summaryrefslogtreecommitdiff
path: root/gdb/solib-svr4.c
blob: 5a728939111a8865de873bce876750d0002aaa60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
/* Handle SVR4 shared libraries for GDB, the GNU Debugger.

   Copyright (C) 1990-2023 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"

#include "elf/external.h"
#include "elf/common.h"
#include "elf/mips.h"

#include "symtab.h"
#include "bfd.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbcore.h"
#include "target.h"
#include "inferior.h"
#include "infrun.h"
#include "regcache.h"
#include "gdbthread.h"
#include "observable.h"

#include "solist.h"
#include "solib.h"
#include "solib-svr4.h"

#include "bfd-target.h"
#include "elf-bfd.h"
#include "exec.h"
#include "auxv.h"
#include "gdb_bfd.h"
#include "probe.h"

#include <map>

static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
static int svr4_have_link_map_offsets (void);
static void svr4_relocate_main_executable (void);
static void svr4_free_library_list (so_list *solist);
static void probes_table_remove_objfile_probes (struct objfile *objfile);
static void svr4_iterate_over_objfiles_in_search_order
  (gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype cb,
   objfile *current_objfile);


/* On SVR4 systems, a list of symbols in the dynamic linker where
   GDB can try to place a breakpoint to monitor shared library
   events.

   If none of these symbols are found, or other errors occur, then
   SVR4 systems will fall back to using a symbol as the "startup
   mapping complete" breakpoint address.  */

static const char * const solib_break_names[] =
{
  "r_debug_state",
  "_r_debug_state",
  "_dl_debug_state",
  "rtld_db_dlactivity",
  "__dl_rtld_db_dlactivity",
  "_rtld_debug_state",

  NULL
};

static const char * const bkpt_names[] =
{
  "_start",
  "__start",
  "main",
  NULL
};

static const  char * const main_name_list[] =
{
  "main_$main",
  NULL
};

/* What to do when a probe stop occurs.  */

enum probe_action
{
  /* Something went seriously wrong.  Stop using probes and
     revert to using the older interface.  */
  PROBES_INTERFACE_FAILED,

  /* No action is required.  The shared object list is still
     valid.  */
  DO_NOTHING,

  /* The shared object list should be reloaded entirely.  */
  FULL_RELOAD,

  /* Attempt to incrementally update the shared object list. If
     the update fails or is not possible, fall back to reloading
     the list in full.  */
  UPDATE_OR_RELOAD,
};

/* A probe's name and its associated action.  */

struct probe_info
{
  /* The name of the probe.  */
  const char *name;

  /* What to do when a probe stop occurs.  */
  enum probe_action action;
};

/* A list of named probes and their associated actions.  If all
   probes are present in the dynamic linker then the probes-based
   interface will be used.  */

static const struct probe_info probe_info[] =
{
  { "init_start", DO_NOTHING },
  { "init_complete", FULL_RELOAD },
  { "map_start", DO_NOTHING },
  { "map_failed", DO_NOTHING },
  { "reloc_complete", UPDATE_OR_RELOAD },
  { "unmap_start", DO_NOTHING },
  { "unmap_complete", FULL_RELOAD },
};

#define NUM_PROBES ARRAY_SIZE (probe_info)

/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
   the same shared library.  */

static int
svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
{
  if (strcmp (gdb_so_name, inferior_so_name) == 0)
    return 1;

  /* On Solaris, when starting inferior we think that dynamic linker is
     /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
     contains /lib/ld.so.1.  Sometimes one file is a link to another, but
     sometimes they have identical content, but are not linked to each
     other.  We don't restrict this check for Solaris, but the chances
     of running into this situation elsewhere are very low.  */
  if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
      && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
    return 1;

  /* Similarly, we observed the same issue with amd64 and sparcv9, but with
     different locations.  */
  if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
      && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
    return 1;

  if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
      && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
    return 1;

  return 0;
}

static int
svr4_same (struct so_list *gdb, struct so_list *inferior)
{
  if (!svr4_same_1 (gdb->so_original_name, inferior->so_original_name))
    return false;

  /* There may be different instances of the same library, in different
     namespaces.  Each instance, however, must have been loaded at a
     different address so its relocation offset would be different.  */
  const lm_info_svr4 *lmg = (const lm_info_svr4 *) gdb->lm_info;
  const lm_info_svr4 *lmi = (const lm_info_svr4 *) inferior->lm_info;

  return (lmg->l_addr_inferior == lmi->l_addr_inferior);
}

static std::unique_ptr<lm_info_svr4>
lm_info_read (CORE_ADDR lm_addr)
{
  struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
  std::unique_ptr<lm_info_svr4> lm_info;

  gdb::byte_vector lm (lmo->link_map_size);

  if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
    warning (_("Error reading shared library list entry at %s"),
	     paddress (target_gdbarch (), lm_addr));
  else
    {
      struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;

      lm_info.reset (new lm_info_svr4);
      lm_info->lm_addr = lm_addr;

      lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
							ptr_type);
      lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
      lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
					       ptr_type);
      lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
					       ptr_type);
      lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
					       ptr_type);
    }

  return lm_info;
}

static int
has_lm_dynamic_from_link_map (void)
{
  struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();

  return lmo->l_ld_offset >= 0;
}

static CORE_ADDR
lm_addr_check (const struct so_list *so, bfd *abfd)
{
  lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;

  if (!li->l_addr_p)
    {
      struct bfd_section *dyninfo_sect;
      CORE_ADDR l_addr, l_dynaddr, dynaddr;

      l_addr = li->l_addr_inferior;

      if (! abfd || ! has_lm_dynamic_from_link_map ())
	goto set_addr;

      l_dynaddr = li->l_ld;

      dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
      if (dyninfo_sect == NULL)
	goto set_addr;

      dynaddr = bfd_section_vma (dyninfo_sect);

      if (dynaddr + l_addr != l_dynaddr)
	{
	  CORE_ADDR align = 0x1000;
	  CORE_ADDR minpagesize = align;

	  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
	    {
	      Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
	      Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
	      int i;

	      align = 1;

	      for (i = 0; i < ehdr->e_phnum; i++)
		if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
		  align = phdr[i].p_align;

	      minpagesize = get_elf_backend_data (abfd)->minpagesize;
	    }

	  /* Turn it into a mask.  */
	  align--;

	  /* If the changes match the alignment requirements, we
	     assume we're using a core file that was generated by the
	     same binary, just prelinked with a different base offset.
	     If it doesn't match, we may have a different binary, the
	     same binary with the dynamic table loaded at an unrelated
	     location, or anything, really.  To avoid regressions,
	     don't adjust the base offset in the latter case, although
	     odds are that, if things really changed, debugging won't
	     quite work.

	     One could expect more the condition
	       ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
	     but the one below is relaxed for PPC.  The PPC kernel supports
	     either 4k or 64k page sizes.  To be prepared for 64k pages,
	     PPC ELF files are built using an alignment requirement of 64k.
	     However, when running on a kernel supporting 4k pages, the memory
	     mapping of the library may not actually happen on a 64k boundary!

	     (In the usual case where (l_addr & align) == 0, this check is
	     equivalent to the possibly expected check above.)

	     Even on PPC it must be zero-aligned at least for MINPAGESIZE.  */

	  l_addr = l_dynaddr - dynaddr;

	  if ((l_addr & (minpagesize - 1)) == 0
	      && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
	    {
	      if (info_verbose)
		gdb_printf (_("Using PIC (Position Independent Code) "
			      "prelink displacement %s for \"%s\".\n"),
			    paddress (target_gdbarch (), l_addr),
			    so->so_name);
	    }
	  else
	    {
	      /* There is no way to verify the library file matches.  prelink
		 can during prelinking of an unprelinked file (or unprelinking
		 of a prelinked file) shift the DYNAMIC segment by arbitrary
		 offset without any page size alignment.  There is no way to
		 find out the ELF header and/or Program Headers for a limited
		 verification if it they match.  One could do a verification
		 of the DYNAMIC segment.  Still the found address is the best
		 one GDB could find.  */

	      warning (_(".dynamic section for \"%s\" "
			 "is not at the expected address "
			 "(wrong library or version mismatch?)"), so->so_name);
	    }
	}

    set_addr:
      li->l_addr = l_addr;
      li->l_addr_p = 1;
    }

  return li->l_addr;
}

/* Per pspace SVR4 specific data.  */

struct svr4_info
{
  svr4_info () = default;
  ~svr4_info ();

  /* Base of dynamic linker structures in default namespace.  */
  CORE_ADDR debug_base = 0;

  /* Validity flag for debug_loader_offset.  */
  int debug_loader_offset_p = 0;

  /* Load address for the dynamic linker, inferred.  */
  CORE_ADDR debug_loader_offset = 0;

  /* Name of the dynamic linker, valid if debug_loader_offset_p.  */
  char *debug_loader_name = nullptr;

  /* Load map address for the main executable in default namespace.  */
  CORE_ADDR main_lm_addr = 0;

  CORE_ADDR interp_text_sect_low = 0;
  CORE_ADDR interp_text_sect_high = 0;
  CORE_ADDR interp_plt_sect_low = 0;
  CORE_ADDR interp_plt_sect_high = 0;

  /* True if the list of objects was last obtained from the target
     via qXfer:libraries-svr4:read.  */
  bool using_xfer = false;

  /* Table of struct probe_and_action instances, used by the
     probes-based interface to map breakpoint addresses to probes
     and their associated actions.  Lookup is performed using
     probe_and_action->prob->address.  */
  htab_up probes_table;

  /* List of objects loaded into the inferior per namespace, used by the
     probes-based interface.

     The namespace is represented by the address of its corresponding
     r_debug[_ext] object.  We get the namespace id as agrument to the
     'reloc_complete' probe but we don't get it when scanning the load map
     on attach.

     The r_debug[_ext] objects may move when ld.so itself moves.  In that
     case, we expect also the global _r_debug to move so we can detect
     this and reload everything.  The r_debug[_ext] objects are not
     expected to move individually.

     The special entry zero is reserved for a linear list to support
     gdbstubs that do not support namespaces.  */
  std::map<CORE_ADDR, so_list *> solib_lists;
};

/* Per-program-space data key.  */
static const registry<program_space>::key<svr4_info> solib_svr4_pspace_data;

/* Return whether DEBUG_BASE is the default namespace of INFO.  */

static bool
svr4_is_default_namespace (const svr4_info *info, CORE_ADDR debug_base)
{
  return (debug_base == info->debug_base);
}

/* Free the probes table.  */

static void
free_probes_table (struct svr4_info *info)
{
  info->probes_table.reset (nullptr);
}

/* Free the solib lists for all namespaces.  */

static void
free_solib_lists (svr4_info *info)
{
  for (const std::pair<CORE_ADDR, so_list *> tuple
	 : info->solib_lists)
    svr4_free_library_list (tuple.second);

  info->solib_lists.clear ();
}

svr4_info::~svr4_info ()
{
  free_solib_lists (this);
}

/* Get the svr4 data for program space PSPACE.  If none is found yet, add it now.
   This function always returns a valid object.  */

static struct svr4_info *
get_svr4_info (program_space *pspace)
{
  struct svr4_info *info = solib_svr4_pspace_data.get (pspace);

  if (info == NULL)
    info = solib_svr4_pspace_data.emplace (pspace);

  return info;
}

/* Local function prototypes */

static int match_main (const char *);

/* Read program header TYPE from inferior memory.  The header is found
   by scanning the OS auxiliary vector.

   If TYPE == -1, return the program headers instead of the contents of
   one program header.

