (input_bfd, o, &contents))
+ return FALSE;
+ }
+
+ if ((o->flags & SEC_RELOC) != 0)
+ {
+ Elf_Internal_Rela *internal_relocs;
+ Elf_Internal_Rela *rel, *relend;
+ int action_discarded;
+ int ret;
+
+ /* Get the swapped relocs. */
+ internal_relocs
+ = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
+ flinfo->internal_relocs, FALSE);
+ if (internal_relocs == NULL
+ && o->reloc_count > 0)
+ return FALSE;
+
+ /* We need to reverse-copy input .ctors/.dtors sections if
+ they are placed in .init_array/.finit_array for output. */
+ if (o->size > address_size
+ && ((strncmp (o->name, ".ctors", 6) == 0
+ && strcmp (o->output_section->name,
+ ".init_array") == 0)
+ || (strncmp (o->name, ".dtors", 6) == 0
+ && strcmp (o->output_section->name,
+ ".fini_array") == 0))
+ && (o->name[6] == 0 || o->name[6] == '.'))
+ {
+ if (o->size != o->reloc_count * address_size)
+ {
+ (*_bfd_error_handler)
+ (_("error: %B: size of section %A is not "
+ "multiple of address size"),
+ input_bfd, o);
+ bfd_set_error (bfd_error_on_input);
+ return FALSE;
+ }
+ o->flags |= SEC_ELF_REVERSE_COPY;
+ }
+
+ action_discarded = -1;
+ if (!elf_section_ignore_discarded_relocs (o))
+ action_discarded = (*bed->action_discarded) (o);
+
+ /* Run through the relocs evaluating complex reloc symbols and
+ looking for relocs against symbols from discarded sections
+ or section symbols from removed link-once sections.
+ Complain about relocs against discarded sections. Zero
+ relocs against removed link-once sections. */
+
+ rel = internal_relocs;
+ relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
+ for ( ; rel < relend; rel++)
+ {
+ unsigned long r_symndx = rel->r_info >> r_sym_shift;
+ unsigned int s_type;
+ asection **ps, *sec;
+ struct elf_link_hash_entry *h = NULL;
+ const char *sym_name;
+
+ if (r_symndx == STN_UNDEF)
+ continue;
+
+ if (r_symndx >= locsymcount
+ || (elf_bad_symtab (input_bfd)
+ && flinfo->sections[r_symndx] == NULL))
+ {
+ h = sym_hashes[r_symndx - extsymoff];
+
+ /* Badly formatted input files can contain relocs that
+ reference non-existant symbols. Check here so that
+ we do not seg fault. */
+ if (h == NULL)
+ {
+ char buffer [32];
+
+ sprintf_vma (buffer, rel->r_info);
+ (*_bfd_error_handler)
+ (_("error: %B contains a reloc (0x%s) for section %A "
+ "that references a non-existent global symbol"),
+ input_bfd, o, buffer);
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ s_type = h->type;
+
+ ps = NULL;
+ if (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ ps = &h->root.u.def.section;
+
+ sym_name = h->root.root.string;
+ }
+ else
+ {
+ Elf_Internal_Sym *sym = isymbuf + r_symndx;
+
+ s_type = ELF_ST_TYPE (sym->st_info);
+ ps = &flinfo->sections[r_symndx];
+ sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
+ sym, *ps);
+ }
+
+ if ((s_type == STT_RELC || s_type == STT_SRELC)
+ && !flinfo->info->relocatable)
+ {
+ bfd_vma val;
+ bfd_vma dot = (rel->r_offset
+ + o->output_offset + o->output_section->vma);
+#ifdef DEBUG
+ printf ("Encountered a complex symbol!");
+ printf (" (input_bfd %s, section %s, reloc %ld\n",
+ input_bfd->filename, o->name,
+ (long) (rel - internal_relocs));
+ printf (" symbol: idx %8.8lx, name %s\n",
+ r_symndx, sym_name);
+ printf (" reloc : info %8.8lx, addr %8.8lx\n",
+ (unsigned long) rel->r_info,
+ (unsigned long) rel->r_offset);
+#endif
+ if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
+ isymbuf, locsymcount, s_type == STT_SRELC))
+ return FALSE;
+
+ /* Symbol evaluated OK. Update to absolute value. */
+ set_symbol_value (input_bfd, isymbuf, locsymcount,
+ r_symndx, val);
+ continue;
+ }
+
+ if (action_discarded != -1 && ps != NULL)
+ {
+ /* Complain if the definition comes from a
+ discarded section. */
+ if ((sec = *ps) != NULL && discarded_section (sec))
+ {
+ BFD_ASSERT (r_symndx != STN_UNDEF);
+ if (action_discarded & COMPLAIN)
+ (*flinfo->info->callbacks->einfo)
+ (_("%X`%s' referenced in section `%A' of %B: "
+ "defined in discarded section `%A' of %B\n"),
+ sym_name, o, input_bfd, sec, sec->owner);
+
+ /* Try to do the best we can to support buggy old
+ versions of gcc. Pretend that the symbol is
+ really defined in the kept linkonce section.
+ FIXME: This is quite broken. Modifying the
+ symbol here means we will be changing all later
+ uses of the symbol, not just in this section. */
+ if (action_discarded & PRETEND)
+ {
+ asection *kept;
+
+ kept = _bfd_elf_check_kept_section (sec,
+ flinfo->info);
+ if (kept != NULL)
+ {
+ *ps = kept;
+ continue;
+ }
+ }
+ }
+ }
+ }
+
+ /* Relocate the section by invoking a back end routine.
+
+ The back end routine is responsible for adjusting the
+ section contents as necessary, and (if using Rela relocs
+ and generating a relocatable output file) adjusting the
+ reloc addend as necessary.
+
+ The back end routine does not have to worry about setting
+ the reloc address or the reloc symbol index.
+
+ The back end routine is given a pointer to the swapped in
+ internal symbols, and can access the hash table entries
+ for the external symbols via elf_sym_hashes (input_bfd).
+
+ When generating relocatable output, the back end routine
+ must handle STB_LOCAL/STT_SECTION symbols specially. The
+ output symbol is going to be a section symbol
+ corresponding to the output section, which will require
+ the addend to be adjusted. */
+
+ ret = (*relocate_section) (output_bfd, flinfo->info,
+ input_bfd, o, contents,
+ internal_relocs,
+ isymbuf,
+ flinfo->sections);
+ if (!ret)
+ return FALSE;
+
+ if (ret == 2
+ || flinfo->info->relocatable
+ || flinfo->info->emitrelocations)
+ {
+ Elf_Internal_Rela *irela;
+ Elf_Internal_Rela *irelaend, *irelamid;
+ bfd_vma last_offset;
+ struct elf_link_hash_entry **rel_hash;
+ struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
+ Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
+ unsigned int next_erel;
+ bfd_boolean rela_normal;
+ struct bfd_elf_section_data *esdi, *esdo;
+
+ esdi = elf_section_data (o);
+ esdo = elf_section_data (o->output_section);
+ rela_normal = FALSE;
+
+ /* Adjust the reloc addresses and symbol indices. */
+
+ irela = internal_relocs;
+ irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
+ rel_hash = esdo->rel.hashes + esdo->rel.count;
+ /* We start processing the REL relocs, if any. When we reach
+ IRELAMID in the loop, we switch to the RELA relocs. */
+ irelamid = irela;
+ if (esdi->rel.hdr != NULL)
+ irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
+ * bed->s->int_rels_per_ext_rel);
+ rel_hash_list = rel_hash;
+ rela_hash_list = NULL;
+ last_offset = o->output_offset;
+ if (!flinfo->info->relocatable)
+ last_offset += o->output_section->vma;
+ for (next_erel = 0; irela < irelaend; irela++, next_erel++)
+ {
+ unsigned long r_symndx;
+ asection *sec;
+ Elf_Internal_Sym sym;
+
+ if (next_erel == bed->s->int_rels_per_ext_rel)
+ {
+ rel_hash++;
+ next_erel = 0;
+ }
+
+ if (irela == irelamid)
+ {
+ rel_hash = esdo->rela.hashes + esdo->rela.count;
+ rela_hash_list = rel_hash;
+ rela_normal = bed->rela_normal;
+ }
+
+ irela->r_offset = _bfd_elf_section_offset (output_bfd,
+ flinfo->info, o,
+ irela->r_offset);
+ if (irela->r_offset >= (bfd_vma) -2)
+ {
+ /* This is a reloc for a deleted entry or somesuch.
+ Turn it into an R_*_NONE reloc, at the same
+ offset as the last reloc. elf_eh_frame.c and
+ bfd_elf_discard_info rely on reloc offsets
+ being ordered. */
+ irela->r_offset = last_offset;
+ irela->r_info = 0;
+ irela->r_addend = 0;
+ continue;
+ }
+
+ irela->r_offset += o->output_offset;
+
+ /* Relocs in an executable have to be virtual addresses. */
+ if (!flinfo->info->relocatable)
+ irela->r_offset += o->output_section->vma;
+
+ last_offset = irela->r_offset;
+
+ r_symndx = irela->r_info >> r_sym_shift;
+ if (r_symndx == STN_UNDEF)
+ continue;
+
+ if (r_symndx >= locsymcount
+ || (elf_bad_symtab (input_bfd)
+ && flinfo->sections[r_symndx] == NULL))
+ {
+ struct elf_link_hash_entry *rh;
+ unsigned long indx;
+
+ /* This is a reloc against a global symbol. We
+ have not yet output all the local symbols, so
+ we do not know the symbol index of any global
+ symbol. We set the rel_hash entry for this
+ reloc to point to the global hash table entry
+ for this symbol. The symbol index is then
+ set at the end of bfd_elf_final_link. */
+ indx = r_symndx - extsymoff;
+ rh = elf_sym_hashes (input_bfd)[indx];
+ while (rh->root.type == bfd_link_hash_indirect
+ || rh->root.type == bfd_link_hash_warning)
+ rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
+
+ /* Setting the index to -2 tells
+ elf_link_output_extsym that this symbol is
+ used by a reloc. */
+ BFD_ASSERT (rh->indx < 0);
+ rh->indx = -2;
+
+ *rel_hash = rh;
+
+ continue;
+ }
+
+ /* This is a reloc against a local symbol. */
+
+ *rel_hash = NULL;
+ sym = isymbuf[r_symndx];
+ sec = flinfo->sections[r_symndx];
+ if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
+ {
+ /* I suppose the backend ought to fill in the
+ section of any STT_SECTION symbol against a
+ processor specific section. */
+ r_symndx = STN_UNDEF;
+ if (bfd_is_abs_section (sec))
+ ;
+ else if (sec == NULL || sec->owner == NULL)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+ else
+ {
+ asection *osec = sec->output_section;
+
+ /* If we have discarded a section, the output
+ section will be the absolute section. In
+ case of discarded SEC_MERGE sections, use
+ the kept section. relocate_section should
+ have already handled discarded linkonce
+ sections. */
+ if (bfd_is_abs_section (osec)
+ && sec->kept_section != NULL
+ && sec->kept_section->output_section != NULL)
+ {
+ osec = sec->kept_section->output_section;
+ irela->r_addend -= osec->vma;
+ }
+
+ if (!bfd_is_abs_section (osec))
+ {
+ r_symndx = osec->target_index;
+ if (r_symndx == STN_UNDEF)
+ {
+ irela->r_addend += osec->vma;
+ osec = _bfd_nearby_section (output_bfd, osec,
+ osec->vma);
+ irela->r_addend -= osec->vma;
+ r_symndx = osec->target_index;
+ }
+ }
+ }
+
+ /* Adjust the addend according to where the
+ section winds up in the output section. */
+ if (rela_normal)
+ irela->r_addend += sec->output_offset;
+ }
+ else
+ {
+ if (flinfo->indices[r_symndx] == -1)
+ {
+ unsigned long shlink;
+ const char *name;
+ asection *osec;
+ long indx;
+
+ if (flinfo->info->strip == strip_all)
+ {
+ /* You can't do ld -r -s. */
+ bfd_set_error (bfd_error_invalid_operation);
+ return FALSE;
+ }
+
+ /* This symbol was skipped earlier, but
+ since it is needed by a reloc, we
+ must output it now. */
+ shlink = symtab_hdr->sh_link;
