summaryrefslogtreecommitdiff
path: root/gdb/ppc-sysv-tdep.c
blob: 9dcf84c94c1655bfc52f1a72ba47a1d23f09e067 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
/* Target-dependent code for PowerPC systems using the SVR4 ABI
   for GDB, the GNU debugger.

   Copyright (C) 2000-2020 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "gdbcore.h"
#include "inferior.h"
#include "regcache.h"
#include "value.h"
#include "ppc-tdep.h"
#include "target.h"
#include "objfiles.h"
#include "infcall.h"
#include "dwarf2.h"
#include "target-float.h"
#include <algorithm>


/* Check whether FTPYE is a (pointer to) function type that should use
   the OpenCL vector ABI.  */

static int
ppc_sysv_use_opencl_abi (struct type *ftype)
{
  ftype = check_typedef (ftype);

  if (ftype->code () == TYPE_CODE_PTR)
    ftype = check_typedef (TYPE_TARGET_TYPE (ftype));

  return (ftype->code () == TYPE_CODE_FUNC
	  && TYPE_CALLING_CONVENTION (ftype) == DW_CC_GDB_IBM_OpenCL);
}

/* Pass the arguments in either registers, or in the stack.  Using the
   ppc sysv ABI, the first eight words of the argument list (that might
   be less than eight parameters if some parameters occupy more than one
   word) are passed in r3..r10 registers.  float and double parameters are
   passed in fpr's, in addition to that.  Rest of the parameters if any
   are passed in user stack.

   If the function is returning a structure, then the return address is passed
   in r3, then the first 7 words of the parameters can be passed in registers,
   starting from r4.  */

CORE_ADDR
ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			      struct regcache *regcache, CORE_ADDR bp_addr,
			      int nargs, struct value **args, CORE_ADDR sp,
			      function_call_return_method return_method,
			      CORE_ADDR struct_addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int opencl_abi = ppc_sysv_use_opencl_abi (value_type (function));
  ULONGEST saved_sp;
  int argspace = 0;		/* 0 is an initial wrong guess.  */
  int write_pass;

  gdb_assert (tdep->wordsize == 4);

  regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
				 &saved_sp);

  /* Go through the argument list twice.

     Pass 1: Figure out how much new stack space is required for
     arguments and pushed values.  Unlike the PowerOpen ABI, the SysV
     ABI doesn't reserve any extra space for parameters which are put
     in registers, but does always push structures and then pass their
     address.

     Pass 2: Replay the same computation but this time also write the
     values out to the target.  */

  for (write_pass = 0; write_pass < 2; write_pass++)
    {
      int argno;
      /* Next available floating point register for float and double
         arguments.  */
      int freg = 1;
      /* Next available general register for non-float, non-vector
         arguments.  */
      int greg = 3;
      /* Next available vector register for vector arguments.  */
      int vreg = 2;
      /* Arguments start above the "LR save word" and "Back chain".  */
      int argoffset = 2 * tdep->wordsize;
      /* Structures start after the arguments.  */
      int structoffset = argoffset + argspace;

      /* If the function is returning a `struct', then the first word
         (which will be passed in r3) is used for struct return
         address.  In that case we should advance one word and start
         from r4 register to copy parameters.  */
      if (return_method == return_method_struct)
	{
	  if (write_pass)
	    regcache_cooked_write_signed (regcache,
					  tdep->ppc_gp0_regnum + greg,
					  struct_addr);
	  greg++;
	}

      for (argno = 0; argno < nargs; argno++)
	{
	  struct value *arg = args[argno];
	  struct type *type = check_typedef (value_type (arg));
	  int len = TYPE_LENGTH (type);
	  const bfd_byte *val = value_contents (arg);

	  if (type->code () == TYPE_CODE_FLT && len <= 8
	      && !tdep->soft_float)
	    {
	      /* Floating point value converted to "double" then
	         passed in an FP register, when the registers run out,
	         8 byte aligned stack is used.  */
	      if (freg <= 8)
		{
		  if (write_pass)
		    {
		      /* Always store the floating point value using
		         the register's floating-point format.  */
		      gdb_byte regval[PPC_MAX_REGISTER_SIZE];
		      struct type *regtype
			= register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
		      target_float_convert (val, type, regval, regtype);
		      regcache->cooked_write (tdep->ppc_fp0_regnum + freg,
					      regval);
		    }
		  freg++;
		}
	      else
		{
		  /* The SysV ABI tells us to convert floats to
		     doubles before writing them to an 8 byte aligned
		     stack location.  Unfortunately GCC does not do
		     that, and stores floats into 4 byte aligned
		     locations without converting them to doubles.
		     Since there is no know compiler that actually
		     follows the ABI here, we implement the GCC
		     convention.  */