   Return vector of bytes holding the program header contents, or an empty
   optional on failure.  If successful and P_ARCH_SIZE is non-NULL, the target
   architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE.  Likewise,
   the base address of the section is returned in *BASE_ADDR.  */

static gdb::optional<gdb::byte_vector>
read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
  CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
  int arch_size, sect_size;
  CORE_ADDR sect_addr;
  int pt_phdr_p = 0;

  /* Get required auxv elements from target.  */
  if (target_auxv_search (AT_PHDR, &at_phdr) <= 0)
    return {};
  if (target_auxv_search (AT_PHENT, &at_phent) <= 0)
    return {};
  if (target_auxv_search (AT_PHNUM, &at_phnum) <= 0)
    return {};
  if (!at_phdr || !at_phnum)
    return {};

  /* Determine ELF architecture type.  */
  if (at_phent == sizeof (Elf32_External_Phdr))
    arch_size = 32;
  else if (at_phent == sizeof (Elf64_External_Phdr))
    arch_size = 64;
  else
    return {};

  /* Find the requested segment.  */
  if (type == -1)
    {
      sect_addr = at_phdr;
      sect_size = at_phent * at_phnum;
    }
  else if (arch_size == 32)
    {
      Elf32_External_Phdr phdr;
      int i;

      /* Search for requested PHDR.  */
      for (i = 0; i < at_phnum; i++)
	{
	  int p_type;

	  if (target_read_memory (at_phdr + i * sizeof (phdr),
				  (gdb_byte *)&phdr, sizeof (phdr)))
	    return {};

	  p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
					     4, byte_order);

	  if (p_type == PT_PHDR)
	    {
	      pt_phdr_p = 1;
	      pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
						  4, byte_order);
	    }

	  if (p_type == type)
	    break;
	}

      if (i == at_phnum)
	return {};

      /* Retrieve address and size.  */
      sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
					    4, byte_order);
      sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
					    4, byte_order);
    }
  else
    {
      Elf64_External_Phdr phdr;
      int i;

      /* Search for requested PHDR.  */
      for (i = 0; i < at_phnum; i++)
	{
	  int p_type;

	  if (target_read_memory (at_phdr + i * sizeof (phdr),
				  (gdb_byte *)&phdr, sizeof (phdr)))
	    return {};

	  p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
					     4, byte_order);

	  if (p_type == PT_PHDR)
	    {
	      pt_phdr_p = 1;
	      pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
						  8, byte_order);
	    }

	  if (p_type == type)
	    break;
	}

      if (i == at_phnum)
	return {};

      /* Retrieve address and size.  */
      sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
					    8, byte_order);
      sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
					    8, byte_order);
    }

  /* PT_PHDR is optional, but we really need it
     for PIE to make this work in general.  */

  if (pt_phdr_p)
    {
      /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
	 Relocation offset is the difference between the two. */
      sect_addr = sect_addr + (at_phdr - pt_phdr);
    }

  /* Read in requested program header.  */
  gdb::byte_vector buf (sect_size);
  if (target_read_memory (sect_addr, buf.data (), sect_size))
    return {};

  if (p_arch_size)
    *p_arch_size = arch_size;
  if (base_addr)
    *base_addr = sect_addr;

  return buf;
}


/* Return program interpreter string.  */
static gdb::optional<gdb::byte_vector>
find_program_interpreter (void)
{
  /* If we have a current exec_bfd, use its section table.  */
  if (current_program_space->exec_bfd ()
      && (bfd_get_flavour (current_program_space->exec_bfd ())
	  == bfd_target_elf_flavour))
   {
     struct bfd_section *interp_sect;

     interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
					    ".interp");
     if (interp_sect != NULL)
      {
	int sect_size = bfd_section_size (interp_sect);

	gdb::byte_vector buf (sect_size);
	bool res
	  = bfd_get_section_contents (current_program_space->exec_bfd (),
				      interp_sect, buf.data (), 0, sect_size);
	if (res)
	  return buf;
      }
   }

  /* If we didn't find it, use the target auxiliary vector.  */
  return read_program_header (PT_INTERP, NULL, NULL);
}


/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
   found by consulting the OS auxillary vector.  If DESIRED_DYNTAG is found, 1
   is returned and the corresponding PTR is set.  */

static int
scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
		  CORE_ADDR *ptr_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
  int arch_size, step;
  long current_dyntag;
  CORE_ADDR dyn_ptr;
  CORE_ADDR base_addr;

  /* Read in .dynamic section.  */
  gdb::optional<gdb::byte_vector> ph_data
    = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
  if (!ph_data)
    return 0;

  /* Iterate over BUF and scan for DYNTAG.  If found, set PTR and return.  */
  step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
			   : sizeof (Elf64_External_Dyn);
  for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
       buf < bufend; buf += step)
  {
    if (arch_size == 32)
      {
	Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;

	current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
					    4, byte_order);
	dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
					    4, byte_order);
      }
    else
      {
	Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;

	current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
					    8, byte_order);
	dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
					    8, byte_order);
      }
    if (current_dyntag == DT_NULL)
      break;

    if (current_dyntag == desired_dyntag)
      {
	if (ptr)
	  *ptr = dyn_ptr;

	if (ptr_addr)
	  *ptr_addr = base_addr + buf - ph_data->data ();

	return 1;
      }
  }

  return 0;
}

/* Locate the base address of dynamic linker structs for SVR4 elf
   targets.

   For SVR4 elf targets the address of the dynamic linker's runtime
   structure is contained within the dynamic info section in the
   executable file.  The dynamic section is also mapped into the
   inferior address space.  Because the runtime loader fills in the
   real address before starting the inferior, we have to read in the
   dynamic info section from the inferior address space.
   If there are any errors while trying to find the address, we
   silently return 0, otherwise the found address is returned.  */

static CORE_ADDR
elf_locate_base (void)
{
  struct bound_minimal_symbol msymbol;
  CORE_ADDR dyn_ptr, dyn_ptr_addr;

  if (!svr4_have_link_map_offsets ())
    return 0;

  /* Look for DT_MIPS_RLD_MAP first.  MIPS executables use this
     instead of DT_DEBUG, although they sometimes contain an unused
     DT_DEBUG.  */
  if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP,
			       current_program_space->exec_bfd (),
			       &dyn_ptr, NULL)
      || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
    {
      struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
      gdb_byte *pbuf;
      int pbuf_size = ptr_type->length ();

      pbuf = (gdb_byte *) alloca (pbuf_size);
      /* DT_MIPS_RLD_MAP contains a pointer to the address
	 of the dynamic link structure.  */
      if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
	return 0;
      return extract_typed_address (pbuf, ptr_type);
    }

  /* Then check DT_MIPS_RLD_MAP_REL.  MIPS executables now use this form
     because of needing to support PIE.  DT_MIPS_RLD_MAP will also exist
     in non-PIE.  */
  if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP_REL,
			       current_program_space->exec_bfd (),
			       &dyn_ptr, &dyn_ptr_addr)
      || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
    {
      struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
      gdb_byte *pbuf;
      int pbuf_size = ptr_type->length ();

      pbuf = (gdb_byte *) alloca (pbuf_size);
      /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
	 DT slot to the address of the dynamic link structure.  */
      if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
	return 0;
      return extract_typed_address (pbuf, ptr_type);
    }

  /* Find DT_DEBUG.  */
  if (gdb_bfd_scan_elf_dyntag (DT_DEBUG, current_program_space->exec_bfd (),
			       &dyn_ptr, NULL)
      || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
    return dyn_ptr;

  /* This may be a static executable.  Look for the symbol
     conventionally named _r_debug, as a last resort.  */
  msymbol = lookup_minimal_symbol ("_r_debug", NULL,
				   current_program_space->symfile_object_file);
  if (msymbol.minsym != NULL)
    return msymbol.value_address ();

  /* DT_DEBUG entry not found.  */
  return 0;
}

/* Find the first element in the inferior's dynamic link map, and
   return its address in the inferior.  Return zero if the address
   could not be determined.

   FIXME: Perhaps we should validate the info somehow, perhaps by
   checking r_version for a known version number, or r_state for
   RT_CONSISTENT.  */

static CORE_ADDR
solib_svr4_r_map (CORE_ADDR debug_base)
{
  struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
  struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
  CORE_ADDR addr = 0;

  try
    {
      addr = read_memory_typed_address (debug_base + lmo->r_map_offset,
					ptr_type);
    }
  catch (const gdb_exception_error &ex)
    {
      exception_print (gdb_stderr, ex);
    }

  return addr;
}

/* Find r_brk from the inferior's debug base.  */

static CORE_ADDR
solib_svr4_r_brk (struct svr4_info *info)
{
  struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
  struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;

  return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
				    ptr_type);
}

/* Find the link map for the dynamic linker (if it is not in the
   normal list of loaded shared objects).  */

static CORE_ADDR
solib_svr4_r_ldsomap (struct svr4_info *info)
{
  struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
  struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
  enum bfd_endian byte_order = type_byte_order (ptr_type);
  ULONGEST version = 0;

  try
    {
      /* Check version, and return zero if `struct r_debug' doesn't have
	 the r_ldsomap member.  */
      version
	= read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
					lmo->r_version_size, byte_order);
    }
  catch (const gdb_exception_error &ex)
    {
      exception_print (gdb_stderr, ex);
    }

  if (version < 2 || lmo->r_ldsomap_offset == -1)
    return 0;

  return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
				    ptr_type);
}

/* Find the next namespace from the r_next field.  */

static CORE_ADDR
solib_svr4_r_next (CORE_ADDR debug_base)
{
  link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
  type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
  bfd_endian byte_order = type_byte_order (ptr_type);
  ULONGEST version = 0;

  try
    {
      version
	= read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
					lmo->r_version_size, byte_order);
    }
  catch (const gdb_exception_error &ex)
    {
      exception_print (gdb_stderr, ex);
    }

  /* The r_next field is added with r_version == 2.  */
  if (version < 2 || lmo->r_next_offset == -1)
    return 0;

  return read_memory_typed_address (debug_base + lmo->r_next_offset,
				    ptr_type);
}

/* On Solaris systems with some versions of the dynamic linker,
   ld.so's l_name pointer points to the SONAME in the string table
   rather than into writable memory.  So that GDB can find shared
   libraries when loading a core file generated by gcore, ensure that
   memory areas containing the l_name string are saved in the core
   file.  */

static int
svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
{
  struct svr4_info *info;
  CORE_ADDR ldsomap;
  CORE_ADDR name_lm;

  info = get_svr4_info (current_program_space);

  info->debug_base = elf_locate_base ();
  if (info->debug_base == 0)
    return 0;

  ldsomap = solib_svr4_r_ldsomap (info);
  if (!ldsomap)
    return 0;

  std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
  name_lm = li != NULL ? li->l_name : 0;

  return (name_lm >= vaddr && name_lm < vaddr + size);
}

/* See solist.h.  */

static int
open_symbol_file_object (int from_tty)
{
  CORE_ADDR lm, l_name;
  struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
  struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
  int l_name_size = ptr_type->length ();
  gdb::byte_vector l_name_buf (l_name_size);
  struct svr4_info *info = get_svr4_info (current_program_space);
  symfile_add_flags add_flags = 0;

  if (from_tty)
    add_flags |= SYMFILE_VERBOSE;

  if (current_program_space->symfile_object_file)
    if (!query (_("Attempt to reload symbols from process? ")))
      return 0;

  /* Always locate the debug struct, in case it has moved.  */
  info->debug_base = elf_locate_base ();
  if (info->debug_base == 0)
    return 0;	/* failed somehow...  */

  /* First link map member should be the executable.  */
  lm = solib_svr4_r_map (info->debug_base);
  if (lm == 0)
    return 0;	/* failed somehow...  */

  /* Read address of name from target memory to GDB.  */
  read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);

  /* Convert the address to host format.  */
  l_name = extract_typed_address (l_name_buf.data (), ptr_type);

  if (l_name == 0)
    return 0;		/* No filename.  */

  /* Now fetch the filename from target memory.  */
  gdb::unique_xmalloc_ptr<char> filename
    = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);

  if (filename == nullptr)
    {
      warning (_("failed to read exec filename from attached file"));
      return 0;
    }

  /* Have a pathname: read the symbol file.  */
  symbol_file_add_main (filename.get (), add_flags);

  return 1;
}

/* Data exchange structure for the XML parser as returned by
   svr4_current_sos_via_xfer_libraries.  */

struct svr4_library_list
{
  /* The tail pointer of the current namespace.  This is internal to XML
     parsing.  */
  so_list **tailp;

  /* Inferior address of struct link_map used for the main executable.  It is
     NULL if not known.  */
  CORE_ADDR main_lm;

  /* List of objects loaded into the inferior per namespace.  This does
     not include any default sos.

