summaryrefslogtreecommitdiff
path: root/gdb/target-float.c
blob: d2f78e2167ff0ff0cdcc2520397bb616645d87ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
/* Floating point routines for GDB, the GNU debugger.

   Copyright (C) 2017-2023 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "gdbtypes.h"
#include "floatformat.h"
#include "target-float.h"
#include "gdbarch.h"

/* Target floating-point operations.

   We provide multiple implementations of those operations, which differ
   by the host-side intermediate format they perform computations in.

   Those multiple implementations all derive from the following abstract
   base class, which specifies the set of operations to be implemented.  */

class target_float_ops
{
public:
  virtual std::string to_string (const gdb_byte *addr, const struct type *type,
				 const char *format) const = 0;
  virtual bool from_string (gdb_byte *addr, const struct type *type,
			    const std::string &string) const = 0;

  virtual LONGEST to_longest (const gdb_byte *addr,
			      const struct type *type) const = 0;
  virtual void from_longest (gdb_byte *addr, const struct type *type,
			     LONGEST val) const = 0;
  virtual void from_ulongest (gdb_byte *addr, const struct type *type,
			      ULONGEST val) const = 0;
  virtual double to_host_double (const gdb_byte *addr,
				 const struct type *type) const = 0;
  virtual void from_host_double (gdb_byte *addr, const struct type *type,
				 double val) const = 0;
  virtual void convert (const gdb_byte *from, const struct type *from_type,
			gdb_byte *to, const struct type *to_type) const = 0;

  virtual void binop (enum exp_opcode opcode,
		      const gdb_byte *x, const struct type *type_x,
		      const gdb_byte *y, const struct type *type_y,
		      gdb_byte *res, const struct type *type_res) const = 0;
  virtual int compare (const gdb_byte *x, const struct type *type_x,
		       const gdb_byte *y, const struct type *type_y) const = 0;
};


/* Helper routines operating on binary floating-point data.  */

#include <cmath>
#include <limits>

/* Different kinds of floatformat numbers recognized by
   floatformat_classify.  To avoid portability issues, we use local
   values instead of the C99 macros (FP_NAN et cetera).  */
enum float_kind {
  float_nan,
  float_infinite,
  float_zero,
  float_normal,
  float_subnormal
};

/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
   going to bother with trying to muck around with whether it is defined in
   a system header, what we do if not, etc.  */
#define FLOATFORMAT_CHAR_BIT 8

/* The number of bytes that the largest floating-point type that we
   can convert to doublest will need.  */
#define FLOATFORMAT_LARGEST_BYTES 16

/* Return the floatformat's total size in host bytes.  */
static size_t
floatformat_totalsize_bytes (const struct floatformat *fmt)
{
  return ((fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
	  / FLOATFORMAT_CHAR_BIT);
}

/* Return the precision of the floating point format FMT.  */
static int
floatformat_precision (const struct floatformat *fmt)
{
  /* Assume the precision of and IBM long double is twice the precision
     of the underlying double.  This matches what GCC does.  */
  if (fmt->split_half)
    return 2 * floatformat_precision (fmt->split_half);

  /* Otherwise, the precision is the size of mantissa in bits,
     including the implicit bit if present.  */
  int prec = fmt->man_len;
  if (fmt->intbit == floatformat_intbit_no)
    prec++;

  return prec;
}

/* Normalize the byte order of FROM into TO.  If no normalization is
   needed then FMT->byteorder is returned and TO is not changed;
   otherwise the format of the normalized form in TO is returned.  */
static enum floatformat_byteorders
floatformat_normalize_byteorder (const struct floatformat *fmt,
				 const void *from, void *to)
{
  const unsigned char *swapin;
  unsigned char *swapout;
  int words;

  if (fmt->byteorder == floatformat_little
      || fmt->byteorder == floatformat_big)
    return fmt->byteorder;

  words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
  words >>= 2;

  swapout = (unsigned char *)to;
  swapin = (const unsigned char *)from;

  if (fmt->byteorder == floatformat_vax)
    {
      while (words-- > 0)
	{
	  *swapout++ = swapin[1];
	  *swapout++ = swapin[0];
	  *swapout++ = swapin[3];
	  *swapout++ = swapin[2];
	  swapin += 4;
	}
      /* This may look weird, since VAX is little-endian, but it is
	 easier to translate to big-endian than to little-endian.  */
      return floatformat_big;
    }
  else
    {
      gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);

      while (words-- > 0)
	{
	  *swapout++ = swapin[3];
	  *swapout++ = swapin[2];
	  *swapout++ = swapin[1];
	  *swapout++ = swapin[0];
	  swapin += 4;
	}
      return floatformat_big;
    }
}

/* Extract a field which starts at START and is LEN bytes long.  DATA and
   TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER.  */
static unsigned long
get_field (const bfd_byte *data, enum floatformat_byteorders order,
	   unsigned int total_len, unsigned int start, unsigned int len)
{
  unsigned long result;
  unsigned int cur_byte;
  int cur_bitshift;

  /* Caller must byte-swap words before calling this routine.  */
  gdb_assert (order == floatformat_little || order == floatformat_big);

  /* Start at the least significant part of the field.  */
  if (order == floatformat_little)
    {
      /* We start counting from the other end (i.e, from the high bytes
	 rather than the low bytes).  As such, we need to be concerned
	 with what happens if bit 0 doesn't start on a byte boundary.
	 I.e, we need to properly handle the case where total_len is
	 not evenly divisible by 8.  So we compute ``excess'' which
	 represents the number of bits from the end of our starting
	 byte needed to get to bit 0.  */
      int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);

      cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
		 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
      cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
		     - FLOATFORMAT_CHAR_BIT;
    }
  else
    {
      cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
      cur_bitshift =
	((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
    }
  if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
    result = *(data + cur_byte) >> (-cur_bitshift);
  else
    result = 0;
  cur_bitshift += FLOATFORMAT_CHAR_BIT;
  if (order == floatformat_little)
    ++cur_byte;
  else
    --cur_byte;

  /* Move towards the most significant part of the field.  */
  while (cur_bitshift < len)
    {
      result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
      cur_bitshift += FLOATFORMAT_CHAR_BIT;
      switch (order)
	{
	case floatformat_little:
	  ++cur_byte;
	  break;
	case floatformat_big:
	  --cur_byte;
	  break;
	}
    }
  if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
    /* Mask out bits which are not part of the field.  */
    result &= ((1UL << len) - 1);
  return result;
}

/* Set a field which starts at START and is LEN bytes long.  DATA and
   TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER.  */
static void
put_field (unsigned char *data, enum floatformat_byteorders order,
	   unsigned int total_len, unsigned int start, unsigned int len,
	   unsigned long stuff_to_put)
{
  unsigned int cur_byte;
  int cur_bitshift;

  /* Caller must byte-swap words before calling this routine.  */
  gdb_assert (order == floatformat_little || order == floatformat_big);

  /* Start at the least significant part of the field.  */
  if (order == floatformat_little)
    {
      int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);

      cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
		 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
      cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
		     - FLOATFORMAT_CHAR_BIT;
    }
  else
    {
      cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
      cur_bitshift =
	((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
    }
  if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
    {
      *(data + cur_byte) &=
	~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
	  << (-cur_bitshift));
      *(data + cur_byte) |=
	(stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
    }
  cur_bitshift += FLOATFORMAT_CHAR_BIT;
  if (order == floatformat_little)
    ++cur_byte;
  else
    --cur_byte;

  /* Move towards the most significant part of the field.  */
  while (cur_bitshift < len)
    {
      if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
	{
	  /* This is the last byte.  */
	  *(data + cur_byte) &=
	    ~((1 << (len - cur_bitshift)) - 1);
	  *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
	}
      else
	*(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
			      & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
      cur_bitshift += FLOATFORMAT_CHAR_BIT;
      if (order == floatformat_little)
	++cur_byte;
      else
	--cur_byte;
    }
}

/* Check if VAL (which is assumed to be a floating point number whose
   format is described by FMT) is negative.  */
static int
floatformat_is_negative (const struct floatformat *fmt,
			 const bfd_byte *uval)
{
  enum floatformat_byteorders order;
  unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];

  gdb_assert (fmt != NULL);
  gdb_assert (fmt->totalsize
	      <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);

  /* An IBM long double (a two element array of double) always takes the
     sign of the first double.  */
  if (fmt->split_half)
    fmt = fmt->split_half;

  order = floatformat_normalize_byteorder (fmt, uval, newfrom);

  if (order != fmt->byteorder)
    uval = newfrom;

  return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
}

/* Check if VAL is "not a number" (NaN) for FMT.  */
static enum float_kind
floatformat_classify (const struct floatformat *fmt,
		      const bfd_byte *uval)
{
  long exponent;
  unsigned long mant;
  unsigned int mant_bits, mant_off;
  int mant_bits_left;
  enum floatformat_byteorders order;
  unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
  int mant_zero;

  gdb_assert (fmt != NULL);
  gdb_assert (fmt->totalsize
	      <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);

  /* An IBM long double (a two element array of double) can be classified
     by looking at the first double.  inf and nan are specified as
     ignoring the second double.  zero and subnormal will always have
     the second double 0.0 if the long double is correctly rounded.  */
  if (fmt->split_half)
    fmt = fmt->split_half;

  order = floatformat_normalize_byteorder (fmt, uval, newfrom);

  if (order != fmt->byteorder)
    uval = newfrom;

  exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
			fmt->exp_len);

  mant_bits_left = fmt->man_len;
  mant_off = fmt->man_start;

  mant_zero = 1;
  while (mant_bits_left > 0)
    {
      mant_bits = std::min (mant_bits_left, 32);

      mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);