+ name = (bfd_elf_string_from_elf_section
+ (input_bfd, shlink, sym.st_name));
+ if (name == NULL)
+ return FALSE;
+
+ osec = sec->output_section;
+ sym.st_shndx =
+ _bfd_elf_section_from_bfd_section (output_bfd,
+ osec);
+ if (sym.st_shndx == SHN_BAD)
+ return FALSE;
+
+ sym.st_value += sec->output_offset;
+ if (!flinfo->info->relocatable)
+ {
+ sym.st_value += osec->vma;
+ if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
+ {
+ /* STT_TLS symbols are relative to PT_TLS
+ segment base. */
+ BFD_ASSERT (elf_hash_table (flinfo->info)
+ ->tls_sec != NULL);
+ sym.st_value -= (elf_hash_table (flinfo->info)
+ ->tls_sec->vma);
+ }
+ }
+
+ indx = bfd_get_symcount (output_bfd);
+ ret = elf_link_output_sym (flinfo, name, &sym, sec,
+ NULL);
+ if (ret == 0)
+ return FALSE;
+ else if (ret == 1)
+ flinfo->indices[r_symndx] = indx;
+ else
+ abort ();
+ }
+
+ r_symndx = flinfo->indices[r_symndx];
+ }
+
+ irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
+ | (irela->r_info & r_type_mask));
+ }
+
+ /* Swap out the relocs. */
+ input_rel_hdr = esdi->rel.hdr;
+ if (input_rel_hdr && input_rel_hdr->sh_size != 0)
+ {
+ if (!bed->elf_backend_emit_relocs (output_bfd, o,
+ input_rel_hdr,
+ internal_relocs,
+ rel_hash_list))
+ return FALSE;
+ internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
+ * bed->s->int_rels_per_ext_rel);
+ rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
+ }
+
+ input_rela_hdr = esdi->rela.hdr;
+ if (input_rela_hdr && input_rela_hdr->sh_size != 0)
+ {
+ if (!bed->elf_backend_emit_relocs (output_bfd, o,
+ input_rela_hdr,
+ internal_relocs,
+ rela_hash_list))
+ return FALSE;
+ }
+ }
+ }
+
+ /* Write out the modified section contents. */
+ if (bed->elf_backend_write_section
+ && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
+ contents))
+ {
+ /* Section written out. */
+ }
+ else switch (o->sec_info_type)
+ {
+ case SEC_INFO_TYPE_STABS:
+ if (! (_bfd_write_section_stabs
+ (output_bfd,
+ &elf_hash_table (flinfo->info)->stab_info,
+ o, &elf_section_data (o)->sec_info, contents)))
+ return FALSE;
+ break;
+ case SEC_INFO_TYPE_MERGE:
+ if (! _bfd_write_merged_section (output_bfd, o,
+ elf_section_data (o)->sec_info))
+ return FALSE;
+ break;
+ case SEC_INFO_TYPE_EH_FRAME:
+ {
+ if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
+ o, contents))
+ return FALSE;
+ }
+ break;
+ default:
+ {
+ /* FIXME: octets_per_byte. */
+ if (! (o->flags & SEC_EXCLUDE))
+ {
+ file_ptr offset = (file_ptr) o->output_offset;
+ bfd_size_type todo = o->size;
+ if ((o->flags & SEC_ELF_REVERSE_COPY))
+ {
+ /* Reverse-copy input section to output. */
+ do
+ {
+ todo -= address_size;
+ if (! bfd_set_section_contents (output_bfd,
+ o->output_section,
+ contents + todo,
+ offset,
+ address_size))
+ return FALSE;
+ if (todo == 0)
+ break;
+ offset += address_size;
+ }
+ while (1);
+ }
+ else if (! bfd_set_section_contents (output_bfd,
+ o->output_section,
+ contents,
+ offset, todo))
+ return FALSE;
+ }
+ }
+ break;
+ }
+ }
+
+ return TRUE;
+}
+
+/* Generate a reloc when linking an ELF file. This is a reloc
+ requested by the linker, and does not come from any input file. This
+ is used to build constructor and destructor tables when linking
+ with -Ur. */
+
+static bfd_boolean
+elf_reloc_link_order (bfd *output_bfd,
+ struct bfd_link_info *info,
+ asection *output_section,
+ struct bfd_link_order *link_order)
+{
+ reloc_howto_type *howto;
+ long indx;
+ bfd_vma offset;
+ bfd_vma addend;
+ struct bfd_elf_section_reloc_data *reldata;
+ struct elf_link_hash_entry **rel_hash_ptr;
+ Elf_Internal_Shdr *rel_hdr;
+ const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
+ Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
+ bfd_byte *erel;
+ unsigned int i;
+ struct bfd_elf_section_data *esdo = elf_section_data (output_section);
+
+ howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
+ if (howto == NULL)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+
+ addend = link_order->u.reloc.p->addend;
+
+ if (esdo->rel.hdr)
+ reldata = &esdo->rel;
+ else if (esdo->rela.hdr)
+ reldata = &esdo->rela;
+ else
+ {
+ reldata = NULL;
+ BFD_ASSERT (0);
+ }
+
+ /* Figure out the symbol index. */
+ rel_hash_ptr = reldata->hashes + reldata->count;
+ if (link_order->type == bfd_section_reloc_link_order)
+ {
+ indx = link_order->u.reloc.p->u.section->target_index;
+ BFD_ASSERT (indx != 0);
+ *rel_hash_ptr = NULL;
+ }
+ else
+ {
+ struct elf_link_hash_entry *h;
+
+ /* Treat a reloc against a defined symbol as though it were
+ actually against the section. */
+ h = ((struct elf_link_hash_entry *)
+ bfd_wrapped_link_hash_lookup (output_bfd, info,
+ link_order->u.reloc.p->u.name,
+ FALSE, FALSE, TRUE));
+ if (h != NULL
+ && (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak))
+ {
+ asection *section;
+
+ section = h->root.u.def.section;
+ indx = section->output_section->target_index;
+ *rel_hash_ptr = NULL;
+ /* It seems that we ought to add the symbol value to the
+ addend here, but in practice it has already been added
+ because it was passed to constructor_callback. */
+ addend += section->output_section->vma + section->output_offset;
+ }
+ else if (h != NULL)
+ {
+ /* Setting the index to -2 tells elf_link_output_extsym that
+ this symbol is used by a reloc. */
+ h->indx = -2;
+ *rel_hash_ptr = h;
+ indx = 0;
+ }
+ else
+ {
+ if (! ((*info->callbacks->unattached_reloc)
+ (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
+ return FALSE;
+ indx = 0;
+ }
+ }
+
+ /* If this is an inplace reloc, we must write the addend into the
+ object file. */
+ if (howto->partial_inplace && addend != 0)
+ {
+ bfd_size_type size;
+ bfd_reloc_status_type rstat;
+ bfd_byte *buf;
+ bfd_boolean ok;
+ const char *sym_name;
+
+ size = (bfd_size_type) bfd_get_reloc_size (howto);
+ buf = (bfd_byte *) bfd_zmalloc (size);
+ if (buf == NULL)
+ return FALSE;
+ rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
+ switch (rstat)
+ {
+ case bfd_reloc_ok:
+ break;
+
+ default:
+ case bfd_reloc_outofrange:
+ abort ();
+
+ case bfd_reloc_overflow:
+ if (link_order->type == bfd_section_reloc_link_order)
+ sym_name = bfd_section_name (output_bfd,
+ link_order->u.reloc.p->u.section);
+ else
+ sym_name = link_order->u.reloc.p->u.name;
+ if (! ((*info->callbacks->reloc_overflow)
+ (info, NULL, sym_name, howto->name, addend, NULL,
+ NULL, (bfd_vma) 0)))
+ {
+ free (buf);
+ return FALSE;
+ }
+ break;
+ }
+ ok = bfd_set_section_contents (output_bfd, output_section, buf,
+ link_order->offset, size);
+ free (buf);
+ if (! ok)
+ return FALSE;
+ }
+
+ /* The address of a reloc is relative to the section in a
+ relocatable file, and is a virtual address in an executable
+ file. */
+ offset = link_order->offset;
+ if (! info->relocatable)
+ offset += output_section->vma;
+
+ for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
+ {
+ irel[i].r_offset = offset;
+ irel[i].r_info = 0;
+ irel[i].r_addend = 0;
+ }
+ if (bed->s->arch_size == 32)
+ irel[0].r_info = ELF32_R_INFO (indx, howto->type);
+ else
+ irel[0].r_info = ELF64_R_INFO (indx, howto->type);
+
+ rel_hdr = reldata->hdr;
+ erel = rel_hdr->contents;
+ if (rel_hdr->sh_type == SHT_REL)
+ {
+ erel += reldata->count * bed->s->sizeof_rel;
+ (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
+ }
+ else
+ {
+ irel[0].r_addend = addend;
+ erel += reldata->count * bed->s->sizeof_rela;
+ (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
+ }
+
+ ++reldata->count;
+
+ return TRUE;
+}
+
+
+/* Get the output vma of the section pointed to by the sh_link field. */
+
+static bfd_vma
+elf_get_linked_section_vma (struct bfd_link_order *p)
+{
+ Elf_Internal_Shdr **elf_shdrp;
+ asection *s;
+ int elfsec;
+
+ s = p->u.indirect.section;
+ elf_shdrp = elf_elfsections (s->owner);
+ elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
+ elfsec = elf_shdrp[elfsec]->sh_link;
+ /* PR 290:
+ The Intel C compiler generates SHT_IA_64_UNWIND with
+ SHF_LINK_ORDER. But it doesn't set the sh_link or
+ sh_info fields. Hence we could get the situation
+ where elfsec is 0. */
+ if (elfsec == 0)
+ {
+ const struct elf_backend_data *bed
+ = get_elf_backend_data (s->owner);
+ if (bed->link_order_error_handler)
+ bed->link_order_error_handler
+ (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
+ return 0;
+ }
+ else
+ {
+ s = elf_shdrp[elfsec]->bfd_section;
+ return s->output_section->vma + s->output_offset;
+ }
+}
+
+
+/* Compare two sections based on the locations of the sections they are
+ linked to. Used by elf_fixup_link_order. */
+
+static int
+compare_link_order (const void * a, const void * b)
+{
+ bfd_vma apos;
+ bfd_vma bpos;
+
+ apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
+ bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
+ if (apos < bpos)
+ return -1;
+ return apos > bpos;
+}
+
+
+/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
+ order as their linked sections. Returns false if this could not be done
+ because an output section includes both ordered and unordered
+ sections. Ideally we'd do this in the linker proper. */
+
+static bfd_boolean
+elf_fixup_link_order (bfd *abfd, asection *o)
+{
+ int seen_linkorder;
+ int seen_other;
+ int n;
+ struct bfd_link_order *p;
+ bfd *sub;
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ unsigned elfsec;
+ struct bfd_link_order **sections;
+ asection *s, *other_sec, *linkorder_sec;
+ bfd_vma offset;
+
+ other_sec = NULL;
+ linkorder_sec = NULL;
+ seen_other = 0;
+ seen_linkorder = 0;
+ for (p = o->map_head.link_order; p != NULL; p = p->next)
+ {
+ if (p->type == bfd_indirect_link_order)
+ {
+ s = p->u.indirect.section;
+ sub = s->owner;
+ if (bfd_get_flavour (sub) == bfd_target_elf_flavour
+ && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
+ && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
+ && elfsec < elf_numsections (sub)
+ && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
+ && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
+ {
+ seen_linkorder++;
+ linkorder_sec = s;
+ }
+ else
+ {
+ seen_other++;
+ other_sec = s;
+ }
+ }
+ else
+ seen_other++;
+
+ if (seen_other && seen_linkorder)
+ {
+ if (other_sec && linkorder_sec)
+ (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
+ o, linkorder_sec,
+ linkorder_sec->owner, other_sec,
+ other_sec->owner);
+ else
+ (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
+ o);
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+ }
+
+ if (!seen_linkorder)
+ return TRUE;
+
+ sections = (struct bfd_link_order **)
+ bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
+ if (sections == NULL)
+ return FALSE;
+ seen_linkorder = 0;
+
+ for (p = o->map_head.link_order; p != NULL; p = p->next)
+ {
+ sections[seen_linkorder++] = p;
+ }
+ /* Sort the input sections in the order of their linked section. */
+ qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
+ compare_link_order);
+
+ /* Change the offsets of the sections. */
+ offset = 0;
+ for (n = 0; n < seen_linkorder; n++)
+ {
+ s = sections[n]->u.indirect.section;
+ offset &= ~(bfd_vma) 0 << s->alignment_power;
+ s->output_offset = offset;
+ sections[n]->offset = offset;
+ /* FIXME: octets_per_byte. */
+ offset += sections[n]->size;
+ }
+
+ free (sections);
+ return TRUE;
+}
+
+static void
+elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
+{
+ asection *o;
+
+ if (flinfo->symstrtab != NULL)
+ _bfd_stringtab_free (flinfo->symstrtab);
+ if (flinfo->contents != NULL)
+ free (flinfo->contents);
+ if (flinfo->external_relocs != NULL)
+ free (flinfo->external_relocs);
+ if (flinfo->internal_relocs != NULL)
+ free (flinfo->internal_relocs);
+ if (flinfo->external_syms != NULL)
+ free (flinfo->external_syms);
+ if (flinfo->locsym_shndx != NULL)
+ free (flinfo->locsym_shndx);
+ if (flinfo->internal_syms != NULL)
+ free (flinfo->internal_syms);
+ if (flinfo->indices != NULL)
+ free (flinfo->indices);
+ if (flinfo->sections != NULL)
+ free (flinfo->sections);
+ if (flinfo->symbuf != NULL)
+ free (flinfo->symbuf);
+ if (flinfo->symshndxbuf != NULL)
+ free (flinfo->symshndxbuf);
+ for (o = obfd->sections; o != NULL; o = o->next)
+ {
+ struct bfd_elf_section_data *esdo = elf_section_data (o);
+ if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
+ free (esdo->rel.hashes);
+ if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
+ free (esdo->rela.hashes);
+ }
+}
+
+/* Do the final step of an ELF link. */
+
+bfd_boolean
+bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
+{
+ bfd_boolean dynamic;
+ bfd_boolean emit_relocs;
+ bfd *dynobj;
+ struct elf_final_link_info flinfo;
+ asection *o;
+ struct bfd_link_order *p;
+ bfd *sub;
+ bfd_size_type max_contents_size;
+ bfd_size_type max_external_reloc_size;
+ bfd_size_type max_internal_reloc_count;
+ bfd_size_type max_sym_count;
+ bfd_size_type max_sym_shndx_count;
+ file_ptr off;
+ Elf_Internal_Sym elfsym;
+ unsigned int i;
+ Elf_Internal_Shdr *symtab_hdr;
+ Elf_Internal_Shdr *symtab_shndx_hdr;
+ Elf_Internal_Shdr *symstrtab_hdr;
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ struct elf_outext_info eoinfo;
+ bfd_boolean merged;
+ size_t relativecount = 0;
+ asection *reldyn = 0;
+ bfd_size_type amt;
+ asection *attr_section = NULL;
+ bfd_vma attr_size = 0;
+ const char *std_attrs_section;
+
+ if (! is_elf_hash_table (info->hash))
+ return FALSE;
+
+ if (info->shared)
+ abfd->flags |= DYNAMIC;
+
+ dynamic = elf_hash_table (info)->dynamic_sections_created;
+ dynobj = elf_hash_table (info)->dynobj;
+
+ emit_relocs = (info->relocatable
+ || info->emitrelocations);
+
+ flinfo.info = info;
+ flinfo.output_bfd = abfd;
+ flinfo.symstrtab = _bfd_elf_stringtab_init ();
+ if (flinfo.symstrtab == NULL)
+ return FALSE;
+
+ if (! dynamic)
+ {
+ flinfo.dynsym_sec = NULL;
+ flinfo.hash_sec = NULL;
+ flinfo.symver_sec = NULL;
+ }
+ else
+ {
+ flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
+ flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
+ /* Note that dynsym_sec can be NULL (on VMS). */
+ flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
+ /* Note that it is OK if symver_sec is NULL. */
+ }
+
+ flinfo.contents = NULL;
+ flinfo.external_relocs = NULL;
+ flinfo.internal_relocs = NULL;
+ flinfo.external_syms = NULL;
+ flinfo.locsym_shndx = NULL;
+ flinfo.internal_syms = NULL;
+ flinfo.indices = NULL;
+ flinfo.sections = NULL;
+ flinfo.symbuf = NULL;
+ flinfo.symshndxbuf = NULL;
+ flinfo.symbuf_count = 0;
+ flinfo.shndxbuf_size = 0;
+ flinfo.filesym_count = 0;
+
+ /* The object attributes have been merged. Remove the input
+ sections from the link, and set the contents of the output
+ secton. */
+ std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
+ || strcmp (o->name, ".gnu.attributes") == 0)
+ {
+ for (p = o->map_head.link_order; p != NULL; p = p->next)
+ {
+ asection *input_section;
+
+ if (p->type != bfd_indirect_link_order)
+ continue;
+ input_section = p->u.indirect.section;
+ /* Hack: reset the SEC_HAS_CONTENTS flag so that
+ elf_link_input_bfd ignores this section. */
+ input_section->flags &= ~SEC_HAS_CONTENTS;
+ }
+
+ attr_size = bfd_elf_obj_attr_size (abfd);
+ if (attr_size)
+ {
+ bfd_set_section_size (abfd, o, attr_size);
+ attr_section = o;
+ /* Skip this section later on. */
+ o->map_head.link_order = NULL;
+ }
+ else
+ o->flags |= SEC_EXCLUDE;
+ }
+ }
+
+ /* Count up the number of relocations we will output for each output
+ section, so that we know the sizes of the reloc sections. We
+ also figure out some maximum sizes. */
+ max_contents_size = 0;
+ max_external_reloc_size = 0;
+ max_internal_reloc_count = 0;
+ max_sym_count = 0;
+ max_sym_shndx_count = 0;
+ merged = FALSE;
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ struct bfd_elf_section_data *esdo = elf_section_data (o);
+ o->reloc_count = 0;
+
+ for (p = o->map_head.link_order; p != NULL; p = p->next)
+ {
+ unsigned int reloc_count = 0;
+ struct bfd_elf_section_data *esdi = NULL;
+
+ if (p->type == bfd_section_reloc_link_order
+ || p->type == bfd_symbol_reloc_link_order)
+ reloc_count = 1;
+ else if (p->type == bfd_indirect_link_order)
+ {
+ asection *sec;
+
+ sec = p->u.indirect.section;
+ esdi = elf_section_data (sec);
+
+ /* Mark all sections which are to be included in the
+ link. This will normally be every section. We need
+ to do this so that we can identify any sections which
+ the linker has decided to not include. */
+ sec->linker_mark = TRUE;
+
+ if (sec->flags & SEC_MERGE)
+ merged = TRUE;
+
+ if (esdo->this_hdr.sh_type == SHT_REL
+ || esdo->this_hdr.sh_type == SHT_RELA)
+ /* Some backends use reloc_count in relocation sections
+ to count particular types of relocs. Of course,
+ reloc sections themselves can't have relocations. */
+ reloc_count = 0;
+ else if (info->relocatable || info->emitrelocations)
+ reloc_count = sec->reloc_count;
+ else if (bed->elf_backend_count_relocs)
+ reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
+
+ if (sec->rawsize > max_contents_size)
+ max_contents_size = sec->rawsize;
+ if (sec->size > max_contents_size)
+ max_contents_size = sec->size;
+
+ /* We are interested in just local symbols, not all
+ symbols. */
+ if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
+ && (sec->owner->flags & DYNAMIC) == 0)
+ {
+ size_t sym_count;
+
+ if (elf_bad_symtab (sec->owner))
+ sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
+ / bed->s->sizeof_sym);
+ else
+ sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
+
+ if (sym_count > max_sym_count)
+ max_sym_count = sym_count;
+
+ if (sym_count > max_sym_shndx_count
+ && elf_symtab_shndx (sec->owner) != 0)
+ max_sym_shndx_count = sym_count;
+
+ if ((sec->flags & SEC_RELOC) != 0)
+ {
+ size_t ext_size = 0;
+
+ if (esdi->rel.hdr != NULL)
+ ext_size = esdi->rel.hdr->sh_size;
+ if (esdi->rela.hdr != NULL)
+ ext_size += esdi->rela.hdr->sh_size;
+
+ if (ext_size > max_external_reloc_size)
+ max_external_reloc_size = ext_size;
+ if (sec->reloc_count > max_internal_reloc_count)
+ max_internal_reloc_count = sec->reloc_count;
+ }
+ }
+ }
+
+ if (reloc_count == 0)
+ continue;
+
+ o->reloc_count += reloc_count;
+
+ if (p->type == bfd_indirect_link_order
+ && (info->relocatable || info->emitrelocations))
+ {
+ if (esdi->rel.hdr)
+ esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
+ if (esdi->rela.hdr)
+ esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
+ }
+ else
+ {
+ if (o->use_rela_p)
+ esdo->rela.count += reloc_count;
+ else
+ esdo->rel.count += reloc_count;
+ }
+ }
+
+ if (o->reloc_count > 0)
+ o->flags |= SEC_RELOC;
+ else
+ {
+ /* Explicitly clear the SEC_RELOC flag. The linker tends to
+ set it (this is probably a bug) and if it is set
+ assign_section_numbers will create a reloc section. */
+ o->flags &=~ SEC_RELOC;
+ }
+
+ /* If the SEC_ALLOC flag is not set, force the section VMA to
+ zero. This is done in elf_fake_sections as well, but forcing
+ the VMA to 0 here will ensure that relocs against these
+ sections are handled correctly. */
+ if ((o->flags & SEC_ALLOC) == 0
+ && ! o->user_set_vma)
+ o->vma = 0;
+ }
+
+ if (! info->relocatable && merged)
+ elf_link_hash_traverse (elf_hash_table (info),
+ _bfd_elf_link_sec_merge_syms, abfd);
+
+ /* Figure out the file positions for everything but the symbol table
+ and the relocs. We set symcount to force assign_section_numbers
+ to create a symbol table. */
+ bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
+ BFD_ASSERT (! abfd->output_has_begun);
+ if (! _bfd_elf_compute_section_file_positions (abfd, info))
+ goto error_return;
+
+ /* Set sizes, and assign file positions for reloc sections. */
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ struct bfd_elf_section_data *esdo = elf_section_data (o);
+ if ((o->flags & SEC_RELOC) != 0)
+ {
+ if (esdo->rel.hdr
+ && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
+ goto error_return;
+
+ if (esdo->rela.hdr
+ && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
+ goto error_return;
+ }
+
+ /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
+ to count upwards while actually outputting the relocations. */
+ esdo->rel.count = 0;
+ esdo->rela.count = 0;
+ }
+
+ /* We have now assigned file positions for all the sections except
+ .symtab, .strtab, and non-loaded reloc sections. We start the
+ .symtab section at the current file position, and write directly
+ to it. We build the .strtab section in memory. */
+ bfd_get_symcount (abfd) = 0;
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ /* sh_name is set in prep_headers. */
+ symtab_hdr->sh_type = SHT_SYMTAB;
+ /* sh_flags, sh_addr and sh_size all start off zero. */
+ symtab_hdr->sh_entsize = bed->s->sizeof_sym;
+ /* sh_link is set in assign_section_numbers. */
+ /* sh_info is set below. */
+ /* sh_offset is set just below. */
+ symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
+
+ off = elf_next_file_pos (abfd);
+ off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
+
+ /* Note that at this point elf_next_file_pos (abfd) is
+ incorrect. We do not yet know the size of the .symtab section.