		  /* Align to 4 bytes or 8 bytes depending on the type of
		     the argument (float or double).  */
		  argoffset = align_up (argoffset, len);
		  if (write_pass)
		      write_memory (sp + argoffset, val, len);
		  argoffset += len;
		}
	    }
	  else if (type->code () == TYPE_CODE_FLT
		   && len == 16
		   && !tdep->soft_float
		   && (gdbarch_long_double_format (gdbarch)
		       == floatformats_ibm_long_double))
	    {
	      /* IBM long double passed in two FP registers if
		 available, otherwise 8-byte aligned stack.  */
	      if (freg <= 7)
		{
		  if (write_pass)
		    {
		      regcache->cooked_write (tdep->ppc_fp0_regnum + freg, val);
		      regcache->cooked_write (tdep->ppc_fp0_regnum + freg + 1,
					      val + 8);
		    }
		  freg += 2;
		}
	      else
		{
		  argoffset = align_up (argoffset, 8);
		  if (write_pass)
		    write_memory (sp + argoffset, val, len);
		  argoffset += 16;
		}
	    }
	  else if (len == 8
		   && (type->code () == TYPE_CODE_INT	/* long long */
		       || type->code () == TYPE_CODE_FLT	/* double */
		       || (type->code () == TYPE_CODE_DECFLOAT
			   && tdep->soft_float)))
	    {
	      /* "long long" or soft-float "double" or "_Decimal64"
	         passed in an odd/even register pair with the low
	         addressed word in the odd register and the high
	         addressed word in the even register, or when the
	         registers run out an 8 byte aligned stack
	         location.  */
	      if (greg > 9)
		{
		  /* Just in case GREG was 10.  */
		  greg = 11;
		  argoffset = align_up (argoffset, 8);
		  if (write_pass)
		    write_memory (sp + argoffset, val, len);
		  argoffset += 8;
		}
	      else
		{
		  /* Must start on an odd register - r3/r4 etc.  */
		  if ((greg & 1) == 0)
		    greg++;
		  if (write_pass)
		    {
		      regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 0,
					      val + 0);
		      regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 1,
					      val + 4);
		    }
		  greg += 2;
		}
	    }
	  else if (len == 16
		   && ((type->code () == TYPE_CODE_FLT
			&& (gdbarch_long_double_format (gdbarch)
			    == floatformats_ibm_long_double))
		       || (type->code () == TYPE_CODE_DECFLOAT
			   && tdep->soft_float)))
	    {
	      /* Soft-float IBM long double or _Decimal128 passed in
		 four consecutive registers, or on the stack.  The
		 registers are not necessarily odd/even pairs.  */
	      if (greg > 7)
		{
		  greg = 11;
		  argoffset = align_up (argoffset, 8);
		  if (write_pass)
		    write_memory (sp + argoffset, val, len);
		  argoffset += 16;
		}
	      else
		{
		  if (write_pass)
		    {
		      regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 0,
					      val + 0);
		      regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 1,
					      val + 4);
		      regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 2,
					      val + 8);
		      regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 3,
					      val + 12);
		    }
		  greg += 4;
		}
	    }
	  else if (type->code () == TYPE_CODE_DECFLOAT && len <= 8
		   && !tdep->soft_float)
	    {
	      /* 32-bit and 64-bit decimal floats go in f1 .. f8.  They can
	         end up in memory.  */

	      if (freg <= 8)
		{
		  if (write_pass)
		    {
		      gdb_byte regval[PPC_MAX_REGISTER_SIZE];
		      const gdb_byte *p;

		      /* 32-bit decimal floats are right aligned in the
			 doubleword.  */
		      if (TYPE_LENGTH (type) == 4)
		      {
			memcpy (regval + 4, val, 4);
			p = regval;
		      }
		      else
			p = val;

		      regcache->cooked_write (tdep->ppc_fp0_regnum + freg, p);
		    }

		  freg++;
		}
	      else
		{
		  argoffset = align_up (argoffset, len);

		  if (write_pass)
		    /* Write value in the stack's parameter save area.  */
		    write_memory (sp + argoffset, val, len);

		  argoffset += len;
		}
	    }
	  else if (type->code () == TYPE_CODE_DECFLOAT && len == 16
		   && !tdep->soft_float)
	    {
	      /* 128-bit decimal floats go in f2 .. f7, always in even/odd
		 pairs.  They can end up in memory, using two doublewords.  */

	      if (freg <= 6)
		{
		  /* Make sure freg is even.  */
		  freg += freg & 1;

		  if (write_pass)
		    {
		      regcache->cooked_write (tdep->ppc_fp0_regnum + freg, val);
		      regcache->cooked_write (tdep->ppc_fp0_regnum + freg + 1,
					      val + 8);
		    }
		}
	      else
		{
		  argoffset = align_up (argoffset, 8);

		  if (write_pass)
		    write_memory (sp + argoffset, val, 16);

		  argoffset += 16;
		}

	      /* If a 128-bit decimal float goes to the stack because only f7
	         and f8 are free (thus there's no even/odd register pair
		 available), these registers should be marked as occupied.
		 Hence we increase freg even when writing to memory.  */
	      freg += 2;
	    }
	  else if (len < 16
		   && type->code () == TYPE_CODE_ARRAY
		   && TYPE_VECTOR (type)
		   && opencl_abi)
	    {
	      /* OpenCL vectors shorter than 16 bytes are passed as if
		 a series of independent scalars.  */
	      struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
	      int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);