      /* If there is an explicit integer bit, mask it off.  */
      if (mant_off == fmt->man_start
	  && fmt->intbit == floatformat_intbit_yes)
	mant &= ~(1 << (mant_bits - 1));

      if (mant)
	{
	  mant_zero = 0;
	  break;
	}

      mant_off += mant_bits;
      mant_bits_left -= mant_bits;
    }

  /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
     supported.  */
  if (! fmt->exp_nan)
    {
      if (mant_zero)
	return float_zero;
      else
	return float_normal;
    }

  if (exponent == 0)
    {
      if (mant_zero)
	return float_zero;
      else
	return float_subnormal;
    }

  if (exponent == fmt->exp_nan)
    {
      if (mant_zero)
	return float_infinite;
      else
	return float_nan;
    }

  return float_normal;
}

/* Convert the mantissa of VAL (which is assumed to be a floating
   point number whose format is described by FMT) into a hexadecimal
   and store it in a static string.  Return a pointer to that string.  */
static const char *
floatformat_mantissa (const struct floatformat *fmt,
		      const bfd_byte *val)
{
  unsigned char *uval = (unsigned char *) val;
  unsigned long mant;
  unsigned int mant_bits, mant_off;
  int mant_bits_left;
  static char res[50];
  char buf[9];
  int len;
  enum floatformat_byteorders order;
  unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];

  gdb_assert (fmt != NULL);
  gdb_assert (fmt->totalsize
	      <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);

  /* For IBM long double (a two element array of double), return the
     mantissa of the first double.  The problem with returning the
     actual mantissa from both doubles is that there can be an
     arbitrary number of implied 0's or 1's between the mantissas
     of the first and second double.  In any case, this function
     is only used for dumping out nans, and a nan is specified to
     ignore the value in the second double.  */
  if (fmt->split_half)
    fmt = fmt->split_half;

  order = floatformat_normalize_byteorder (fmt, uval, newfrom);

  if (order != fmt->byteorder)
    uval = newfrom;

  if (! fmt->exp_nan)
    return 0;

  /* Make sure we have enough room to store the mantissa.  */
  gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);

  mant_off = fmt->man_start;
  mant_bits_left = fmt->man_len;
  mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;

  mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);

  len = xsnprintf (res, sizeof res, "%lx", mant);

  mant_off += mant_bits;
  mant_bits_left -= mant_bits;

  while (mant_bits_left > 0)
    {
      mant = get_field (uval, order, fmt->totalsize, mant_off, 32);

      xsnprintf (buf, sizeof buf, "%08lx", mant);
      gdb_assert (len + strlen (buf) <= sizeof res);
      strcat (res, buf);

      mant_off += 32;
      mant_bits_left -= 32;
    }

  return res;
}

/* Convert printf format string FORMAT to the otherwise equivalent string
   which may be used to print a host floating-point number using the length
   modifier LENGTH (which may be 0 if none is needed).  If FORMAT is null,
   return a format appropriate to print the full precision of a target
   floating-point number of format FMT.  */
static std::string
floatformat_printf_format (const struct floatformat *fmt,
			   const char *format, char length)
{
  std::string host_format;
  char conversion;

  if (format == nullptr)
    {
      /* If no format was specified, print the number using a format string
	 where the precision is set to the DECIMAL_DIG value for the given
	 floating-point format.  This value is computed as

		ceil(1 + p * log10(b)),

	 where p is the precision of the floating-point format in bits, and
	 b is the base (which is always 2 for the formats we support).  */
      const double log10_2 = .30102999566398119521;
      double d_decimal_dig = 1 + floatformat_precision (fmt) * log10_2;
      int decimal_dig = d_decimal_dig;
      if (decimal_dig < d_decimal_dig)
	decimal_dig++;

      host_format = string_printf ("%%.%d", decimal_dig);
      conversion = 'g';
    }
  else
    {
      /* Use the specified format, stripping out the conversion character
	 and length modifier, if present.  */
      size_t len = strlen (format);
      gdb_assert (len > 1);
      conversion = format[--len];
      gdb_assert (conversion == 'e' || conversion == 'f' || conversion == 'g'
		  || conversion == 'E' || conversion == 'G');
      if (format[len - 1] == 'L')
	len--;

      host_format = std::string (format, len);
    }

  /* Add the length modifier and conversion character appropriate for
     handling the appropriate host floating-point type.  */
  if (length)
    host_format += length;
  host_format += conversion;

  return host_format;
}

/* Implementation of target_float_ops using the host floating-point type T
   as intermediate type.  */

template<typename T> class host_float_ops : public target_float_ops
{
public:
  std::string to_string (const gdb_byte *addr, const struct type *type,
			 const char *format) const override;
  bool from_string (gdb_byte *addr, const struct type *type,
		    const std::string &string) const override;

  LONGEST to_longest (const gdb_byte *addr,
		      const struct type *type) const override;
  void from_longest (gdb_byte *addr, const struct type *type,
		     LONGEST val) const override;
  void from_ulongest (gdb_byte *addr, const struct type *type,
		      ULONGEST val) const override;
  double to_host_double (const gdb_byte *addr,
			 const struct type *type) const override;
  void from_host_double (gdb_byte *addr, const struct type *type,
			 double val) const override;
  void convert (const gdb_byte *from, const struct type *from_type,
		gdb_byte *to, const struct type *to_type) const override;

  void binop (enum exp_opcode opcode,
	      const gdb_byte *x, const struct type *type_x,
	      const gdb_byte *y, const struct type *type_y,
	      gdb_byte *res, const struct type *type_res) const override;
  int compare (const gdb_byte *x, const struct type *type_x,
	       const gdb_byte *y, const struct type *type_y) const override;

private:
  void from_target (const struct floatformat *fmt,
		    const gdb_byte *from, T *to) const;
  void from_target (const struct type *type,
		    const gdb_byte *from, T *to) const;

  void to_target (const struct type *type,
		  const T *from, gdb_byte *to) const;
  void to_target (const struct floatformat *fmt,
		  const T *from, gdb_byte *to) const;
};


/* Convert TO/FROM target to the host floating-point format T.

   If the host and target formats agree, we just copy the raw data
   into the appropriate type of variable and return, letting the host
   increase precision as necessary.  Otherwise, we call the conversion
   routine and let it do the dirty work.  Note that even if the target
   and host floating-point formats match, the length of the types
   might still be different, so the conversion routines must make sure
   to not overrun any buffers.  For example, on x86, long double is
   the 80-bit extended precision type on both 32-bit and 64-bit ABIs,
   but by default it is stored as 12 bytes on 32-bit, and 16 bytes on
   64-bit, for alignment reasons.  See comment in store_typed_floating
   for a discussion about zeroing out remaining bytes in the target
   buffer.  */

static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
static const struct floatformat *host_long_double_format
  = GDB_HOST_LONG_DOUBLE_FORMAT;

/* Convert target floating-point value at FROM in format FMT to host
   floating-point format of type T.  */
template<typename T> void
host_float_ops<T>::from_target (const struct floatformat *fmt,
				const gdb_byte *from, T *to) const
{
  gdb_assert (fmt != NULL);

  if (fmt == host_float_format)
    {
      float val = 0;

      memcpy (&val, from, floatformat_totalsize_bytes (fmt));
      *to = val;
      return;
    }
  else if (fmt == host_double_format)
    {
      double val = 0;

      memcpy (&val, from, floatformat_totalsize_bytes (fmt));
      *to = val;
      return;
    }
  else if (fmt == host_long_double_format)
    {
      long double val = 0;

      memcpy (&val, from, floatformat_totalsize_bytes (fmt));
      *to = val;
      return;
    }

  unsigned char *ufrom = (unsigned char *) from;
  long exponent;
  unsigned long mant;
  unsigned int mant_bits, mant_off;
  int mant_bits_left;
  int special_exponent;		/* It's a NaN, denorm or zero.  */
  enum floatformat_byteorders order;
  unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
  enum float_kind kind;

  gdb_assert (fmt->totalsize
	      <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);

  /* For non-numbers, reuse libiberty's logic to find the correct
     format.  We do not lose any precision in this case by passing
     through a double.  */
  kind = floatformat_classify (fmt, (const bfd_byte *) from);
  if (kind == float_infinite || kind == float_nan)
    {
      double dto;

      floatformat_to_double	/* ARI: floatformat_to_double */
	(fmt->split_half ? fmt->split_half : fmt, from, &dto);
      *to = (T) dto;
      return;
    }

  order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);

  if (order != fmt->byteorder)
    ufrom = newfrom;

  if (fmt->split_half)
    {
      T dtop, dbot;

      from_target (fmt->split_half, ufrom, &dtop);
      /* Preserve the sign of 0, which is the sign of the top
	 half.  */
      if (dtop == 0.0)
	{
	  *to = dtop;
	  return;
	}
      from_target (fmt->split_half,
		   ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, &dbot);
      *to = dtop + dbot;
      return;
    }

  exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
			fmt->exp_len);
  /* Note that if exponent indicates a NaN, we can't really do anything useful
     (not knowing if the host has NaN's, or how to build one).  So it will
     end up as an infinity or something close; that is OK.  */

  mant_bits_left = fmt->man_len;
  mant_off = fmt->man_start;
  T dto = 0.0;

  special_exponent = exponent == 0 || exponent == fmt->exp_nan;