+ We correct next_file_pos below, after we do know the size. */
+
+ /* Allocate a buffer to hold swapped out symbols. This is to avoid
+ continuously seeking to the right position in the file. */
+ if (! info->keep_memory || max_sym_count < 20)
+ flinfo.symbuf_size = 20;
+ else
+ flinfo.symbuf_size = max_sym_count;
+ amt = flinfo.symbuf_size;
+ amt *= bed->s->sizeof_sym;
+ flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
+ if (flinfo.symbuf == NULL)
+ goto error_return;
+ if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
+ {
+ /* Wild guess at number of output symbols. realloc'd as needed. */
+ amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
+ flinfo.shndxbuf_size = amt;
+ amt *= sizeof (Elf_External_Sym_Shndx);
+ flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
+ if (flinfo.symshndxbuf == NULL)
+ goto error_return;
+ }
+
+ /* Start writing out the symbol table. The first symbol is always a
+ dummy symbol. */
+ if (info->strip != strip_all
+ || emit_relocs)
+ {
+ elfsym.st_value = 0;
+ elfsym.st_size = 0;
+ elfsym.st_info = 0;
+ elfsym.st_other = 0;
+ elfsym.st_shndx = SHN_UNDEF;
+ elfsym.st_target_internal = 0;
+ if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
+ NULL) != 1)
+ goto error_return;
+ }
+
+ /* Output a symbol for each section. We output these even if we are
+ discarding local symbols, since they are used for relocs. These
+ symbols have no names. We store the index of each one in the
+ index field of the section, so that we can find it again when
+ outputting relocs. */
+ if (info->strip != strip_all
+ || emit_relocs)
+ {
+ elfsym.st_size = 0;
+ elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
+ elfsym.st_other = 0;
+ elfsym.st_value = 0;
+ elfsym.st_target_internal = 0;
+ for (i = 1; i < elf_numsections (abfd); i++)
+ {
+ o = bfd_section_from_elf_index (abfd, i);
+ if (o != NULL)
+ {
+ o->target_index = bfd_get_symcount (abfd);
+ elfsym.st_shndx = i;
+ if (!info->relocatable)
+ elfsym.st_value = o->vma;
+ if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
+ goto error_return;
+ }
+ }
+ }
+
+ /* Allocate some memory to hold information read in from the input
+ files. */
+ if (max_contents_size != 0)
+ {
+ flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
+ if (flinfo.contents == NULL)
+ goto error_return;
+ }
+
+ if (max_external_reloc_size != 0)
+ {
+ flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
+ if (flinfo.external_relocs == NULL)
+ goto error_return;
+ }
+
+ if (max_internal_reloc_count != 0)
+ {
+ amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
+ amt *= sizeof (Elf_Internal_Rela);
+ flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
+ if (flinfo.internal_relocs == NULL)
+ goto error_return;
+ }
+
+ if (max_sym_count != 0)
+ {
+ amt = max_sym_count * bed->s->sizeof_sym;
+ flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
+ if (flinfo.external_syms == NULL)
+ goto error_return;
+
+ amt = max_sym_count * sizeof (Elf_Internal_Sym);
+ flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
+ if (flinfo.internal_syms == NULL)
+ goto error_return;
+
+ amt = max_sym_count * sizeof (long);
+ flinfo.indices = (long int *) bfd_malloc (amt);
+ if (flinfo.indices == NULL)
+ goto error_return;
+
+ amt = max_sym_count * sizeof (asection *);
+ flinfo.sections = (asection **) bfd_malloc (amt);
+ if (flinfo.sections == NULL)
+ goto error_return;
+ }
+
+ if (max_sym_shndx_count != 0)
+ {
+ amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
+ flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
+ if (flinfo.locsym_shndx == NULL)
+ goto error_return;
+ }
+
+ if (elf_hash_table (info)->tls_sec)
+ {
+ bfd_vma base, end = 0;
+ asection *sec;
+
+ for (sec = elf_hash_table (info)->tls_sec;
+ sec && (sec->flags & SEC_THREAD_LOCAL);
+ sec = sec->next)
+ {
+ bfd_size_type size = sec->size;
+
+ if (size == 0
+ && (sec->flags & SEC_HAS_CONTENTS) == 0)
+ {
+ struct bfd_link_order *ord = sec->map_tail.link_order;
+
+ if (ord != NULL)
+ size = ord->offset + ord->size;
+ }
+ end = sec->vma + size;
+ }
+ base = elf_hash_table (info)->tls_sec->vma;
+ /* Only align end of TLS section if static TLS doesn't have special
+ alignment requirements. */
+ if (bed->static_tls_alignment == 1)
+ end = align_power (end,
+ elf_hash_table (info)->tls_sec->alignment_power);
+ elf_hash_table (info)->tls_size = end - base;
+ }
+
+ /* Reorder SHF_LINK_ORDER sections. */
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ if (!elf_fixup_link_order (abfd, o))
+ return FALSE;
+ }
+
+ /* Since ELF permits relocations to be against local symbols, we
+ must have the local symbols available when we do the relocations.
+ Since we would rather only read the local symbols once, and we
+ would rather not keep them in memory, we handle all the
+ relocations for a single input file at the same time.
+
+ Unfortunately, there is no way to know the total number of local
+ symbols until we have seen all of them, and the local symbol
+ indices precede the global symbol indices. This means that when
+ we are generating relocatable output, and we see a reloc against
+ a global symbol, we can not know the symbol index until we have
+ finished examining all the local symbols to see which ones we are
+ going to output. To deal with this, we keep the relocations in
+ memory, and don't output them until the end of the link. This is
+ an unfortunate waste of memory, but I don't see a good way around
+ it. Fortunately, it only happens when performing a relocatable
+ link, which is not the common case. FIXME: If keep_memory is set
+ we could write the relocs out and then read them again; I don't
+ know how bad the memory loss will be. */
+
+ for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
+ sub->output_has_begun = FALSE;
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ for (p = o->map_head.link_order; p != NULL; p = p->next)
+ {
+ if (p->type == bfd_indirect_link_order
+ && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
+ == bfd_target_elf_flavour)
+ && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
+ {
+ if (! sub->output_has_begun)
+ {
+ if (! elf_link_input_bfd (&flinfo, sub))
+ goto error_return;
+ sub->output_has_begun = TRUE;
+ }
+ }
+ else if (p->type == bfd_section_reloc_link_order
+ || p->type == bfd_symbol_reloc_link_order)
+ {
+ if (! elf_reloc_link_order (abfd, info, o, p))
+ goto error_return;
+ }
+ else
+ {
+ if (! _bfd_default_link_order (abfd, info, o, p))
+ {
+ if (p->type == bfd_indirect_link_order
+ && (bfd_get_flavour (sub)
+ == bfd_target_elf_flavour)
+ && (elf_elfheader (sub)->e_ident[EI_CLASS]
+ != bed->s->elfclass))
+ {
+ const char *iclass, *oclass;
+
+ if (bed->s->elfclass == ELFCLASS64)
+ {
+ iclass = "ELFCLASS32";
+ oclass = "ELFCLASS64";
+ }
+ else
+ {
+ iclass = "ELFCLASS64";
+ oclass = "ELFCLASS32";
+ }
+
+ bfd_set_error (bfd_error_wrong_format);
+ (*_bfd_error_handler)
+ (_("%B: file class %s incompatible with %s"),
+ sub, iclass, oclass);
+ }
+
+ goto error_return;
+ }
+ }
+ }
+ }
+
+ /* Free symbol buffer if needed. */
+ if (!info->reduce_memory_overheads)
+ {
+ for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
+ if (bfd_get_flavour (sub) == bfd_target_elf_flavour
+ && elf_tdata (sub)->symbuf)
+ {
+ free (elf_tdata (sub)->symbuf);
+ elf_tdata (sub)->symbuf = NULL;
+ }
+ }
+
+ /* Output any global symbols that got converted to local in a
+ version script or due to symbol visibility. We do this in a
+ separate step since ELF requires all local symbols to appear
+ prior to any global symbols. FIXME: We should only do this if
+ some global symbols were, in fact, converted to become local.
+ FIXME: Will this work correctly with the Irix 5 linker? */
+ eoinfo.failed = FALSE;
+ eoinfo.flinfo = &flinfo;
+ eoinfo.localsyms = TRUE;
+ eoinfo.need_second_pass = FALSE;
+ eoinfo.second_pass = FALSE;
+ eoinfo.file_sym_done = FALSE;
+ bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
+ if (eoinfo.failed)
+ return FALSE;
+
+ if (eoinfo.need_second_pass)
+ {
+ eoinfo.second_pass = TRUE;
+ bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
+ if (eoinfo.failed)
+ return FALSE;
+ }
+
+ /* If backend needs to output some local symbols not present in the hash
+ table, do it now. */
+ if (bed->elf_backend_output_arch_local_syms)
+ {
+ typedef int (*out_sym_func)
+ (void *, const char *, Elf_Internal_Sym *, asection *,
+ struct elf_link_hash_entry *);
+
+ if (! ((*bed->elf_backend_output_arch_local_syms)
+ (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
+ return FALSE;
+ }
+
+ /* That wrote out all the local symbols. Finish up the symbol table
+ with the global symbols. Even if we want to strip everything we
+ can, we still need to deal with those global symbols that got
+ converted to local in a version script. */
+
+ /* The sh_info field records the index of the first non local symbol. */
+ symtab_hdr->sh_info = bfd_get_symcount (abfd);
+
+ if (dynamic
+ && flinfo.dynsym_sec != NULL
+ && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
+ {
+ Elf_Internal_Sym sym;
+ bfd_byte *dynsym = flinfo.dynsym_sec->contents;
+ long last_local = 0;
+
+ /* Write out the section symbols for the output sections. */
+ if (info->shared || elf_hash_table (info)->is_relocatable_executable)
+ {
+ asection *s;
+
+ sym.st_size = 0;
+ sym.st_name = 0;
+ sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
+ sym.st_other = 0;
+ sym.st_target_internal = 0;
+
+ for (s = abfd->sections; s != NULL; s = s->next)
+ {
+ int indx;
+ bfd_byte *dest;
+ long dynindx;
+
+ dynindx = elf_section_data (s)->dynindx;
+ if (dynindx <= 0)
+ continue;
+ indx = elf_section_data (s)->this_idx;
+ BFD_ASSERT (indx > 0);
+ sym.st_shndx = indx;
+ if (! check_dynsym (abfd, &sym))
+ return FALSE;
+ sym.st_value = s->vma;
+ dest = dynsym + dynindx * bed->s->sizeof_sym;
+ if (last_local < dynindx)
+ last_local = dynindx;
+ bed->s->swap_symbol_out (abfd, &sym, dest, 0);
+ }
+ }
+
+ /* Write out the local dynsyms. */
+ if (elf_hash_table (info)->dynlocal)
+ {
+ struct elf_link_local_dynamic_entry *e;
+ for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
+ {
+ asection *s;
+ bfd_byte *dest;
+
+ /* Copy the internal symbol and turn off visibility.
+ Note that we saved a word of storage and overwrote
+ the original st_name with the dynstr_index. */
+ sym = e->isym;
+ sym.st_other &= ~ELF_ST_VISIBILITY (-1);
+
+ s = bfd_section_from_elf_index (e->input_bfd,
+ e->isym.st_shndx);
+ if (s != NULL)
+ {
+ sym.st_shndx =
+ elf_section_data (s->output_section)->this_idx;
+ if (! check_dynsym (abfd, &sym))
+ return FALSE;
+ sym.st_value = (s->output_section->vma
+ + s->output_offset
+ + e->isym.st_value);
+ }
+
+ if (last_local < e->dynindx)
+ last_local = e->dynindx;
+
+ dest = dynsym + e->dynindx * bed->s->sizeof_sym;
+ bed->s->swap_symbol_out (abfd, &sym, dest, 0);
+ }
+ }
+
+ elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
+ last_local + 1;
+ }
+
+ /* We get the global symbols from the hash table. */
+ eoinfo.failed = FALSE;
+ eoinfo.localsyms = FALSE;
+ eoinfo.flinfo = &flinfo;
+ bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
+ if (eoinfo.failed)
+ return FALSE;
+
+ /* If backend needs to output some symbols not present in the hash
+ table, do it now. */
+ if (bed->elf_backend_output_arch_syms)
+ {
+ typedef int (*out_sym_func)
+ (void *, const char *, Elf_Internal_Sym *, asection *,
+ struct elf_link_hash_entry *);
+
+ if (! ((*bed->elf_backend_output_arch_syms)
+ (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
+ return FALSE;
+ }
+
+ /* Flush all symbols to the file. */
+ if (! elf_link_flush_output_syms (&flinfo, bed))
+ return FALSE;
+
+ /* Now we know the size of the symtab section. */
+ off += symtab_hdr->sh_size;
+
+ symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
+ if (symtab_shndx_hdr->sh_name != 0)
+ {
+ symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
+ symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
+ symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
+ amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
+ symtab_shndx_hdr->sh_size = amt;
+
+ off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
+ off, TRUE);
+
+ if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
+ || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
+ return FALSE;
+ }
+
+
+ /* Finish up and write out the symbol string table (.strtab)
+ section. */
+ symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
+ /* sh_name was set in prep_headers. */
+ symstrtab_hdr->sh_type = SHT_STRTAB;
+ symstrtab_hdr->sh_flags = 0;
+ symstrtab_hdr->sh_addr = 0;
+ symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
+ symstrtab_hdr->sh_entsize = 0;