     See comment on struct svr4_info.solib_lists.  */
  std::map<CORE_ADDR, so_list *> solib_lists;
};

/* This module's 'free_objfile' observer.  */

static void
svr4_free_objfile_observer (struct objfile *objfile)
{
  probes_table_remove_objfile_probes (objfile);
}

/* Implementation for target_so_ops.free_so.  */

static void
svr4_free_so (struct so_list *so)
{
  lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;

  delete li;
}

/* Implement target_so_ops.clear_so.  */

static void
svr4_clear_so (struct so_list *so)
{
  lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;

  if (li != NULL)
    li->l_addr_p = 0;
}

/* Free so_list built so far.  */

static void
svr4_free_library_list (so_list *list)
{
  while (list != NULL)
    {
      struct so_list *next = list->next;

      free_so (list);
      list = next;
    }
}

/* Copy library list.  */

static struct so_list *
svr4_copy_library_list (struct so_list *src)
{
  struct so_list *dst = NULL;
  struct so_list **link = &dst;

  while (src != NULL)
    {
      struct so_list *newobj;

      newobj = XNEW (struct so_list);
      memcpy (newobj, src, sizeof (struct so_list));

      lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
      newobj->lm_info = new lm_info_svr4 (*src_li);

      newobj->next = NULL;
      *link = newobj;
      link = &newobj->next;

      src = src->next;
    }

  return dst;
}

#ifdef HAVE_LIBEXPAT

#include "xml-support.h"

/* Handle the start of a <library> element.  Note: new elements are added
   at the tail of the list, keeping the list in order.  */

static void
library_list_start_library (struct gdb_xml_parser *parser,
			    const struct gdb_xml_element *element,
			    void *user_data,
			    std::vector<gdb_xml_value> &attributes)
{
  struct svr4_library_list *list = (struct svr4_library_list *) user_data;
  const char *name
    = (const char *) xml_find_attribute (attributes, "name")->value.get ();
  ULONGEST *lmp
    = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
  ULONGEST *l_addrp
    = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
  ULONGEST *l_ldp
    = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
  struct so_list *new_elem;

  new_elem = XCNEW (struct so_list);
  lm_info_svr4 *li = new lm_info_svr4;
  new_elem->lm_info = li;
  li->lm_addr = *lmp;
  li->l_addr_inferior = *l_addrp;
  li->l_ld = *l_ldp;

  strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
  new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
  strcpy (new_elem->so_original_name, new_elem->so_name);

  /* Older versions did not supply lmid.  Put the element into the flat
     list of the special namespace zero in that case.  */
  gdb_xml_value *at_lmid = xml_find_attribute (attributes, "lmid");
  if (at_lmid == nullptr)
    {
      *list->tailp = new_elem;
      list->tailp = &new_elem->next;
    }
  else
    {
      ULONGEST lmid = *(ULONGEST *) at_lmid->value.get ();

      /* Ensure that the element is actually initialized.  */
      if (list->solib_lists.find (lmid) == list->solib_lists.end ())
	list->solib_lists[lmid] = nullptr;

      so_list **psolist = &list->solib_lists[lmid];
      so_list **pnext = psolist;

      /* Walk to the end of the list if we have one.  */
      so_list *solist = *psolist;
      if (solist != nullptr)
	{
	  for (; solist->next != nullptr; solist = solist->next)
	    /* Nothing.  */;

	  pnext = &solist->next;
	}

      *pnext = new_elem;
    }
}

/* Handle the start of a <library-list-svr4> element.  */

static void
svr4_library_list_start_list (struct gdb_xml_parser *parser,
			      const struct gdb_xml_element *element,
			      void *user_data,
			      std::vector<gdb_xml_value> &attributes)
{
  struct svr4_library_list *list = (struct svr4_library_list *) user_data;
  const char *version
    = (const char *) xml_find_attribute (attributes, "version")->value.get ();
  struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");

  if (strcmp (version, "1.0") != 0)
    gdb_xml_error (parser,
		   _("SVR4 Library list has unsupported version \"%s\""),
		   version);

  if (main_lm)
    list->main_lm = *(ULONGEST *) main_lm->value.get ();

  /* Older gdbserver do not support namespaces.  We use the special
     namespace zero for a linear list of libraries.  */
  so_list **solist = &list->solib_lists[0];
  *solist = nullptr;
  list->tailp = solist;
}

/* The allowed elements and attributes for an XML library list.
   The root element is a <library-list>.  */

static const struct gdb_xml_attribute svr4_library_attributes[] =
{
  { "name", GDB_XML_AF_NONE, NULL, NULL },
  { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
  { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
  { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
  { "lmid", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
  { NULL, GDB_XML_AF_NONE, NULL, NULL }
};

static const struct gdb_xml_element svr4_library_list_children[] =
{
  {
    "library", svr4_library_attributes, NULL,
    GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
    library_list_start_library, NULL
  },
  { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
};

static const struct gdb_xml_attribute svr4_library_list_attributes[] =
{
  { "version", GDB_XML_AF_NONE, NULL, NULL },
  { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
  { NULL, GDB_XML_AF_NONE, NULL, NULL }
};

static const struct gdb_xml_element svr4_library_list_elements[] =
{
  { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
    GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
  { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
};

/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN.  Return 1 if

   Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
   case.  Return 1 if *SO_LIST_RETURN contains the library list, it may be
   empty, caller is responsible for freeing all its entries.  */

static int
svr4_parse_libraries (const char *document, struct svr4_library_list *list)
{
  auto cleanup = make_scope_exit ([list] ()
    {
      for (const std::pair<CORE_ADDR, so_list *> tuple
	     : list->solib_lists)
	svr4_free_library_list (tuple.second);
    });

  list->tailp = nullptr;
  list->main_lm = 0;
  list->solib_lists.clear ();
  if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
			   svr4_library_list_elements, document, list) == 0)
    {
      /* Parsed successfully, keep the result.  */
      cleanup.release ();
      return 1;
    }

  return 0;
}

/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.

   Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
   case.  Return 1 if *SO_LIST_RETURN contains the library list, it may be
   empty, caller is responsible for freeing all its entries.

   Note that ANNEX must be NULL if the remote does not explicitly allow
   qXfer:libraries-svr4:read packets with non-empty annexes.  Support for
   this can be checked using target_augmented_libraries_svr4_read ().  */

static int
svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
				     const char *annex)
{
  gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());

  /* Fetch the list of shared libraries.  */
  gdb::optional<gdb::char_vector> svr4_library_document
    = target_read_stralloc (current_inferior ()->top_target (),
			    TARGET_OBJECT_LIBRARIES_SVR4,
			    annex);
  if (!svr4_library_document)
    return 0;

  return svr4_parse_libraries (svr4_library_document->data (), list);
}

#else

static int
svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
				     const char *annex)
{
  return 0;
}

#endif

/* If no shared library information is available from the dynamic
   linker, build a fallback list from other sources.  */

static struct so_list *
svr4_default_sos (svr4_info *info)
{
  struct so_list *newobj;

  if (!info->debug_loader_offset_p)
    return NULL;

  newobj = XCNEW (struct so_list);
  lm_info_svr4 *li = new lm_info_svr4;
  newobj->lm_info = li;

  /* Nothing will ever check the other fields if we set l_addr_p.  */
  li->l_addr = li->l_addr_inferior = info->debug_loader_offset;
  li->l_addr_p = 1;

  strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
  newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
  strcpy (newobj->so_original_name, newobj->so_name);

  return newobj;
}

/* Read the whole inferior libraries chain starting at address LM.
   Expect the first entry in the chain's previous entry to be PREV_LM.
   Add the entries to the tail referenced by LINK_PTR_PTR.  Ignore the
   first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
   to it.  Returns nonzero upon success.  If zero is returned the
   entries stored to LINK_PTR_PTR are still valid although they may
   represent only part of the inferior library list.  */

static int
svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
		   struct so_list ***link_ptr_ptr, int ignore_first)
{
  CORE_ADDR first_l_name = 0;
  CORE_ADDR next_lm;

  for (; lm != 0; prev_lm = lm, lm = next_lm)
    {
      so_list_up newobj (XCNEW (struct so_list));

      lm_info_svr4 *li = lm_info_read (lm).release ();
      newobj->lm_info = li;
      if (li == NULL)
	return 0;

      next_lm = li->l_next;

      if (li->l_prev != prev_lm)
	{
	  warning (_("Corrupted shared library list: %s != %s"),
		   paddress (target_gdbarch (), prev_lm),
		   paddress (target_gdbarch (), li->l_prev));
	  return 0;
	}

      /* For SVR4 versions, the first entry in the link map is for the
	 inferior executable, so we must ignore it.  For some versions of
	 SVR4, it has no name.  For others (Solaris 2.3 for example), it
	 does have a name, so we can no longer use a missing name to
	 decide when to ignore it.  */
      if (ignore_first && li->l_prev == 0)
	{
	  first_l_name = li->l_name;
	  info->main_lm_addr = li->lm_addr;
	  continue;
	}

      /* Extract this shared object's name.  */
      gdb::unique_xmalloc_ptr<char> buffer
	= target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
      if (buffer == nullptr)
	{
	  /* If this entry's l_name address matches that of the
	     inferior executable, then this is not a normal shared
	     object, but (most likely) a vDSO.  In this case, silently
	     skip it; otherwise emit a warning. */
	  if (first_l_name == 0 || li->l_name != first_l_name)
	    warning (_("Can't read pathname for load map."));
	  continue;
	}

      strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
      newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
      strcpy (newobj->so_original_name, newobj->so_name);

      /* If this entry has no name, or its name matches the name
	 for the main executable, don't include it in the list.  */
      if (! newobj->so_name[0] || match_main (newobj->so_name))
	continue;

      newobj->next = 0;
      /* Don't free it now.  */
      **link_ptr_ptr = newobj.release ();
      *link_ptr_ptr = &(**link_ptr_ptr)->next;
    }

  return 1;
}

/* Read the full list of currently loaded shared objects directly
   from the inferior, without referring to any libraries read and
   stored by the probes interface.  Handle special cases relating
   to the first elements of the list in default namespace.  */

static void
svr4_current_sos_direct (struct svr4_info *info)
{
  CORE_ADDR lm;
  bool ignore_first;
  struct svr4_library_list library_list;

  /* Remove any old libraries.  We're going to read them back in again.  */
  free_solib_lists (info);

  /* Fall back to manual examination of the target if the packet is not
     supported or gdbserver failed to find DT_DEBUG.  gdb.server/solib-list.exp
     tests a case where gdbserver cannot find the shared libraries list while
     GDB itself is able to find it via SYMFILE_OBJFILE.

     Unfortunately statically linked inferiors will also fall back through this
     suboptimal code path.  */

  info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
							  NULL);
  if (info->using_xfer)
    {
      if (library_list.main_lm)
	info->main_lm_addr = library_list.main_lm;

      /* Remove an empty special zero namespace so we know that when there
	 is one, it is actually used, and we have a flat list without
	 namespace information.  */
      if ((library_list.solib_lists.find (0)
	   != library_list.solib_lists.end ())
	  && (library_list.solib_lists[0] == nullptr))
	library_list.solib_lists.erase (0);

      /* Replace the (empty) solib_lists in INFO with the one generated
	 from the target.  We don't want to copy it on assignment and then
	 delete the original afterwards, so let's just swap the
	 internals.  */
      std::swap (info->solib_lists, library_list.solib_lists);
      return;
    }

  /* If we can't find the dynamic linker's base structure, this
     must not be a dynamically linked executable.  Hmm.  */
  info->debug_base = elf_locate_base ();
  if (info->debug_base == 0)
    return;

  /* Assume that everything is a library if the dynamic loader was loaded
     late by a static executable.  */
  if (current_program_space->exec_bfd ()
      && bfd_get_section_by_name (current_program_space->exec_bfd (),
				  ".dynamic") == NULL)
    ignore_first = false;
  else
    ignore_first = true;

  auto cleanup = make_scope_exit ([info] ()
    {
      free_solib_lists (info);
    });

  /* Collect the sos in each namespace.  */
  CORE_ADDR debug_base = info->debug_base;
  for (; debug_base != 0;
       ignore_first = false, debug_base = solib_svr4_r_next (debug_base))
    {
      /* Walk the inferior's link map list, and build our so_list list.  */
      lm = solib_svr4_r_map (debug_base);
      if (lm != 0)
	{
	  so_list **sos = &info->solib_lists[debug_base];
	  *sos = nullptr;

	  svr4_read_so_list (info, lm, 0, &sos, ignore_first);
	}
    }

  /* On Solaris, the dynamic linker is not in the normal list of
     shared objects, so make sure we pick it up too.  Having
     symbol information for the dynamic linker is quite crucial
     for skipping dynamic linker resolver code.