  /* Don't bias NaNs.  Use minimum exponent for denorms.  For
     simplicity, we don't check for zero as the exponent doesn't matter.
     Note the cast to int; exp_bias is unsigned, so it's important to
     make sure the operation is done in signed arithmetic.  */
  if (!special_exponent)
    exponent -= fmt->exp_bias;
  else if (exponent == 0)
    exponent = 1 - fmt->exp_bias;

  /* Build the result algebraically.  Might go infinite, underflow, etc;
     who cares.  */

  /* If this format uses a hidden bit, explicitly add it in now.  Otherwise,
     increment the exponent by one to account for the integer bit.  */

  if (!special_exponent)
    {
      if (fmt->intbit == floatformat_intbit_no)
	dto = ldexp (1.0, exponent);
      else
	exponent++;
    }

  while (mant_bits_left > 0)
    {
      mant_bits = std::min (mant_bits_left, 32);

      mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);

      dto += ldexp ((T) mant, exponent - mant_bits);
      exponent -= mant_bits;
      mant_off += mant_bits;
      mant_bits_left -= mant_bits;
    }

  /* Negate it if negative.  */
  if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
    dto = -dto;
  *to = dto;
}

template<typename T> void
host_float_ops<T>::from_target (const struct type *type,
				const gdb_byte *from, T *to) const
{
  from_target (floatformat_from_type (type), from, to);
}

/* Convert host floating-point value of type T to target floating-point
   value in format FMT and store at TO.  */
template<typename T> void
host_float_ops<T>::to_target (const struct floatformat *fmt,
			      const T *from, gdb_byte *to) const
{
  gdb_assert (fmt != NULL);

  if (fmt == host_float_format)
    {
      float val = *from;

      memcpy (to, &val, floatformat_totalsize_bytes (fmt));
      return;
    }
  else if (fmt == host_double_format)
    {
      double val = *from;

      memcpy (to, &val, floatformat_totalsize_bytes (fmt));
      return;
    }
  else if (fmt == host_long_double_format)
    {
      long double val = *from;

      memcpy (to, &val, floatformat_totalsize_bytes (fmt));
      return;
    }

  T dfrom;
  int exponent;
  T mant;
  unsigned int mant_bits, mant_off;
  int mant_bits_left;
  unsigned char *uto = (unsigned char *) to;
  enum floatformat_byteorders order = fmt->byteorder;
  unsigned char newto[FLOATFORMAT_LARGEST_BYTES];

  if (order != floatformat_little)
    order = floatformat_big;

  if (order != fmt->byteorder)
    uto = newto;

  memcpy (&dfrom, from, sizeof (dfrom));
  memset (uto, 0, floatformat_totalsize_bytes (fmt));

  if (fmt->split_half)
    {
      /* Use static volatile to ensure that any excess precision is
	 removed via storing in memory, and so the top half really is
	 the result of converting to double.  */
      static volatile double dtop, dbot;
      T dtopnv, dbotnv;

      dtop = (double) dfrom;
      /* If the rounded top half is Inf, the bottom must be 0 not NaN
	 or Inf.  */
      if (dtop + dtop == dtop && dtop != 0.0)
	dbot = 0.0;
      else
	dbot = (double) (dfrom - (T) dtop);
      dtopnv = dtop;
      dbotnv = dbot;
      to_target (fmt->split_half, &dtopnv, uto);
      to_target (fmt->split_half, &dbotnv,
		 uto + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2);
      return;
    }

  if (dfrom == 0)
    goto finalize_byteorder;	/* Result is zero */
  if (dfrom != dfrom)		/* Result is NaN */
    {
      /* From is NaN */
      put_field (uto, order, fmt->totalsize, fmt->exp_start,
		 fmt->exp_len, fmt->exp_nan);
      /* Be sure it's not infinity, but NaN value is irrel.  */
      put_field (uto, order, fmt->totalsize, fmt->man_start,
		 fmt->man_len, 1);
      goto finalize_byteorder;
    }

  /* If negative, set the sign bit.  */
  if (dfrom < 0)
    {
      put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
      dfrom = -dfrom;
    }

  if (dfrom + dfrom == dfrom && dfrom != 0.0)	/* Result is Infinity.  */
    {
      /* Infinity exponent is same as NaN's.  */
      put_field (uto, order, fmt->totalsize, fmt->exp_start,
		 fmt->exp_len, fmt->exp_nan);
      /* Infinity mantissa is all zeroes.  */
      put_field (uto, order, fmt->totalsize, fmt->man_start,
		 fmt->man_len, 0);
      goto finalize_byteorder;
    }

  mant = frexp (dfrom, &exponent);

  if (exponent + fmt->exp_bias <= 0)
    {
      /* The value is too small to be expressed in the destination
	 type (not enough bits in the exponent.  Treat as 0.  */
      put_field (uto, order, fmt->totalsize, fmt->exp_start,
		 fmt->exp_len, 0);
      put_field (uto, order, fmt->totalsize, fmt->man_start,
		 fmt->man_len, 0);
      goto finalize_byteorder;
    }

  if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
    {
      /* The value is too large to fit into the destination.
	 Treat as infinity.  */
      put_field (uto, order, fmt->totalsize, fmt->exp_start,
		 fmt->exp_len, fmt->exp_nan);
      put_field (uto, order, fmt->totalsize, fmt->man_start,
		 fmt->man_len, 0);
      goto finalize_byteorder;
    }

  put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
	     exponent + fmt->exp_bias - 1);

  mant_bits_left = fmt->man_len;
  mant_off = fmt->man_start;
  while (mant_bits_left > 0)
    {
      unsigned long mant_long;

      mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;

      mant *= 4294967296.0;
      mant_long = ((unsigned long) mant) & 0xffffffffL;
      mant -= mant_long;

      /* If the integer bit is implicit, then we need to discard it.
	 If we are discarding a zero, we should be (but are not) creating
	 a denormalized number which means adjusting the exponent
	 (I think).  */
      if (mant_bits_left == fmt->man_len
	  && fmt->intbit == floatformat_intbit_no)
	{
	  mant_long <<= 1;
	  mant_long &= 0xffffffffL;
	  /* If we are processing the top 32 mantissa bits of a doublest
	     so as to convert to a float value with implied integer bit,
	     we will only be putting 31 of those 32 bits into the
	     final value due to the discarding of the top bit.  In the
	     case of a small float value where the number of mantissa
	     bits is less than 32, discarding the top bit does not alter
	     the number of bits we will be adding to the result.  */
	  if (mant_bits == 32)
	    mant_bits -= 1;
	}

      if (mant_bits < 32)
	{
	  /* The bits we want are in the most significant MANT_BITS bits of
	     mant_long.  Move them to the least significant.  */
	  mant_long >>= 32 - mant_bits;
	}

      put_field (uto, order, fmt->totalsize,
		 mant_off, mant_bits, mant_long);
      mant_off += mant_bits;
      mant_bits_left -= mant_bits;
    }

 finalize_byteorder:
  /* Do we need to byte-swap the words in the result?  */
  if (order != fmt->byteorder)
    floatformat_normalize_byteorder (fmt, newto, to);
}

template<typename T> void
host_float_ops<T>::to_target (const struct type *type,
			      const T *from, gdb_byte *to) const
{
  /* Ensure possible padding bytes in the target buffer are zeroed out.  */
  memset (to, 0, type->length ());

  to_target (floatformat_from_type (type), from, to);
}

/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
   to a string, optionally using the print format FORMAT.  */
template<typename T> struct printf_length_modifier
{
  static constexpr char value = 0;
};
template<> struct printf_length_modifier<long double>
{
  static constexpr char value = 'L';
};
template<typename T> std::string
host_float_ops<T>::to_string (const gdb_byte *addr, const struct type *type,
			      const char *format) const
{
  /* Determine the format string to use on the host side.  */
  constexpr char length = printf_length_modifier<T>::value;
  const struct floatformat *fmt = floatformat_from_type (type);
  std::string host_format = floatformat_printf_format (fmt, format, length);

  T host_float;
  from_target (type, addr, &host_float);

  DIAGNOSTIC_PUSH
  DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
  return string_printf (host_format.c_str (), host_float);
  DIAGNOSTIC_POP
}

/* Parse string IN into a target floating-number of type TYPE and
   store it as byte-stream ADDR.  Return whether parsing succeeded.  */
template<typename T> struct scanf_length_modifier
{
  static constexpr char value = 0;
};
template<> struct scanf_length_modifier<double>
{
  static constexpr char value = 'l';
};
template<> struct scanf_length_modifier<long double>
{
  static constexpr char value = 'L';
};
template<typename T> bool
host_float_ops<T>::from_string (gdb_byte *addr, const struct type *type,
				const std::string &in) const
{
  T host_float;
  int n, num;

  std::string scan_format = "%";
  if (scanf_length_modifier<T>::value)
    scan_format += scanf_length_modifier<T>::value;
  scan_format += "g%n";

  DIAGNOSTIC_PUSH
  DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
  num = sscanf (in.c_str (), scan_format.c_str(), &host_float, &n);
  DIAGNOSTIC_POP

  /* The sscanf man page suggests not making any assumptions on the effect
     of %n on the result, so we don't.
     That is why we simply test num == 0.  */
  if (num == 0)
    return false;