+ symstrtab_hdr->sh_link = 0;
+ symstrtab_hdr->sh_info = 0;
+ /* sh_offset is set just below. */
+ symstrtab_hdr->sh_addralign = 1;
+
+ off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
+ elf_next_file_pos (abfd) = off;
+
+ if (bfd_get_symcount (abfd) > 0)
+ {
+ if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
+ || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
+ return FALSE;
+ }
+
+ /* Adjust the relocs to have the correct symbol indices. */
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ struct bfd_elf_section_data *esdo = elf_section_data (o);
+ if ((o->flags & SEC_RELOC) == 0)
+ continue;
+
+ if (esdo->rel.hdr != NULL)
+ elf_link_adjust_relocs (abfd, &esdo->rel);
+ if (esdo->rela.hdr != NULL)
+ elf_link_adjust_relocs (abfd, &esdo->rela);
+
+ /* Set the reloc_count field to 0 to prevent write_relocs from
+ trying to swap the relocs out itself. */
+ o->reloc_count = 0;
+ }
+
+ if (dynamic && info->combreloc && dynobj != NULL)
+ relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
+
+ /* If we are linking against a dynamic object, or generating a
+ shared library, finish up the dynamic linking information. */
+ if (dynamic)
+ {
+ bfd_byte *dyncon, *dynconend;
+
+ /* Fix up .dynamic entries. */
+ o = bfd_get_linker_section (dynobj, ".dynamic");
+ BFD_ASSERT (o != NULL);
+
+ dyncon = o->contents;
+ dynconend = o->contents + o->size;
+ for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
+ {
+ Elf_Internal_Dyn dyn;
+ const char *name;
+ unsigned int type;
+
+ bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
+
+ switch (dyn.d_tag)
+ {
+ default:
+ continue;
+ case DT_NULL:
+ if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
+ {
+ switch (elf_section_data (reldyn)->this_hdr.sh_type)
+ {
+ case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
+ case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
+ default: continue;
+ }
+ dyn.d_un.d_val = relativecount;
+ relativecount = 0;
+ break;
+ }
+ continue;
+
+ case DT_INIT:
+ name = info->init_function;
+ goto get_sym;
+ case DT_FINI:
+ name = info->fini_function;
+ get_sym:
+ {
+ struct elf_link_hash_entry *h;
+
+ h = elf_link_hash_lookup (elf_hash_table (info), name,
+ FALSE, FALSE, TRUE);
+ if (h != NULL
+ && (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak))
+ {
+ dyn.d_un.d_ptr = h->root.u.def.value;
+ o = h->root.u.def.section;
+ if (o->output_section != NULL)
+ dyn.d_un.d_ptr += (o->output_section->vma
+ + o->output_offset);
+ else
+ {
+ /* The symbol is imported from another shared
+ library and does not apply to this one. */
+ dyn.d_un.d_ptr = 0;
+ }
+ break;
+ }
+ }
+ continue;
+
+ case DT_PREINIT_ARRAYSZ:
+ name = ".preinit_array";
+ goto get_size;
+ case DT_INIT_ARRAYSZ:
+ name = ".init_array";
+ goto get_size;
+ case DT_FINI_ARRAYSZ:
+ name = ".fini_array";
+ get_size:
+ o = bfd_get_section_by_name (abfd, name);
+ if (o == NULL)
+ {
+ (*_bfd_error_handler)
+ (_("%B: could not find output section %s"), abfd, name);
+ goto error_return;
+ }
+ if (o->size == 0)
+ (*_bfd_error_handler)
+ (_("warning: %s section has zero size"), name);
+ dyn.d_un.d_val = o->size;
+ break;
+
+ case DT_PREINIT_ARRAY:
+ name = ".preinit_array";
+ goto get_vma;
+ case DT_INIT_ARRAY:
+ name = ".init_array";
+ goto get_vma;
+ case DT_FINI_ARRAY:
+ name = ".fini_array";
+ goto get_vma;
+
+ case DT_HASH:
+ name = ".hash";
+ goto get_vma;
+ case DT_GNU_HASH:
+ name = ".gnu.hash";
+ goto get_vma;
+ case DT_STRTAB:
+ name = ".dynstr";
+ goto get_vma;
+ case DT_SYMTAB:
+ name = ".dynsym";
+ goto get_vma;
+ case DT_VERDEF:
+ name = ".gnu.version_d";
+ goto get_vma;
+ case DT_VERNEED:
+ name = ".gnu.version_r";
+ goto get_vma;
+ case DT_VERSYM:
+ name = ".gnu.version";
+ get_vma:
+ o = bfd_get_section_by_name (abfd, name);
+ if (o == NULL)
+ {
+ (*_bfd_error_handler)
+ (_("%B: could not find output section %s"), abfd, name);
+ goto error_return;
+ }
+ if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
+ {
+ (*_bfd_error_handler)
+ (_("warning: section '%s' is being made into a note"), name);
+ bfd_set_error (bfd_error_nonrepresentable_section);
+ goto error_return;
+ }
+ dyn.d_un.d_ptr = o->vma;
+ break;
+
+ case DT_REL:
+ case DT_RELA:
+ case DT_RELSZ:
+ case DT_RELASZ:
+ if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
+ type = SHT_REL;
+ else
+ type = SHT_RELA;
+ dyn.d_un.d_val = 0;
+ dyn.d_un.d_ptr = 0;
+ for (i = 1; i < elf_numsections (abfd); i++)
+ {
+ Elf_Internal_Shdr *hdr;
+
+ hdr = elf_elfsections (abfd)[i];
+ if (hdr->sh_type == type
+ && (hdr->sh_flags & SHF_ALLOC) != 0)
+ {
+ if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
+ dyn.d_un.d_val += hdr->sh_size;
+ else
+ {
+ if (dyn.d_un.d_ptr == 0
+ || hdr->sh_addr < dyn.d_un.d_ptr)
+ dyn.d_un.d_ptr = hdr->sh_addr;
+ }
+ }
+ }
+ break;
+ }
+ bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
+ }
+ }
+
+ /* If we have created any dynamic sections, then output them. */
+ if (dynobj != NULL)
+ {
+ if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
+ goto error_return;
+
+ /* Check for DT_TEXTREL (late, in case the backend removes it). */
+ if (((info->warn_shared_textrel && info->shared)
+ || info->error_textrel)
+ && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
+ {
+ bfd_byte *dyncon, *dynconend;
+
+ dyncon = o->contents;
+ dynconend = o->contents + o->size;
+ for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
+ {
+ Elf_Internal_Dyn dyn;
+
+ bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
+
+ if (dyn.d_tag == DT_TEXTREL)
+ {
+ if (info->error_textrel)
+ info->callbacks->einfo
+ (_("%P%X: read-only segment has dynamic relocations.\n"));
+ else
+ info->callbacks->einfo
+ (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
+ break;
+ }
+ }
+ }
+
+ for (o = dynobj->sections; o != NULL; o = o->next)
+ {
+ if ((o->flags & SEC_HAS_CONTENTS) == 0
+ || o->size == 0
+ || o->output_section == bfd_abs_section_ptr)
+ continue;
+ if ((o->flags & SEC_LINKER_CREATED) == 0)
+ {
+ /* At this point, we are only interested in sections
+ created by _bfd_elf_link_create_dynamic_sections. */
+ continue;
+ }
+ if (elf_hash_table (info)->stab_info.stabstr == o)
+ continue;
+ if (elf_hash_table (info)->eh_info.hdr_sec == o)
+ continue;
+ if (strcmp (o->name, ".dynstr") != 0)
+ {
+ /* FIXME: octets_per_byte. */
+ if (! bfd_set_section_contents (abfd, o->output_section,
+ o->contents,
+ (file_ptr) o->output_offset,
+ o->size))
+ goto error_return;
+ }
+ else
+ {
+ /* The contents of the .dynstr section are actually in a
+ stringtab. */
+ off = elf_section_data (o->output_section)->this_hdr.sh_offset;
+ if (bfd_seek (abfd, off, SEEK_SET) != 0
+ || ! _bfd_elf_strtab_emit (abfd,
+ elf_hash_table (info)->dynstr))
+ goto error_return;
+ }
+ }
+ }
+
+ if (info->relocatable)
+ {
+ bfd_boolean failed = FALSE;
+
+ bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
+ if (failed)
+ goto error_return;
+ }
+
+ /* If we have optimized stabs strings, output them. */
+ if (elf_hash_table (info)->stab_info.stabstr != NULL)
+ {
+ if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
+ goto error_return;
+ }
+
+ if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
+ goto error_return;
+
+ elf_final_link_free (abfd, &flinfo);
+
+ elf_linker (abfd) = TRUE;
+
+ if (attr_section)
+ {
+ bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
+ if (contents == NULL)
+ return FALSE; /* Bail out and fail. */
+ bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
+ bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
+ free (contents);
+ }
+
+ return TRUE;
+
+ error_return:
+ elf_final_link_free (abfd, &flinfo);
+ return FALSE;
+}
+
+/* Initialize COOKIE for input bfd ABFD. */
+
+static bfd_boolean
+init_reloc_cookie (struct elf_reloc_cookie *cookie,
+ struct bfd_link_info *info, bfd *abfd)
+{
+ Elf_Internal_Shdr *symtab_hdr;
+ const struct elf_backend_data *bed;
+
+ bed = get_elf_backend_data (abfd);
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+
+ cookie->abfd = abfd;
+ cookie->sym_hashes = elf_sym_hashes (abfd);
+ cookie->bad_symtab = elf_bad_symtab (abfd);
+ if (cookie->bad_symtab)
+ {
+ cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
+ cookie->extsymoff = 0;
+ }
+ else
+ {
+ cookie->locsymcount = symtab_hdr->sh_info;
+ cookie->extsymoff = symtab_hdr->sh_info;
+ }
+
+ if (bed->s->arch_size == 32)
+ cookie->r_sym_shift = 8;
+ else
+ cookie->r_sym_shift = 32;
+
+ cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
+ if (cookie->locsyms == NULL && cookie->locsymcount != 0)
+ {
+ cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
+ cookie->locsymcount, 0,
+ NULL, NULL, NULL);
+ if (cookie->locsyms == NULL)
+ {
+ info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
+ return FALSE;
+ }
+ if (info->keep_memory)
+ symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
+ }
+ return TRUE;
+}
+
+/* Free the memory allocated by init_reloc_cookie, if appropriate. */
+
+static void
+fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
+{
+ Elf_Internal_Shdr *symtab_hdr;
+
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ if (cookie->locsyms != NULL
+ && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
+ free (cookie->locsyms);
+}
+
+/* Initialize the relocation information in COOKIE for input section SEC
+ of input bfd ABFD. */
+
+static bfd_boolean
+init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
+ struct bfd_link_info *info, bfd *abfd,
+ asection *sec)
+{
+ const struct elf_backend_data *bed;
+
+ if (sec->reloc_count == 0)
+ {
+ cookie->rels = NULL;
+ cookie->relend = NULL;
+ }
+ else
+ {
+ bed = get_elf_backend_data (abfd);
+
+ cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
+ info->keep_memory);
+ if (cookie->rels == NULL)
+ return FALSE;
+ cookie->rel = cookie->rels;
+ cookie->relend = (cookie->rels
+ + sec->reloc_count * bed->s->int_rels_per_ext_rel);
+ }
+ cookie->rel = cookie->rels;
+ return TRUE;
+}
+
+/* Free the memory allocated by init_reloc_cookie_rels,
+ if appropriate. */
+
+static void
+fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
+ asection *sec)
+{
+ if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
+ free (cookie->rels);
+}
+
+/* Initialize the whole of COOKIE for input section SEC. */
+
+static bfd_boolean
+init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
+ struct bfd_link_info *info,
+ asection *sec)
+{
+ if (!init_reloc_cookie (cookie, info, sec->owner))
+ goto error1;
+ if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
+ goto error2;
+ return TRUE;
+
+ error2:
+ fini_reloc_cookie (cookie, sec->owner);
+ error1:
+ return FALSE;
+}
+
+/* Free the memory allocated by init_reloc_cookie_for_section,
+ if appropriate. */
+
+static void
+fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
+ asection *sec)
+{
+ fini_reloc_cookie_rels (cookie, sec);
+ fini_reloc_cookie (cookie, sec->owner);
+}
+
+/* Garbage collect unused sections. */
+
+/* Default gc_mark_hook. */
+
+asection *
+_bfd_elf_gc_mark_hook (asection *sec,
+ struct bfd_link_info *info ATTRIBUTE_UNUSED,
+ Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
+ struct elf_link_hash_entry *h,
+ Elf_Internal_Sym *sym)
+{
+ const char *sec_name;
+
+ if (h != NULL)
+ {
+ switch (h->root.type)
+ {
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ return h->root.u.def.section;
+
+ case bfd_link_hash_common:
+ return h->root.u.c.p->section;
+
+ case bfd_link_hash_undefined:
+ case bfd_link_hash_undefweak:
+ /* To work around a glibc bug, keep all XXX input sections
+ when there is an as yet undefined reference to __start_XXX
+ or __stop_XXX symbols. The linker will later define such
+ symbols for orphan input sections that have a name
+ representable as a C identifier. */
+ if (strncmp (h->root.root.string, "__start_", 8) == 0)
+ sec_name = h->root.root.string + 8;
+ else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
+ sec_name = h->root.root.string + 7;
+ else
+ sec_name = NULL;
+
+ if (sec_name && *sec_name != '\0')
+ {
+ bfd *i;
+
+ for (i = info->input_bfds; i; i = i->link.next)
+ {
+ sec = bfd_get_section_by_name (i, sec_name);
+ if (sec)
+ sec->flags |= SEC_KEEP;
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+ else
+ return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
+
+ return NULL;
+}
+
+/* COOKIE->rel describes a relocation against section SEC, which is
+ a section we've decided to keep. Return the section that contains
+ the relocation symbol, or NULL if no section contains it. */
+
+asection *
+_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
+ elf_gc_mark_hook_fn gc_mark_hook,
+ struct elf_reloc_cookie *cookie)
+{
+ unsigned long r_symndx;
+ struct elf_link_hash_entry *h;