     Note that we interpret the ldsomap load map address as 'virtual'
     r_debug object.  If we added it to the default namespace (as it was),
     we would probably run into inconsistencies with the load map's
     prev/next links (I wonder if we did).  */
  debug_base = solib_svr4_r_ldsomap (info);
  if (debug_base != 0)
    {
      /* Add the dynamic linker's namespace unless we already did.  */
      if (info->solib_lists.find (debug_base) == info->solib_lists.end ())
	{
	  so_list **sos = &info->solib_lists[debug_base];
	  *sos = nullptr;
	  svr4_read_so_list (info, debug_base, 0, &sos, 0);
	}
    }

  cleanup.release ();
}

/* Collect sos read and stored by the probes interface.  */

static so_list *
svr4_collect_probes_sos (svr4_info *info)
{
  so_list *sos = nullptr;
  so_list **pnext = &sos;

  for (const std::pair<CORE_ADDR, so_list *> tuple
	 : info->solib_lists)
    {
      so_list *solist = tuple.second;

      /* Allow the linker to report empty namespaces.  */
      if (solist == nullptr)
	continue;

      *pnext = svr4_copy_library_list (solist);

      /* Update PNEXT to point to the next member of the last element.  */
      gdb_assert (*pnext != nullptr);
      for (;;)
	{
	  so_list *next = *pnext;
	  if (next == nullptr)
	    break;

	  pnext = &next->next;
	}
    }

  return sos;
}

/* Implement the main part of the "current_sos" target_so_ops
   method.  */

static struct so_list *
svr4_current_sos_1 (svr4_info *info)
{
  so_list *sos = nullptr;

  /* If we're using the probes interface, we can use the cache as it will
     be maintained by probe update/reload actions.  */
  if (info->probes_table != nullptr)
    sos = svr4_collect_probes_sos (info);

  /* If we're not using the probes interface or if we didn't cache
     anything, read the sos to fill the cache, then collect them from the
     cache.  */
  if (sos == nullptr)
    {
      svr4_current_sos_direct (info);

      sos = svr4_collect_probes_sos (info);
      if (sos == nullptr)
	sos = svr4_default_sos (info);
    }

  return sos;
}

/* Implement the "current_sos" target_so_ops method.  */

static struct so_list *
svr4_current_sos (void)
{
  svr4_info *info = get_svr4_info (current_program_space);
  struct so_list *so_head = svr4_current_sos_1 (info);
  struct mem_range vsyscall_range;

  /* Filter out the vDSO module, if present.  Its symbol file would
     not be found on disk.  The vDSO/vsyscall's OBJFILE is instead
     managed by symfile-mem.c:add_vsyscall_page.  */
  if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
      && vsyscall_range.length != 0)
    {
      struct so_list **sop;

      sop = &so_head;
      while (*sop != NULL)
	{
	  struct so_list *so = *sop;

	  /* We can't simply match the vDSO by starting address alone,
	     because lm_info->l_addr_inferior (and also l_addr) do not
	     necessarily represent the real starting address of the
	     ELF if the vDSO's ELF itself is "prelinked".  The l_ld
	     field (the ".dynamic" section of the shared object)
	     always points at the absolute/resolved address though.
	     So check whether that address is inside the vDSO's
	     mapping instead.

	     E.g., on Linux 3.16 (x86_64) the vDSO is a regular
	     0-based ELF, and we see:

	      (gdb) info auxv
	      33  AT_SYSINFO_EHDR  System-supplied DSO's ELF header 0x7ffff7ffb000
	      (gdb)  p/x *_r_debug.r_map.l_next
	      $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}

	     And on Linux 2.6.32 (x86_64) we see:

	      (gdb) info auxv
	      33  AT_SYSINFO_EHDR  System-supplied DSO's ELF header 0x7ffff7ffe000
	      (gdb) p/x *_r_debug.r_map.l_next
	      $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }

	     Dumping that vDSO shows:

	      (gdb) info proc mappings
	      0x7ffff7ffe000  0x7ffff7fff000  0x1000  0  [vdso]
	      (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
	      # readelf -Wa vdso.bin
	      [...]
		Entry point address: 0xffffffffff700700
	      [...]
	      Section Headers:
		[Nr] Name     Type    Address	       Off    Size
		[ 0]	      NULL    0000000000000000 000000 000000
		[ 1] .hash    HASH    ffffffffff700120 000120 000038
		[ 2] .dynsym  DYNSYM  ffffffffff700158 000158 0000d8
	      [...]
		[ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
	  */

	  lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;

	  if (address_in_mem_range (li->l_ld, &vsyscall_range))
	    {
	      *sop = so->next;
	      free_so (so);
	      break;
	    }

	  sop = &so->next;
	}
    }

  return so_head;
}

/* Get the address of the link_map for a given OBJFILE.  */

CORE_ADDR
svr4_fetch_objfile_link_map (struct objfile *objfile)
{
  struct svr4_info *info = get_svr4_info (objfile->pspace);

  /* Cause svr4_current_sos() to be run if it hasn't been already.  */
  if (info->main_lm_addr == 0)
    solib_add (NULL, 0, auto_solib_add);

  /* svr4_current_sos() will set main_lm_addr for the main executable.  */
  if (objfile == current_program_space->symfile_object_file)
    return info->main_lm_addr;

  /* The other link map addresses may be found by examining the list
     of shared libraries.  */
  for (struct so_list *so : current_program_space->solibs ())
    if (so->objfile == objfile)
      {
	lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;

	return li->lm_addr;
      }

  /* Not found!  */
  return 0;
}

/* On some systems, the only way to recognize the link map entry for
   the main executable file is by looking at its name.  Return
   non-zero iff SONAME matches one of the known main executable names.  */

static int
match_main (const char *soname)
{
  const char * const *mainp;

  for (mainp = main_name_list; *mainp != NULL; mainp++)
    {
      if (strcmp (soname, *mainp) == 0)
	return (1);
    }

  return (0);
}

/* Return 1 if PC lies in the dynamic symbol resolution code of the
   SVR4 run time loader.  */

int
svr4_in_dynsym_resolve_code (CORE_ADDR pc)
{
  struct svr4_info *info = get_svr4_info (current_program_space);

  return ((pc >= info->interp_text_sect_low
	   && pc < info->interp_text_sect_high)
	  || (pc >= info->interp_plt_sect_low
	      && pc < info->interp_plt_sect_high)
	  || in_plt_section (pc)
	  || in_gnu_ifunc_stub (pc));
}

/* Given an executable's ABFD and target, compute the entry-point
   address.  */

static CORE_ADDR
exec_entry_point (struct bfd *abfd, struct target_ops *targ)
{
  CORE_ADDR addr;

  /* KevinB wrote ... for most targets, the address returned by
     bfd_get_start_address() is the entry point for the start
     function.  But, for some targets, bfd_get_start_address() returns
     the address of a function descriptor from which the entry point
     address may be extracted.  This address is extracted by
     gdbarch_convert_from_func_ptr_addr().  The method
     gdbarch_convert_from_func_ptr_addr() is the merely the identify
     function for targets which don't use function descriptors.  */
  addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
					     bfd_get_start_address (abfd),
					     targ);
  return gdbarch_addr_bits_remove (target_gdbarch (), addr);
}

/* A probe and its associated action.  */

struct probe_and_action
{
  /* The probe.  */
  probe *prob;

  /* The relocated address of the probe.  */
  CORE_ADDR address;

  /* The action.  */
  enum probe_action action;

  /* The objfile where this probe was found.  */
  struct objfile *objfile;
};

/* Returns a hash code for the probe_and_action referenced by p.  */

static hashval_t
hash_probe_and_action (const void *p)
{
  const struct probe_and_action *pa = (const struct probe_and_action *) p;

  return (hashval_t) pa->address;
}

/* Returns non-zero if the probe_and_actions referenced by p1 and p2
   are equal.  */

static int
equal_probe_and_action (const void *p1, const void *p2)
{
  const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
  const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;

  return pa1->address == pa2->address;
}

/* Traversal function for probes_table_remove_objfile_probes.  */

static int
probes_table_htab_remove_objfile_probes (void **slot, void *info)
{
  probe_and_action *pa = (probe_and_action *) *slot;
  struct objfile *objfile = (struct objfile *) info;

  if (pa->objfile == objfile)
    htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
		     slot);

  return 1;
}

/* Remove all probes that belong to OBJFILE from the probes table.  */

static void
probes_table_remove_objfile_probes (struct objfile *objfile)
{
  svr4_info *info = get_svr4_info (objfile->pspace);
  if (info->probes_table != nullptr)
    htab_traverse_noresize (info->probes_table.get (),
			    probes_table_htab_remove_objfile_probes, objfile);
}

/* Register a solib event probe and its associated action in the
   probes table.  */

static void
register_solib_event_probe (svr4_info *info, struct objfile *objfile,
			    probe *prob, CORE_ADDR address,
			    enum probe_action action)
{
  struct probe_and_action lookup, *pa;
  void **slot;

  /* Create the probes table, if necessary.  */
  if (info->probes_table == NULL)
    info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
						 equal_probe_and_action,
						 xfree, xcalloc, xfree));

  lookup.address = address;
  slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
  gdb_assert (*slot == HTAB_EMPTY_ENTRY);

  pa = XCNEW (struct probe_and_action);
  pa->prob = prob;
  pa->address = address;
  pa->action = action;
  pa->objfile = objfile;

  *slot = pa;
}

/* Get the solib event probe at the specified location, and the
   action associated with it.  Returns NULL if no solib event probe
   was found.  */

static struct probe_and_action *
solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
{
  struct probe_and_action lookup;
  void **slot;

  lookup.address = address;
  slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);

  if (slot == NULL)
    return NULL;

  return (struct probe_and_action *) *slot;
}

/* Decide what action to take when the specified solib event probe is
   hit.  */

static enum probe_action
solib_event_probe_action (struct probe_and_action *pa)
{
  enum probe_action action;
  unsigned probe_argc = 0;
  frame_info_ptr frame = get_current_frame ();

  action = pa->action;
  if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
    return action;

  gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);

  /* Check that an appropriate number of arguments has been supplied.
     We expect:
       arg0: Lmid_t lmid (mandatory)
       arg1: struct r_debug *debug_base (mandatory)
       arg2: struct link_map *new (optional, for incremental updates)  */
  try
    {
      probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
    }
  catch (const gdb_exception_error &ex)
    {
      exception_print (gdb_stderr, ex);
      probe_argc = 0;
    }

  /* If get_argument_count throws an exception, probe_argc will be set
     to zero.  However, if pa->prob does not have arguments, then
     get_argument_count will succeed but probe_argc will also be zero.
     Both cases happen because of different things, but they are
     treated equally here: action will be set to
     PROBES_INTERFACE_FAILED.  */
  if (probe_argc == 2)
    action = FULL_RELOAD;
  else if (probe_argc < 2)
    action = PROBES_INTERFACE_FAILED;

  return action;
}

/* Populate the shared object list by reading the entire list of
   shared objects from the inferior.  Handle special cases relating
   to the first elements of the list.  Returns nonzero on success.  */

static int
solist_update_full (struct svr4_info *info)
{
  svr4_current_sos_direct (info);

  return 1;
}

/* Update the shared object list starting from the link-map entry
   passed by the linker in the probe's third argument.  Returns
   nonzero if the list was successfully updated, or zero to indicate
   failure.  */

static int
solist_update_incremental (svr4_info *info, CORE_ADDR debug_base,
			   CORE_ADDR lm)
{
  /* Fall back to a full update if we are using a remote target
     that does not support incremental transfers.  */
  if (info->using_xfer && !target_augmented_libraries_svr4_read ())
    return 0;

  /* Fall back to a full update if we used the special namespace zero.  We
     wouldn't be able to find the last item in the DEBUG_BASE namespace
     and hence get the prev link wrong.  */
  if (info->solib_lists.find (0) != info->solib_lists.end ())
    return 0;

  /* Ensure that the element is actually initialized.  */
  if (info->solib_lists.find (debug_base) == info->solib_lists.end ())
    info->solib_lists[debug_base] = nullptr;

  so_list **psolist = &info->solib_lists[debug_base];
  so_list **pnext = nullptr;
  so_list *solist = *psolist;
  CORE_ADDR prev_lm;

  if (solist == nullptr)
    {
      /* svr4_current_sos_direct contains logic to handle a number of
	 special cases relating to the first elements of the list in
	 default namespace.  To avoid duplicating this logic we defer to
	 solist_update_full in this case.  */
      if (svr4_is_default_namespace (info, debug_base))
	return 0;

      prev_lm = 0;
      pnext = psolist;
    }
  else
    {
      /* Walk to the end of the list.  */
      for (; solist->next != nullptr; solist = solist->next)
	/* Nothing.  */;

      lm_info_svr4 *li = (lm_info_svr4 *) solist->lm_info;
      prev_lm = li->lm_addr;
      pnext = &solist->next;
    }

  /* Read the new objects.  */
  if (info->using_xfer)
    {
      struct svr4_library_list library_list;
      char annex[64];

      /* Unknown key=value pairs are ignored by the gdbstub.  */
      xsnprintf (annex, sizeof (annex), "lmid=%s;start=%s;prev=%s",
		 phex_nz (debug_base, sizeof (debug_base)),
		 phex_nz (lm, sizeof (lm)),
		 phex_nz (prev_lm, sizeof (prev_lm)));
      if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
	return 0;

      /* Get the so list from the target.  We replace the list in the
	 target response so we can easily check that the response only
	 covers one namespace.

