summaryrefslogtreecommitdiff
path: root/gdb/valprint.c
blob: e1414792b79e2ce4673e2a1d92ab742fc82c069c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
/* Print values for GDB, the GNU debugger.
   Copyright 1986, 1988, 1989, 1991-1994, 1998, 2000
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "gdb_string.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "obstack.h"
#include "language.h"
#include "demangle.h"
#include "annotate.h"
#include "valprint.h"

#include <errno.h>

/* Prototypes for local functions */

static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
				int len, int *errnoptr);

static void print_hex_chars (struct ui_file *, unsigned char *,
			     unsigned int);

static void show_print PARAMS ((char *, int));

static void set_print PARAMS ((char *, int));

static void set_radix PARAMS ((char *, int));

static void show_radix PARAMS ((char *, int));

static void set_input_radix PARAMS ((char *, int, struct cmd_list_element *));

static void set_input_radix_1 PARAMS ((int, unsigned));

static void set_output_radix PARAMS ((char *, int, struct cmd_list_element *));

static void set_output_radix_1 PARAMS ((int, unsigned));

void _initialize_valprint PARAMS ((void));

/* Maximum number of chars to print for a string pointer value or vector
   contents, or UINT_MAX for no limit.  Note that "set print elements 0"
   stores UINT_MAX in print_max, which displays in a show command as
   "unlimited". */

unsigned int print_max;
#define PRINT_MAX_DEFAULT 200	/* Start print_max off at this value. */

/* Default input and output radixes, and output format letter.  */

unsigned input_radix = 10;
unsigned output_radix = 10;
int output_format = 0;

/* Print repeat counts if there are more than this many repetitions of an
   element in an array.  Referenced by the low level language dependent
   print routines. */

unsigned int repeat_count_threshold = 10;

/* If nonzero, stops printing of char arrays at first null. */

int stop_print_at_null;

/* Controls pretty printing of structures. */

int prettyprint_structs;

/* Controls pretty printing of arrays.  */

int prettyprint_arrays;

/* If nonzero, causes unions inside structures or other unions to be
   printed. */

int unionprint;			/* Controls printing of nested unions.  */

/* If nonzero, causes machine addresses to be printed in certain contexts. */

int addressprint;		/* Controls printing of machine addresses */


/* Print data of type TYPE located at VALADDR (within GDB), which came from
   the inferior at address ADDRESS, onto stdio stream STREAM according to
   FORMAT (a letter, or 0 for natural format using TYPE).

   If DEREF_REF is nonzero, then dereference references, otherwise just print
   them like pointers.

   The PRETTY parameter controls prettyprinting.

   If the data are a string pointer, returns the number of string characters
   printed.

   FIXME:  The data at VALADDR is in target byte order.  If gdb is ever
   enhanced to be able to debug more than the single target it was compiled
   for (specific CPU type and thus specific target byte ordering), then
   either the print routines are going to have to take this into account,
   or the data is going to have to be passed into here already converted
   to the host byte ordering, whichever is more convenient. */


int
val_print (type, valaddr, embedded_offset, address,
	   stream, format, deref_ref, recurse, pretty)
     struct type *type;
     char *valaddr;
     int embedded_offset;
     CORE_ADDR address;
     struct ui_file *stream;
     int format;
     int deref_ref;
     int recurse;
     enum val_prettyprint pretty;
{
  struct type *real_type = check_typedef (type);
  if (pretty == Val_pretty_default)
    {
      pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
    }

  QUIT;

  /* Ensure that the type is complete and not just a stub.  If the type is
     only a stub and we can't find and substitute its complete type, then
     print appropriate string and return.  */

  if (TYPE_FLAGS (real_type) & TYPE_FLAG_STUB)
    {
      fprintf_filtered (stream, "<incomplete type>");
      gdb_flush (stream);
      return (0);
    }

  return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
			stream, format, deref_ref, recurse, pretty));
}

/* Print the value VAL in C-ish syntax on stream STREAM.
   FORMAT is a format-letter, or 0 for print in natural format of data type.
   If the object printed is a string pointer, returns
   the number of string bytes printed.  */

int
value_print (val, stream, format, pretty)
     value_ptr val;
     struct ui_file *stream;
     int format;
     enum val_prettyprint pretty;
{
  if (val == 0)
    {
      printf_filtered ("<address of value unknown>");
      return 0;
    }
  if (VALUE_OPTIMIZED_OUT (val))
    {
      printf_filtered ("<value optimized out>");
      return 0;
    }
  return LA_VALUE_PRINT (val, stream, format, pretty);
}

/* Called by various <lang>_val_print routines to print
   TYPE_CODE_INT's.  TYPE is the type.  VALADDR is the address of the
   value.  STREAM is where to print the value.  */

void
val_print_type_code_int (type, valaddr, stream)
     struct type *type;
     char *valaddr;
     struct ui_file *stream;
{
  if (TYPE_LENGTH (type) > sizeof (LONGEST))
    {
      LONGEST val;

      if (TYPE_UNSIGNED (type)
	  && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
					    &val))
	{
	  print_longest (stream, 'u', 0, val);
	}
      else
	{
	  /* Signed, or we couldn't turn an unsigned value into a
	     LONGEST.  For signed values, one could assume two's
	     complement (a reasonable assumption, I think) and do
	     better than this.  */
	  print_hex_chars (stream, (unsigned char *) valaddr,
			   TYPE_LENGTH (type));
	}
    }
  else
    {
#ifdef PRINT_TYPELESS_INTEGER
      PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
#else
      print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
		     unpack_long (type, valaddr));
#endif
    }
}

/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
   The raison d'etre of this function is to consolidate printing of 
   LONG_LONG's into this one function.  Some platforms have long longs but
   don't have a printf() that supports "ll" in the format string.  We handle
   these by seeing if the number is representable as either a signed or
   unsigned long, depending upon what format is desired, and if not we just
   bail out and print the number in hex.