+
+ r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
+ if (r_symndx == STN_UNDEF)
+ return NULL;
+
+ if (r_symndx >= cookie->locsymcount
+ || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
+ {
+ h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
+ if (h == NULL)
+ {
+ info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
+ sec->owner);
+ return NULL;
+ }
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ h->mark = 1;
+ /* If this symbol is weak and there is a non-weak definition, we
+ keep the non-weak definition because many backends put
+ dynamic reloc info on the non-weak definition for code
+ handling copy relocs. */
+ if (h->u.weakdef != NULL)
+ h->u.weakdef->mark = 1;
+ return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
+ }
+
+ return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
+ &cookie->locsyms[r_symndx]);
+}
+
+/* COOKIE->rel describes a relocation against section SEC, which is
+ a section we've decided to keep. Mark the section that contains
+ the relocation symbol. */
+
+bfd_boolean
+_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
+ asection *sec,
+ elf_gc_mark_hook_fn gc_mark_hook,
+ struct elf_reloc_cookie *cookie)
+{
+ asection *rsec;
+
+ rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
+ if (rsec && !rsec->gc_mark)
+ {
+ if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
+ || (rsec->owner->flags & DYNAMIC) != 0)
+ rsec->gc_mark = 1;
+ else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
+ return FALSE;
+ }
+ return TRUE;
+}
+
+/* The mark phase of garbage collection. For a given section, mark
+ it and any sections in this section's group, and all the sections
+ which define symbols to which it refers. */
+
+bfd_boolean
+_bfd_elf_gc_mark (struct bfd_link_info *info,
+ asection *sec,
+ elf_gc_mark_hook_fn gc_mark_hook)
+{
+ bfd_boolean ret;
+ asection *group_sec, *eh_frame;
+
+ sec->gc_mark = 1;
+
+ /* Mark all the sections in the group. */
+ group_sec = elf_section_data (sec)->next_in_group;
+ if (group_sec && !group_sec->gc_mark)
+ if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
+ return FALSE;
+
+ /* Look through the section relocs. */
+ ret = TRUE;
+ eh_frame = elf_eh_frame_section (sec->owner);
+ if ((sec->flags & SEC_RELOC) != 0
+ && sec->reloc_count > 0
+ && sec != eh_frame)
+ {
+ struct elf_reloc_cookie cookie;
+
+ if (!init_reloc_cookie_for_section (&cookie, info, sec))
+ ret = FALSE;
+ else
+ {
+ for (; cookie.rel < cookie.relend; cookie.rel++)
+ if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
+ {
+ ret = FALSE;
+ break;
+ }
+ fini_reloc_cookie_for_section (&cookie, sec);
+ }
+ }
+
+ if (ret && eh_frame && elf_fde_list (sec))
+ {
+ struct elf_reloc_cookie cookie;
+
+ if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
+ ret = FALSE;
+ else
+ {
+ if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
+ gc_mark_hook, &cookie))
+ ret = FALSE;
+ fini_reloc_cookie_for_section (&cookie, eh_frame);
+ }
+ }
+
+ return ret;
+}
+
+/* Keep debug and special sections. */
+
+bfd_boolean
+_bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
+ elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
+{
+ bfd *ibfd;
+
+ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
+ {
+ asection *isec;
+ bfd_boolean some_kept;
+ bfd_boolean debug_frag_seen;
+
+ if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
+ continue;
+
+ /* Ensure all linker created sections are kept,
+ see if any other section is already marked,
+ and note if we have any fragmented debug sections. */
+ debug_frag_seen = some_kept = FALSE;
+ for (isec = ibfd->sections; isec != NULL; isec = isec->next)
+ {
+ if ((isec->flags & SEC_LINKER_CREATED) != 0)
+ isec->gc_mark = 1;
+ else if (isec->gc_mark)
+ some_kept = TRUE;
+
+ if (debug_frag_seen == FALSE
+ && (isec->flags & SEC_DEBUGGING)
+ && CONST_STRNEQ (isec->name, ".debug_line."))
+ debug_frag_seen = TRUE;
+ }
+
+ /* If no section in this file will be kept, then we can
+ toss out the debug and special sections. */
+ if (!some_kept)
+ continue;
+
+ /* Keep debug and special sections like .comment when they are
+ not part of a group, or when we have single-member groups. */
+ for (isec = ibfd->sections; isec != NULL; isec = isec->next)
+ if ((elf_next_in_group (isec) == NULL
+ || elf_next_in_group (isec) == isec)
+ && ((isec->flags & SEC_DEBUGGING) != 0
+ || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
+ isec->gc_mark = 1;
+
+ if (! debug_frag_seen)
+ continue;
+
+ /* Look for CODE sections which are going to be discarded,
+ and find and discard any fragmented debug sections which
+ are associated with that code section. */
+ for (isec = ibfd->sections; isec != NULL; isec = isec->next)
+ if ((isec->flags & SEC_CODE) != 0
+ && isec->gc_mark == 0)
+ {
+ unsigned int ilen;
+ asection *dsec;
+
+ ilen = strlen (isec->name);
+
+ /* Association is determined by the name of the debug section
+ containing the name of the code section as a suffix. For
+ example .debug_line.text.foo is a debug section associated
+ with .text.foo. */
+ for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
+ {
+ unsigned int dlen;
+
+ if (dsec->gc_mark == 0
+ || (dsec->flags & SEC_DEBUGGING) == 0)
+ continue;
+
+ dlen = strlen (dsec->name);
+
+ if (dlen > ilen
+ && strncmp (dsec->name + (dlen - ilen),
+ isec->name, ilen) == 0)
+ {
+ dsec->gc_mark = 0;
+ break;
+ }
+ }
+ }
+ }
+ return TRUE;
+}
+
+/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
+
+struct elf_gc_sweep_symbol_info
+{
+ struct bfd_link_info *info;
+ void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
+ bfd_boolean);
+};
+
+static bfd_boolean
+elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
+{
+ if (!h->mark
+ && (((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && !(h->def_regular
+ && h->root.u.def.section->gc_mark))
+ || h->root.type == bfd_link_hash_undefined
+ || h->root.type == bfd_link_hash_undefweak))
+ {
+ struct elf_gc_sweep_symbol_info *inf;
+
+ inf = (struct elf_gc_sweep_symbol_info *) data;
+ (*inf->hide_symbol) (inf->info, h, TRUE);
+ h->def_regular = 0;
+ h->ref_regular = 0;
+ h->ref_regular_nonweak = 0;
+ }
+
+ return TRUE;
+}
+
+/* The sweep phase of garbage collection. Remove all garbage sections. */
+
+typedef bfd_boolean (*gc_sweep_hook_fn)
+ (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
+
+static bfd_boolean
+elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
+{
+ bfd *sub;
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
+ unsigned long section_sym_count;
+ struct elf_gc_sweep_symbol_info sweep_info;
+
+ for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
+ {
+ asection *o;
+
+ if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
+ continue;
+
+ for (o = sub->sections; o != NULL; o = o->next)
+ {
+ /* When any section in a section group is kept, we keep all
+ sections in the section group. If the first member of
+ the section group is excluded, we will also exclude the
+ group section. */
+ if (o->flags & SEC_GROUP)
+ {
+ asection *first = elf_next_in_group (o);
+ o->gc_mark = first->gc_mark;
+ }
+
+ if (o->gc_mark)
+ continue;
+
+ /* Skip sweeping sections already excluded. */
+ if (o->flags & SEC_EXCLUDE)
+ continue;
+
+ /* Since this is early in the link process, it is simple
+ to remove a section from the output. */
+ o->flags |= SEC_EXCLUDE;
+
+ if (info->print_gc_sections && o->size != 0)
+ _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
+
+ /* But we also have to update some of the relocation
+ info we collected before. */
+ if (gc_sweep_hook
+ && (o->flags & SEC_RELOC) != 0
+ && o->reloc_count != 0
+ && !((info->strip == strip_all || info->strip == strip_debugger)
+ && (o->flags & SEC_DEBUGGING) != 0)
+ && !bfd_is_abs_section (o->output_section))
+ {
+ Elf_Internal_Rela *internal_relocs;
+ bfd_boolean r;
+
+ internal_relocs
+ = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
+ info->keep_memory);
+ if (internal_relocs == NULL)
+ return FALSE;
+
+ r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
+
+ if (elf_section_data (o)->relocs != internal_relocs)
+ free (internal_relocs);
+
+ if (!r)
+ return FALSE;
+ }
+ }
+ }
+
+ /* Remove the symbols that were in the swept sections from the dynamic
+ symbol table. GCFIXME: Anyone know how to get them out of the
+ static symbol table as well? */
+ sweep_info.info = info;
+ sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
+ elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
+ &sweep_info);
+
+ _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
+ return TRUE;
+}
+
+/* Propagate collected vtable information. This is called through
+ elf_link_hash_traverse. */
+
+static bfd_boolean
+elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
+{
+ /* Those that are not vtables. */
+ if (h->vtable == NULL || h->vtable->parent == NULL)
+ return TRUE;
+
+ /* Those vtables that do not have parents, we cannot merge. */
+ if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
+ return TRUE;
+
+ /* If we've already been done, exit. */
+ if (h->vtable->used && h->vtable->used[-1])
+ return TRUE;
+
+ /* Make sure the parent's table is up to date. */
+ elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
+
+ if (h->vtable->used == NULL)
+ {
+ /* None of this table's entries were referenced. Re-use the
+ parent's table. */
+ h->vtable->used = h->vtable->parent->vtable->used;
+ h->vtable->size = h->vtable->parent->vtable->size;
+ }
+ else
+ {
+ size_t n;
+ bfd_boolean *cu, *pu;
+
+ /* Or the parent's entries into ours. */
+ cu = h->vtable->used;
+ cu[-1] = TRUE;
+ pu = h->vtable->parent->vtable->used;
+ if (pu != NULL)
+ {
+ const struct elf_backend_data *bed;
+ unsigned int log_file_align;
+
+ bed = get_elf_backend_data (h->root.u.def.section->owner);
+ log_file_align = bed->s->log_file_align;
+ n = h->vtable->parent->vtable->size >> log_file_align;
+ while (n--)
+ {
+ if (*pu)
+ *cu = TRUE;
+ pu++;
+ cu++;
+ }
+ }
+ }
+
+ return TRUE;
+}
+
+static bfd_boolean
+elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
+{
+ asection *sec;
+ bfd_vma hstart, hend;
+ Elf_Internal_Rela *relstart, *relend, *rel;
+ const struct elf_backend_data *bed;
+ unsigned int log_file_align;
+
+ /* Take care of both those symbols that do not describe vtables as
+ well as those that are not loaded. */
+ if (h->vtable == NULL || h->vtable->parent == NULL)
+ return TRUE;
+
+ BFD_ASSERT (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak);
+
+ sec = h->root.u.def.section;
+ hstart = h->root.u.def.value;
+ hend = hstart + h->size;
+
+ relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
+ if (!relstart)
+ return *(bfd_boolean *) okp = FALSE;
+ bed = get_elf_backend_data (sec->owner);
+ log_file_align = bed->s->log_file_align;
+
+ relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
+
+ for (rel = relstart; rel < relend; ++rel)
+ if (rel->r_offset >= hstart && rel->r_offset < hend)
+ {
+ /* If the entry is in use, do nothing. */
+ if (h->vtable->used
+ && (rel->r_offset - hstart) < h->vtable->size)
+ {
+ bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
+ if (h->vtable->used[entry])
+ continue;
+ }
+ /* Otherwise, kill it. */
+ rel->r_offset = rel->r_info = rel->r_addend = 0;
+ }
+
+ return TRUE;
+}
+
+/* Mark sections containing dynamically referenced symbols. When
+ building shared libraries, we must assume that any visible symbol is
+ referenced. */
+
+bfd_boolean
+bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
+{
+ struct bfd_link_info *info = (struct bfd_link_info *) inf;
+ struct bfd_elf_dynamic_list *d = info->dynamic_list;
+
+ if ((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && (h->ref_dynamic
+ || (h->def_regular
+ && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
+ && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
+ && (!info->executable
+ || info->export_dynamic
+ || (h->dynamic
+ && d != NULL
+ && (*d->match) (&d->head, NULL, h->root.root.string)))
+ && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
+ || !bfd_hide_sym_by_version (info->version_info,
+ h->root.root.string)))))
+ h->root.u.def.section->flags |= SEC_KEEP;
+
+ return TRUE;
+}
+
+/* Keep all sections containing symbols undefined on the command-line,
+ and the section containing the entry symbol. */
+
+void
+_bfd_elf_gc_keep (struct bfd_link_info *info)
+{
+ struct bfd_sym_chain *sym;
+
+ for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
+ {
+ struct elf_link_hash_entry *h;
+
+ h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
+ FALSE, FALSE, FALSE);
+
+ if (h != NULL
+ && (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && !bfd_is_abs_section (h->root.u.def.section))