	 We expect gdbserver to provide updates for the namespace that
	 contains LM, which whould be this namespace...  */
      so_list *sos = nullptr;
      if (library_list.solib_lists.find (debug_base)
	  != library_list.solib_lists.end ())
	std::swap (sos, library_list.solib_lists[debug_base]);
      if (sos == nullptr)
	{
	  /* ...or for the special zero namespace for earlier versions...  */
	  if (library_list.solib_lists.find (0)
	      != library_list.solib_lists.end ())
	    std::swap (sos, library_list.solib_lists[0]);
	}

      /* ...but nothing else.  */
      for (const std::pair<CORE_ADDR, so_list *> tuple
	     : library_list.solib_lists)
	gdb_assert (tuple.second == nullptr);

      *pnext = sos;
    }
  else
    {
      /* IGNORE_FIRST may safely be set to zero here because the
	 above check and deferral to solist_update_full ensures
	 that this call to svr4_read_so_list will never see the
	 first element.  */
      if (!svr4_read_so_list (info, lm, prev_lm, &pnext, 0))
	return 0;
    }

  return 1;
}

/* Disable the probes-based linker interface and revert to the
   original interface.  We don't reset the breakpoints as the
   ones set up for the probes-based interface are adequate.  */

static void
disable_probes_interface (svr4_info *info)
{
  warning (_("Probes-based dynamic linker interface failed.\n"
	     "Reverting to original interface."));

  free_probes_table (info);
  free_solib_lists (info);
}

/* Update the solib list as appropriate when using the
   probes-based linker interface.  Do nothing if using the
   standard interface.  */

static void
svr4_handle_solib_event (void)
{
  struct svr4_info *info = get_svr4_info (current_program_space);
  struct probe_and_action *pa;
  enum probe_action action;
  struct value *val = NULL;
  CORE_ADDR pc, debug_base, lm = 0;
  frame_info_ptr frame = get_current_frame ();

  /* Do nothing if not using the probes interface.  */
  if (info->probes_table == NULL)
    return;

  pc = regcache_read_pc (get_current_regcache ());
  pa = solib_event_probe_at (info, pc);
  if (pa == nullptr)
    {
      /* When some solib ops sits above us, it can respond to a solib event
	 by calling in here.  This is done assuming that if the current event
	 is not an SVR4 solib event, calling here should be a no-op.  */
      return;
    }

  /* If anything goes wrong we revert to the original linker
     interface.  */
  auto cleanup = make_scope_exit ([info] ()
    {
      disable_probes_interface (info);
    });

  action = solib_event_probe_action (pa);
  if (action == PROBES_INTERFACE_FAILED)
    return;

  if (action == DO_NOTHING)
    {
      cleanup.release ();
      return;
    }

  /* evaluate_argument looks up symbols in the dynamic linker
     using find_pc_section.  find_pc_section is accelerated by a cache
     called the section map.  The section map is invalidated every
     time a shared library is loaded or unloaded, and if the inferior
     is generating a lot of shared library events then the section map
     will be updated every time svr4_handle_solib_event is called.
     We called find_pc_section in svr4_create_solib_event_breakpoints,
     so we can guarantee that the dynamic linker's sections are in the
     section map.  We can therefore inhibit section map updates across
     these calls to evaluate_argument and save a lot of time.  */
  {
    scoped_restore inhibit_updates
      = inhibit_section_map_updates (current_program_space);

    try
      {
	val = pa->prob->evaluate_argument (1, frame);
      }
    catch (const gdb_exception_error &ex)
      {
	exception_print (gdb_stderr, ex);
	val = NULL;
      }

    if (val == NULL)
      return;

    debug_base = value_as_address (val);
    if (debug_base == 0)
      return;

    /* If the global _r_debug object moved, we need to reload everything
       since we cannot identify namespaces (by the location of their
       r_debug_ext object) anymore.  */
    CORE_ADDR global_debug_base = elf_locate_base ();
    if (global_debug_base != info->debug_base)
      {
	info->debug_base = global_debug_base;
	action = FULL_RELOAD;
      }

    if (info->debug_base == 0)
      {
	/* It's possible for the reloc_complete probe to be triggered before
	   the linker has set the DT_DEBUG pointer (for example, when the
	   linker has finished relocating an LD_AUDIT library or its
	   dependencies).  Since we can't yet handle libraries from other link
	   namespaces, we don't lose anything by ignoring them here.  */
	struct value *link_map_id_val;
	try
	  {
	    link_map_id_val = pa->prob->evaluate_argument (0, frame);
	  }
	catch (const gdb_exception_error)
	  {
	    link_map_id_val = NULL;
	  }
	/* glibc and illumos' libc both define LM_ID_BASE as zero.  */
	if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
	  action = DO_NOTHING;
	else
	  return;
      }

    if (action == UPDATE_OR_RELOAD)
      {
	try
	  {
	    val = pa->prob->evaluate_argument (2, frame);
	  }
	catch (const gdb_exception_error &ex)
	  {
	    exception_print (gdb_stderr, ex);
	    return;
	  }

	if (val != NULL)
	  lm = value_as_address (val);

	if (lm == 0)
	  action = FULL_RELOAD;
      }

    /* Resume section map updates.  Closing the scope is
       sufficient.  */
  }

  if (action == UPDATE_OR_RELOAD)
    {
      if (!solist_update_incremental (info, debug_base, lm))
	action = FULL_RELOAD;
    }

  if (action == FULL_RELOAD)
    {
      if (!solist_update_full (info))
	return;
    }

  cleanup.release ();
}

/* Helper function for svr4_update_solib_event_breakpoints.  */

static bool
svr4_update_solib_event_breakpoint (struct breakpoint *b)
{
  if (b->type != bp_shlib_event)
    {
      /* Continue iterating.  */
      return false;
    }

  for (bp_location *loc : b->locations ())
    {
      struct svr4_info *info;
      struct probe_and_action *pa;

      info = solib_svr4_pspace_data.get (loc->pspace);
      if (info == NULL || info->probes_table == NULL)
	continue;

      pa = solib_event_probe_at (info, loc->address);
      if (pa == NULL)
	continue;

      if (pa->action == DO_NOTHING)
	{
	  if (b->enable_state == bp_disabled && stop_on_solib_events)
	    enable_breakpoint (b);
	  else if (b->enable_state == bp_enabled && !stop_on_solib_events)
	    disable_breakpoint (b);
	}

      break;
    }

  /* Continue iterating.  */
  return false;
}

/* Enable or disable optional solib event breakpoints as appropriate.
   Called whenever stop_on_solib_events is changed.  */

static void
svr4_update_solib_event_breakpoints (void)
{
  for (breakpoint *bp : all_breakpoints_safe ())
    svr4_update_solib_event_breakpoint (bp);
}

/* Create and register solib event breakpoints.  PROBES is an array
   of NUM_PROBES elements, each of which is vector of probes.  A
   solib event breakpoint will be created and registered for each
   probe.  */

static void
svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
			       const std::vector<probe *> *probes,
			       struct objfile *objfile)
{
  for (int i = 0; i < NUM_PROBES; i++)
    {
      enum probe_action action = probe_info[i].action;

      for (probe *p : probes[i])
	{
	  CORE_ADDR address = p->get_relocated_address (objfile);

	  solib_debug_printf ("name=%s, addr=%s", probe_info[i].name,
			      paddress (gdbarch, address));

	  create_solib_event_breakpoint (gdbarch, address);
	  register_solib_event_probe (info, objfile, p, address, action);
	}
    }

  svr4_update_solib_event_breakpoints ();
}

/* Find all the glibc named probes.  Only if all of the probes are found, then
   create them and return true.  Otherwise return false.  If WITH_PREFIX is set
   then add "rtld" to the front of the probe names.  */
static bool
svr4_find_and_create_probe_breakpoints (svr4_info *info,
					struct gdbarch *gdbarch,
					struct obj_section *os,
					bool with_prefix)
{
  SOLIB_SCOPED_DEBUG_START_END ("objfile=%s, with_prefix=%d",
				os->objfile->original_name, with_prefix);

  std::vector<probe *> probes[NUM_PROBES];

  for (int i = 0; i < NUM_PROBES; i++)
    {
      const char *name = probe_info[i].name;
      char buf[32];

      /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
	 version of the probes code in which the probes' names were prefixed
	 with "rtld_" and the "map_failed" probe did not exist.  The locations
	 of the probes are otherwise the same, so we check for probes with
	 prefixed names if probes with unprefixed names are not present.  */
      if (with_prefix)
	{
	  xsnprintf (buf, sizeof (buf), "rtld_%s", name);
	  name = buf;
	}

      probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
      solib_debug_printf ("probe=%s, num found=%zu", name, probes[i].size ());

      /* Ensure at least one probe for the current name was found.  */
      if (probes[i].empty ())
	{
	  /* The "map_failed" probe did not exist in early versions of the
	     probes code in which the probes' names were prefixed with
	     "rtld_".

	     Additionally, the "map_failed" probe was accidentally removed
	     from glibc 2.35 and 2.36, when changes in glibc meant the
	     probe could no longer be reached, and the compiler optimized
	     the probe away.  In this case the probe name doesn't have the
	     "rtld_" prefix.

	     To handle this, and give GDB as much flexibility as possible,
	     we make the rule that, if a probe isn't required for the
	     correct operation of GDB (i.e. its action is DO_NOTHING), then
	     we will still use the probes interface, even if that probe is
	     missing.

	     The only (possible) downside of this is that, if the user has
	     'set stop-on-solib-events on' in effect, then they might get
	     fewer events using the probes interface than with the classic
	     non-probes interface.  */
	  if (probe_info[i].action == DO_NOTHING)
	    continue;
	  else
	    return false;
	}

      /* Ensure probe arguments can be evaluated.  */
      for (probe *p : probes[i])
	{
	  if (!p->can_evaluate_arguments ())
	    return false;
	  /* This will fail if the probe is invalid.  This has been seen on Arm
	     due to references to symbols that have been resolved away.  */
	  try
	    {
	      p->get_argument_count (gdbarch);
	    }
	  catch (const gdb_exception_error &ex)
	    {
	      exception_print (gdb_stderr, ex);
	      warning (_("Initializing probes-based dynamic linker interface "
			 "failed.\nReverting to original interface."));
	      return false;
	    }
	}
    }

  /* All probes found.  Now create them.  */
  solib_debug_printf ("using probes interface");
  svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
  return true;
}

/* Both the SunOS and the SVR4 dynamic linkers call a marker function
   before and after mapping and unmapping shared libraries.  The sole
   purpose of this method is to allow debuggers to set a breakpoint so
   they can track these changes.

   Some versions of the glibc dynamic linker contain named probes
   to allow more fine grained stopping.  Given the address of the
   original marker function, this function attempts to find these
   probes, and if found, sets breakpoints on those instead.  If the
   probes aren't found, a single breakpoint is set on the original
   marker function.  */

static void
svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
				     CORE_ADDR address)
{
  struct obj_section *os = find_pc_section (address);

  if (os == nullptr
      || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
	  && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
    {
      solib_debug_printf ("falling back to r_brk breakpoint: addr=%s",
			  paddress (gdbarch, address));
      create_solib_event_breakpoint (gdbarch, address);
    }
}

/* Arrange for dynamic linker to hit breakpoint.