   The format chars b,h,w,g are from print_scalar_formatted().  If USE_LOCAL,
   format it according to the current language (this should be used for most
   integers which GDB prints, the exception is things like protocols where
   the format of the integer is a protocol thing, not a user-visible thing).
 */

#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
static void print_decimal (struct ui_file * stream, char *sign,
			   int use_local, ULONGEST val_ulong);
static void
print_decimal (stream, sign, use_local, val_ulong)
     struct ui_file *stream;
     char *sign;
     int use_local;
     ULONGEST val_ulong;
{
  unsigned long temp[3];
  int i = 0;
  do
    {
      temp[i] = val_ulong % (1000 * 1000 * 1000);
      val_ulong /= (1000 * 1000 * 1000);
      i++;
    }
  while (val_ulong != 0 && i < (sizeof (temp) / sizeof (temp[0])));
  switch (i)
    {
    case 1:
      fprintf_filtered (stream, "%s%lu",
			sign, temp[0]);
      break;
    case 2:
      fprintf_filtered (stream, "%s%lu%09lu",
			sign, temp[1], temp[0]);
      break;
    case 3:
      fprintf_filtered (stream, "%s%lu%09lu%09lu",
			sign, temp[2], temp[1], temp[0]);
      break;
    default:
      abort ();
    }
  return;
}
#endif

void
print_longest (stream, format, use_local, val_long)
     struct ui_file *stream;
     int format;
     int use_local;
     LONGEST val_long;
{
#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
  if (sizeof (long) < sizeof (LONGEST))
    {
      switch (format)
	{
	case 'd':
	  {
	    /* Print a signed value, that doesn't fit in a long */
	    if ((long) val_long != val_long)
	      {
		if (val_long < 0)
		  print_decimal (stream, "-", use_local, -val_long);
		else
		  print_decimal (stream, "", use_local, val_long);
		return;
	      }
	    break;
	  }
	case 'u':
	  {
	    /* Print an unsigned value, that doesn't fit in a long */
	    if ((unsigned long) val_long != (ULONGEST) val_long)
	      {
		print_decimal (stream, "", use_local, val_long);
		return;
	      }
	    break;
	  }
	case 'x':
	case 'o':
	case 'b':
	case 'h':
	case 'w':
	case 'g':
	  /* Print as unsigned value, must fit completely in unsigned long */
	  {
	    unsigned long temp = val_long;
	    if (temp != val_long)
	      {
		/* Urk, can't represent value in long so print in hex.
		   Do shift in two operations so that if sizeof (long)
		   == sizeof (LONGEST) we can avoid warnings from
		   picky compilers about shifts >= the size of the
		   shiftee in bits */
		unsigned long vbot = (unsigned long) val_long;
		LONGEST temp = (val_long >> (sizeof (long) * HOST_CHAR_BIT - 1));
		unsigned long vtop = temp >> 1;
		fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
		return;
	      }
	    break;
	  }
	}
    }
#endif

#if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
  switch (format)
    {
    case 'd':
      fprintf_filtered (stream,
			use_local ? local_decimal_format_custom ("ll")
			: "%lld",
			val_long);
      break;
    case 'u':
      fprintf_filtered (stream, "%llu", val_long);
      break;
    case 'x':
      fprintf_filtered (stream,
			use_local ? local_hex_format_custom ("ll")
			: "%llx",
			val_long);
      break;
    case 'o':
      fprintf_filtered (stream,
			use_local ? local_octal_format_custom ("ll")
			: "%llo",
			val_long);
      break;
    case 'b':
      fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
      break;
    case 'h':
      fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
      break;
    case 'w':
      fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
      break;
    case 'g':
      fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
      break;
    default:
      abort ();
    }
#else /* !CC_HAS_LONG_LONG || !PRINTF_HAS_LONG_LONG */
  /* In the following it is important to coerce (val_long) to a long. It does
     nothing if !LONG_LONG, but it will chop off the top half (which we know
     we can ignore) if the host supports long longs.  */

  switch (format)
    {
    case 'd':
      fprintf_filtered (stream,
			use_local ? local_decimal_format_custom ("l")
			: "%ld",
			(long) val_long);
      break;
    case 'u':
      fprintf_filtered (stream, "%lu", (unsigned long) val_long);
      break;
    case 'x':
      fprintf_filtered (stream,
			use_local ? local_hex_format_custom ("l")
			: "%lx",
			(unsigned long) val_long);
      break;
    case 'o':
      fprintf_filtered (stream,
			use_local ? local_octal_format_custom ("l")
			: "%lo",
			(unsigned long) val_long);
      break;
    case 'b':
      fprintf_filtered (stream, local_hex_format_custom ("02l"),
			(unsigned long) val_long);
      break;
    case 'h':
      fprintf_filtered (stream, local_hex_format_custom ("04l"),
			(unsigned long) val_long);
      break;
    case 'w':
      fprintf_filtered (stream, local_hex_format_custom ("08l"),
			(unsigned long) val_long);
      break;
    case 'g':
      fprintf_filtered (stream, local_hex_format_custom ("016l"),
			(unsigned long) val_long);
      break;
    default:
      abort ();
    }
#endif /* CC_HAS_LONG_LONG || PRINTF_HAS_LONG_LONG */
}