  /* We only accept the whole string.  */
  if (in[n])
    return false;

  to_target (type, &host_float, addr);
  return true;
}

/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
   to an integer value (rounding towards zero).  */
template<typename T> LONGEST
host_float_ops<T>::to_longest (const gdb_byte *addr,
			       const struct type *type) const
{
  T host_float;
  from_target (type, addr, &host_float);
  T min_possible_range = static_cast<T>(std::numeric_limits<LONGEST>::min());
  T max_possible_range = -min_possible_range;
  /* host_float can be converted to an integer as long as it's in
     the range [min_possible_range, max_possible_range). If not, it is either
     too large, or too small, or is NaN; in this case return the maximum or
     minimum possible value.  */
  if (host_float < max_possible_range && host_float >= min_possible_range)
    return static_cast<LONGEST> (host_float);
  if (host_float < min_possible_range)
    return std::numeric_limits<LONGEST>::min();
  /* This line will be executed if host_float is NaN.  */
  return std::numeric_limits<LONGEST>::max();
}

/* Convert signed integer VAL to a target floating-number of type TYPE
   and store it as byte-stream ADDR.  */
template<typename T> void
host_float_ops<T>::from_longest (gdb_byte *addr, const struct type *type,
				 LONGEST val) const
{
  T host_float = (T) val;
  to_target (type, &host_float, addr);
}

/* Convert unsigned integer VAL to a target floating-number of type TYPE
   and store it as byte-stream ADDR.  */
template<typename T> void
host_float_ops<T>::from_ulongest (gdb_byte *addr, const struct type *type,
				  ULONGEST val) const
{
  T host_float = (T) val;
  to_target (type, &host_float, addr);
}

/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
   to a floating-point value in the host "double" format.  */
template<typename T> double
host_float_ops<T>::to_host_double (const gdb_byte *addr,
				   const struct type *type) const
{
  T host_float;
  from_target (type, addr, &host_float);
  return (double) host_float;
}

/* Convert floating-point value VAL in the host "double" format to a target
   floating-number of type TYPE and store it as byte-stream ADDR.  */
template<typename T> void
host_float_ops<T>::from_host_double (gdb_byte *addr, const struct type *type,
				     double val) const
{
  T host_float = (T) val;
  to_target (type, &host_float, addr);
}

/* Convert a floating-point number of type FROM_TYPE from the target
   byte-stream FROM to a floating-point number of type TO_TYPE, and
   store it to the target byte-stream TO.  */
template<typename T> void
host_float_ops<T>::convert (const gdb_byte *from,
			    const struct type *from_type,
			    gdb_byte *to,
			    const struct type *to_type) const
{
  T host_float;
  from_target (from_type, from, &host_float);
  to_target (to_type, &host_float, to);
}

/* Perform the binary operation indicated by OPCODE, using as operands the
   target byte streams X and Y, interpreted as floating-point numbers of
   types TYPE_X and TYPE_Y, respectively.  Convert the result to format
   TYPE_RES and store it into the byte-stream RES.  */
template<typename T> void
host_float_ops<T>::binop (enum exp_opcode op,
			  const gdb_byte *x, const struct type *type_x,
			  const gdb_byte *y, const struct type *type_y,
			  gdb_byte *res, const struct type *type_res) const
{
  T v1, v2, v = 0;

  from_target (type_x, x, &v1);
  from_target (type_y, y, &v2);

  switch (op)
    {
      case BINOP_ADD:
	v = v1 + v2;
	break;

      case BINOP_SUB:
	v = v1 - v2;
	break;

      case BINOP_MUL:
	v = v1 * v2;
	break;

      case BINOP_DIV:
	v = v1 / v2;
	break;

      case BINOP_EXP:
	errno = 0;
	v = pow (v1, v2);
	if (errno)
	  error (_("Cannot perform exponentiation: %s"),
		 safe_strerror (errno));
	break;

      case BINOP_MIN:
	v = v1 < v2 ? v1 : v2;
	break;

      case BINOP_MAX:
	v = v1 > v2 ? v1 : v2;
	break;

      default:
	error (_("Integer-only operation on floating point number."));
	break;
    }

  to_target (type_res, &v, res);
}

/* Compare the two target byte streams X and Y, interpreted as floating-point
   numbers of types TYPE_X and TYPE_Y, respectively.  Return zero if X and Y
   are equal, -1 if X is less than Y, and 1 otherwise.  */
template<typename T> int
host_float_ops<T>::compare (const gdb_byte *x, const struct type *type_x,
			    const gdb_byte *y, const struct type *type_y) const
{
  T v1, v2;

  from_target (type_x, x, &v1);
  from_target (type_y, y, &v2);

  if (v1 == v2)
    return 0;
  if (v1 < v2)
    return -1;
  return 1;
}


/* Implementation of target_float_ops using the MPFR library
   mpfr_t as intermediate type.  */

#define MPFR_USE_INTMAX_T

#include <mpfr.h>

class mpfr_float_ops : public target_float_ops
{
public:
  std::string to_string (const gdb_byte *addr, const struct type *type,
			 const char *format) const override;
  bool from_string (gdb_byte *addr, const struct type *type,
		    const std::string &string) const override;

  LONGEST to_longest (const gdb_byte *addr,
		      const struct type *type) const override;
  void from_longest (gdb_byte *addr, const struct type *type,
		     LONGEST val) const override;
  void from_ulongest (gdb_byte *addr, const struct type *type,
		      ULONGEST val) const override;
  double to_host_double (const gdb_byte *addr,
			 const struct type *type) const override;
  void from_host_double (gdb_byte *addr, const struct type *type,
			 double val) const override;
  void convert (const gdb_byte *from, const struct type *from_type,
		gdb_byte *to, const struct type *to_type) const override;

  void binop (enum exp_opcode opcode,
	      const gdb_byte *x, const struct type *type_x,
	      const gdb_byte *y, const struct type *type_y,
	      gdb_byte *res, const struct type *type_res) const override;
  int compare (const gdb_byte *x, const struct type *type_x,
	       const gdb_byte *y, const struct type *type_y) const override;

private:
  /* Local wrapper class to handle mpfr_t initialization and cleanup.  */
  class gdb_mpfr
  {
  public:
    mpfr_t val;

    gdb_mpfr (const struct type *type)
    {
      const struct floatformat *fmt = floatformat_from_type (type);
      mpfr_init2 (val, floatformat_precision (fmt));
    }

    gdb_mpfr (const gdb_mpfr &source)
    {
      mpfr_init2 (val, mpfr_get_prec (source.val));
    }

    ~gdb_mpfr ()
    {
      mpfr_clear (val);
    }
  };

  void from_target (const struct floatformat *fmt,
		const gdb_byte *from, gdb_mpfr &to) const;
  void from_target (const struct type *type,
		const gdb_byte *from, gdb_mpfr &to) const;

  void to_target (const struct type *type,
		  const gdb_mpfr &from, gdb_byte *to) const;
  void to_target (const struct floatformat *fmt,
		  const gdb_mpfr &from, gdb_byte *to) const;
};


/* Convert TO/FROM target floating-point format to mpfr_t.  */

void
mpfr_float_ops::from_target (const struct floatformat *fmt,
			     const gdb_byte *orig_from, gdb_mpfr &to) const
{
  const gdb_byte *from = orig_from;
  mpfr_exp_t exponent;
  unsigned long mant;
  unsigned int mant_bits, mant_off;
  int mant_bits_left;
  int special_exponent;		/* It's a NaN, denorm or zero.  */
  enum floatformat_byteorders order;
  unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
  enum float_kind kind;

  gdb_assert (fmt->totalsize
	      <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);

  /* Handle non-numbers.  */
  kind = floatformat_classify (fmt, from);
  if (kind == float_infinite)
    {
      mpfr_set_inf (to.val, floatformat_is_negative (fmt, from) ? -1 : 1);
      return;
    }
  if (kind == float_nan)
    {
      mpfr_set_nan (to.val);
      return;
    }

  order = floatformat_normalize_byteorder (fmt, from, newfrom);

  if (order != fmt->byteorder)
    from = newfrom;

  if (fmt->split_half)
    {
      gdb_mpfr top (to), bot (to);

      from_target (fmt->split_half, from, top);
      /* Preserve the sign of 0, which is the sign of the top half.  */
      if (mpfr_zero_p (top.val))
	{
	  mpfr_set (to.val, top.val, MPFR_RNDN);
	  return;
	}
      from_target (fmt->split_half,
	       from + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, bot);
      mpfr_add (to.val, top.val, bot.val, MPFR_RNDN);
      return;
    }

  exponent = get_field (from, order, fmt->totalsize, fmt->exp_start,
			fmt->exp_len);
  /* Note that if exponent indicates a NaN, we can't really do anything useful
     (not knowing if the host has NaN's, or how to build one).  So it will
     end up as an infinity or something close; that is OK.  */

  mant_bits_left = fmt->man_len;
  mant_off = fmt->man_start;
  mpfr_set_zero (to.val, 0);

  special_exponent = exponent == 0 || exponent == fmt->exp_nan;

  /* Don't bias NaNs.  Use minimum exponent for denorms.  For
     simplicity, we don't check for zero as the exponent doesn't matter.
     Note the cast to int; exp_bias is unsigned, so it's important to
     make sure the operation is done in signed arithmetic.  */
  if (!special_exponent)
    exponent -= fmt->exp_bias;
  else if (exponent == 0)
    exponent = 1 - fmt->exp_bias;