   Both the SunOS and the SVR4 dynamic linkers have, as part of their
   debugger interface, support for arranging for the inferior to hit
   a breakpoint after mapping in the shared libraries.  This function
   enables that breakpoint.

   For SunOS, there is a special flag location (in_debugger) which we
   set to 1.  When the dynamic linker sees this flag set, it will set
   a breakpoint at a location known only to itself, after saving the
   original contents of that place and the breakpoint address itself,
   in it's own internal structures.  When we resume the inferior, it
   will eventually take a SIGTRAP when it runs into the breakpoint.
   We handle this (in a different place) by restoring the contents of
   the breakpointed location (which is only known after it stops),
   chasing around to locate the shared libraries that have been
   loaded, then resuming.

   For SVR4, the debugger interface structure contains a member (r_brk)
   which is statically initialized at the time the shared library is
   built, to the offset of a function (_r_debug_state) which is guaran-
   teed to be called once before mapping in a library, and again when
   the mapping is complete.  At the time we are examining this member,
   it contains only the unrelocated offset of the function, so we have
   to do our own relocation.  Later, when the dynamic linker actually
   runs, it relocates r_brk to be the actual address of _r_debug_state().

   The debugger interface structure also contains an enumeration which
   is set to either RT_ADD or RT_DELETE prior to changing the mapping,
   depending upon whether or not the library is being mapped or unmapped,
   and then set to RT_CONSISTENT after the library is mapped/unmapped.  */

static int
enable_break (struct svr4_info *info, int from_tty)
{
  struct bound_minimal_symbol msymbol;
  const char * const *bkpt_namep;
  asection *interp_sect;
  CORE_ADDR sym_addr;

  info->interp_text_sect_low = info->interp_text_sect_high = 0;
  info->interp_plt_sect_low = info->interp_plt_sect_high = 0;

  /* If we already have a shared library list in the target, and
     r_debug contains r_brk, set the breakpoint there - this should
     mean r_brk has already been relocated.  Assume the dynamic linker
     is the object containing r_brk.  */

  solib_add (NULL, from_tty, auto_solib_add);
  sym_addr = 0;
  if (info->debug_base && solib_svr4_r_map (info->debug_base) != 0)
    sym_addr = solib_svr4_r_brk (info);

  if (sym_addr != 0)
    {
      struct obj_section *os;

      sym_addr = gdbarch_addr_bits_remove
	(target_gdbarch (),
	 gdbarch_convert_from_func_ptr_addr
	   (target_gdbarch (), sym_addr, current_inferior ()->top_target ()));

      /* On at least some versions of Solaris there's a dynamic relocation
	 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
	 we get control before the dynamic linker has self-relocated.
	 Check if SYM_ADDR is in a known section, if it is assume we can
	 trust its value.  This is just a heuristic though, it could go away
	 or be replaced if it's getting in the way.

	 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
	 however it's spelled in your particular system) is ARM or Thumb.
	 That knowledge is encoded in the address, if it's Thumb the low bit
	 is 1.  However, we've stripped that info above and it's not clear
	 what all the consequences are of passing a non-addr_bits_remove'd
	 address to svr4_create_solib_event_breakpoints.  The call to
	 find_pc_section verifies we know about the address and have some
	 hope of computing the right kind of breakpoint to use (via
	 symbol info).  It does mean that GDB needs to be pointed at a
	 non-stripped version of the dynamic linker in order to obtain
	 information it already knows about.  Sigh.  */

      os = find_pc_section (sym_addr);
      if (os != NULL)
	{
	  /* Record the relocated start and end address of the dynamic linker
	     text and plt section for svr4_in_dynsym_resolve_code.  */
	  bfd *tmp_bfd;
	  CORE_ADDR load_addr;

	  tmp_bfd = os->objfile->obfd.get ();
	  load_addr = os->objfile->text_section_offset ();

	  interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
	  if (interp_sect)
	    {
	      info->interp_text_sect_low
		= bfd_section_vma (interp_sect) + load_addr;
	      info->interp_text_sect_high
		= info->interp_text_sect_low + bfd_section_size (interp_sect);
	    }
	  interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
	  if (interp_sect)
	    {
	      info->interp_plt_sect_low
		= bfd_section_vma (interp_sect) + load_addr;
	      info->interp_plt_sect_high
		= info->interp_plt_sect_low + bfd_section_size (interp_sect);
	    }

	  svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
	  return 1;
	}
    }

  /* Find the program interpreter; if not found, warn the user and drop
     into the old breakpoint at symbol code.  */
  gdb::optional<gdb::byte_vector> interp_name_holder
    = find_program_interpreter ();
  if (interp_name_holder)
    {
      const char *interp_name = (const char *) interp_name_holder->data ();
      CORE_ADDR load_addr = 0;
      int load_addr_found = 0;
      int loader_found_in_list = 0;
      struct target_ops *tmp_bfd_target;

      sym_addr = 0;

      /* Now we need to figure out where the dynamic linker was
	 loaded so that we can load its symbols and place a breakpoint
	 in the dynamic linker itself.

	 This address is stored on the stack.  However, I've been unable
	 to find any magic formula to find it for Solaris (appears to
	 be trivial on GNU/Linux).  Therefore, we have to try an alternate
	 mechanism to find the dynamic linker's base address.  */

      gdb_bfd_ref_ptr tmp_bfd;
      try
	{
	  tmp_bfd = solib_bfd_open (interp_name);
	}
      catch (const gdb_exception &ex)
	{
	}

      if (tmp_bfd == NULL)
	goto bkpt_at_symbol;

      /* Now convert the TMP_BFD into a target.  That way target, as
	 well as BFD operations can be used.  */
      tmp_bfd_target = target_bfd_reopen (tmp_bfd);

      /* On a running target, we can get the dynamic linker's base
	 address from the shared library table.  */
      for (struct so_list *so : current_program_space->solibs ())
	{
	  if (svr4_same_1 (interp_name, so->so_original_name))
	    {
	      load_addr_found = 1;
	      loader_found_in_list = 1;
	      load_addr = lm_addr_check (so, tmp_bfd.get ());
	      break;
	    }
	}

      /* If we were not able to find the base address of the loader
	 from our so_list, then try using the AT_BASE auxilliary entry.  */
      if (!load_addr_found)
	if (target_auxv_search (AT_BASE, &load_addr) > 0)
	  {
	    int addr_bit = gdbarch_addr_bit (target_gdbarch ());

	    /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
	       that `+ load_addr' will overflow CORE_ADDR width not creating
	       invalid addresses like 0x101234567 for 32bit inferiors on 64bit
	       GDB.  */

	    if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
	      {
		CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
		CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
							      tmp_bfd_target);

		gdb_assert (load_addr < space_size);

		/* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
		   64bit ld.so with 32bit executable, it should not happen.  */

		if (tmp_entry_point < space_size
		    && tmp_entry_point + load_addr >= space_size)
		  load_addr -= space_size;
	      }

	    load_addr_found = 1;
	  }

      /* Otherwise we find the dynamic linker's base address by examining
	 the current pc (which should point at the entry point for the
	 dynamic linker) and subtracting the offset of the entry point.

	 This is more fragile than the previous approaches, but is a good
	 fallback method because it has actually been working well in
	 most cases.  */
      if (!load_addr_found)
	{
	  struct regcache *regcache
	    = get_thread_arch_regcache (current_inferior ()->process_target (),
					inferior_ptid, target_gdbarch ());

	  load_addr = (regcache_read_pc (regcache)
		       - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
	}

      if (!loader_found_in_list)
	{
	  info->debug_loader_name = xstrdup (interp_name);
	  info->debug_loader_offset_p = 1;
	  info->debug_loader_offset = load_addr;
	  solib_add (NULL, from_tty, auto_solib_add);
	}

      /* Record the relocated start and end address of the dynamic linker
	 text and plt section for svr4_in_dynsym_resolve_code.  */
      interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
      if (interp_sect)
	{
	  info->interp_text_sect_low
	    = bfd_section_vma (interp_sect) + load_addr;
	  info->interp_text_sect_high
	    = info->interp_text_sect_low + bfd_section_size (interp_sect);
	}
      interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
      if (interp_sect)
	{
	  info->interp_plt_sect_low
	    = bfd_section_vma (interp_sect) + load_addr;
	  info->interp_plt_sect_high
	    = info->interp_plt_sect_low + bfd_section_size (interp_sect);
	}

      /* Now try to set a breakpoint in the dynamic linker.  */
      for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
	{
	  sym_addr
	    = (gdb_bfd_lookup_symbol
	       (tmp_bfd.get (),
		[=] (const asymbol *sym)
		{
		  return (strcmp (sym->name, *bkpt_namep) == 0
			  && ((sym->section->flags & (SEC_CODE | SEC_DATA))
			      != 0));
		}));
	  if (sym_addr != 0)
	    break;
	}

      if (sym_addr != 0)
	/* Convert 'sym_addr' from a function pointer to an address.
	   Because we pass tmp_bfd_target instead of the current
	   target, this will always produce an unrelocated value.  */
	sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
						       sym_addr,
						       tmp_bfd_target);

      /* We're done with both the temporary bfd and target.  Closing
	 the target closes the underlying bfd, because it holds the
	 only remaining reference.  */
      target_close (tmp_bfd_target);

      if (sym_addr != 0)
	{
	  svr4_create_solib_event_breakpoints (info, target_gdbarch (),
					       load_addr + sym_addr);
	  return 1;
	}

      /* For whatever reason we couldn't set a breakpoint in the dynamic
	 linker.  Warn and drop into the old code.  */
    bkpt_at_symbol:
      warning (_("Unable to find dynamic linker breakpoint function.\n"
	       "GDB will be unable to debug shared library initializers\n"
	       "and track explicitly loaded dynamic code."));
    }

  /* Scan through the lists of symbols, trying to look up the symbol and
     set a breakpoint there.  Terminate loop when we/if we succeed.  */

  objfile *objf = current_program_space->symfile_object_file;
  for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
    {
      msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
      if ((msymbol.minsym != NULL)
	  && (msymbol.value_address () != 0))
	{
	  sym_addr = msymbol.value_address ();
	  sym_addr = gdbarch_convert_from_func_ptr_addr
	    (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
	  svr4_create_solib_event_breakpoints (info, target_gdbarch (),
					       sym_addr);
	  return 1;
	}
    }

  if (interp_name_holder && !current_inferior ()->attach_flag)
    {
      for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
	{
	  msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
	  if ((msymbol.minsym != NULL)
	      && (msymbol.value_address () != 0))
	    {
	      sym_addr = msymbol.value_address ();
	      sym_addr = gdbarch_convert_from_func_ptr_addr
		(target_gdbarch (), sym_addr,
		 current_inferior ()->top_target ());
	      svr4_create_solib_event_breakpoints (info, target_gdbarch (),
						   sym_addr);
	      return 1;
	    }
	}
    }
  return 0;
}

/* Read the ELF program headers from ABFD.  */

static gdb::optional<gdb::byte_vector>
read_program_headers_from_bfd (bfd *abfd)
{
  Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
  int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
  if (phdrs_size == 0)
    return {};

  gdb::byte_vector buf (phdrs_size);
  if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
      || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
    return {};

  return buf;
}

/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
   exec_bfd.  Otherwise return 0.

   We relocate all of the sections by the same amount.  This
   behavior is mandated by recent editions of the System V ABI.
   According to the System V Application Binary Interface,
   Edition 4.1, page 5-5:

     ...  Though the system chooses virtual addresses for
     individual processes, it maintains the segments' relative
     positions.  Because position-independent code uses relative
     addressing between segments, the difference between
     virtual addresses in memory must match the difference
     between virtual addresses in the file.  The difference
     between the virtual address of any segment in memory and
     the corresponding virtual address in the file is thus a
     single constant value for any one executable or shared
     object in a given process.  This difference is the base
     address.  One use of the base address is to relocate the
     memory image of the program during dynamic linking.

   The same language also appears in Edition 4.0 of the System V
   ABI and is left unspecified in some of the earlier editions.

   Decide if the objfile needs to be relocated.  As indicated above, we will
   only be here when execution is stopped.  But during attachment PC can be at
   arbitrary address therefore regcache_read_pc can be misleading (contrary to
   the auxv AT_ENTRY value).  Moreover for executable with interpreter section
   regcache_read_pc would point to the interpreter and not the main executable.