#if 0
void
strcat_longest (format, use_local, val_long, buf, buflen)
     int format;
     int use_local;
     LONGEST val_long;
     char *buf;
     int buflen;		/* ignored, for now */
{
#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
  long vtop, vbot;

  vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
  vbot = (long) val_long;

  if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
      || ((format == 'u' || format == 'x') && (unsigned long long) val_long > UINT_MAX))
    {
      sprintf (buf, "0x%lx%08lx", vtop, vbot);
      return;
    }
#endif

#ifdef PRINTF_HAS_LONG_LONG
  switch (format)
    {
    case 'd':
      sprintf (buf,
	       (use_local ? local_decimal_format_custom ("ll") : "%lld"),
	       val_long);
      break;
    case 'u':
      sprintf (buf, "%llu", val_long);
      break;
    case 'x':
      sprintf (buf,
	       (use_local ? local_hex_format_custom ("ll") : "%llx"),

	       val_long);
      break;
    case 'o':
      sprintf (buf,
	       (use_local ? local_octal_format_custom ("ll") : "%llo"),
	       val_long);
      break;
    case 'b':
      sprintf (buf, local_hex_format_custom ("02ll"), val_long);
      break;
    case 'h':
      sprintf (buf, local_hex_format_custom ("04ll"), val_long);
      break;
    case 'w':
      sprintf (buf, local_hex_format_custom ("08ll"), val_long);
      break;
    case 'g':
      sprintf (buf, local_hex_format_custom ("016ll"), val_long);
      break;
    default:
      abort ();
    }
#else /* !PRINTF_HAS_LONG_LONG */
  /* In the following it is important to coerce (val_long) to a long. It does
     nothing if !LONG_LONG, but it will chop off the top half (which we know
     we can ignore) if the host supports long longs.  */

  switch (format)
    {
    case 'd':
      sprintf (buf, (use_local ? local_decimal_format_custom ("l") : "%ld"),
	       ((long) val_long));
      break;
    case 'u':
      sprintf (buf, "%lu", ((unsigned long) val_long));
      break;
    case 'x':
      sprintf (buf, (use_local ? local_hex_format_custom ("l") : "%lx"),
	       ((long) val_long));
      break;
    case 'o':
      sprintf (buf, (use_local ? local_octal_format_custom ("l") : "%lo"),
	       ((long) val_long));
      break;
    case 'b':
      sprintf (buf, local_hex_format_custom ("02l"),
	       ((long) val_long));
      break;
    case 'h':
      sprintf (buf, local_hex_format_custom ("04l"),
	       ((long) val_long));
      break;
    case 'w':
      sprintf (buf, local_hex_format_custom ("08l"),
	       ((long) val_long));
      break;
    case 'g':
      sprintf (buf, local_hex_format_custom ("016l"),
	       ((long) val_long));
      break;
    default:
      abort ();
    }

#endif /* !PRINTF_HAS_LONG_LONG */
}
#endif

/* This used to be a macro, but I don't think it is called often enough
   to merit such treatment.  */
/* Convert a LONGEST to an int.  This is used in contexts (e.g. number of
   arguments to a function, number in a value history, register number, etc.)
   where the value must not be larger than can fit in an int.  */

int
longest_to_int (arg)
     LONGEST arg;
{
  /* Let the compiler do the work */
  int rtnval = (int) arg;

  /* Check for overflows or underflows */
  if (sizeof (LONGEST) > sizeof (int))
    {
      if (rtnval != arg)
	{
	  error ("Value out of range.");
	}
    }
  return (rtnval);
}

/* Print a floating point value of type TYPE, pointed to in GDB by VALADDR,
   on STREAM.  */

void
print_floating (valaddr, type, stream)
     char *valaddr;
     struct type *type;
     struct ui_file *stream;
{
  DOUBLEST doub;
  int inv;
  unsigned len = TYPE_LENGTH (type);

#if defined (IEEE_FLOAT)

  /* Check for NaN's.  Note that this code does not depend on us being
     on an IEEE conforming system.  It only depends on the target
     machine using IEEE representation.  This means (a)
     cross-debugging works right, and (2) IEEE_FLOAT can (and should)
     be defined for systems like the 68881, which uses IEEE
     representation, but is not IEEE conforming.  */

  {
    unsigned long low, high;
    /* Is the sign bit 0?  */
    int nonnegative;
    /* Is it is a NaN (i.e. the exponent is all ones and
       the fraction is nonzero)?  */
    int is_nan;

    /* For lint, initialize these two variables to suppress warning: */
    low = high = nonnegative = 0;
    if (len == 4)
      {
	/* It's single precision.  */
	/* Assume that floating point byte order is the same as
	   integer byte order.  */
	low = extract_unsigned_integer (valaddr, 4);
	nonnegative = ((low & 0x80000000) == 0);
	is_nan = ((((low >> 23) & 0xFF) == 0xFF)
		  && 0 != (low & 0x7FFFFF));
	low &= 0x7fffff;
	high = 0;
      }
    else if (len == 8)
      {
	/* It's double precision.  Get the high and low words.  */