  /* Build the result algebraically.  Might go infinite, underflow, etc;
     who cares.  */

  /* If this format uses a hidden bit, explicitly add it in now.  Otherwise,
     increment the exponent by one to account for the integer bit.  */

  if (!special_exponent)
    {
      if (fmt->intbit == floatformat_intbit_no)
	mpfr_set_ui_2exp (to.val, 1, exponent, MPFR_RNDN);
      else
	exponent++;
    }

  gdb_mpfr tmp (to);

  while (mant_bits_left > 0)
    {
      mant_bits = std::min (mant_bits_left, 32);

      mant = get_field (from, order, fmt->totalsize, mant_off, mant_bits);

      mpfr_set_ui (tmp.val, mant, MPFR_RNDN);
      mpfr_mul_2si (tmp.val, tmp.val, exponent - mant_bits, MPFR_RNDN);
      mpfr_add (to.val, to.val, tmp.val, MPFR_RNDN);
      exponent -= mant_bits;
      mant_off += mant_bits;
      mant_bits_left -= mant_bits;
    }

  /* Negate it if negative.  */
  if (get_field (from, order, fmt->totalsize, fmt->sign_start, 1))
    mpfr_neg (to.val, to.val, MPFR_RNDN);
}

void
mpfr_float_ops::from_target (const struct type *type,
			     const gdb_byte *from, gdb_mpfr &to) const
{
  from_target (floatformat_from_type (type), from, to);
}

void
mpfr_float_ops::to_target (const struct floatformat *fmt,
			   const gdb_mpfr &from, gdb_byte *orig_to) const
{
  unsigned char *to = orig_to;
  mpfr_exp_t exponent;
  unsigned int mant_bits, mant_off;
  int mant_bits_left;
  enum floatformat_byteorders order = fmt->byteorder;
  unsigned char newto[FLOATFORMAT_LARGEST_BYTES];

  if (order != floatformat_little)
    order = floatformat_big;

  if (order != fmt->byteorder)
    to = newto;

  memset (to, 0, floatformat_totalsize_bytes (fmt));

  if (fmt->split_half)
    {
      gdb_mpfr top (from), bot (from);

      mpfr_set (top.val, from.val, MPFR_RNDN);
      /* If the rounded top half is Inf, the bottom must be 0 not NaN
	 or Inf.  */
      if (mpfr_inf_p (top.val))
	mpfr_set_zero (bot.val, 0);
      else
	mpfr_sub (bot.val, from.val, top.val, MPFR_RNDN);

      to_target (fmt->split_half, top, to);
      to_target (fmt->split_half, bot,
		 to + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2);
      return;
    }

  gdb_mpfr tmp (from);

  if (mpfr_zero_p (from.val))
    goto finalize_byteorder;	/* Result is zero */

  mpfr_set (tmp.val, from.val, MPFR_RNDN);

  if (mpfr_nan_p (tmp.val))	/* Result is NaN */
    {
      /* From is NaN */
      put_field (to, order, fmt->totalsize, fmt->exp_start,
		 fmt->exp_len, fmt->exp_nan);
      /* Be sure it's not infinity, but NaN value is irrel.  */
      put_field (to, order, fmt->totalsize, fmt->man_start,
		 fmt->man_len, 1);
      goto finalize_byteorder;
    }

  /* If negative, set the sign bit.  */
  if (mpfr_sgn (tmp.val) < 0)
    {
      put_field (to, order, fmt->totalsize, fmt->sign_start, 1, 1);
      mpfr_neg (tmp.val, tmp.val, MPFR_RNDN);
    }

  if (mpfr_inf_p (tmp.val))		/* Result is Infinity.  */
    {
      /* Infinity exponent is same as NaN's.  */
      put_field (to, order, fmt->totalsize, fmt->exp_start,
		 fmt->exp_len, fmt->exp_nan);
      /* Infinity mantissa is all zeroes.  */
      put_field (to, order, fmt->totalsize, fmt->man_start,
		 fmt->man_len, 0);
      goto finalize_byteorder;
    }

  mpfr_frexp (&exponent, tmp.val, tmp.val, MPFR_RNDN);

  if (exponent + fmt->exp_bias <= 0)
    {
      /* The value is too small to be expressed in the destination
	 type (not enough bits in the exponent.  Treat as 0.  */
      put_field (to, order, fmt->totalsize, fmt->exp_start,
		 fmt->exp_len, 0);
      put_field (to, order, fmt->totalsize, fmt->man_start,
		 fmt->man_len, 0);
      goto finalize_byteorder;
    }

  if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
    {
      /* The value is too large to fit into the destination.
	 Treat as infinity.  */
      put_field (to, order, fmt->totalsize, fmt->exp_start,
		 fmt->exp_len, fmt->exp_nan);
      put_field (to, order, fmt->totalsize, fmt->man_start,
		 fmt->man_len, 0);
      goto finalize_byteorder;
    }

  put_field (to, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
	     exponent + fmt->exp_bias - 1);

  mant_bits_left = fmt->man_len;
  mant_off = fmt->man_start;
  while (mant_bits_left > 0)
    {
      unsigned long mant_long;

      mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;

      mpfr_mul_2ui (tmp.val, tmp.val, 32, MPFR_RNDN);
      mant_long = mpfr_get_ui (tmp.val, MPFR_RNDZ) & 0xffffffffL;
      mpfr_sub_ui (tmp.val, tmp.val, mant_long, MPFR_RNDZ);

      /* If the integer bit is implicit, then we need to discard it.
	 If we are discarding a zero, we should be (but are not) creating
	 a denormalized number which means adjusting the exponent
	 (I think).  */
      if (mant_bits_left == fmt->man_len
	  && fmt->intbit == floatformat_intbit_no)
	{
	  mant_long <<= 1;
	  mant_long &= 0xffffffffL;
	  /* If we are processing the top 32 mantissa bits of a doublest
	     so as to convert to a float value with implied integer bit,
	     we will only be putting 31 of those 32 bits into the
	     final value due to the discarding of the top bit.  In the
	     case of a small float value where the number of mantissa
	     bits is less than 32, discarding the top bit does not alter
	     the number of bits we will be adding to the result.  */
	  if (mant_bits == 32)
	    mant_bits -= 1;
	}

      if (mant_bits < 32)
	{
	  /* The bits we want are in the most significant MANT_BITS bits of
	     mant_long.  Move them to the least significant.  */
	  mant_long >>= 32 - mant_bits;
	}

      put_field (to, order, fmt->totalsize,
		 mant_off, mant_bits, mant_long);
      mant_off += mant_bits;
      mant_bits_left -= mant_bits;
    }

 finalize_byteorder:
  /* Do we need to byte-swap the words in the result?  */
  if (order != fmt->byteorder)
    floatformat_normalize_byteorder (fmt, newto, orig_to);
}

void
mpfr_float_ops::to_target (const struct type *type,
			   const gdb_mpfr &from, gdb_byte *to) const
{
  /* Ensure possible padding bytes in the target buffer are zeroed out.  */
  memset (to, 0, type->length ());

  to_target (floatformat_from_type (type), from, to);
}

/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
   to a string, optionally using the print format FORMAT.  */
std::string
mpfr_float_ops::to_string (const gdb_byte *addr,
			   const struct type *type,
			   const char *format) const
{
  const struct floatformat *fmt = floatformat_from_type (type);

  /* Unless we need to adhere to a specific format, provide special
     output for certain cases.  */
  if (format == nullptr)
    {
      /* Detect invalid representations.  */
      if (!floatformat_is_valid (fmt, addr))
	return "<invalid float value>";

      /* Handle NaN and Inf.  */
      enum float_kind kind = floatformat_classify (fmt, addr);
      if (kind == float_nan)
	{
	  const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
	  const char *mantissa = floatformat_mantissa (fmt, addr);
	  return string_printf ("%snan(0x%s)", sign, mantissa);
	}
      else if (kind == float_infinite)
	{
	  const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
	  return string_printf ("%sinf", sign);
	}
    }

  /* Determine the format string to use on the host side.  */
  std::string host_format = floatformat_printf_format (fmt, format, 'R');

  gdb_mpfr tmp (type);
  from_target (type, addr, tmp);

  int size = mpfr_snprintf (NULL, 0, host_format.c_str (), tmp.val);
  std::string str (size, '\0');
  mpfr_sprintf (&str[0], host_format.c_str (), tmp.val);

  return str;
}

/* Parse string STRING into a target floating-number of type TYPE and
   store it as byte-stream ADDR.  Return whether parsing succeeded.  */
bool
mpfr_float_ops::from_string (gdb_byte *addr,
			     const struct type *type,
			     const std::string &in) const
{
  gdb_mpfr tmp (type);

  char *endptr;
  mpfr_strtofr (tmp.val, in.c_str (), &endptr, 0, MPFR_RNDN);

  /* We only accept the whole string.  */
  if (*endptr)
    return false;

  to_target (type, tmp, addr);
  return true;
}

/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
   to an integer value (rounding towards zero).  */
LONGEST
mpfr_float_ops::to_longest (const gdb_byte *addr,
			    const struct type *type) const
{
  gdb_mpfr tmp (type);
  from_target (type, addr, tmp);
  return mpfr_get_sj (tmp.val, MPFR_RNDZ);
}

