1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
// target-reloc.h -- target specific relocation support -*- C++ -*-
#ifndef GOLD_TARGET_RELOC_H
#define GOLD_TARGET_RELOC_H
#include "elfcpp.h"
#include "symtab.h"
namespace gold
{
// Pick the ELF relocation accessor class and the size based on
// SH_TYPE, which is either SHT_REL or SHT_RELA.
template<int sh_type, int size, bool big_endian>
struct Reloc_types;
template<int size, bool big_endian>
struct Reloc_types<elfcpp::SHT_REL, size, big_endian>
{
typedef typename elfcpp::Rel<size, big_endian> Reloc;
static const int reloc_size = elfcpp::Elf_sizes<size>::rel_size;
};
template<int size, bool big_endian>
struct Reloc_types<elfcpp::SHT_RELA, size, big_endian>
{
typedef typename elfcpp::Rela<size, big_endian> Reloc;
static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
};
// This function implements the generic part of relocation handling.
// This is an inline function which take a class whose operator()
// implements the machine specific part of relocation. We do it this
// way to avoid making a function call for each relocation, and to
// avoid repeating the generic relocation handling code for each
// target.
// SIZE is the ELF size: 32 or 64. BIG_ENDIAN is the endianness of
// the data. SH_TYPE is the section type: SHT_REL or SHT_RELA. RELOC
// implements operator() to do a relocation.
// OBJECT is the object for we are processing relocs. SH_TYPE is the
// type of relocation: SHT_REL or SHT_RELA. PRELOCS points to the
// relocation data. RELOC_COUNT is the number of relocs. LOCAL_COUNT
// is the number of local symbols. LOCAL_VALUES holds the values of
// the local symbols. GLOBAL_SYMS points to the global symbols. VIEW
// is the section data, VIEW_ADDRESS is its memory address, and
// VIEW_SIZE is the size.
template<int size, bool big_endian, int sh_type, typename Relocate>
inline void
relocate_section(
const Symbol_table* symtab,
Sized_object<size, big_endian>* object,
const unsigned char* prelocs,
size_t reloc_count,
size_t local_count,
const typename elfcpp::Elf_types<size>::Elf_Addr* local_values,
Symbol** global_syms,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr view_address,
off_t view_size)
{
typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
Relocate relocate;
for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
{
Reltype reloc(prelocs);
off_t offset = reloc.get_r_offset();
if (offset < 0 || offset >= view_size)
{
fprintf(stderr, _("%s: %s: reloc %zu has bad offset %lu\n"),
program_name, object->name().c_str(), i,
static_cast<unsigned long>(offset));
gold_exit(false);
}
typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
Sized_symbol<size>* sym;
typename elfcpp::Elf_types<size>::Elf_Addr value;
if (r_sym < local_count)
{
sym = NULL;
value = local_values[r_sym];
}
else
{
Symbol* gsym = global_syms[r_sym - local_count];
assert(gsym != NULL);
if (gsym->is_forwarder())
gsym = symtab->resolve_forwards(gsym);
sym = static_cast<Sized_symbol<size>*>(gsym);
value = sym->value();
if (sym->shnum() == elfcpp::SHN_UNDEF
&& sym->binding() != elfcpp::STB_WEAK)
{
fprintf(stderr, _("%s: %s: undefined reference to '%s'\n"),
program_name, object->name().c_str(), sym->name());
// gold_exit(false);
}
}
relocate(object, reloc, r_type, sym, value, view + offset,
view_address + offset);
}
}
} // End namespace gold.
#endif // !defined(GOLD_TARGET_RELOC_H)
|