	/* Assume that floating point byte order is the same as
	   integer byte order.  */
	if (TARGET_BYTE_ORDER == BIG_ENDIAN)
	  {
	    low = extract_unsigned_integer (valaddr + 4, 4);
	    high = extract_unsigned_integer (valaddr, 4);
	  }
	else
	  {
	    low = extract_unsigned_integer (valaddr, 4);
	    high = extract_unsigned_integer (valaddr + 4, 4);
	  }
	nonnegative = ((high & 0x80000000) == 0);
	is_nan = (((high >> 20) & 0x7ff) == 0x7ff
		  && !((((high & 0xfffff) == 0)) && (low == 0)));
	high &= 0xfffff;
      }
    else
      {
#ifdef TARGET_ANALYZE_FLOATING
	TARGET_ANALYZE_FLOATING;
#else
	/* Extended.  We can't detect extended NaNs for this target.
	   Also note that currently extendeds get nuked to double in
	   REGISTER_CONVERTIBLE.  */
	is_nan = 0;
#endif 
      }

    if (is_nan)
      {
	/* The meaning of the sign and fraction is not defined by IEEE.
	   But the user might know what they mean.  For example, they
	   (in an implementation-defined manner) distinguish between
	   signaling and quiet NaN's.  */
	if (high)
	  fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + !!nonnegative,
			    high, low);
	else
	  fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low);
	return;
      }
  }
#endif /* IEEE_FLOAT.  */

  doub = unpack_double (type, valaddr, &inv);
  if (inv)
    {
      fprintf_filtered (stream, "<invalid float value>");
      return;
    }

  if (len < sizeof (double))
      fprintf_filtered (stream, "%.9g", (double) doub);
  else if (len == sizeof (double))
      fprintf_filtered (stream, "%.17g", (double) doub);
  else
#ifdef PRINTF_HAS_LONG_DOUBLE
    fprintf_filtered (stream, "%.35Lg", doub);
#else
    /* This at least wins with values that are representable as doubles */
    fprintf_filtered (stream, "%.17g", (double) doub);
#endif
}

void
print_binary_chars (stream, valaddr, len)
     struct ui_file *stream;
     unsigned char *valaddr;
     unsigned len;
{

#define BITS_IN_BYTES 8

  unsigned char *p;
  unsigned int i;
  int b;

  /* Declared "int" so it will be signed.
   * This ensures that right shift will shift in zeros.
   */
  const int mask = 0x080;

  /* FIXME: We should be not printing leading zeroes in most cases.  */

  fprintf_filtered (stream, local_binary_format_prefix ());
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      for (p = valaddr;
	   p < valaddr + len;
	   p++)
	{
	  /* Every byte has 8 binary characters; peel off
	   * and print from the MSB end.
	   */
	  for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
	    {
	      if (*p & (mask >> i))
		b = 1;
	      else
		b = 0;

	      fprintf_filtered (stream, "%1d", b);
	    }
	}
    }
  else
    {
      for (p = valaddr + len - 1;
	   p >= valaddr;
	   p--)
	{
	  for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
	    {
	      if (*p & (mask >> i))
		b = 1;
	      else
		b = 0;

	      fprintf_filtered (stream, "%1d", b);
	    }
	}
    }
  fprintf_filtered (stream, local_binary_format_suffix ());
}

/* VALADDR points to an integer of LEN bytes.
 * Print it in octal on stream or format it in buf.
 */
void
print_octal_chars (stream, valaddr, len)
     struct ui_file *stream;
     unsigned char *valaddr;
     unsigned len;
{
  unsigned char *p;
  unsigned char octa1, octa2, octa3, carry;
  int cycle;

  /* FIXME: We should be not printing leading zeroes in most cases.  */


  /* Octal is 3 bits, which doesn't fit.  Yuk.  So we have to track
   * the extra bits, which cycle every three bytes:
   *
   * Byte side:       0            1             2          3
   *                         |             |            |            |
   * bit number   123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
   *
   * Octal side:   0   1   carry  3   4  carry ...
   *
   * Cycle number:    0             1            2
   *
   * But of course we are printing from the high side, so we have to
   * figure out where in the cycle we are so that we end up with no
   * left over bits at the end.
   */
#define BITS_IN_OCTAL 3
#define HIGH_ZERO     0340
#define LOW_ZERO      0016
#define CARRY_ZERO    0003
#define HIGH_ONE      0200
#define MID_ONE       0160
#define LOW_ONE       0016
#define CARRY_ONE     0001
#define HIGH_TWO      0300
#define MID_TWO       0070
#define LOW_TWO       0007

  /* For 32 we start in cycle 2, with two bits and one bit carry;
   * for 64 in cycle in cycle 1, with one bit and a two bit carry.
   */
  cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
  carry = 0;

  fprintf_filtered (stream, local_octal_format_prefix ());
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      for (p = valaddr;
	   p < valaddr + len;
	   p++)
	{
	  switch (cycle)
	    {
	    case 0:
	      /* No carry in, carry out two bits.
	       */
	      octa1 = (HIGH_ZERO & *p) >> 5;
	      octa2 = (LOW_ZERO & *p) >> 2;
	      carry = (CARRY_ZERO & *p);
	      fprintf_filtered (stream, "%o", octa1);
	      fprintf_filtered (stream, "%o", octa2);
	      break;

	    case 1:
	      /* Carry in two bits, carry out one bit.
	       */
	      octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
	      octa2 = (MID_ONE & *p) >> 4;
	      octa3 = (LOW_ONE & *p) >> 1;
	      carry = (CARRY_ONE & *p);
	      fprintf_filtered (stream, "%o", octa1);
	      fprintf_filtered (stream, "%o", octa2);
	      fprintf_filtered (stream, "%o", octa3);
	      break;

	    case 2:
	      /* Carry in one bit, no carry out.
	       */
	      octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
	      octa2 = (MID_TWO & *p) >> 3;
	      octa3 = (LOW_TWO & *p);
	      carry = 0;
	      fprintf_filtered (stream, "%o", octa1);
	      fprintf_filtered (stream, "%o", octa2);
	      fprintf_filtered (stream, "%o", octa3);
	      break;