   So, to summarize, relocations are necessary when the start address obtained
   from the executable is different from the address in auxv AT_ENTRY entry.

   [ The astute reader will note that we also test to make sure that
     the executable in question has the DYNAMIC flag set.  It is my
     opinion that this test is unnecessary (undesirable even).  It
     was added to avoid inadvertent relocation of an executable
     whose e_type member in the ELF header is not ET_DYN.  There may
     be a time in the future when it is desirable to do relocations
     on other types of files as well in which case this condition
     should either be removed or modified to accomodate the new file
     type.  - Kevin, Nov 2000. ]  */

static int
svr4_exec_displacement (CORE_ADDR *displacementp)
{
  /* ENTRY_POINT is a possible function descriptor - before
     a call to gdbarch_convert_from_func_ptr_addr.  */
  CORE_ADDR entry_point, exec_displacement;

  if (current_program_space->exec_bfd () == NULL)
    return 0;

  /* Therefore for ELF it is ET_EXEC and not ET_DYN.  Both shared libraries
     being executed themselves and PIE (Position Independent Executable)
     executables are ET_DYN.  */

  if ((bfd_get_file_flags (current_program_space->exec_bfd ()) & DYNAMIC) == 0)
    return 0;

  if (target_auxv_search (AT_ENTRY, &entry_point) <= 0)
    return 0;

  exec_displacement
    = entry_point - bfd_get_start_address (current_program_space->exec_bfd ());

  /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
     alignment.  It is cheaper than the program headers comparison below.  */

  if (bfd_get_flavour (current_program_space->exec_bfd ())
      == bfd_target_elf_flavour)
    {
      const struct elf_backend_data *elf
	= get_elf_backend_data (current_program_space->exec_bfd ());

      /* p_align of PT_LOAD segments does not specify any alignment but
	 only congruency of addresses:
	   p_offset % p_align == p_vaddr % p_align
	 Kernel is free to load the executable with lower alignment.  */

      if ((exec_displacement & (elf->minpagesize - 1)) != 0)
	return 0;
    }

  /* Verify that the auxilliary vector describes the same file as exec_bfd, by
     comparing their program headers.  If the program headers in the auxilliary
     vector do not match the program headers in the executable, then we are
     looking at a different file than the one used by the kernel - for
     instance, "gdb program" connected to "gdbserver :PORT ld.so program".  */

  if (bfd_get_flavour (current_program_space->exec_bfd ())
      == bfd_target_elf_flavour)
    {
      /* Be optimistic and return 0 only if GDB was able to verify the headers
	 really do not match.  */
      int arch_size;

      gdb::optional<gdb::byte_vector> phdrs_target
	= read_program_header (-1, &arch_size, NULL);
      gdb::optional<gdb::byte_vector> phdrs_binary
	= read_program_headers_from_bfd (current_program_space->exec_bfd ());
      if (phdrs_target && phdrs_binary)
	{
	  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());

	  /* We are dealing with three different addresses.  EXEC_BFD
	     represents current address in on-disk file.  target memory content
	     may be different from EXEC_BFD as the file may have been prelinked
	     to a different address after the executable has been loaded.
	     Moreover the address of placement in target memory can be
	     different from what the program headers in target memory say -
	     this is the goal of PIE.

	     Detected DISPLACEMENT covers both the offsets of PIE placement and
	     possible new prelink performed after start of the program.  Here
	     relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
	     content offset for the verification purpose.  */

	  if (phdrs_target->size () != phdrs_binary->size ()
	      || bfd_get_arch_size (current_program_space->exec_bfd ()) != arch_size)
	    return 0;
	  else if (arch_size == 32
		   && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
		   && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
	    {
	      Elf_Internal_Ehdr *ehdr2
		= elf_tdata (current_program_space->exec_bfd ())->elf_header;
	      Elf_Internal_Phdr *phdr2
		= elf_tdata (current_program_space->exec_bfd ())->phdr;
	      CORE_ADDR displacement = 0;
	      int i;

	      /* DISPLACEMENT could be found more easily by the difference of
		 ehdr2->e_entry.  But we haven't read the ehdr yet, and we
		 already have enough information to compute that displacement
		 with what we've read.  */

	      for (i = 0; i < ehdr2->e_phnum; i++)
		if (phdr2[i].p_type == PT_LOAD)
		  {
		    Elf32_External_Phdr *phdrp;
		    gdb_byte *buf_vaddr_p, *buf_paddr_p;
		    CORE_ADDR vaddr, paddr;
		    CORE_ADDR displacement_vaddr = 0;
		    CORE_ADDR displacement_paddr = 0;

		    phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
		    buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
		    buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;

		    vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
						      byte_order);
		    displacement_vaddr = vaddr - phdr2[i].p_vaddr;

		    paddr = extract_unsigned_integer (buf_paddr_p, 4,
						      byte_order);
		    displacement_paddr = paddr - phdr2[i].p_paddr;

		    if (displacement_vaddr == displacement_paddr)
		      displacement = displacement_vaddr;

		    break;
		  }

	      /* Now compare program headers from the target and the binary
		 with optional DISPLACEMENT.  */

	      for (i = 0;
		   i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
		   i++)
		{
		  Elf32_External_Phdr *phdrp;
		  Elf32_External_Phdr *phdr2p;
		  gdb_byte *buf_vaddr_p, *buf_paddr_p;
		  CORE_ADDR vaddr, paddr;
		  asection *plt2_asect;

		  phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
		  buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
		  buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
		  phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];

		  /* PT_GNU_STACK is an exception by being never relocated by
		     prelink as its addresses are always zero.  */

		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
		    continue;

		  /* Check also other adjustment combinations - PR 11786.  */

		  vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
						    byte_order);
		  vaddr -= displacement;
		  store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);

		  paddr = extract_unsigned_integer (buf_paddr_p, 4,
						    byte_order);
		  paddr -= displacement;
		  store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);

		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
		    continue;

		  /* Strip modifies the flags and alignment of PT_GNU_RELRO.
		     CentOS-5 has problems with filesz, memsz as well.
		     Strip also modifies memsz of PT_TLS.
		     See PR 11786.  */
		  if (phdr2[i].p_type == PT_GNU_RELRO
		      || phdr2[i].p_type == PT_TLS)
		    {
		      Elf32_External_Phdr tmp_phdr = *phdrp;
		      Elf32_External_Phdr tmp_phdr2 = *phdr2p;

		      memset (tmp_phdr.p_filesz, 0, 4);
		      memset (tmp_phdr.p_memsz, 0, 4);
		      memset (tmp_phdr.p_flags, 0, 4);
		      memset (tmp_phdr.p_align, 0, 4);
		      memset (tmp_phdr2.p_filesz, 0, 4);
		      memset (tmp_phdr2.p_memsz, 0, 4);
		      memset (tmp_phdr2.p_flags, 0, 4);
		      memset (tmp_phdr2.p_align, 0, 4);

		      if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
			  == 0)
			continue;
		    }

		  /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS.  */
		  bfd *exec_bfd = current_program_space->exec_bfd ();
		  plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
		  if (plt2_asect)
		    {
		      int content2;
		      gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
		      CORE_ADDR filesz;

		      content2 = (bfd_section_flags (plt2_asect)
				  & SEC_HAS_CONTENTS) != 0;

		      filesz = extract_unsigned_integer (buf_filesz_p, 4,
							 byte_order);

		      /* PLT2_ASECT is from on-disk file (exec_bfd) while
			 FILESZ is from the in-memory image.  */
		      if (content2)
			filesz += bfd_section_size (plt2_asect);
		      else
			filesz -= bfd_section_size (plt2_asect);

		      store_unsigned_integer (buf_filesz_p, 4, byte_order,
					      filesz);

		      if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
			continue;
		    }

		  return 0;
		}
	    }
	  else if (arch_size == 64
		   && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
		   && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
	    {
	      Elf_Internal_Ehdr *ehdr2
		= elf_tdata (current_program_space->exec_bfd ())->elf_header;
	      Elf_Internal_Phdr *phdr2
		= elf_tdata (current_program_space->exec_bfd ())->phdr;
	      CORE_ADDR displacement = 0;
	      int i;

	      /* DISPLACEMENT could be found more easily by the difference of
		 ehdr2->e_entry.  But we haven't read the ehdr yet, and we
		 already have enough information to compute that displacement
		 with what we've read.  */

	      for (i = 0; i < ehdr2->e_phnum; i++)
		if (phdr2[i].p_type == PT_LOAD)
		  {
		    Elf64_External_Phdr *phdrp;
		    gdb_byte *buf_vaddr_p, *buf_paddr_p;
		    CORE_ADDR vaddr, paddr;
		    CORE_ADDR displacement_vaddr = 0;
		    CORE_ADDR displacement_paddr = 0;

		    phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
		    buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
		    buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;

		    vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
						      byte_order);
		    displacement_vaddr = vaddr - phdr2[i].p_vaddr;

		    paddr = extract_unsigned_integer (buf_paddr_p, 8,
						      byte_order);
		    displacement_paddr = paddr - phdr2[i].p_paddr;

		    if (displacement_vaddr == displacement_paddr)
		      displacement = displacement_vaddr;

		    break;
		  }

	      /* Now compare BUF and BUF2 with optional DISPLACEMENT.  */

	      for (i = 0;
		   i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
		   i++)
		{
		  Elf64_External_Phdr *phdrp;
		  Elf64_External_Phdr *phdr2p;
		  gdb_byte *buf_vaddr_p, *buf_paddr_p;
		  CORE_ADDR vaddr, paddr;
		  asection *plt2_asect;

		  phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
		  buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
		  buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
		  phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];

		  /* PT_GNU_STACK is an exception by being never relocated by
		     prelink as its addresses are always zero.  */

		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
		    continue;

		  /* Check also other adjustment combinations - PR 11786.  */

		  vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
						    byte_order);
		  vaddr -= displacement;
		  store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);

		  paddr = extract_unsigned_integer (buf_paddr_p, 8,
						    byte_order);
		  paddr -= displacement;
		  store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);

		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
		    continue;

		  /* Strip modifies the flags and alignment of PT_GNU_RELRO.
		     CentOS-5 has problems with filesz, memsz as well.
		     Strip also modifies memsz of PT_TLS.
		     See PR 11786.  */
		  if (phdr2[i].p_type == PT_GNU_RELRO
		      || phdr2[i].p_type == PT_TLS)
		    {
		      Elf64_External_Phdr tmp_phdr = *phdrp;
		      Elf64_External_Phdr tmp_phdr2 = *phdr2p;

		      memset (tmp_phdr.p_filesz, 0, 8);
		      memset (tmp_phdr.p_memsz, 0, 8);
		      memset (tmp_phdr.p_flags, 0, 4);
		      memset (tmp_phdr.p_align, 0, 8);
		      memset (tmp_phdr2.p_filesz, 0, 8);
		      memset (tmp_phdr2.p_memsz, 0, 8);
		      memset (tmp_phdr2.p_flags, 0, 4);
		      memset (tmp_phdr2.p_align, 0, 8);

		      if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
			  == 0)
			continue;
		    }

		  /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS.  */
		  plt2_asect
		    = bfd_get_section_by_name (current_program_space->exec_bfd (),
					       ".plt");
		  if (plt2_asect)
		    {
		      int content2;
		      gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
		      CORE_ADDR filesz;

		      content2 = (bfd_section_flags (plt2_asect)
				  & SEC_HAS_CONTENTS) != 0;

		      filesz = extract_unsigned_integer (buf_filesz_p, 8,
							 byte_order);

		      /* PLT2_ASECT is from on-disk file (current
			 exec_bfd) while FILESZ is from the in-memory
			 image.  */
		      if (content2)
			filesz += bfd_section_size (plt2_asect);
		      else
			filesz -= bfd_section_size (plt2_asect);

		      store_unsigned_integer (buf_filesz_p, 8, byte_order,
					      filesz);

		      if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
			continue;
		    }

		  return 0;
		}
	    }
	  else
	    return 0;
	}
    }

  if (info_verbose)
    {
      /* It can be printed repeatedly as there is no easy way to check
	 the executable symbols/file has been already relocated to
	 displacement.  */

      gdb_printf (_("Using PIE (Position Independent Executable) "
		    "displacement %s for \"%s\".\n"),
		  paddress (target_gdbarch (), exec_displacement),
		  bfd_get_filename (current_program_space->exec_bfd ()));
    }

  *displacementp = exec_displacement;
  return 1;
}

/* Relocate the main executable.  This function should be called upon
   stopping the inferior process at the entry point to the program.
   The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
   different, the main executable is relocated by the proper amount.  */

static void
svr4_relocate_main_executable (void)
{
  CORE_ADDR displacement;

  /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
     probably contains the offsets computed using the PIE displacement
     from the previous run, which of course are irrelevant for this run.
     So we need to determine the new PIE displacement and recompute the
     section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
     already contains pre-computed offsets.

