summaryrefslogtreecommitdiff
path: root/libctf/ctf-lookup.c
blob: d95e53706c132419b688925e41638139b779c76e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/* Symbol, variable and name lookup.
   Copyright (C) 2019-2020 Free Software Foundation, Inc.

   This file is part of libctf.

   libctf is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3, or (at your option) any later
   version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
   See the GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING.  If not see
   <http://www.gnu.org/licenses/>.  */

#include <ctf-impl.h>
#include <elf.h>
#include <string.h>

/* Compare the given input string and length against a table of known C storage
   qualifier keywords.  We just ignore these in ctf_lookup_by_name, below.  To
   do this quickly, we use a pre-computed Perfect Hash Function similar to the
   technique originally described in the classic paper:

   R.J. Cichelli, "Minimal Perfect Hash Functions Made Simple",
   Communications of the ACM, Volume 23, Issue 1, January 1980, pp. 17-19.

   For an input string S of length N, we use hash H = S[N - 1] + N - 105, which
   for the current set of qualifiers yields a unique H in the range [0 .. 20].
   The hash can be modified when the keyword set changes as necessary.  We also
   store the length of each keyword and check it prior to the final strcmp().

   TODO: just use gperf.  */

static int
isqualifier (const char *s, size_t len)
{
  static const struct qual
  {
    const char *q_name;
    size_t q_len;
  } qhash[] = {
    {"static", 6}, {"", 0}, {"", 0}, {"", 0},
    {"volatile", 8}, {"", 0}, {"", 0}, {"", 0}, {"", 0},
    {"", 0}, {"auto", 4}, {"extern", 6}, {"", 0}, {"", 0},
    {"", 0}, {"", 0}, {"const", 5}, {"register", 8},
    {"", 0}, {"restrict", 8}, {"_Restrict", 9}
  };

  int h = s[len - 1] + (int) len - 105;
  const struct qual *qp = &qhash[h];

  return (h >= 0 && (size_t) h < sizeof (qhash) / sizeof (qhash[0])
	  && (size_t) len == qp->q_len &&
	  strncmp (qp->q_name, s, qp->q_len) == 0);
}

/* Attempt to convert the given C type name into the corresponding CTF type ID.
   It is not possible to do complete and proper conversion of type names
   without implementing a more full-fledged parser, which is necessary to
   handle things like types that are function pointers to functions that
   have arguments that are function pointers, and fun stuff like that.
   Instead, this function implements a very simple conversion algorithm that
   finds the things that we actually care about: structs, unions, enums,
   integers, floats, typedefs, and pointers to any of these named types.  */

ctf_id_t
ctf_lookup_by_name (ctf_file_t *fp, const char *name)
{
  static const char delimiters[] = " \t\n\r\v\f*";

  const ctf_lookup_t *lp;
  const char *p, *q, *end;
  ctf_id_t type = 0;
  ctf_id_t ntype, ptype;

  if (name == NULL)
    return (ctf_set_errno (fp, EINVAL));

  for (p = name, end = name + strlen (name); *p != '\0'; p = q)
    {
      while (isspace (*p))
	p++;			/* Skip leading whitespace.  */

      if (p == end)
	break;

      if ((q = strpbrk (p + 1, delimiters)) == NULL)
	q = end;		/* Compare until end.  */

      if (*p == '*')
	{
	  /* Find a pointer to type by looking in fp->ctf_ptrtab.
	     If we can't find a pointer to the given type, see if
	     we can compute a pointer to the type resulting from
	     resolving the type down to its base type and use
	     that instead.  This helps with cases where the CTF
	     data includes "struct foo *" but not "foo_t *" and
	     the user tries to access "foo_t *" in the debugger.

	     TODO need to handle parent containers too.  */

	  ntype = fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, type)];
	  if (ntype == 0)
	    {
	      ntype = ctf_type_resolve_unsliced (fp, type);
	      if (ntype == CTF_ERR
		  || (ntype =
		      fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, ntype)]) == 0)
		{
		  (void) ctf_set_errno (fp, ECTF_NOTYPE);
		  goto err;
		}
	    }

	  type = LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD));

	  q = p + 1;
	  continue;
	}

      if (isqualifier (p, (size_t) (q - p)))
	continue;		/* Skip qualifier keyword.  */

      for (lp = fp->ctf_lookups; lp->ctl_prefix != NULL; lp++)
	{
	  /* TODO: This is not MT-safe.  */
	  if ((lp->ctl_prefix[0] == '\0' ||
	       strncmp (p, lp->ctl_prefix, (size_t) (q - p)) == 0) &&
	      (size_t) (q - p) >= lp->ctl_len)
	    {
	      for (p += lp->ctl_len; isspace (*p); p++)
		continue;	/* Skip prefix and next whitespace.  */