	      for (i = 0; i < nelt; i++)
		{
		  const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);

		  if (eltype->code () == TYPE_CODE_FLT && !tdep->soft_float)
		    {
		      if (freg <= 8)
			{
			  if (write_pass)
			    {
			      int regnum = tdep->ppc_fp0_regnum + freg;
			      gdb_byte regval[PPC_MAX_REGISTER_SIZE];
			      struct type *regtype
				= register_type (gdbarch, regnum);
			      target_float_convert (elval, eltype,
						    regval, regtype);
			      regcache->cooked_write (regnum, regval);
			    }
			  freg++;
			}
		      else
			{
			  argoffset = align_up (argoffset, len);
			  if (write_pass)
			    write_memory (sp + argoffset, val, len);
			  argoffset += len;
			}
		    }
		  else if (TYPE_LENGTH (eltype) == 8)
		    {
		      if (greg > 9)
			{
			  /* Just in case GREG was 10.  */
			  greg = 11;
			  argoffset = align_up (argoffset, 8);
			  if (write_pass)
			    write_memory (sp + argoffset, elval,
					  TYPE_LENGTH (eltype));
			  argoffset += 8;
			}
		      else
			{
			  /* Must start on an odd register - r3/r4 etc.  */
			  if ((greg & 1) == 0)
			    greg++;
			  if (write_pass)
			    {
			      int regnum = tdep->ppc_gp0_regnum + greg;
			      regcache->cooked_write (regnum + 0, elval + 0);
			      regcache->cooked_write (regnum + 1, elval + 4);
			    }
			  greg += 2;
			}
		    }
		  else
		    {
		      gdb_byte word[PPC_MAX_REGISTER_SIZE];
		      store_unsigned_integer (word, tdep->wordsize, byte_order,
					      unpack_long (eltype, elval));

		      if (greg <= 10)
			{
			  if (write_pass)
			    regcache->cooked_write (tdep->ppc_gp0_regnum + greg,
						    word);
			  greg++;
			}
		      else
			{
			  argoffset = align_up (argoffset, tdep->wordsize);
			  if (write_pass)
			    write_memory (sp + argoffset, word, tdep->wordsize);
			  argoffset += tdep->wordsize;
			}
		    }
		}
	    }
	  else if (len >= 16
		   && type->code () == TYPE_CODE_ARRAY
		   && TYPE_VECTOR (type)
		   && opencl_abi)
	    {
	      /* OpenCL vectors 16 bytes or longer are passed as if
		 a series of AltiVec vectors.  */
	      int i;

	      for (i = 0; i < len / 16; i++)
		{
		  const gdb_byte *elval = val + i * 16;

		  if (vreg <= 13)
		    {
		      if (write_pass)
			regcache->cooked_write (tdep->ppc_vr0_regnum + vreg,
						elval);
		      vreg++;
		    }
		  else
		    {
		      argoffset = align_up (argoffset, 16);
		      if (write_pass)
			write_memory (sp + argoffset, elval, 16);
		      argoffset += 16;
		    }
		}
	    }
	  else if (len == 16
		   && type->code () == TYPE_CODE_ARRAY
		   && TYPE_VECTOR (type)
		   && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
	    {
	      /* Vector parameter passed in an Altivec register, or
	         when that runs out, 16 byte aligned stack location.  */
	      if (vreg <= 13)
		{
		  if (write_pass)
		    regcache->cooked_write (tdep->ppc_vr0_regnum + vreg, val);
		  vreg++;
		}
	      else
		{
		  argoffset = align_up (argoffset, 16);
		  if (write_pass)
		    write_memory (sp + argoffset, val, 16);
		  argoffset += 16;
		}
	    }
	  else if (len == 8
		   && type->code () == TYPE_CODE_ARRAY
		   && TYPE_VECTOR (type)
		   && tdep->vector_abi == POWERPC_VEC_SPE)
	    {
	      /* Vector parameter passed in an e500 register, or when
	         that runs out, 8 byte aligned stack location.  Note
	         that since e500 vector and general purpose registers
	         both map onto the same underlying register set, a
	         "greg" and not a "vreg" is consumed here.  A cooked
	         write stores the value in the correct locations
	         within the raw register cache.  */
	      if (greg <= 10)
		{
		  if (write_pass)
		    regcache->cooked_write (tdep->ppc_ev0_regnum + greg, val);
		  greg++;
		}
	      else
		{
		  argoffset = align_up (argoffset, 8);
		  if (write_pass)
		    write_memory (sp + argoffset, val, 8);
		  argoffset += 8;
		}
	    }
	  else
	    {
	      /* Reduce the parameter down to something that fits in a
	         "word".  */
	      gdb_byte word[PPC_MAX_REGISTER_SIZE];
	      memset (word, 0, PPC_MAX_REGISTER_SIZE);
	      if (len > tdep->wordsize
		  || type->code () == TYPE_CODE_STRUCT
		  || type->code () == TYPE_CODE_UNION)
		{
		  /* Structs and large values are put in an
		     aligned stack slot ...  */
		  if (type->code () == TYPE_CODE_ARRAY
		      && TYPE_VECTOR (type)
		      && len >= 16)
		    structoffset = align_up (structoffset, 16);
		  else
		    structoffset = align_up (structoffset, 8);