/* Convert signed integer VAL to a target floating-number of type TYPE
   and store it as byte-stream ADDR.  */
void
mpfr_float_ops::from_longest (gdb_byte *addr,
			      const struct type *type,
			      LONGEST val) const
{
  gdb_mpfr tmp (type);
  mpfr_set_sj (tmp.val, val, MPFR_RNDN);
  to_target (type, tmp, addr);
}

/* Convert unsigned integer VAL to a target floating-number of type TYPE
   and store it as byte-stream ADDR.  */
void
mpfr_float_ops::from_ulongest (gdb_byte *addr,
			       const struct type *type,
			       ULONGEST val) const
{
  gdb_mpfr tmp (type);
  mpfr_set_uj (tmp.val, val, MPFR_RNDN);
  to_target (type, tmp, addr);
}

/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
   to a floating-point value in the host "double" format.  */
double
mpfr_float_ops::to_host_double (const gdb_byte *addr,
				const struct type *type) const
{
  gdb_mpfr tmp (type);
  from_target (type, addr, tmp);
  return mpfr_get_d (tmp.val, MPFR_RNDN);
}

/* Convert floating-point value VAL in the host "double" format to a target
   floating-number of type TYPE and store it as byte-stream ADDR.  */
void
mpfr_float_ops::from_host_double (gdb_byte *addr,
				  const struct type *type,
				  double val) const
{
  gdb_mpfr tmp (type);
  mpfr_set_d (tmp.val, val, MPFR_RNDN);
  to_target (type, tmp, addr);
}

/* Convert a floating-point number of type FROM_TYPE from the target
   byte-stream FROM to a floating-point number of type TO_TYPE, and
   store it to the target byte-stream TO.  */
void
mpfr_float_ops::convert (const gdb_byte *from,
			 const struct type *from_type,
			 gdb_byte *to,
			 const struct type *to_type) const
{
  gdb_mpfr from_tmp (from_type), to_tmp (to_type);
  from_target (from_type, from, from_tmp);
  mpfr_set (to_tmp.val, from_tmp.val, MPFR_RNDN);
  to_target (to_type, to_tmp, to);
}

/* Perform the binary operation indicated by OPCODE, using as operands the
   target byte streams X and Y, interpreted as floating-point numbers of
   types TYPE_X and TYPE_Y, respectively.  Convert the result to type
   TYPE_RES and store it into the byte-stream RES.  */
void
mpfr_float_ops::binop (enum exp_opcode op,
		       const gdb_byte *x, const struct type *type_x,
		       const gdb_byte *y, const struct type *type_y,
		       gdb_byte *res, const struct type *type_res) const
{
  gdb_mpfr x_tmp (type_x), y_tmp (type_y), tmp (type_res);

  from_target (type_x, x, x_tmp);
  from_target (type_y, y, y_tmp);

  switch (op)
    {
      case BINOP_ADD:
	mpfr_add (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
	break;

      case BINOP_SUB:
	mpfr_sub (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
	break;

      case BINOP_MUL:
	mpfr_mul (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
	break;

      case BINOP_DIV:
	mpfr_div (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
	break;

      case BINOP_EXP:
	mpfr_pow (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
	break;

      case BINOP_MIN:
	mpfr_min (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
	break;

      case BINOP_MAX:
	mpfr_max (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
	break;

      default:
	error (_("Integer-only operation on floating point number."));
	break;
    }

  to_target (type_res, tmp, res);
}

/* Compare the two target byte streams X and Y, interpreted as floating-point
   numbers of types TYPE_X and TYPE_Y, respectively.  Return zero if X and Y
   are equal, -1 if X is less than Y, and 1 otherwise.  */
int
mpfr_float_ops::compare (const gdb_byte *x, const struct type *type_x,
			 const gdb_byte *y, const struct type *type_y) const
{
  gdb_mpfr x_tmp (type_x), y_tmp (type_y);

  from_target (type_x, x, x_tmp);
  from_target (type_y, y, y_tmp);

  if (mpfr_equal_p (x_tmp.val, y_tmp.val))
    return 0;
  else if (mpfr_less_p (x_tmp.val, y_tmp.val))
    return -1;
  else
    return 1;
}


/* Helper routines operating on decimal floating-point data.  */

/* Decimal floating point is one of the extension to IEEE 754, which is
   described in http://grouper.ieee.org/groups/754/revision.html and
   http://www2.hursley.ibm.com/decimal/.  It completes binary floating
   point by representing floating point more exactly.  */

/* The order of the following headers is important for making sure
   decNumber structure is large enough to hold decimal128 digits.  */

#include "dpd/decimal128.h"
#include "dpd/decimal64.h"
#include "dpd/decimal32.h"

/* When using decimal128, this is the maximum string length + 1
   (value comes from libdecnumber's DECIMAL128_String constant).  */
#define MAX_DECIMAL_STRING  43

/* In GDB, we are using an array of gdb_byte to represent decimal values.
   They are stored in host byte order.  This routine does the conversion if
   the target byte order is different.  */
static void
match_endianness (const gdb_byte *from, const struct type *type, gdb_byte *to)
{
  gdb_assert (type->code () == TYPE_CODE_DECFLOAT);

  int len = type->length ();
  int i;

#if WORDS_BIGENDIAN
#define OPPOSITE_BYTE_ORDER BFD_ENDIAN_LITTLE
#else
#define OPPOSITE_BYTE_ORDER BFD_ENDIAN_BIG
#endif

  if (type_byte_order (type) == OPPOSITE_BYTE_ORDER)
    for (i = 0; i < len; i++)
      to[i] = from[len - i - 1];
  else
    for (i = 0; i < len; i++)
      to[i] = from[i];

  return;
}

/* Helper function to get the appropriate libdecnumber context for each size
   of decimal float.  */
static void
set_decnumber_context (decContext *ctx, const struct type *type)
{
  gdb_assert (type->code () == TYPE_CODE_DECFLOAT);

  switch (type->length ())
    {
      case 4:
	decContextDefault (ctx, DEC_INIT_DECIMAL32);
	break;
      case 8:
	decContextDefault (ctx, DEC_INIT_DECIMAL64);
	break;
      case 16:
	decContextDefault (ctx, DEC_INIT_DECIMAL128);
	break;
    }

  ctx->traps = 0;
}

/* Check for errors signaled in the decimal context structure.  */
static void
decimal_check_errors (decContext *ctx)
{
  /* An error here could be a division by zero, an overflow, an underflow or
     an invalid operation (from the DEC_Errors constant in decContext.h).
     Since GDB doesn't complain about division by zero, overflow or underflow
     errors for binary floating, we won't complain about them for decimal
     floating either.  */
  if (ctx->status & DEC_IEEE_854_Invalid_operation)
    {
      /* Leave only the error bits in the status flags.  */
      ctx->status &= DEC_IEEE_854_Invalid_operation;
      error (_("Cannot perform operation: %s"),
	     decContextStatusToString (ctx));
    }
}

/* Helper function to convert from libdecnumber's appropriate representation
   for computation to each size of decimal float.  */
static void
decimal_from_number (const decNumber *from,
		     gdb_byte *to, const struct type *type)
{
  gdb_byte dec[16];

  decContext set;

  set_decnumber_context (&set, type);

  switch (type->length ())
    {
      case 4:
	decimal32FromNumber ((decimal32 *) dec, from, &set);
	break;
      case 8:
	decimal64FromNumber ((decimal64 *) dec, from, &set);
	break;
      case 16:
	decimal128FromNumber ((decimal128 *) dec, from, &set);
	break;
      default:
	error (_("Unknown decimal floating point type."));
	break;
    }

  match_endianness (dec, type, to);
}

/* Helper function to convert each size of decimal float to libdecnumber's
   appropriate representation for computation.  */
static void
decimal_to_number (const gdb_byte *addr, const struct type *type,
		   decNumber *to)
{
  gdb_byte dec[16];
  match_endianness (addr, type, dec);

  switch (type->length ())
    {
      case 4:
	decimal32ToNumber ((decimal32 *) dec, to);
	break;
      case 8:
	decimal64ToNumber ((decimal64 *) dec, to);
	break;
      case 16:
	decimal128ToNumber ((decimal128 *) dec, to);
	break;
      default:
	error (_("Unknown decimal floating point type."));
	break;
    }
}

/* Returns true if ADDR (which is of type TYPE) is the number zero.  */
static bool
decimal_is_zero (const gdb_byte *addr, const struct type *type)
{
  decNumber number;

  decimal_to_number (addr, type, &number);

  return decNumberIsZero (&number);
}


/* Implementation of target_float_ops using the libdecnumber decNumber type
   as intermediate format.  */

class decimal_float_ops : public target_float_ops
{
public:
  std::string to_string (const gdb_byte *addr, const struct type *type,
			 const char *format) const override;
  bool from_string (gdb_byte *addr, const struct type *type,
		    const std::string &string) const override;