	      if ((q = strchr (p, '*')) == NULL)
		q = end;	/* Compare until end.  */

	      while (isspace (q[-1]))
		q--;		/* Exclude trailing whitespace.  */

	      /* Expand and/or allocate storage for a slice of the name, then
		 copy it in.  */

	      if (fp->ctf_tmp_typeslicelen >= (size_t) (q - p) + 1)
		{
		  memcpy (fp->ctf_tmp_typeslice, p, (size_t) (q - p));
		  fp->ctf_tmp_typeslice[(size_t) (q - p)] = '\0';
		}
	      else
		{
		  free (fp->ctf_tmp_typeslice);
		  fp->ctf_tmp_typeslice = xstrndup (p, (size_t) (q - p));
		  if (fp->ctf_tmp_typeslice == NULL)
		    {
		      (void) ctf_set_errno (fp, ENOMEM);
		      return CTF_ERR;
		    }
		}

	      if ((type = ctf_lookup_by_rawhash (fp, lp->ctl_hash,
						 fp->ctf_tmp_typeslice)) == 0)
		{
		  (void) ctf_set_errno (fp, ECTF_NOTYPE);
		  goto err;
		}

	      break;
	    }
	}

      if (lp->ctl_prefix == NULL)
	{
	  (void) ctf_set_errno (fp, ECTF_NOTYPE);
	  goto err;
	}
    }

  if (*p != '\0' || type == 0)
    return (ctf_set_errno (fp, ECTF_SYNTAX));

  return type;

err:
  if (fp->ctf_parent != NULL
      && (ptype = ctf_lookup_by_name (fp->ctf_parent, name)) != CTF_ERR)
    return ptype;

  return CTF_ERR;
}

typedef struct ctf_lookup_var_key
{
  ctf_file_t *clvk_fp;
  const char *clvk_name;
} ctf_lookup_var_key_t;

/* A bsearch function for variable names.  */

static int
ctf_lookup_var (const void *key_, const void *memb_)
{
  const ctf_lookup_var_key_t *key = key_;
  const ctf_varent_t *memb = memb_;

  return (strcmp (key->clvk_name, ctf_strptr (key->clvk_fp, memb->ctv_name)));
}

/* Given a variable name, return the type of the variable with that name.  */

ctf_id_t
ctf_lookup_variable (ctf_file_t *fp, const char *name)
{
  ctf_varent_t *ent;
  ctf_lookup_var_key_t key = { fp, name };

  /* This array is sorted, so we can bsearch for it.  */

  ent = bsearch (&key, fp->ctf_vars, fp->ctf_nvars, sizeof (ctf_varent_t),
		 ctf_lookup_var);

  if (ent == NULL)
    {
      if (fp->ctf_parent != NULL)
	return ctf_lookup_variable (fp->ctf_parent, name);

      return (ctf_set_errno (fp, ECTF_NOTYPEDAT));
    }

  return ent->ctv_type;
}

/* Given a symbol table index, return the name of that symbol from the secondary
   string table, or the null string (never NULL).  */
const char *
ctf_lookup_symbol_name (ctf_file_t *fp, unsigned long symidx)
{
  const ctf_sect_t *sp = &fp->ctf_symtab;
  Elf64_Sym sym, *gsp;

  if (sp->cts_data == NULL)
    {
      ctf_set_errno (fp, ECTF_NOSYMTAB);
      return _CTF_NULLSTR;
    }

  if (symidx >= fp->ctf_nsyms)
    {
      ctf_set_errno (fp, EINVAL);
      return _CTF_NULLSTR;
    }

  if (sp->cts_entsize == sizeof (Elf32_Sym))
    {
      const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
      gsp = ctf_sym_to_elf64 (symp, &sym);
    }
  else
      gsp = (Elf64_Sym *) sp->cts_data + symidx;

  if (gsp->st_name < fp->ctf_str[CTF_STRTAB_1].cts_len)
    return (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + gsp->st_name;

  return _CTF_NULLSTR;
}

/* Given a symbol table index, return the type of the data object described
   by the corresponding entry in the symbol table.  */

ctf_id_t
ctf_lookup_by_symbol (ctf_file_t *fp, unsigned long symidx)
{
  const ctf_sect_t *sp = &fp->ctf_symtab;
  ctf_id_t type;

  if (sp->cts_data == NULL)
    return (ctf_set_errno (fp, ECTF_NOSYMTAB));

  if (symidx >= fp->ctf_nsyms)
    return (ctf_set_errno (fp, EINVAL));