		  if (write_pass)
		    write_memory (sp + structoffset, val, len);
		  /* ... and then a "word" pointing to that address is
		     passed as the parameter.  */
		  store_unsigned_integer (word, tdep->wordsize, byte_order,
					  sp + structoffset);
		  structoffset += len;
		}
	      else if (type->code () == TYPE_CODE_INT)
		/* Sign or zero extend the "int" into a "word".  */
		store_unsigned_integer (word, tdep->wordsize, byte_order,
					unpack_long (type, val));
	      else
		/* Always goes in the low address.  */
		memcpy (word, val, len);
	      /* Store that "word" in a register, or on the stack.
	         The words have "4" byte alignment.  */
	      if (greg <= 10)
		{
		  if (write_pass)
		    regcache->cooked_write (tdep->ppc_gp0_regnum + greg, word);
		  greg++;
		}
	      else
		{
		  argoffset = align_up (argoffset, tdep->wordsize);
		  if (write_pass)
		    write_memory (sp + argoffset, word, tdep->wordsize);
		  argoffset += tdep->wordsize;
		}
	    }
	}

      /* Compute the actual stack space requirements.  */
      if (!write_pass)
	{
	  /* Remember the amount of space needed by the arguments.  */
	  argspace = argoffset;
	  /* Allocate space for both the arguments and the structures.  */
	  sp -= (argoffset + structoffset);
	  /* Ensure that the stack is still 16 byte aligned.  */
	  sp = align_down (sp, 16);
	}

      /* The psABI says that "A caller of a function that takes a
	 variable argument list shall set condition register bit 6 to
	 1 if it passes one or more arguments in the floating-point
	 registers.  It is strongly recommended that the caller set the
	 bit to 0 otherwise..."  Doing this for normal functions too
	 shouldn't hurt.  */
      if (write_pass)
	{
	  ULONGEST cr;

	  regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
	  if (freg > 1)
	    cr |= 0x02000000;
	  else
	    cr &= ~0x02000000;
	  regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
	}
    }

  /* Update %sp.   */
  regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);

  /* Write the backchain (it occupies WORDSIZED bytes).  */
  write_memory_signed_integer (sp, tdep->wordsize, byte_order, saved_sp);

  /* Point the inferior function call's return address at the dummy's
     breakpoint.  */
  regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);

  return sp;
}

/* Handle the return-value conventions for Decimal Floating Point values.  */
static enum return_value_convention
get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
				struct regcache *regcache, gdb_byte *readbuf,
				const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  gdb_assert (valtype->code () == TYPE_CODE_DECFLOAT);

  /* 32-bit and 64-bit decimal floats in f1.  */
  if (TYPE_LENGTH (valtype) <= 8)
    {
      if (writebuf != NULL)
	{
	  gdb_byte regval[PPC_MAX_REGISTER_SIZE];
	  const gdb_byte *p;

	  /* 32-bit decimal float is right aligned in the doubleword.  */
	  if (TYPE_LENGTH (valtype) == 4)
	    {
	      memcpy (regval + 4, writebuf, 4);
	      p = regval;
	    }
	  else
	    p = writebuf;

	  regcache->cooked_write (tdep->ppc_fp0_regnum + 1, p);
	}
      if (readbuf != NULL)
	{
	  regcache->cooked_read (tdep->ppc_fp0_regnum + 1, readbuf);

	  /* Left align 32-bit decimal float.  */
	  if (TYPE_LENGTH (valtype) == 4)
	    memcpy (readbuf, readbuf + 4, 4);
	}
    }
  /* 128-bit decimal floats in f2,f3.  */
  else if (TYPE_LENGTH (valtype) == 16)
    {
      if (writebuf != NULL || readbuf != NULL)
	{
	  int i;

	  for (i = 0; i < 2; i++)
	    {
	      if (writebuf != NULL)
		regcache->cooked_write (tdep->ppc_fp0_regnum + 2 + i,
					writebuf + i * 8);
	      if (readbuf != NULL)
		regcache->cooked_read (tdep->ppc_fp0_regnum + 2 + i,
				       readbuf + i * 8);
	    }
	}
    }
  else
    /* Can't happen.  */
    internal_error (__FILE__, __LINE__, _("Unknown decimal float size."));

  return RETURN_VALUE_REGISTER_CONVENTION;
}

/* Handle the return-value conventions specified by the SysV 32-bit
   PowerPC ABI (including all the supplements):

   no floating-point: floating-point values returned using 32-bit
   general-purpose registers.

   Altivec: 128-bit vectors returned using vector registers.

   e500: 64-bit vectors returned using the full full 64 bit EV
   register, floating-point values returned using 32-bit
   general-purpose registers.