  LONGEST to_longest (const gdb_byte *addr,
		      const struct type *type) const override;
  void from_longest (gdb_byte *addr, const struct type *type,
		     LONGEST val) const override;
  void from_ulongest (gdb_byte *addr, const struct type *type,
		      ULONGEST val) const override;
  double to_host_double (const gdb_byte *addr,
			 const struct type *type) const override
  {
    /* We don't support conversions between target decimal floating-point
       types and the host double type.  */
    gdb_assert_not_reached ("invalid operation on decimal float");
  }
  void from_host_double (gdb_byte *addr, const struct type *type,
			 double val) const override
  {
    /* We don't support conversions between target decimal floating-point
       types and the host double type.  */
    gdb_assert_not_reached ("invalid operation on decimal float");
  }
  void convert (const gdb_byte *from, const struct type *from_type,
		gdb_byte *to, const struct type *to_type) const override;

  void binop (enum exp_opcode opcode,
	      const gdb_byte *x, const struct type *type_x,
	      const gdb_byte *y, const struct type *type_y,
	      gdb_byte *res, const struct type *type_res) const override;
  int compare (const gdb_byte *x, const struct type *type_x,
	       const gdb_byte *y, const struct type *type_y) const override;
};

/* Convert decimal type to its string representation.  LEN is the length
   of the decimal type, 4 bytes for decimal32, 8 bytes for decimal64 and
   16 bytes for decimal128.  */
std::string
decimal_float_ops::to_string (const gdb_byte *addr, const struct type *type,
			      const char *format = nullptr) const
{
  gdb_byte dec[16];

  match_endianness (addr, type, dec);

  if (format != nullptr)
    {
      /* We don't handle format strings (yet).  If the host printf supports
	 decimal floating point types, just use this.  Otherwise, fall back
	 to printing the number while ignoring the format string.  */
#if defined (PRINTF_HAS_DECFLOAT)
      /* FIXME: This makes unwarranted assumptions about the host ABI!  */
      return string_printf (format, dec);
#endif
    }

  std::string result;
  result.resize (MAX_DECIMAL_STRING);

  switch (type->length ())
    {
      case 4:
	decimal32ToString ((decimal32 *) dec, &result[0]);
	break;
      case 8:
	decimal64ToString ((decimal64 *) dec, &result[0]);
	break;
      case 16:
	decimal128ToString ((decimal128 *) dec, &result[0]);
	break;
      default:
	error (_("Unknown decimal floating point type."));
	break;
    }

  return result;
}

/* Convert the string form of a decimal value to its decimal representation.
   LEN is the length of the decimal type, 4 bytes for decimal32, 8 bytes for
   decimal64 and 16 bytes for decimal128.  */
bool
decimal_float_ops::from_string (gdb_byte *addr, const struct type *type,
				const std::string &string) const
{
  decContext set;
  gdb_byte dec[16];

  set_decnumber_context (&set, type);

  switch (type->length ())
    {
      case 4:
	decimal32FromString ((decimal32 *) dec, string.c_str (), &set);
	break;
      case 8:
	decimal64FromString ((decimal64 *) dec, string.c_str (), &set);
	break;
      case 16:
	decimal128FromString ((decimal128 *) dec, string.c_str (), &set);
	break;
      default:
	error (_("Unknown decimal floating point type."));
	break;
    }

  match_endianness (dec, type, addr);

  /* Check for errors in the DFP operation.  */
  decimal_check_errors (&set);

  return true;
}

/* Converts a LONGEST to a decimal float of specified LEN bytes.  */
void
decimal_float_ops::from_longest (gdb_byte *addr, const struct type *type,
				 LONGEST from) const
{
  decNumber number;

  if ((int32_t) from != from)
    /* libdecnumber can convert only 32-bit integers.  */
    error (_("Conversion of large integer to a "
	     "decimal floating type is not supported."));

  decNumberFromInt32 (&number, (int32_t) from);

  decimal_from_number (&number, addr, type);
}

/* Converts a ULONGEST to a decimal float of specified LEN bytes.  */
void
decimal_float_ops::from_ulongest (gdb_byte *addr, const struct type *type,
				  ULONGEST from) const
{
  decNumber number;

  if ((uint32_t) from != from)
    /* libdecnumber can convert only 32-bit integers.  */
    error (_("Conversion of large integer to a "
	     "decimal floating type is not supported."));

  decNumberFromUInt32 (&number, (uint32_t) from);

  decimal_from_number (&number, addr, type);
}

/* Converts a decimal float of LEN bytes to a LONGEST.  */
LONGEST
decimal_float_ops::to_longest (const gdb_byte *addr,
			       const struct type *type) const
{
  /* libdecnumber has a function to convert from decimal to integer, but
     it doesn't work when the decimal number has a fractional part.  */
  std::string str = to_string (addr, type);
  return strtoll (str.c_str (), NULL, 10);
}

/* Perform operation OP with operands X and Y with sizes LEN_X and LEN_Y
   and byte orders BYTE_ORDER_X and BYTE_ORDER_Y, and store value in
   RESULT with size LEN_RESULT and byte order BYTE_ORDER_RESULT.  */
void
decimal_float_ops::binop (enum exp_opcode op,
			  const gdb_byte *x, const struct type *type_x,
			  const gdb_byte *y, const struct type *type_y,
			  gdb_byte *res, const struct type *type_res) const
{
  decContext set;
  decNumber number1, number2, number3;

  decimal_to_number (x, type_x, &number1);
  decimal_to_number (y, type_y, &number2);

  set_decnumber_context (&set, type_res);

  switch (op)
    {
      case BINOP_ADD:
	decNumberAdd (&number3, &number1, &number2, &set);
	break;
      case BINOP_SUB:
	decNumberSubtract (&number3, &number1, &number2, &set);
	break;
      case BINOP_MUL:
	decNumberMultiply (&number3, &number1, &number2, &set);
	break;
      case BINOP_DIV:
	decNumberDivide (&number3, &number1, &number2, &set);
	break;
      case BINOP_EXP:
	decNumberPower (&number3, &number1, &number2, &set);
	break;
     default:
	error (_("Operation not valid for decimal floating point number."));
	break;
    }

  /* Check for errors in the DFP operation.  */
  decimal_check_errors (&set);

  decimal_from_number (&number3, res, type_res);
}

/* Compares two numbers numerically.  If X is less than Y then the return value
   will be -1.  If they are equal, then the return value will be 0.  If X is
   greater than the Y then the return value will be 1.  */
int
decimal_float_ops::compare (const gdb_byte *x, const struct type *type_x,
			    const gdb_byte *y, const struct type *type_y) const
{
  decNumber number1, number2, result;
  decContext set;
  const struct type *type_result;

  decimal_to_number (x, type_x, &number1);
  decimal_to_number (y, type_y, &number2);

  /* Perform the comparison in the larger of the two sizes.  */
  type_result = type_x->length () > type_y->length () ? type_x : type_y;
  set_decnumber_context (&set, type_result);

  decNumberCompare (&result, &number1, &number2, &set);

  /* Check for errors in the DFP operation.  */
  decimal_check_errors (&set);

  if (decNumberIsNaN (&result))
    error (_("Comparison with an invalid number (NaN)."));
  else if (decNumberIsZero (&result))
    return 0;
  else if (decNumberIsNegative (&result))
    return -1;
  else
    return 1;
}

/* Convert a decimal value from a decimal type with LEN_FROM bytes to a
   decimal type with LEN_TO bytes.  */
void
decimal_float_ops::convert (const gdb_byte *from, const struct type *from_type,
			    gdb_byte *to, const struct type *to_type) const
{
  decNumber number;

  decimal_to_number (from, from_type, &number);
  decimal_from_number (&number, to, to_type);
}


/* Typed floating-point routines.  These routines operate on floating-point
   values in target format, represented by a byte buffer interpreted as a
   "struct type", which may be either a binary or decimal floating-point
   type (TYPE_CODE_FLT or TYPE_CODE_DECFLOAT).  */

/* Return whether TYPE1 and TYPE2 are of the same category (binary or
   decimal floating-point).  */
static bool
target_float_same_category_p (const struct type *type1,
			      const struct type *type2)
{
  return type1->code () == type2->code ();
}

/* Return whether TYPE1 and TYPE2 use the same floating-point format.  */
static bool
target_float_same_format_p (const struct type *type1,
			    const struct type *type2)
{
  if (!target_float_same_category_p (type1, type2))
    return false;

  switch (type1->code ())
    {
      case TYPE_CODE_FLT:
	return floatformat_from_type (type1) == floatformat_from_type (type2);

      case TYPE_CODE_DECFLOAT:
	return (type1->length () == type2->length ()
		&& (type_byte_order (type1)
		    == type_byte_order (type2)));

      default:
	gdb_assert_not_reached ("unexpected type code");
    }
}

/* Return the size (without padding) of the target floating-point
   format used by TYPE.  */
static int
target_float_format_length (const struct type *type)
{
  switch (type->code ())
    {
      case TYPE_CODE_FLT:
	return floatformat_totalsize_bytes (floatformat_from_type (type));

      case TYPE_CODE_DECFLOAT:
	return type->length ();

      default:
	gdb_assert_not_reached ("unexpected type code");
    }
}

/* Identifiers of available host-side intermediate formats.  These must
   be sorted so the that the more "general" kinds come later.  */
enum target_float_ops_kind
{
  /* Target binary floating-point formats that match a host format.  */
  host_float = 0,
  host_double,
  host_long_double,
  /* Any other target binary floating-point format.  */
  binary,
  /* Any target decimal floating-point format.  */
  decimal
};

/* Given a target type TYPE, choose the best host-side intermediate format
   to perform operations on TYPE in.  */
static enum target_float_ops_kind
get_target_float_ops_kind (const struct type *type)
{
  switch (type->code ())
    {
      case TYPE_CODE_FLT:
	{
	  const struct floatformat *fmt = floatformat_from_type (type);