     If we cannot compute the PIE displacement, either:

       - The executable is not PIE.

       - SYMFILE_OBJFILE does not match the executable started in the target.
	 This can happen for main executable symbols loaded at the host while
	 `ld.so --ld-args main-executable' is loaded in the target.

     Then we leave the section offsets untouched and use them as is for
     this run.  Either:

       - These section offsets were properly reset earlier, and thus
	 already contain the correct values.  This can happen for instance
	 when reconnecting via the remote protocol to a target that supports
	 the `qOffsets' packet.

       - The section offsets were not reset earlier, and the best we can
	 hope is that the old offsets are still applicable to the new run.  */

  if (! svr4_exec_displacement (&displacement))
    return;

  /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
     addresses.  */

  objfile *objf = current_program_space->symfile_object_file;
  if (objf)
    {
      section_offsets new_offsets (objf->section_offsets.size (),
				   displacement);
      objfile_relocate (objf, new_offsets);
    }
  else if (current_program_space->exec_bfd ())
    {
      asection *asect;

      bfd *exec_bfd = current_program_space->exec_bfd ();
      for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
	exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
				  bfd_section_vma (asect) + displacement);
    }
}

/* Implement the "create_inferior_hook" target_solib_ops method.

   For SVR4 executables, this first instruction is either the first
   instruction in the dynamic linker (for dynamically linked
   executables) or the instruction at "start" for statically linked
   executables.  For dynamically linked executables, the system
   first exec's /lib/libc.so.N, which contains the dynamic linker,
   and starts it running.  The dynamic linker maps in any needed
   shared libraries, maps in the actual user executable, and then
   jumps to "start" in the user executable.

   We can arrange to cooperate with the dynamic linker to discover the
   names of shared libraries that are dynamically linked, and the base
   addresses to which they are linked.

   This function is responsible for discovering those names and
   addresses, and saving sufficient information about them to allow
   their symbols to be read at a later time.  */

static void
svr4_solib_create_inferior_hook (int from_tty)
{
  struct svr4_info *info;

  info = get_svr4_info (current_program_space);

  /* Clear the probes-based interface's state.  */
  free_probes_table (info);
  free_solib_lists (info);

  /* Relocate the main executable if necessary.  */
  svr4_relocate_main_executable ();

  /* No point setting a breakpoint in the dynamic linker if we can't
     hit it (e.g., a core file, or a trace file).  */
  if (!target_has_execution ())
    return;

  if (!svr4_have_link_map_offsets ())
    return;

  if (!enable_break (info, from_tty))
    return;
}

static void
svr4_clear_solib (void)
{
  struct svr4_info *info;

  info = get_svr4_info (current_program_space);
  info->debug_base = 0;
  info->debug_loader_offset_p = 0;
  info->debug_loader_offset = 0;
  xfree (info->debug_loader_name);
  info->debug_loader_name = NULL;
}

/* Clear any bits of ADDR that wouldn't fit in a target-format
   data pointer.  "Data pointer" here refers to whatever sort of
   address the dynamic linker uses to manage its sections.  At the
   moment, we don't support shared libraries on any processors where
   code and data pointers are different sizes.

   This isn't really the right solution.  What we really need here is
   a way to do arithmetic on CORE_ADDR values that respects the
   natural pointer/address correspondence.  (For example, on the MIPS,
   converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
   sign-extend the value.  There, simply truncating the bits above
   gdbarch_ptr_bit, as we do below, is no good.)  This should probably
   be a new gdbarch method or something.  */
static CORE_ADDR
svr4_truncate_ptr (CORE_ADDR addr)
{
  if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
    /* We don't need to truncate anything, and the bit twiddling below
       will fail due to overflow problems.  */
    return addr;
  else
    return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
}


static void
svr4_relocate_section_addresses (struct so_list *so,
				 struct target_section *sec)
{
  bfd *abfd = sec->the_bfd_section->owner;

  sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
  sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
}


/* Architecture-specific operations.  */

struct solib_svr4_ops
{
  /* Return a description of the layout of `struct link_map'.  */
  struct link_map_offsets *(*fetch_link_map_offsets)(void) = nullptr;
};

/* Per-architecture data key.  */
static const registry<gdbarch>::key<struct solib_svr4_ops> solib_svr4_data;

/* Return a default for the architecture-specific operations.  */

static struct solib_svr4_ops *
get_ops (struct gdbarch *gdbarch)
{
  struct solib_svr4_ops *ops = solib_svr4_data.get (gdbarch);
  if (ops == nullptr)
    ops = solib_svr4_data.emplace (gdbarch);
  return ops;
}

/* Set the architecture-specific `struct link_map_offsets' fetcher for
   GDBARCH to FLMO.  Also, install SVR4 solib_ops into GDBARCH.  */

void
set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
				       struct link_map_offsets *(*flmo) (void))
{
  struct solib_svr4_ops *ops = get_ops (gdbarch);

  ops->fetch_link_map_offsets = flmo;

  set_gdbarch_so_ops (gdbarch, &svr4_so_ops);
  set_gdbarch_iterate_over_objfiles_in_search_order
    (gdbarch, svr4_iterate_over_objfiles_in_search_order);
}

/* Fetch a link_map_offsets structure using the architecture-specific
   `struct link_map_offsets' fetcher.  */

static struct link_map_offsets *
svr4_fetch_link_map_offsets (void)
{
  struct solib_svr4_ops *ops = get_ops (target_gdbarch ());

  gdb_assert (ops->fetch_link_map_offsets);
  return ops->fetch_link_map_offsets ();
}

/* Return 1 if a link map offset fetcher has been defined, 0 otherwise.  */

static int
svr4_have_link_map_offsets (void)
{
  struct solib_svr4_ops *ops = get_ops (target_gdbarch ());

  return (ops->fetch_link_map_offsets != NULL);
}


/* Most OS'es that have SVR4-style ELF dynamic libraries define a
   `struct r_debug' and a `struct link_map' that are binary compatible
   with the original SVR4 implementation.  */

/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
   for an ILP32 SVR4 system.  */

struct link_map_offsets *
svr4_ilp32_fetch_link_map_offsets (void)
{
  static struct link_map_offsets lmo;
  static struct link_map_offsets *lmp = NULL;

  if (lmp == NULL)
    {
      lmp = &lmo;

      lmo.r_version_offset = 0;
      lmo.r_version_size = 4;
      lmo.r_map_offset = 4;
      lmo.r_brk_offset = 8;
      lmo.r_ldsomap_offset = 20;
      lmo.r_next_offset = -1;

      /* Everything we need is in the first 20 bytes.  */
      lmo.link_map_size = 20;
      lmo.l_addr_offset = 0;
      lmo.l_name_offset = 4;
      lmo.l_ld_offset = 8;
      lmo.l_next_offset = 12;
      lmo.l_prev_offset = 16;
    }

  return lmp;
}

/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
   for an LP64 SVR4 system.  */

struct link_map_offsets *
svr4_lp64_fetch_link_map_offsets (void)
{
  static struct link_map_offsets lmo;
  static struct link_map_offsets *lmp = NULL;

  if (lmp == NULL)
    {
      lmp = &lmo;

      lmo.r_version_offset = 0;
      lmo.r_version_size = 4;
      lmo.r_map_offset = 8;
      lmo.r_brk_offset = 16;
      lmo.r_ldsomap_offset = 40;
      lmo.r_next_offset = -1;

      /* Everything we need is in the first 40 bytes.  */
      lmo.link_map_size = 40;
      lmo.l_addr_offset = 0;
      lmo.l_name_offset = 8;
      lmo.l_ld_offset = 16;
      lmo.l_next_offset = 24;
      lmo.l_prev_offset = 32;
    }

  return lmp;
}


/* Return the DSO matching OBJFILE or nullptr if none can be found.  */

static so_list *
find_solib_for_objfile (struct objfile *objfile)
{
  if (objfile == nullptr)
    return nullptr;

  /* If OBJFILE is a separate debug object file, look for the original
     object file.  */
  if (objfile->separate_debug_objfile_backlink != nullptr)
    objfile = objfile->separate_debug_objfile_backlink;

  for (so_list *so : current_program_space->solibs ())
    if (so->objfile == objfile)
      return so;

  return nullptr;
}

/* Return the address of the r_debug object for the namespace containing
   SOLIB or zero if it cannot be found.  This may happen when symbol files
   are added manually, for example, or with the main executable.

   Current callers treat zero as initial namespace so they are doing the
   right thing for the main executable.  */

static CORE_ADDR
find_debug_base_for_solib (so_list *solib)
{
  if (solib == nullptr)
    return 0;

  svr4_info *info = get_svr4_info (current_program_space);
  gdb_assert (info != nullptr);
  for (const std::pair<CORE_ADDR, so_list *> tuple
	 : info->solib_lists)
    {
      CORE_ADDR debug_base = tuple.first;
      so_list *solist = tuple.second;

      for (; solist != nullptr; solist = solist->next)
	if (svr4_same (solib, solist))
	  return debug_base;
    }

  return 0;
}

/* Search order for ELF DSOs linked with -Bsymbolic.  Those DSOs have a
   different rule for symbol lookup.  The lookup begins here in the DSO,
   not in the main executable.  When starting from CURRENT_OBJFILE, we
   stay in the same namespace as that file.  Otherwise, we only consider
   the initial namespace.  */

static void
svr4_iterate_over_objfiles_in_search_order
  (gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype cb,
   objfile *current_objfile)
{
  bool checked_current_objfile = false;
  if (current_objfile != nullptr)
    {
      bfd *abfd;

      if (current_objfile->separate_debug_objfile_backlink != nullptr)
	current_objfile = current_objfile->separate_debug_objfile_backlink;

      if (current_objfile == current_program_space->symfile_object_file)
	abfd = current_program_space->exec_bfd ();
      else
	abfd = current_objfile->obfd.get ();

      if (abfd != nullptr
	  && gdb_bfd_scan_elf_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
	{
	  checked_current_objfile = true;
	  if (cb (current_objfile))
	    return;
	}
    }

  /* The linker namespace to iterate identified by the address of its
     r_debug object, defaulting to the initial namespace.  */
  CORE_ADDR initial = elf_locate_base ();
  so_list *curr_solib = find_solib_for_objfile (current_objfile);
  CORE_ADDR debug_base = find_debug_base_for_solib (curr_solib);
  if (debug_base == 0)
    debug_base = initial;

  for (objfile *objfile : current_program_space->objfiles ())
    {
      if (checked_current_objfile && objfile == current_objfile)
	continue;

      /* Try to determine the namespace into which objfile was loaded.

	 If we fail, e.g. for manually added symbol files or for the main
	 executable, we assume that they were added to the initial
	 namespace.  */
      so_list *solib = find_solib_for_objfile (objfile);
      CORE_ADDR solib_base = find_debug_base_for_solib (solib);
      if (solib_base == 0)
	solib_base = initial;

      /* Ignore objfiles that were added to a different namespace.  */
      if (solib_base != debug_base)
	continue;

      if (cb (objfile))
	return;
    }
}

const struct target_so_ops svr4_so_ops =
{
  svr4_relocate_section_addresses,
  svr4_free_so,
  svr4_clear_so,
  svr4_clear_solib,
  svr4_solib_create_inferior_hook,
  svr4_current_sos,
  open_symbol_file_object,
  svr4_in_dynsym_resolve_code,
  solib_bfd_open,
  nullptr,
  svr4_same,
  svr4_keep_data_in_core,
  svr4_update_solib_event_breakpoints,
  svr4_handle_solib_event,
};

void _initialize_svr4_solib ();
void
_initialize_svr4_solib ()
{
  gdb::observers::free_objfile.attach (svr4_free_objfile_observer,
				       "solib-svr4");
}