	    default:
	      error ("Internal error in octal conversion;");
	    }

	  cycle++;
	  cycle = cycle % BITS_IN_OCTAL;
	}
    }
  else
    {
      for (p = valaddr + len - 1;
	   p >= valaddr;
	   p--)
	{
	  switch (cycle)
	    {
	    case 0:
	      /* Carry out, no carry in */
	      octa1 = (HIGH_ZERO & *p) >> 5;
	      octa2 = (LOW_ZERO & *p) >> 2;
	      carry = (CARRY_ZERO & *p);
	      fprintf_filtered (stream, "%o", octa1);
	      fprintf_filtered (stream, "%o", octa2);
	      break;

	    case 1:
	      /* Carry in, carry out */
	      octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
	      octa2 = (MID_ONE & *p) >> 4;
	      octa3 = (LOW_ONE & *p) >> 1;
	      carry = (CARRY_ONE & *p);
	      fprintf_filtered (stream, "%o", octa1);
	      fprintf_filtered (stream, "%o", octa2);
	      fprintf_filtered (stream, "%o", octa3);
	      break;

	    case 2:
	      /* Carry in, no carry out */
	      octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
	      octa2 = (MID_TWO & *p) >> 3;
	      octa3 = (LOW_TWO & *p);
	      carry = 0;
	      fprintf_filtered (stream, "%o", octa1);
	      fprintf_filtered (stream, "%o", octa2);
	      fprintf_filtered (stream, "%o", octa3);
	      break;

	    default:
	      error ("Internal error in octal conversion;");
	    }

	  cycle++;
	  cycle = cycle % BITS_IN_OCTAL;
	}
    }

  fprintf_filtered (stream, local_octal_format_suffix ());
}

/* VALADDR points to an integer of LEN bytes.
 * Print it in decimal on stream or format it in buf.
 */
void
print_decimal_chars (stream, valaddr, len)
     struct ui_file *stream;
     unsigned char *valaddr;
     unsigned len;
{
#define TEN             10
#define TWO_TO_FOURTH   16
#define CARRY_OUT(  x ) ((x) / TEN)	/* extend char to int */
#define CARRY_LEFT( x ) ((x) % TEN)
#define SHIFT( x )      ((x) << 4)
#define START_P \
        ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? valaddr : valaddr + len - 1)
#define NOT_END_P \
        ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? (p < valaddr + len) : (p >= valaddr))
#define NEXT_P \
        ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? p++ : p-- )
#define LOW_NIBBLE(  x ) ( (x) & 0x00F)
#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)

  unsigned char *p;
  unsigned char *digits;
  int carry;
  int decimal_len;
  int i, j, decimal_digits;
  int dummy;
  int flip;

  /* Base-ten number is less than twice as many digits
   * as the base 16 number, which is 2 digits per byte.
   */
  decimal_len = len * 2 * 2;
  digits = (unsigned char *) malloc (decimal_len);
  if (digits == NULL)
    error ("Can't allocate memory for conversion to decimal.");

  for (i = 0; i < decimal_len; i++)
    {
      digits[i] = 0;
    }

  fprintf_filtered (stream, local_decimal_format_prefix ());

  /* Ok, we have an unknown number of bytes of data to be printed in
   * decimal.
   *
   * Given a hex number (in nibbles) as XYZ, we start by taking X and
   * decemalizing it as "x1 x2" in two decimal nibbles.  Then we multiply
   * the nibbles by 16, add Y and re-decimalize.  Repeat with Z.
   *
   * The trick is that "digits" holds a base-10 number, but sometimes
   * the individual digits are > 10. 
   *
   * Outer loop is per nibble (hex digit) of input, from MSD end to
   * LSD end.
   */
  decimal_digits = 0;		/* Number of decimal digits so far */
  p = START_P;
  flip = 0;
  while (NOT_END_P)
    {
      /*
       * Multiply current base-ten number by 16 in place.
       * Each digit was between 0 and 9, now is between
       * 0 and 144.
       */
      for (j = 0; j < decimal_digits; j++)
	{
	  digits[j] = SHIFT (digits[j]);
	}

      /* Take the next nibble off the input and add it to what
       * we've got in the LSB position.  Bottom 'digit' is now
       * between 0 and 159.
       *
       * "flip" is used to run this loop twice for each byte.
       */
      if (flip == 0)
	{
	  /* Take top nibble.
	   */
	  digits[0] += HIGH_NIBBLE (*p);
	  flip = 1;
	}
      else
	{
	  /* Take low nibble and bump our pointer "p".
	   */
	  digits[0] += LOW_NIBBLE (*p);
	  NEXT_P;
	  flip = 0;
	}

      /* Re-decimalize.  We have to do this often enough
       * that we don't overflow, but once per nibble is
       * overkill.  Easier this way, though.  Note that the
       * carry is often larger than 10 (e.g. max initial
       * carry out of lowest nibble is 15, could bubble all
       * the way up greater than 10).  So we have to do
       * the carrying beyond the last current digit.
       */
      carry = 0;
      for (j = 0; j < decimal_len - 1; j++)
	{
	  digits[j] += carry;

	  /* "/" won't handle an unsigned char with
	   * a value that if signed would be negative.
	   * So extend to longword int via "dummy".
	   */
	  dummy = digits[j];
	  carry = CARRY_OUT (dummy);
	  digits[j] = CARRY_LEFT (dummy);

	  if (j >= decimal_digits && carry == 0)
	    {
	      /*
	       * All higher digits are 0 and we
	       * no longer have a carry.
	       *
	       * Note: "j" is 0-based, "decimal_digits" is
	       *       1-based.
	       */
	      decimal_digits = j + 1;
	      break;
	    }
	}
    }