   GCC (broken): Small struct values right (instead of left) aligned
   when returned in general-purpose registers.  */

static enum return_value_convention
do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *func_type,
			  struct type *type, struct regcache *regcache,
			  gdb_byte *readbuf, const gdb_byte *writebuf,
			  int broken_gcc)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;

  gdb_assert (tdep->wordsize == 4);

  if (type->code () == TYPE_CODE_FLT
      && TYPE_LENGTH (type) <= 8
      && !tdep->soft_float)
    {
      if (readbuf)
	{
	  /* Floats and doubles stored in "f1".  Convert the value to
	     the required type.  */
	  gdb_byte regval[PPC_MAX_REGISTER_SIZE];
	  struct type *regtype = register_type (gdbarch,
                                                tdep->ppc_fp0_regnum + 1);
	  regcache->cooked_read (tdep->ppc_fp0_regnum + 1, regval);
	  target_float_convert (regval, regtype, readbuf, type);
	}
      if (writebuf)
	{
	  /* Floats and doubles stored in "f1".  Convert the value to
	     the register's "double" type.  */
	  gdb_byte regval[PPC_MAX_REGISTER_SIZE];
	  struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
	  target_float_convert (writebuf, type, regval, regtype);
	  regcache->cooked_write (tdep->ppc_fp0_regnum + 1, regval);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (type->code () == TYPE_CODE_FLT
      && TYPE_LENGTH (type) == 16
      && !tdep->soft_float
      && (gdbarch_long_double_format (gdbarch)
	  == floatformats_ibm_long_double))
    {
      /* IBM long double stored in f1 and f2.  */
      if (readbuf)
	{
	  regcache->cooked_read (tdep->ppc_fp0_regnum + 1, readbuf);
	  regcache->cooked_read (tdep->ppc_fp0_regnum + 2, readbuf + 8);
	}
      if (writebuf)
	{
	  regcache->cooked_write (tdep->ppc_fp0_regnum + 1, writebuf);
	  regcache->cooked_write (tdep->ppc_fp0_regnum + 2, writebuf + 8);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 16
      && ((type->code () == TYPE_CODE_FLT
	   && (gdbarch_long_double_format (gdbarch)
	       == floatformats_ibm_long_double))
	  || (type->code () == TYPE_CODE_DECFLOAT && tdep->soft_float)))
    {
      /* Soft-float IBM long double or _Decimal128 stored in r3, r4,
	 r5, r6.  */
      if (readbuf)
	{
	  regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf);
	  regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4);
	  regcache->cooked_read (tdep->ppc_gp0_regnum + 5, readbuf + 8);
	  regcache->cooked_read (tdep->ppc_gp0_regnum + 6, readbuf + 12);
	}
      if (writebuf)
	{
	  regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf);
	  regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
	  regcache->cooked_write (tdep->ppc_gp0_regnum + 5, writebuf + 8);
	  regcache->cooked_write (tdep->ppc_gp0_regnum + 6, writebuf + 12);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if ((type->code () == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
      || (type->code () == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
      || (type->code () == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 8
	  && tdep->soft_float))
    {
      if (readbuf)
	{
	  /* A long long, double or _Decimal64 stored in the 32 bit
	     r3/r4.  */
	  regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf + 0);
	  regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4);
	}
      if (writebuf)
	{
	  /* A long long, double or _Decimal64 stored in the 32 bit
	     r3/r4.  */
	  regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf + 0);
	  regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (type->code () == TYPE_CODE_DECFLOAT && !tdep->soft_float)
    return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
					   writebuf);
  else if ((type->code () == TYPE_CODE_INT
	    || type->code () == TYPE_CODE_CHAR
	    || type->code () == TYPE_CODE_BOOL
	    || type->code () == TYPE_CODE_PTR
	    || TYPE_IS_REFERENCE (type)
	    || type->code () == TYPE_CODE_ENUM)
	   && TYPE_LENGTH (type) <= tdep->wordsize)
    {
      if (readbuf)
	{
	  /* Some sort of integer stored in r3.  Since TYPE isn't
	     bigger than the register, sign extension isn't a problem
	     - just do everything unsigned.  */
	  ULONGEST regval;
	  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					 &regval);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (type), byte_order,
				  regval);
	}
      if (writebuf)
	{
	  /* Some sort of integer stored in r3.  Use unpack_long since
	     that should handle any required sign extension.  */
	  regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					  unpack_long (type, writebuf));
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* OpenCL vectors < 16 bytes are returned as distinct
     scalars in f1..f2 or r3..r10.  */
  if (type->code () == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && TYPE_LENGTH (type) < 16
      && opencl_abi)
    {
      struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
      int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);

      for (i = 0; i < nelt; i++)
	{
	  int offset = i * TYPE_LENGTH (eltype);

	  if (eltype->code () == TYPE_CODE_FLT)
	    {
	      int regnum = tdep->ppc_fp0_regnum + 1 + i;
	      gdb_byte regval[PPC_MAX_REGISTER_SIZE];
	      struct type *regtype = register_type (gdbarch, regnum);