+ h->root.u.def.section->flags |= SEC_KEEP;
+ }
+}
+
+/* Do mark and sweep of unused sections. */
+
+bfd_boolean
+bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
+{
+ bfd_boolean ok = TRUE;
+ bfd *sub;
+ elf_gc_mark_hook_fn gc_mark_hook;
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ struct elf_link_hash_table *htab;
+
+ if (!bed->can_gc_sections
+ || !is_elf_hash_table (info->hash))
+ {
+ (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
+ return TRUE;
+ }
+
+ bed->gc_keep (info);
+ htab = elf_hash_table (info);
+
+ /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
+ at the .eh_frame section if we can mark the FDEs individually. */
+ for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
+ {
+ asection *sec;
+ struct elf_reloc_cookie cookie;
+
+ sec = bfd_get_section_by_name (sub, ".eh_frame");
+ while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
+ {
+ _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
+ if (elf_section_data (sec)->sec_info
+ && (sec->flags & SEC_LINKER_CREATED) == 0)
+ elf_eh_frame_section (sub) = sec;
+ fini_reloc_cookie_for_section (&cookie, sec);
+ sec = bfd_get_next_section_by_name (sec);
+ }
+ }
+
+ /* Apply transitive closure to the vtable entry usage info. */
+ elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
+ if (!ok)
+ return FALSE;
+
+ /* Kill the vtable relocations that were not used. */
+ elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
+ if (!ok)
+ return FALSE;
+
+ /* Mark dynamically referenced symbols. */
+ if (htab->dynamic_sections_created)
+ elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
+
+ /* Grovel through relocs to find out who stays ... */
+ gc_mark_hook = bed->gc_mark_hook;
+ for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
+ {
+ asection *o;
+
+ if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
+ continue;
+
+ /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
+ Also treat note sections as a root, if the section is not part
+ of a group. */
+ for (o = sub->sections; o != NULL; o = o->next)
+ if (!o->gc_mark
+ && (o->flags & SEC_EXCLUDE) == 0
+ && ((o->flags & SEC_KEEP) != 0
+ || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
+ && elf_next_in_group (o) == NULL )))
+ {
+ if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
+ return FALSE;
+ }
+ }
+
+ /* Allow the backend to mark additional target specific sections. */
+ bed->gc_mark_extra_sections (info, gc_mark_hook);
+
+ /* ... and mark SEC_EXCLUDE for those that go. */
+ return elf_gc_sweep (abfd, info);
+}
+
+/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
+
+bfd_boolean
+bfd_elf_gc_record_vtinherit (bfd *abfd,
+ asection *sec,
+ struct elf_link_hash_entry *h,
+ bfd_vma offset)
+{
+ struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
+ struct elf_link_hash_entry **search, *child;
+ bfd_size_type extsymcount;
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+
+ /* The sh_info field of the symtab header tells us where the
+ external symbols start. We don't care about the local symbols at
+ this point. */
+ extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
+ if (!elf_bad_symtab (abfd))
+ extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
+
+ sym_hashes = elf_sym_hashes (abfd);
+ sym_hashes_end = sym_hashes + extsymcount;
+
+ /* Hunt down the child symbol, which is in this section at the same
+ offset as the relocation. */
+ for (search = sym_hashes; search != sym_hashes_end; ++search)
+ {
+ if ((child = *search) != NULL
+ && (child->root.type == bfd_link_hash_defined
+ || child->root.type == bfd_link_hash_defweak)
+ && child->root.u.def.section == sec
+ && child->root.u.def.value == offset)
+ goto win;
+ }
+
+ (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
+ abfd, sec, (unsigned long) offset);
+ bfd_set_error (bfd_error_invalid_operation);
+ return FALSE;
+
+ win:
+ if (!child->vtable)
+ {
+ child->vtable = (struct elf_link_virtual_table_entry *)
+ bfd_zalloc (abfd, sizeof (*child->vtable));
+ if (!child->vtable)
+ return FALSE;
+ }
+ if (!h)
+ {
+ /* This *should* only be the absolute section. It could potentially
+ be that someone has defined a non-global vtable though, which
+ would be bad. It isn't worth paging in the local symbols to be
+ sure though; that case should simply be handled by the assembler. */
+
+ child->vtable->parent = (struct elf_link_hash_entry *) -1;
+ }
+ else
+ child->vtable->parent = h;
+
+ return TRUE;
+}
+
+/* Called from check_relocs to record the existence of a VTENTRY reloc. */
+
+bfd_boolean
+bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
+ asection *sec ATTRIBUTE_UNUSED,
+ struct elf_link_hash_entry *h,
+ bfd_vma addend)
+{
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ unsigned int log_file_align = bed->s->log_file_align;
+
+ if (!h->vtable)
+ {
+ h->vtable = (struct elf_link_virtual_table_entry *)
+ bfd_zalloc (abfd, sizeof (*h->vtable));
+ if (!h->vtable)
+ return FALSE;
+ }
+
+ if (addend >= h->vtable->size)
+ {
+ size_t size, bytes, file_align;
+ bfd_boolean *ptr = h->vtable->used;
+
+ /* While the symbol is undefined, we have to be prepared to handle
+ a zero size. */
+ file_align = 1 << log_file_align;
+ if (h->root.type == bfd_link_hash_undefined)
+ size = addend + file_align;
+ else
+ {
+ size = h->size;
+ if (addend >= size)
+ {
+ /* Oops! We've got a reference past the defined end of
+ the table. This is probably a bug -- shall we warn? */
+ size = addend + file_align;
+ }
+ }
+ size = (size + file_align - 1) & -file_align;
+
+ /* Allocate one extra entry for use as a "done" flag for the
+ consolidation pass. */
+ bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
+
+ if (ptr)
+ {
+ ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
+
+ if (ptr != NULL)
+ {
+ size_t oldbytes;
+
+ oldbytes = (((h->vtable->size >> log_file_align) + 1)
+ * sizeof (bfd_boolean));
+ memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
+ }
+ }
+ else
+ ptr = (bfd_boolean *) bfd_zmalloc (bytes);
+
+ if (ptr == NULL)
+ return FALSE;
+
+ /* And arrange for that done flag to be at index -1. */
+ h->vtable->used = ptr + 1;
+ h->vtable->size = size;
+ }
+
+ h->vtable->used[addend >> log_file_align] = TRUE;
+
+ return TRUE;
+}
+
+/* Map an ELF section header flag to its corresponding string. */
+typedef struct
+{
+ char *flag_name;
+ flagword flag_value;
+} elf_flags_to_name_table;
+
+static elf_flags_to_name_table elf_flags_to_names [] =
+{
+ { "SHF_WRITE", SHF_WRITE },
+ { "SHF_ALLOC", SHF_ALLOC },
+ { "SHF_EXECINSTR", SHF_EXECINSTR },
+ { "SHF_MERGE", SHF_MERGE },
+ { "SHF_STRINGS", SHF_STRINGS },
+ { "SHF_INFO_LINK", SHF_INFO_LINK},
+ { "SHF_LINK_ORDER", SHF_LINK_ORDER},
+ { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
+ { "SHF_GROUP", SHF_GROUP },
+ { "SHF_TLS", SHF_TLS },
+ { "SHF_MASKOS", SHF_MASKOS },
+ { "SHF_EXCLUDE", SHF_EXCLUDE },
+};
+
+/* Returns TRUE if the section is to be included, otherwise FALSE. */
+bfd_boolean
+bfd_elf_lookup_section_flags (struct bfd_link_info *info,
+ struct flag_info *flaginfo,
+ asection *section)
+{
+ const bfd_vma sh_flags = elf_section_flags (section);
+
+ if (!flaginfo->flags_initialized)
+ {
+ bfd *obfd = info->output_bfd;
+ const struct elf_backend_data *bed = get_elf_backend_data (obfd);
+ struct flag_info_list *tf = flaginfo->flag_list;
+ int with_hex = 0;
+ int without_hex = 0;
+
+ for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
+ {
+ unsigned i;
+ flagword (*lookup) (char *);
+
+ lookup = bed->elf_backend_lookup_section_flags_hook;
+ if (lookup != NULL)
+ {
+ flagword hexval = (*lookup) ((char *) tf->name);
+
+ if (hexval != 0)
+ {
+ if (tf->with == with_flags)
+ with_hex |= hexval;
+ else if (tf->with == without_flags)
+ without_hex |= hexval;
+ tf->valid = TRUE;
+ continue;
+ }
+ }
+ for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
+ {
+ if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
+ {
+ if (tf->with == with_flags)
+ with_hex |= elf_flags_to_names[i].flag_value;
+ else if (tf->with == without_flags)
+ without_hex |= elf_flags_to_names[i].flag_value;
+ tf->valid = TRUE;
+ break;
+ }
+ }
+ if (!tf->valid)
+ {
+ info->callbacks->einfo
+ (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
+ return FALSE;
+ }
+ }
+ flaginfo->flags_initialized = TRUE;
+ flaginfo->only_with_flags |= with_hex;
+ flaginfo->not_with_flags |= without_hex;
+ }
+
+ if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
+ return FALSE;
+
+ if ((flaginfo->not_with_flags & sh_flags) != 0)
+ return FALSE;
+
+ return TRUE;
+}
+
+struct alloc_got_off_arg {
+ bfd_vma gotoff;
+ struct bfd_link_info *info;
+};
+
+/* We need a special top-level link routine to convert got reference counts
+ to real got offsets. */
+
+static bfd_boolean
+elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
+{
+ struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
+ bfd *obfd = gofarg->info->output_bfd;
+ const struct elf_backend_data *bed = get_elf_backend_data (obfd);
+
+ if (h->got.refcount > 0)
+ {
+ h->got.offset = gofarg->gotoff;
+ gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
+ }
+ else
+ h->got.offset = (bfd_vma) -1;
+
+ return TRUE;
+}
+
+/* And an accompanying bit to work out final got entry offsets once
+ we're done. Should be called from final_link. */
+
+bfd_boolean
+bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
+ struct bfd_link_info *info)
+{
+ bfd *i;
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ bfd_vma gotoff;
+ struct alloc_got_off_arg gofarg;
+
+ BFD_ASSERT (abfd == info->output_bfd);
+
+ if (! is_elf_hash_table (info->hash))
+ return FALSE;
+
+ /* The GOT offset is relative to the .got section, but the GOT header is
+ put into the .got.plt section, if the backend uses it. */
+ if (bed->want_got_plt)
+ gotoff = 0;
+ else
+ gotoff = bed->got_header_size;
+
+ /* Do the local .got entries first. */
+ for (i = info->input_bfds; i; i = i->link.next)
+ {
+ bfd_signed_vma *local_got;
+ bfd_size_type j, locsymcount;
+ Elf_Internal_Shdr *symtab_hdr;
+
+ if (bfd_get_flavour (i) != bfd_target_elf_flavour)
+ continue;
+
+ local_got = elf_local_got_refcounts (i);
+ if (!local_got)
+ continue;
+
+ symtab_hdr = &elf_tdata (i)->symtab_hdr;
+ if (elf_bad_symtab (i))
+ locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
+ else
+ locsymcount = symtab_hdr->sh_info;
+
+ for (j = 0; j < locsymcount; ++j)
+ {
+ if (local_got[j] > 0)
+ {
+ local_got[j] = gotoff;
+ gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
+ }
+ else
+ local_got[j] = (bfd_vma) -1;
+ }
+ }
+
+ /* Then the global .got entries. .plt refcounts are handled by
+ adjust_dynamic_symbol */
+ gofarg.gotoff = gotoff;
+ gofarg.info = info;
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_gc_allocate_got_offsets,
+ &gofarg);
+ return TRUE;
+}
+
+/* Many folk need no more in the way of final link than this, once
+ got entry reference counting is enabled. */
+
+bfd_boolean
+bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
+{
+ if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
+ return FALSE;
+
+ /* Invoke the regular ELF backend linker to do all the work. */
+ return bfd_elf_final_link (abfd, info);
+}
+
+bfd_boolean
+bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
+{
+ struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
+
+ if (rcookie->bad_symtab)
+ rcookie->rel = rcookie->rels;
+
+ for (; rcookie->rel < rcookie->relend; rcookie->rel++)
+ {
+ unsigned long r_symndx;
+
+ if (! rcookie->bad_symtab)
+ if (rcookie->rel->r_offset > offset)
+ return FALSE;
+ if (rcookie->rel->r_offset != offset)
+ continue;
+
+ r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
+ if (r_symndx == STN_UNDEF)
+ return TRUE;
+
+ if (r_symndx >= rcookie->locsymcount
+ || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
+ {
+ struct elf_link_hash_entry *h;
+
+ h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
+
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ if ((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && (h->root.u.def.section->owner != rcookie->abfd
+ || h->root.u.def.section->kept_section != NULL
+ || discarded_section (h->root.u.def.section)))
+ return TRUE;
+ }
+ else
+ {
+ /* It's not a relocation against a global symbol,
+ but it could be a relocation against a local
+ symbol for a discarded section. */
+ asection *isec;
+ Elf_Internal_Sym *isym;
+
+ /* Need to: get the symbol; get the section. */
+ isym = &rcookie->locsyms[r_symndx];
+ isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
+ if (isec != NULL
+ && (isec->kept_section != NULL
+ || discarded_section (isec)))
+ return TRUE;
+ }
+ return FALSE;
+ }
+ return FALSE;
+}
+
+/* Discard unneeded references to discarded sections.