	  /* Binary floating-point formats matching a host format.  */
	  if (fmt == host_float_format)
	    return target_float_ops_kind::host_float;
	  if (fmt == host_double_format)
	    return target_float_ops_kind::host_double;
	  if (fmt == host_long_double_format)
	    return target_float_ops_kind::host_long_double;

	  /* Any other binary floating-point format.  */
	  return target_float_ops_kind::binary;
	}

      case TYPE_CODE_DECFLOAT:
	{
	  /* Any decimal floating-point format.  */
	  return target_float_ops_kind::decimal;
	}

      default:
	gdb_assert_not_reached ("unexpected type code");
    }
}

/* Return target_float_ops to perform operations for KIND.  */
static const target_float_ops *
get_target_float_ops (enum target_float_ops_kind kind)
{
  switch (kind)
    {
      /* If the type format matches one of the host floating-point
	 types, use that type as intermediate format.  */
      case target_float_ops_kind::host_float:
	{
	  static host_float_ops<float> host_float_ops_float;
	  return &host_float_ops_float;
	}

      case target_float_ops_kind::host_double:
	{
	  static host_float_ops<double> host_float_ops_double;
	  return &host_float_ops_double;
	}

      case target_float_ops_kind::host_long_double:
	{
	  static host_float_ops<long double> host_float_ops_long_double;
	  return &host_float_ops_long_double;
	}

      /* For binary floating-point formats that do not match any host format,
	 use mpfr_t as intermediate format to provide precise target-floating
	 point emulation.  However, if the MPFR library is not available,
	 use the largest host floating-point type as intermediate format.  */
      case target_float_ops_kind::binary:
	{
	  static mpfr_float_ops binary_float_ops;
	  return &binary_float_ops;
	}

      /* For decimal floating-point types, always use the libdecnumber
	 decNumber type as intermediate format.  */
      case target_float_ops_kind::decimal:
	{
	  static decimal_float_ops decimal_float_ops;
	  return &decimal_float_ops;
	}

      default:
	gdb_assert_not_reached ("unexpected target_float_ops_kind");
    }
}

/* Given a target type TYPE, determine the best host-side intermediate format
   to perform operations on TYPE in.  */
static const target_float_ops *
get_target_float_ops (const struct type *type)
{
  enum target_float_ops_kind kind = get_target_float_ops_kind (type);
  return get_target_float_ops (kind);
}

/* The same for operations involving two target types TYPE1 and TYPE2.  */
static const target_float_ops *
get_target_float_ops (const struct type *type1, const struct type *type2)
{
  gdb_assert (type1->code () == type2->code ());

  enum target_float_ops_kind kind1 = get_target_float_ops_kind (type1);
  enum target_float_ops_kind kind2 = get_target_float_ops_kind (type2);

  /* Given the way the kinds are sorted, we simply choose the larger one;
     this will be able to hold values of either type.  */
  return get_target_float_ops (std::max (kind1, kind2));
}

/* Return whether the byte-stream ADDR holds a valid value of
   floating-point type TYPE.  */
bool
target_float_is_valid (const gdb_byte *addr, const struct type *type)
{
  if (type->code () == TYPE_CODE_FLT)
    return floatformat_is_valid (floatformat_from_type (type), addr);

  if (type->code () == TYPE_CODE_DECFLOAT)
    return true;

  gdb_assert_not_reached ("unexpected type code");
}

/* Return whether the byte-stream ADDR, interpreted as floating-point
   type TYPE, is numerically equal to zero (of either sign).  */
bool
target_float_is_zero (const gdb_byte *addr, const struct type *type)
{
  if (type->code () == TYPE_CODE_FLT)
    return (floatformat_classify (floatformat_from_type (type), addr)
	    == float_zero);

  if (type->code () == TYPE_CODE_DECFLOAT)
    return decimal_is_zero (addr, type);

  gdb_assert_not_reached ("unexpected type code");
}

/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
   to a string, optionally using the print format FORMAT.  */
std::string
target_float_to_string (const gdb_byte *addr, const struct type *type,
			const char *format)
{
  /* Unless we need to adhere to a specific format, provide special
     output for special cases of binary floating-point numbers.  */
  if (format == nullptr && type->code () == TYPE_CODE_FLT)
    {
      const struct floatformat *fmt = floatformat_from_type (type);

      /* Detect invalid representations.  */
      if (!floatformat_is_valid (fmt, addr))
	return "<invalid float value>";

      /* Handle NaN and Inf.  */
      enum float_kind kind = floatformat_classify (fmt, addr);
      if (kind == float_nan)
	{
	  const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
	  const char *mantissa = floatformat_mantissa (fmt, addr);
	  return string_printf ("%snan(0x%s)", sign, mantissa);
	}
      else if (kind == float_infinite)
	{
	  const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
	  return string_printf ("%sinf", sign);
	}
    }

  const target_float_ops *ops = get_target_float_ops (type);
  return ops->to_string (addr, type, format);
}

/* Parse string STRING into a target floating-number of type TYPE and
   store it as byte-stream ADDR.  Return whether parsing succeeded.  */
bool
target_float_from_string (gdb_byte *addr, const struct type *type,
			  const std::string &string)
{
  const target_float_ops *ops = get_target_float_ops (type);
  return ops->from_string (addr, type, string);
}

/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
   to an integer value (rounding towards zero).  */
LONGEST
target_float_to_longest (const gdb_byte *addr, const struct type *type)
{
  const target_float_ops *ops = get_target_float_ops (type);
  return ops->to_longest (addr, type);
}

/* Convert signed integer VAL to a target floating-number of type TYPE
   and store it as byte-stream ADDR.  */
void
target_float_from_longest (gdb_byte *addr, const struct type *type,
			   LONGEST val)
{
  const target_float_ops *ops = get_target_float_ops (type);
  ops->from_longest (addr, type, val);
}

/* Convert unsigned integer VAL to a target floating-number of type TYPE
   and store it as byte-stream ADDR.  */
void
target_float_from_ulongest (gdb_byte *addr, const struct type *type,
			    ULONGEST val)
{
  const target_float_ops *ops = get_target_float_ops (type);
  ops->from_ulongest (addr, type, val);
}

/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
   to a floating-point value in the host "double" format.  */
double
target_float_to_host_double (const gdb_byte *addr,
			     const struct type *type)
{
  const target_float_ops *ops = get_target_float_ops (type);
  return ops->to_host_double (addr, type);
}

/* Convert floating-point value VAL in the host "double" format to a target
   floating-number of type TYPE and store it as byte-stream ADDR.  */
void
target_float_from_host_double (gdb_byte *addr, const struct type *type,
			       double val)
{
  const target_float_ops *ops = get_target_float_ops (type);
  ops->from_host_double (addr, type, val);
}

/* Convert a floating-point number of type FROM_TYPE from the target
   byte-stream FROM to a floating-point number of type TO_TYPE, and
   store it to the target byte-stream TO.  */
void
target_float_convert (const gdb_byte *from, const struct type *from_type,
		      gdb_byte *to, const struct type *to_type)
{
  /* We cannot directly convert between binary and decimal floating-point
     types, so go via an intermediary string.  */
  if (!target_float_same_category_p (from_type, to_type))
    {
      std::string str = target_float_to_string (from, from_type);
      target_float_from_string (to, to_type, str);
      return;
    }

  /* Convert between two different formats in the same category.  */
  if (!target_float_same_format_p (from_type, to_type))
    {
      const target_float_ops *ops = get_target_float_ops (from_type, to_type);
      ops->convert (from, from_type, to, to_type);
      return;
    }

  /* The floating-point formats match, so we simply copy the data, ensuring
     possible padding bytes in the target buffer are zeroed out.  */
  memset (to, 0, to_type->length ());
  memcpy (to, from, target_float_format_length (to_type));
}

/* Perform the binary operation indicated by OPCODE, using as operands the
   target byte streams X and Y, interpreted as floating-point numbers of
   types TYPE_X and TYPE_Y, respectively.  Convert the result to type
   TYPE_RES and store it into the byte-stream RES.

   The three types must either be all binary floating-point types, or else
   all decimal floating-point types.  Binary and decimal floating-point
   types cannot be mixed within a single operation.  */
void
target_float_binop (enum exp_opcode opcode,
		    const gdb_byte *x, const struct type *type_x,
		    const gdb_byte *y, const struct type *type_y,
		    gdb_byte *res, const struct type *type_res)
{
  gdb_assert (target_float_same_category_p (type_x, type_res));
  gdb_assert (target_float_same_category_p (type_y, type_res));

  const target_float_ops *ops = get_target_float_ops (type_x, type_y);
  ops->binop (opcode, x, type_x, y, type_y, res, type_res);
}

/* Compare the two target byte streams X and Y, interpreted as floating-point
   numbers of types TYPE_X and TYPE_Y, respectively.  Return zero if X and Y
   are equal, -1 if X is less than Y, and 1 otherwise.

   The two types must either both be binary floating-point types, or else
   both be decimal floating-point types.  Binary and decimal floating-point
   types cannot compared directly against each other.  */
int
target_float_compare (const gdb_byte *x, const struct type *type_x,
		      const gdb_byte *y, const struct type *type_y)
{
  gdb_assert (target_float_same_category_p (type_x, type_y));

  const target_float_ops *ops = get_target_float_ops (type_x, type_y);
  return ops->compare (x, type_x, y, type_y);
}