	      if (writebuf != NULL)
		{
		  target_float_convert (writebuf + offset, eltype,
					regval, regtype);
		  regcache->cooked_write (regnum, regval);
		}
	      if (readbuf != NULL)
		{
		  regcache->cooked_read (regnum, regval);
		  target_float_convert (regval, regtype,
					readbuf + offset, eltype);
		}
	    }
	  else
	    {
	      int regnum = tdep->ppc_gp0_regnum + 3 + i;
	      ULONGEST regval;

	      if (writebuf != NULL)
		{
		  regval = unpack_long (eltype, writebuf + offset);
		  regcache_cooked_write_unsigned (regcache, regnum, regval);
		}
	      if (readbuf != NULL)
		{
		  regcache_cooked_read_unsigned (regcache, regnum, &regval);
		  store_unsigned_integer (readbuf + offset,
					  TYPE_LENGTH (eltype), byte_order,
					  regval);
		}
	    }
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* OpenCL vectors >= 16 bytes are returned in v2..v9.  */
  if (type->code () == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && TYPE_LENGTH (type) >= 16
      && opencl_abi)
    {
      int n_regs = TYPE_LENGTH (type) / 16;
      int i;

      for (i = 0; i < n_regs; i++)
	{
	  int offset = i * 16;
	  int regnum = tdep->ppc_vr0_regnum + 2 + i;

	  if (writebuf != NULL)
	    regcache->cooked_write (regnum, writebuf + offset);
	  if (readbuf != NULL)
	    regcache->cooked_read (regnum, readbuf + offset);
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 16
      && type->code () == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
    {
      if (readbuf)
	{
	  /* Altivec places the return value in "v2".  */
	  regcache->cooked_read (tdep->ppc_vr0_regnum + 2, readbuf);
	}
      if (writebuf)
	{
	  /* Altivec places the return value in "v2".  */
	  regcache->cooked_write (tdep->ppc_vr0_regnum + 2, writebuf);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 16
      && type->code () == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && tdep->vector_abi == POWERPC_VEC_GENERIC)
    {
      /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
	 GCC without AltiVec returns them in memory, but it warns about
	 ABI risks in that case; we don't try to support it.  */
      if (readbuf)
	{
	  regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf + 0);
	  regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4);
	  regcache->cooked_read (tdep->ppc_gp0_regnum + 5, readbuf + 8);
	  regcache->cooked_read (tdep->ppc_gp0_regnum + 6, readbuf + 12);
	}
      if (writebuf)
	{
	  regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf + 0);
	  regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
	  regcache->cooked_write (tdep->ppc_gp0_regnum + 5, writebuf + 8);
	  regcache->cooked_write (tdep->ppc_gp0_regnum + 6, writebuf + 12);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 8
      && type->code () == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && tdep->vector_abi == POWERPC_VEC_SPE)
    {
      /* The e500 ABI places return values for the 64-bit DSP types
	 (__ev64_opaque__) in r3.  However, in GDB-speak, ev3
	 corresponds to the entire r3 value for e500, whereas GDB's r3
	 only corresponds to the least significant 32-bits.  So place
	 the 64-bit DSP type's value in ev3.  */
      if (readbuf)
	regcache->cooked_read (tdep->ppc_ev0_regnum + 3, readbuf);
      if (writebuf)
	regcache->cooked_write (tdep->ppc_ev0_regnum + 3, writebuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (broken_gcc && TYPE_LENGTH (type) <= 8)
    {
      /* GCC screwed up for structures or unions whose size is less
	 than or equal to 8 bytes..  Instead of left-aligning, it
	 right-aligns the data into the buffer formed by r3, r4.  */
      gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2];
      int len = TYPE_LENGTH (type);
      int offset = (2 * tdep->wordsize - len) % tdep->wordsize;

      if (readbuf)
	{
	  regcache->cooked_read (tdep->ppc_gp0_regnum + 3,
				 regvals + 0 * tdep->wordsize);
	  if (len > tdep->wordsize)
	    regcache->cooked_read (tdep->ppc_gp0_regnum + 4,
				   regvals + 1 * tdep->wordsize);
	  memcpy (readbuf, regvals + offset, len);
	}
      if (writebuf)
	{
	  memset (regvals, 0, sizeof regvals);
	  memcpy (regvals + offset, writebuf, len);
	  regcache->cooked_write (tdep->ppc_gp0_regnum + 3,
				  regvals + 0 * tdep->wordsize);
	  if (len > tdep->wordsize)
	    regcache->cooked_write (tdep->ppc_gp0_regnum + 4,
				    regvals + 1 * tdep->wordsize);
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) <= 8)
    {
      if (readbuf)
	{
	  /* This matches SVr4 PPC, it does not match GCC.  */
	  /* The value is right-padded to 8 bytes and then loaded, as
	     two "words", into r3/r4.  */
	  gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2];
	  regcache->cooked_read (tdep->ppc_gp0_regnum + 3,
				 regvals + 0 * tdep->wordsize);
	  if (TYPE_LENGTH (type) > tdep->wordsize)
	    regcache->cooked_read (tdep->ppc_gp0_regnum + 4,
				   regvals + 1 * tdep->wordsize);
	  memcpy (readbuf, regvals, TYPE_LENGTH (type));
	}
      if (writebuf)
	{
	  /* This matches SVr4 PPC, it does not match GCC.  */
	  /* The value is padded out to 8 bytes and then loaded, as
	     two "words" into r3/r4.  */
	  gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2];
	  memset (regvals, 0, sizeof regvals);
	  memcpy (regvals, writebuf, TYPE_LENGTH (type));
	  regcache->cooked_write (tdep->ppc_gp0_regnum + 3,
				  regvals + 0 * tdep->wordsize);
	  if (TYPE_LENGTH (type) > tdep->wordsize)
	    regcache->cooked_write (tdep->ppc_gp0_regnum + 4,
				    regvals + 1 * tdep->wordsize);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  return RETURN_VALUE_STRUCT_CONVENTION;
}