+ Returns -1 on error, 1 if any section's size was changed, 0 if
+ nothing changed. This function assumes that the relocations are in
+ sorted order, which is true for all known assemblers. */
+
+int
+bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
+{
+ struct elf_reloc_cookie cookie;
+ asection *o;
+ bfd *abfd;
+ int changed = 0;
+
+ if (info->traditional_format
+ || !is_elf_hash_table (info->hash))
+ return 0;
+
+ o = bfd_get_section_by_name (output_bfd, ".stab");
+ if (o != NULL)
+ {
+ asection *i;
+
+ for (i = o->map_head.s; i != NULL; i = i->map_head.s)
+ {
+ if (i->size == 0
+ || i->reloc_count == 0
+ || i->sec_info_type != SEC_INFO_TYPE_STABS)
+ continue;
+
+ abfd = i->owner;
+ if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
+ continue;
+
+ if (!init_reloc_cookie_for_section (&cookie, info, i))
+ return -1;
+
+ if (_bfd_discard_section_stabs (abfd, i,
+ elf_section_data (i)->sec_info,
+ bfd_elf_reloc_symbol_deleted_p,
+ &cookie))
+ changed = 1;
+
+ fini_reloc_cookie_for_section (&cookie, i);
+ }
+ }
+
+ o = bfd_get_section_by_name (output_bfd, ".eh_frame");
+ if (o != NULL)
+ {
+ asection *i;
+
+ for (i = o->map_head.s; i != NULL; i = i->map_head.s)
+ {
+ if (i->size == 0)
+ continue;
+
+ abfd = i->owner;
+ if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
+ continue;
+
+ if (!init_reloc_cookie_for_section (&cookie, info, i))
+ return -1;
+
+ _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
+ if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
+ bfd_elf_reloc_symbol_deleted_p,
+ &cookie))
+ changed = 1;
+
+ fini_reloc_cookie_for_section (&cookie, i);
+ }
+ }
+
+ for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
+ {
+ const struct elf_backend_data *bed;
+
+ if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
+ continue;
+
+ bed = get_elf_backend_data (abfd);
+
+ if (bed->elf_backend_discard_info != NULL)
+ {
+ if (!init_reloc_cookie (&cookie, info, abfd))
+ return -1;
+
+ if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
+ changed = 1;
+
+ fini_reloc_cookie (&cookie, abfd);
+ }
+ }
+
+ if (info->eh_frame_hdr
+ && !info->relocatable
+ && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
+ changed = 1;
+
+ return changed;
+}
+
+bfd_boolean
+_bfd_elf_section_already_linked (bfd *abfd,
+ asection *sec,
+ struct bfd_link_info *info)
+{
+ flagword flags;
+ const char *name, *key;
+ struct bfd_section_already_linked *l;
+ struct bfd_section_already_linked_hash_entry *already_linked_list;
+
+ if (sec->output_section == bfd_abs_section_ptr)
+ return FALSE;
+
+ flags = sec->flags;
+
+ /* Return if it isn't a linkonce section. A comdat group section
+ also has SEC_LINK_ONCE set. */
+ if ((flags & SEC_LINK_ONCE) == 0)
+ return FALSE;
+
+ /* Don't put group member sections on our list of already linked
+ sections. They are handled as a group via their group section. */
+ if (elf_sec_group (sec) != NULL)
+ return FALSE;
+
+ /* For a SHT_GROUP section, use the group signature as the key. */
+ name = sec->name;
+ if ((flags & SEC_GROUP) != 0
+ && elf_next_in_group (sec) != NULL
+ && elf_group_name (elf_next_in_group (sec)) != NULL)
+ key = elf_group_name (elf_next_in_group (sec));
+ else
+ {
+ /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
+ if (CONST_STRNEQ (name, ".gnu.linkonce.")
+ && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
+ key++;
+ else
+ /* Must be a user linkonce section that doesn't follow gcc's
+ naming convention. In this case we won't be matching
+ single member groups. */
+ key = name;
+ }
+
+ already_linked_list = bfd_section_already_linked_table_lookup (key);
+
+ for (l = already_linked_list->entry; l != NULL; l = l->next)
+ {
+ /* We may have 2 different types of sections on the list: group
+ sections with a signature of <key> (<key> is some string),
+ and linkonce sections named .gnu.linkonce.<type>.<key>.
+ Match like sections. LTO plugin sections are an exception.
+ They are always named .gnu.linkonce.t.<key> and match either
+ type of section. */
+ if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
+ && ((flags & SEC_GROUP) != 0
+ || strcmp (name, l->sec->name) == 0))
+ || (l->sec->owner->flags & BFD_PLUGIN) != 0)
+ {
+ /* The section has already been linked. See if we should
+ issue a warning. */
+ if (!_bfd_handle_already_linked (sec, l, info))
+ return FALSE;
+
+ if (flags & SEC_GROUP)
+ {
+ asection *first = elf_next_in_group (sec);
+ asection *s = first;
+
+ while (s != NULL)
+ {
+ s->output_section = bfd_abs_section_ptr;
+ /* Record which group discards it. */
+ s->kept_section = l->sec;
+ s = elf_next_in_group (s);
+ /* These lists are circular. */
+ if (s == first)
+ break;
+ }
+ }
+
+ return TRUE;
+ }
+ }
+
+ /* A single member comdat group section may be discarded by a
+ linkonce section and vice versa. */
+ if ((flags & SEC_GROUP) != 0)
+ {
+ asection *first = elf_next_in_group (sec);
+
+ if (first != NULL && elf_next_in_group (first) == first)
+ /* Check this single member group against linkonce sections. */
+ for (l = already_linked_list->entry; l != NULL; l = l->next)
+ if ((l->sec->flags & SEC_GROUP) == 0
+ && bfd_elf_match_symbols_in_sections (l->sec, first, info))
+ {
+ first->output_section = bfd_abs_section_ptr;
+ first->kept_section = l->sec;
+ sec->output_section = bfd_abs_section_ptr;
+ break;
+ }
+ }
+ else
+ /* Check this linkonce section against single member groups. */
+ for (l = already_linked_list->entry; l != NULL; l = l->next)
+ if (l->sec->flags & SEC_GROUP)
+ {
+ asection *first = elf_next_in_group (l->sec);
+
+ if (first != NULL
+ && elf_next_in_group (first) == first
+ && bfd_elf_match_symbols_in_sections (first, sec, info))
+ {
+ sec->output_section = bfd_abs_section_ptr;
+ sec->kept_section = first;
+ break;
+ }
+ }
+
+ /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
+ referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
+ specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
+ prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
+ matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
+ but its `.gnu.linkonce.t.F' is discarded means we chose one-only
+ `.gnu.linkonce.t.F' section from a different bfd not requiring any
+ `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
+ The reverse order cannot happen as there is never a bfd with only the
+ `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
+ matter as here were are looking only for cross-bfd sections. */
+
+ if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
+ for (l = already_linked_list->entry; l != NULL; l = l->next)
+ if ((l->sec->flags & SEC_GROUP) == 0
+ && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
+ {
+ if (abfd != l->sec->owner)
+ sec->output_section = bfd_abs_section_ptr;
+ break;
+ }
+
+ /* This is the first section with this name. Record it. */
+ if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
+ info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
+ return sec->output_section == bfd_abs_section_ptr;
+}
+
+bfd_boolean
+_bfd_elf_common_definition (Elf_Internal_Sym *sym)
+{
+ return sym->st_shndx == SHN_COMMON;
+}
+
+unsigned int
+_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
+{
+ return SHN_COMMON;
+}
+
+asection *
+_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
+{
+ return bfd_com_section_ptr;
+}
+
+bfd_vma
+_bfd_elf_default_got_elt_size (bfd *abfd,
+ struct bfd_link_info *info ATTRIBUTE_UNUSED,
+ struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
+ bfd *ibfd ATTRIBUTE_UNUSED,
+ unsigned long symndx ATTRIBUTE_UNUSED)
+{
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ return bed->s->arch_size / 8;
+}
+
+/* Routines to support the creation of dynamic relocs. */
+
+/* Returns the name of the dynamic reloc section associated with SEC. */
+
+static const char *
+get_dynamic_reloc_section_name (bfd * abfd,
+ asection * sec,
+ bfd_boolean is_rela)
+{
+ char *name;
+ const char *old_name = bfd_get_section_name (NULL, sec);
+ const char *prefix = is_rela ? ".rela" : ".rel";
+
+ if (old_name == NULL)
+ return NULL;
+
+ name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
+ sprintf (name, "%s%s", prefix, old_name);
+
+ return name;
+}
+
+/* Returns the dynamic reloc section associated with SEC.
+ If necessary compute the name of the dynamic reloc section based
+ on SEC's name (looked up in ABFD's string table) and the setting
+ of IS_RELA. */
+
+asection *
+_bfd_elf_get_dynamic_reloc_section (bfd * abfd,
+ asection * sec,
+ bfd_boolean is_rela)
+{
+ asection * reloc_sec = elf_section_data (sec)->sreloc;
+
+ if (reloc_sec == NULL)
+ {
+ const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
+
+ if (name != NULL)
+ {
+ reloc_sec = bfd_get_linker_section (abfd, name);
+
+ if (reloc_sec != NULL)
+ elf_section_data (sec)->sreloc = reloc_sec;
+ }
+ }
+
+ return reloc_sec;
+}
+
+/* Returns the dynamic reloc section associated with SEC. If the
+ section does not exist it is created and attached to the DYNOBJ
+ bfd and stored in the SRELOC field of SEC's elf_section_data
+ structure.
+
+ ALIGNMENT is the alignment for the newly created section and
+ IS_RELA defines whether the name should be .rela.<SEC's name>
+ or .rel.<SEC's name>. The section name is looked up in the
+ string table associated with ABFD. */
+
+asection *
+_bfd_elf_make_dynamic_reloc_section (asection * sec,
+ bfd * dynobj,
+ unsigned int alignment,
+ bfd * abfd,
+ bfd_boolean is_rela)
+{
+ asection * reloc_sec = elf_section_data (sec)->sreloc;
+
+ if (reloc_sec == NULL)
+ {
+ const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
+
+ if (name == NULL)
+ return NULL;
+
+ reloc_sec = bfd_get_linker_section (dynobj, name);
+
+ if (reloc_sec == NULL)
+ {
+ flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
+ | SEC_IN_MEMORY | SEC_LINKER_CREATED);
+ if ((sec->flags & SEC_ALLOC) != 0)
+ flags |= SEC_ALLOC | SEC_LOAD;
+
+ reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
+ if (reloc_sec != NULL)
+ {
+ /* _bfd_elf_get_sec_type_attr chooses a section type by
+ name. Override as it may be wrong, eg. for a user
+ section named "auto" we'll get ".relauto" which is
+ seen to be a .rela section. */
+ elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
+ if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
+ reloc_sec = NULL;
+ }
+ }
+
+ elf_section_data (sec)->sreloc = reloc_sec;
+ }
+
+ return reloc_sec;
+}
+
+/* Copy the ELF symbol type and other attributes for a linker script
+ assignment from HSRC to HDEST. Generally this should be treated as
+ if we found a strong non-dynamic definition for HDEST (except that
+ ld ignores multiple definition errors). */
+void
+_bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
+ struct bfd_link_hash_entry *hdest,
+ struct bfd_link_hash_entry *hsrc)
+{
+ struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
+ struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
+ Elf_Internal_Sym isym;
+
+ ehdest->type = ehsrc->type;
+ ehdest->target_internal = ehsrc->target_internal;
+
+ isym.st_other = ehsrc->other;
+ elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
+}
+
+/* Append a RELA relocation REL to section S in BFD. */
+
+void
+elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
+{
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
+ BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
+ bed->s->swap_reloca_out (abfd, rel, loc);
+}
+
+/* Append a REL relocation REL to section S in BFD. */
+
+void
+elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
+{
+ const struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
+ BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
+ bed->s->swap_reloc_out (abfd, rel, loc);
+}