  /* Ok, now "digits" is the decimal representation, with
   * the "decimal_digits" actual digits.  Print!
   */
  for (i = decimal_digits - 1; i >= 0; i--)
    {
      fprintf_filtered (stream, "%1d", digits[i]);
    }
  free (digits);

  fprintf_filtered (stream, local_decimal_format_suffix ());
}

/* VALADDR points to an integer of LEN bytes.  Print it in hex on stream.  */

static void
print_hex_chars (stream, valaddr, len)
     struct ui_file *stream;
     unsigned char *valaddr;
     unsigned len;
{
  unsigned char *p;

  /* FIXME: We should be not printing leading zeroes in most cases.  */

  fprintf_filtered (stream, local_hex_format_prefix ());
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      for (p = valaddr;
	   p < valaddr + len;
	   p++)
	{
	  fprintf_filtered (stream, "%02x", *p);
	}
    }
  else
    {
      for (p = valaddr + len - 1;
	   p >= valaddr;
	   p--)
	{
	  fprintf_filtered (stream, "%02x", *p);
	}
    }
  fprintf_filtered (stream, local_hex_format_suffix ());
}

/*  Called by various <lang>_val_print routines to print elements of an
   array in the form "<elem1>, <elem2>, <elem3>, ...".

   (FIXME?)  Assumes array element separator is a comma, which is correct
   for all languages currently handled.
   (FIXME?)  Some languages have a notation for repeated array elements,
   perhaps we should try to use that notation when appropriate.
 */

void
val_print_array_elements (type, valaddr, address, stream, format, deref_ref,
			  recurse, pretty, i)
     struct type *type;
     char *valaddr;
     CORE_ADDR address;
     struct ui_file *stream;
     int format;
     int deref_ref;
     int recurse;
     enum val_prettyprint pretty;
     unsigned int i;
{
  unsigned int things_printed = 0;
  unsigned len;
  struct type *elttype;
  unsigned eltlen;
  /* Position of the array element we are examining to see
     whether it is repeated.  */
  unsigned int rep1;
  /* Number of repetitions we have detected so far.  */
  unsigned int reps;

  elttype = TYPE_TARGET_TYPE (type);
  eltlen = TYPE_LENGTH (check_typedef (elttype));
  len = TYPE_LENGTH (type) / eltlen;

  annotate_array_section_begin (i, elttype);

  for (; i < len && things_printed < print_max; i++)
    {
      if (i != 0)
	{
	  if (prettyprint_arrays)
	    {
	      fprintf_filtered (stream, ",\n");
	      print_spaces_filtered (2 + 2 * recurse, stream);
	    }
	  else
	    {
	      fprintf_filtered (stream, ", ");
	    }
	}
      wrap_here (n_spaces (2 + 2 * recurse));

      rep1 = i + 1;
      reps = 1;
      while ((rep1 < len) &&
	     !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
	{
	  ++reps;
	  ++rep1;
	}

      if (reps > repeat_count_threshold)
	{
	  val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
		     deref_ref, recurse + 1, pretty);
	  annotate_elt_rep (reps);
	  fprintf_filtered (stream, " <repeats %u times>", reps);
	  annotate_elt_rep_end ();

	  i = rep1 - 1;
	  things_printed += repeat_count_threshold;
	}
      else
	{
	  val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
		     deref_ref, recurse + 1, pretty);
	  annotate_elt ();
	  things_printed++;
	}
    }
  annotate_array_section_end ();
  if (i < len)
    {
      fprintf_filtered (stream, "...");
    }
}

/* Read LEN bytes of target memory at address MEMADDR, placing the
   results in GDB's memory at MYADDR.  Returns a count of the bytes
   actually read, and optionally an errno value in the location
   pointed to by ERRNOPTR if ERRNOPTR is non-null. */

/* FIXME: cagney/1999-10-14: Only used by val_print_string.  Can this
   function be eliminated.  */

static int
partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
{
  int nread;			/* Number of bytes actually read. */
  int errcode;			/* Error from last read. */

  /* First try a complete read. */
  errcode = target_read_memory (memaddr, myaddr, len);
  if (errcode == 0)
    {
      /* Got it all. */
      nread = len;
    }
  else
    {
      /* Loop, reading one byte at a time until we get as much as we can. */
      for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
	{
	  errcode = target_read_memory (memaddr++, myaddr++, 1);
	}
      /* If an error, the last read was unsuccessful, so adjust count. */
      if (errcode != 0)
	{
	  nread--;
	}
    }
  if (errnoptr != NULL)
    {
      *errnoptr = errcode;
    }
  return (nread);
}

/*  Print a string from the inferior, starting at ADDR and printing up to LEN
   characters, of WIDTH bytes a piece, to STREAM.  If LEN is -1, printing
   stops at the first null byte, otherwise printing proceeds (including null
   bytes) until either print_max or LEN characters have been printed,
   whichever is smaller. */

/* FIXME: Use target_read_string.  */

int
val_print_string (addr, len, width, stream)
     CORE_ADDR addr;
     int len;
     int width;
     struct ui_file *stream;
{
  int force_ellipsis = 0;	/* Force ellipsis to be printed if nonzero. */
  int errcode;			/* Errno returned from bad reads. */
  unsigned int fetchlimit;	/* Maximum number of chars to print. */
  unsigned int nfetch;		/* Chars to fetch / chars fetched. */
  unsigned int chunksize;	/* Size of each fetch, in chars. */
  char *buffer = NULL;		/* Dynamically growable fetch buffer. */
  char *bufptr;			/* Pointer to next available byte in buffer. */
  char *limit;			/* First location past end of fetch buffer. */
  struct cleanup *old_chain = NULL;	/* Top of the old cleanup chain. */
  int found_nul;		/* Non-zero if we found the nul char */