enum return_value_convention
ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
			   struct type *valtype, struct regcache *regcache,
			   gdb_byte *readbuf, const gdb_byte *writebuf)
{
  return do_ppc_sysv_return_value (gdbarch,
				   function ? value_type (function) : NULL,
				   valtype, regcache, readbuf, writebuf, 0);
}

enum return_value_convention
ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
				  struct value *function,
				  struct type *valtype,
				  struct regcache *regcache,
				  gdb_byte *readbuf, const gdb_byte *writebuf)
{
  return do_ppc_sysv_return_value (gdbarch,
				   function ? value_type (function) : NULL,
				   valtype, regcache, readbuf, writebuf, 1);
}

/* The helper function for 64-bit SYSV push_dummy_call.  Converts the
   function's code address back into the function's descriptor
   address.

   Find a value for the TOC register.  Every symbol should have both
   ".FN" and "FN" in the minimal symbol table.  "FN" points at the
   FN's descriptor, while ".FN" points at the entry point (which
   matches FUNC_ADDR).  Need to reverse from FUNC_ADDR back to the
   FN's descriptor address (while at the same time being careful to
   find "FN" in the same object file as ".FN").  */

static int
convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
{
  struct obj_section *dot_fn_section;
  struct bound_minimal_symbol dot_fn;
  struct bound_minimal_symbol fn;

  /* Find the minimal symbol that corresponds to CODE_ADDR (should
     have a name of the form ".FN").  */
  dot_fn = lookup_minimal_symbol_by_pc (code_addr);
  if (dot_fn.minsym == NULL || dot_fn.minsym->linkage_name ()[0] != '.')
    return 0;
  /* Get the section that contains CODE_ADDR.  Need this for the
     "objfile" that it contains.  */
  dot_fn_section = find_pc_section (code_addr);
  if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
    return 0;
  /* Now find the corresponding "FN" (dropping ".") minimal symbol's
     address.  Only look for the minimal symbol in ".FN"'s object file
     - avoids problems when two object files (i.e., shared libraries)
     contain a minimal symbol with the same name.  */
  fn = lookup_minimal_symbol (dot_fn.minsym->linkage_name () + 1, NULL,
			      dot_fn_section->objfile);
  if (fn.minsym == NULL)
    return 0;
  /* Found a descriptor.  */
  (*desc_addr) = BMSYMBOL_VALUE_ADDRESS (fn);
  return 1;
}

/* Walk down the type tree of TYPE counting consecutive base elements.
   If *FIELD_TYPE is NULL, then set it to the first valid floating point
   or vector type.  If a non-floating point or vector type is found, or
   if a floating point or vector type that doesn't match a non-NULL
   *FIELD_TYPE is found, then return -1, otherwise return the count in the
   sub-tree.  */

static LONGEST
ppc64_aggregate_candidate (struct type *type,
			   struct type **field_type)
{
  type = check_typedef (type);

  switch (type->code ())
    {
    case TYPE_CODE_FLT:
    case TYPE_CODE_DECFLOAT:
      if (!*field_type)
	*field_type = type;
      if ((*field_type)->code () == type->code ()
	  && TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
	return 1;
      break;

    case TYPE_CODE_COMPLEX:
      type = TYPE_TARGET_TYPE (type);
      if (type->code () == TYPE_CODE_FLT
	  || type->code () == TYPE_CODE_DECFLOAT)
	{
	  if (!*field_type)
	    *field_type = type;
	  if ((*field_type)->code () == type->code ()
	      && TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
	    return 2;
	}
      break;

    case TYPE_CODE_ARRAY:
      if (TYPE_VECTOR (type))
	{
	  if (!*field_type)
	    *field_type = type;
	  if ((*field_type)->code () == type->code ()
	      && TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
	    return 1;
	}
      else
	{
	  LONGEST count, low_bound, high_bound;

	  count = ppc64_aggregate_candidate
		   (TYPE_TARGET_TYPE (type), field_type);
	  if (count == -1)
	    return -1;

	  if (!get_array_bounds (type, &low_bound, &high_bound))
	    return -1;
	  count *= high_bound - low_bound;

	  /* There must be no padding.  */
	  if (count == 0)
	    return TYPE_LENGTH (type) == 0 ? 0 : -1;
	  else if (TYPE_LENGTH (type) != count * TYPE_LENGTH (*field_type))
	    return -1;

	  return count;
	}
      break;