  if (sp->cts_entsize == sizeof (Elf32_Sym))
    {
      const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
      if (ELF32_ST_TYPE (symp->st_info) != STT_OBJECT)
	return (ctf_set_errno (fp, ECTF_NOTDATA));
    }
  else
    {
      const Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data + symidx;
      if (ELF64_ST_TYPE (symp->st_info) != STT_OBJECT)
	return (ctf_set_errno (fp, ECTF_NOTDATA));
    }

  if (fp->ctf_sxlate[symidx] == -1u)
    return (ctf_set_errno (fp, ECTF_NOTYPEDAT));

  type = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]);
  if (type == 0)
    return (ctf_set_errno (fp, ECTF_NOTYPEDAT));

  return type;
}

/* Return the pointer to the internal CTF type data corresponding to the
   given type ID.  If the ID is invalid, the function returns NULL.
   This function is not exported outside of the library.  */

const ctf_type_t *
ctf_lookup_by_id (ctf_file_t **fpp, ctf_id_t type)
{
  ctf_file_t *fp = *fpp;	/* Caller passes in starting CTF container.  */
  ctf_id_t idx;

  if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, type)
      && (fp = fp->ctf_parent) == NULL)
    {
      (void) ctf_set_errno (*fpp, ECTF_NOPARENT);
      return NULL;
    }

  /* If this container is writable, check for a dynamic type.  */

  if (fp->ctf_flags & LCTF_RDWR)
    {
      ctf_dtdef_t *dtd;

      if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
	{
	  *fpp = fp;
	  return &dtd->dtd_data;
	}
      (void) ctf_set_errno (*fpp, ECTF_BADID);
      return NULL;
    }

  /* Check for a type in the static portion.  */

  idx = LCTF_TYPE_TO_INDEX (fp, type);
  if (idx > 0 && (unsigned long) idx <= fp->ctf_typemax)
    {
      *fpp = fp;		/* Function returns ending CTF container.  */
      return (LCTF_INDEX_TO_TYPEPTR (fp, idx));
    }

  (void) ctf_set_errno (*fpp, ECTF_BADID);
  return NULL;
}

/* Given a symbol table index, return the info for the function described
   by the corresponding entry in the symbol table.  */

int
ctf_func_info (ctf_file_t *fp, unsigned long symidx, ctf_funcinfo_t *fip)
{
  const ctf_sect_t *sp = &fp->ctf_symtab;
  const uint32_t *dp;
  uint32_t info, kind, n;

  if (sp->cts_data == NULL)
    return (ctf_set_errno (fp, ECTF_NOSYMTAB));

  if (symidx >= fp->ctf_nsyms)
    return (ctf_set_errno (fp, EINVAL));

  if (sp->cts_entsize == sizeof (Elf32_Sym))
    {
      const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
      if (ELF32_ST_TYPE (symp->st_info) != STT_FUNC)
	return (ctf_set_errno (fp, ECTF_NOTFUNC));
    }
  else
    {
      const Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data + symidx;
      if (ELF64_ST_TYPE (symp->st_info) != STT_FUNC)
	return (ctf_set_errno (fp, ECTF_NOTFUNC));
    }

  if (fp->ctf_sxlate[symidx] == -1u)
    return (ctf_set_errno (fp, ECTF_NOFUNCDAT));

  dp = (uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]);

  info = *dp++;
  kind = LCTF_INFO_KIND (fp, info);
  n = LCTF_INFO_VLEN (fp, info);

  if (kind == CTF_K_UNKNOWN && n == 0)
    return (ctf_set_errno (fp, ECTF_NOFUNCDAT));

  if (kind != CTF_K_FUNCTION)
    return (ctf_set_errno (fp, ECTF_CORRUPT));

  fip->ctc_return = *dp++;
  fip->ctc_argc = n;
  fip->ctc_flags = 0;

  if (n != 0 && dp[n - 1] == 0)
    {
      fip->ctc_flags |= CTF_FUNC_VARARG;
      fip->ctc_argc--;
    }

  return 0;
}

/* Given a symbol table index, return the arguments for the function described
   by the corresponding entry in the symbol table.  */

int
ctf_func_args (ctf_file_t * fp, unsigned long symidx, uint32_t argc,
	       ctf_id_t * argv)
{
  const uint32_t *dp;
  ctf_funcinfo_t f;

  if (ctf_func_info (fp, symidx, &f) < 0)
    return -1;			/* errno is set for us.  */

  /* The argument data is two uint32_t's past the translation table
     offset: one for the function info, and one for the return type. */

  dp = (uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]) + 2;

  for (argc = MIN (argc, f.ctc_argc); argc != 0; argc--)
    *argv++ = *dp++;

  return 0;
}