  /* First we need to figure out the limit on the number of characters we are
     going to attempt to fetch and print.  This is actually pretty simple.  If
     LEN >= zero, then the limit is the minimum of LEN and print_max.  If
     LEN is -1, then the limit is print_max.  This is true regardless of
     whether print_max is zero, UINT_MAX (unlimited), or something in between,
     because finding the null byte (or available memory) is what actually
     limits the fetch. */

  fetchlimit = (len == -1 ? print_max : min (len, print_max));

  /* Now decide how large of chunks to try to read in one operation.  This
     is also pretty simple.  If LEN >= zero, then we want fetchlimit chars,
     so we might as well read them all in one operation.  If LEN is -1, we
     are looking for a null terminator to end the fetching, so we might as
     well read in blocks that are large enough to be efficient, but not so
     large as to be slow if fetchlimit happens to be large.  So we choose the
     minimum of 8 and fetchlimit.  We used to use 200 instead of 8 but
     200 is way too big for remote debugging over a serial line.  */

  chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);

  /* Loop until we either have all the characters to print, or we encounter
     some error, such as bumping into the end of the address space. */

  found_nul = 0;
  old_chain = make_cleanup (null_cleanup, 0);

  if (len > 0)
    {
      buffer = (char *) xmalloc (len * width);
      bufptr = buffer;
      old_chain = make_cleanup (free, buffer);

      nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
	/ width;
      addr += nfetch * width;
      bufptr += nfetch * width;
    }
  else if (len == -1)
    {
      unsigned long bufsize = 0;
      do
	{
	  QUIT;
	  nfetch = min (chunksize, fetchlimit - bufsize);

	  if (buffer == NULL)
	    buffer = (char *) xmalloc (nfetch * width);
	  else
	    {
	      discard_cleanups (old_chain);
	      buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
	    }

	  old_chain = make_cleanup (free, buffer);
	  bufptr = buffer + bufsize * width;
	  bufsize += nfetch;

	  /* Read as much as we can. */
	  nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
	    / width;

	  /* Scan this chunk for the null byte that terminates the string
	     to print.  If found, we don't need to fetch any more.  Note
	     that bufptr is explicitly left pointing at the next character
	     after the null byte, or at the next character after the end of
	     the buffer. */

	  limit = bufptr + nfetch * width;
	  while (bufptr < limit)
	    {
	      unsigned long c;

	      c = extract_unsigned_integer (bufptr, width);
	      addr += width;
	      bufptr += width;
	      if (c == 0)
		{
		  /* We don't care about any error which happened after
		     the NULL terminator.  */
		  errcode = 0;
		  found_nul = 1;
		  break;
		}
	    }
	}
      while (errcode == 0	/* no error */
	     && bufptr - buffer < fetchlimit * width	/* no overrun */
	     && !found_nul);	/* haven't found nul yet */
    }
  else
    {				/* length of string is really 0! */
      buffer = bufptr = NULL;
      errcode = 0;
    }

  /* bufptr and addr now point immediately beyond the last byte which we
     consider part of the string (including a '\0' which ends the string).  */

  /* We now have either successfully filled the buffer to fetchlimit, or
     terminated early due to an error or finding a null char when LEN is -1. */

  if (len == -1 && !found_nul)
    {
      char *peekbuf;

      /* We didn't find a null terminator we were looking for.  Attempt
         to peek at the next character.  If not successful, or it is not
         a null byte, then force ellipsis to be printed.  */

      peekbuf = (char *) alloca (width);

      if (target_read_memory (addr, peekbuf, width) == 0
	  && extract_unsigned_integer (peekbuf, width) != 0)
	force_ellipsis = 1;
    }
  else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
    {
      /* Getting an error when we have a requested length, or fetching less
         than the number of characters actually requested, always make us
         print ellipsis. */
      force_ellipsis = 1;
    }

  QUIT;

  /* If we get an error before fetching anything, don't print a string.
     But if we fetch something and then get an error, print the string
     and then the error message.  */
  if (errcode == 0 || bufptr > buffer)
    {
      if (addressprint)
	{
	  fputs_filtered (" ", stream);
	}
      LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
    }

  if (errcode != 0)
    {
      if (errcode == EIO)
	{
	  fprintf_filtered (stream, " <Address ");
	  print_address_numeric (addr, 1, stream);
	  fprintf_filtered (stream, " out of bounds>");
	}
      else
	{
	  fprintf_filtered (stream, " <Error reading address ");
	  print_address_numeric (addr, 1, stream);
	  fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
	}
    }
  gdb_flush (stream);
  do_cleanups (old_chain);
  return ((bufptr - buffer) / width);
}


/* Validate an input or output radix setting, and make sure the user
   knows what they really did here.  Radix setting is confusing, e.g.
   setting the input radix to "10" never changes it!  */

/* ARGSUSED */
static void
set_input_radix (args, from_tty, c)
     char *args;
     int from_tty;
     struct cmd_list_element *c;
{
  set_input_radix_1 (from_tty, *(unsigned *) c->var);
}

/* ARGSUSED */
static void
set_input_radix_1 (from_tty, radix)
     int from_tty;
     unsigned radix;
{
  /* We don't currently disallow any input radix except 0 or 1, which don't
     make any mathematical sense.  In theory, we can deal with any input
     radix greater than 1, even if we don't have unique digits for every
     value from 0 to radix-1, but in practice we lose on large radix values.
     We should either fix the lossage or restrict the radix range more.
     (FIXME). */

  if (radix < 2)
    {
      error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
	     radix);
    }
  input_radix = radix;
  if (from_tty)
    {
      printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
		       radix, radix, radix);
    }
}

/* ARGSUSED */
static void
set_output_radix (args, from_tty, c)
     char *args;
     int from_tty;
     struct cmd_list_element *c;
{
  set_output_radix_1 (from_tty, *(unsigned *) c->var);
}

static void
set_output_radix_1 (from_tty, radix)
     int from_tty;
     unsigned radix;
{
  /* Validate the radix and disallow ones that we aren't prepared to
     handle correctly, leaving the radix unchanged. */
  switch (radix)
    {
    case 16:
      output_format = 'x';	/* hex */
      break;
    case 10:
      output_format = 0;	/* decimal */
      break;
    case 8:
      output_format = 'o';	/* octal */
      break;
    default:
      error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
	     radix);
    }
  output_radix = radix;
  if (from_tty)
    {
      printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
		       radix, radix, radix);
    }
}

/* Set both the input and output radix at once.  Try to set the output radix
   first, since it has the most restrictive range.  An radix that is valid as
   an output radix is also valid as an input radix.

   It may be useful to have an unusual input radix.  If the user wishes to
   set an input radix that is not valid as an output radix, he needs to use
   the 'set input-radix' command. */

static void
set_radix (arg, from_tty)
     char *arg;
     int from_tty;
{
  unsigned radix;

  radix = (arg == NULL) ? 10 : parse_and_eval_address (arg);
  set_output_radix_1 (0, radix);
  set_input_radix_1 (0, radix);
  if (from_tty)
    {
      printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
		       radix, radix, radix);
    }
}

/* Show both the input and output radices. */

/*ARGSUSED */
static void
show_radix (arg, from_tty)
     char *arg;
     int from_tty;
{
  if (from_tty)
    {
      if (input_radix == output_radix)
	{
	  printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
			   input_radix, input_radix, input_radix);
	}
      else
	{
	  printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
			   input_radix, input_radix, input_radix);
	  printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
			   output_radix, output_radix, output_radix);
	}
    }
}


/*ARGSUSED */
static void
set_print (arg, from_tty)
     char *arg;
     int from_tty;
{
  printf_unfiltered (
     "\"set print\" must be followed by the name of a print subcommand.\n");
  help_list (setprintlist, "set print ", -1, gdb_stdout);
}

/*ARGSUSED */
static void
show_print (args, from_tty)
     char *args;
     int from_tty;
{
  cmd_show_list (showprintlist, from_tty, "");
}

void
_initialize_valprint ()
{
  struct cmd_list_element *c;

  add_prefix_cmd ("print", no_class, set_print,
		  "Generic command for setting how things print.",
		  &setprintlist, "set print ", 0, &setlist);
  add_alias_cmd ("p", "print", no_class, 1, &setlist);
  /* prefer set print to set prompt */
  add_alias_cmd ("pr", "print", no_class, 1, &setlist);

  add_prefix_cmd ("print", no_class, show_print,
		  "Generic command for showing print settings.",
		  &showprintlist, "show print ", 0, &showlist);
  add_alias_cmd ("p", "print", no_class, 1, &showlist);
  add_alias_cmd ("pr", "print", no_class, 1, &showlist);

  add_show_from_set
    (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
		  "Set limit on string chars or array elements to print.\n\
\"set print elements 0\" causes there to be no limit.",
		  &setprintlist),
     &showprintlist);

  add_show_from_set
    (add_set_cmd ("null-stop", no_class, var_boolean,
		  (char *) &stop_print_at_null,
		  "Set printing of char arrays to stop at first null char.",
		  &setprintlist),
     &showprintlist);

  add_show_from_set
    (add_set_cmd ("repeats", no_class, var_uinteger,
		  (char *) &repeat_count_threshold,
		  "Set threshold for repeated print elements.\n\
\"set print repeats 0\" causes all elements to be individually printed.",
		  &setprintlist),
     &showprintlist);

  add_show_from_set
    (add_set_cmd ("pretty", class_support, var_boolean,
		  (char *) &prettyprint_structs,
		  "Set prettyprinting of structures.",
		  &setprintlist),
     &showprintlist);

  add_show_from_set
    (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
		  "Set printing of unions interior to structures.",
		  &setprintlist),
     &showprintlist);

  add_show_from_set
    (add_set_cmd ("array", class_support, var_boolean,
		  (char *) &prettyprint_arrays,
		  "Set prettyprinting of arrays.",
		  &setprintlist),
     &showprintlist);

  add_show_from_set
    (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
		  "Set printing of addresses.",
		  &setprintlist),
     &showprintlist);

  c = add_set_cmd ("input-radix", class_support, var_uinteger,
		   (char *) &input_radix,
		   "Set default input radix for entering numbers.",
		   &setlist);
  add_show_from_set (c, &showlist);
  c->function.sfunc = set_input_radix;

  c = add_set_cmd ("output-radix", class_support, var_uinteger,
		   (char *) &output_radix,
		   "Set default output radix for printing of values.",
		   &setlist);
  add_show_from_set (c, &showlist);
  c->function.sfunc = set_output_radix;

  /* The "set radix" and "show radix" commands are special in that they are
     like normal set and show commands but allow two normally independent
     variables to be either set or shown with a single command.  So the
     usual add_set_cmd() and add_show_from_set() commands aren't really
     appropriate. */
  add_cmd ("radix", class_support, set_radix,
	   "Set default input and output number radices.\n\
Use 'set input-radix' or 'set output-radix' to independently set each.\n\
Without an argument, sets both radices back to the default value of 10.",
	   &setlist);
  add_cmd ("radix", class_support, show_radix,
	   "Show the default input and output number radices.\n\
Use 'show input-radix' or 'show output-radix' to independently show each.",
	   &showlist);

  /* Give people the defaults which they are used to.  */
  prettyprint_structs = 0;
  prettyprint_arrays = 0;
  unionprint = 1;
  addressprint = 1;
  print_max = PRINT_MAX_DEFAULT;
}