    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
	{
	  LONGEST count = 0;
	  int i;

	  for (i = 0; i < TYPE_NFIELDS (type); i++)
	    {
	      LONGEST sub_count;

	      if (field_is_static (&TYPE_FIELD (type, i)))
		continue;

	      sub_count = ppc64_aggregate_candidate
			   (TYPE_FIELD_TYPE (type, i), field_type);
	      if (sub_count == -1)
		return -1;

	      if (type->code () == TYPE_CODE_STRUCT)
		count += sub_count;
	      else
		count = std::max (count, sub_count);
	    }

	  /* There must be no padding.  */
	  if (count == 0)
	    return TYPE_LENGTH (type) == 0 ? 0 : -1;
	  else if (TYPE_LENGTH (type) != count * TYPE_LENGTH (*field_type))
	    return -1;

	  return count;
	}
      break;

    default:
      break;
    }

  return -1;
}

/* If an argument of type TYPE is a homogeneous float or vector aggregate
   that shall be passed in FP/vector registers according to the ELFv2 ABI,
   return the homogeneous element type in *ELT_TYPE and the number of
   elements in *N_ELTS, and return non-zero.  Otherwise, return zero.  */

static int
ppc64_elfv2_abi_homogeneous_aggregate (struct type *type,
				       struct type **elt_type, int *n_elts)
{
  /* Complex types at the top level are treated separately.  However,
     complex types can be elements of homogeneous aggregates.  */
  if (type->code () == TYPE_CODE_STRUCT
      || type->code () == TYPE_CODE_UNION
      || (type->code () == TYPE_CODE_ARRAY && !TYPE_VECTOR (type)))
    {
      struct type *field_type = NULL;
      LONGEST field_count = ppc64_aggregate_candidate (type, &field_type);

      if (field_count > 0)
	{
	  int n_regs = ((field_type->code () == TYPE_CODE_FLT
			 || field_type->code () == TYPE_CODE_DECFLOAT)?
			(TYPE_LENGTH (field_type) + 7) >> 3 : 1);

	  /* The ELFv2 ABI allows homogeneous aggregates to occupy
	     up to 8 registers.  */
	  if (field_count * n_regs <= 8)
	    {
	      if (elt_type)
		*elt_type = field_type;
	      if (n_elts)
		*n_elts = (int) field_count;
	      /* Note that field_count is LONGEST since it may hold the size
		 of an array, while *n_elts is int since its value is bounded
		 by the number of registers used for argument passing.  The
		 cast cannot overflow due to the bounds checking above.  */
	      return 1;
	    }
	}
    }

  return 0;
}

/* Structure holding the next argument position.  */
struct ppc64_sysv_argpos
  {
    /* Register cache holding argument registers.  If this is NULL,
       we only simulate argument processing without actually updating
       any registers or memory.  */
    struct regcache *regcache;
    /* Next available general-purpose argument register.  */
    int greg;
    /* Next available floating-point argument register.  */
    int freg;
    /* Next available vector argument register.  */
    int vreg;
    /* The address, at which the next general purpose parameter
       (integer, struct, float, vector, ...) should be saved.  */
    CORE_ADDR gparam;
    /* The address, at which the next by-reference parameter
       (non-Altivec vector, variably-sized type) should be saved.  */
    CORE_ADDR refparam;
  };

/* VAL is a value of length LEN.  Store it into the argument area on the
   stack and load it into the corresponding general-purpose registers
   required by the ABI, and update ARGPOS.

   If ALIGN is nonzero, it specifies the minimum alignment required
   for the on-stack copy of the argument.  */

static void
ppc64_sysv_abi_push_val (struct gdbarch *gdbarch,
			 const bfd_byte *val, int len, int align,
			 struct ppc64_sysv_argpos *argpos)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int offset = 0;

  /* Enforce alignment of stack location, if requested.  */
  if (align > tdep->wordsize)
    {
      CORE_ADDR aligned_gparam = align_up (argpos->gparam, align);

      argpos->greg += (aligned_gparam - argpos->gparam) / tdep->wordsize;
      argpos->gparam = aligned_gparam;
    }

  /* The ABI (version 1.9) specifies that values smaller than one
     doubleword are right-aligned and those larger are left-aligned.
     GCC versions before 3.4 implemented this incorrectly; see
     <http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>.  */
  if (len < tdep->wordsize
      && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    offset = tdep->wordsize - len;

  if (argpos->regcache)
    write_memory (argpos->gparam + offset, val, len);
  argpos->gparam = align_up (argpos->gparam + len, tdep->wordsize);

  while (len >= tdep->wordsize)
    {
      if (argpos->regcache && argpos->greg <= 10)
	argpos->regcache->cooked_write (tdep->ppc_gp0_regnum + argpos->greg,
					val);
      argpos->greg++;
      len -= tdep->wordsize;
      val += tdep->wordsize;
    }

  if (len > 0)
    {
      if (argpos->regcache && argpos->greg <= 10)
	argpos->regcache->cooked_write_part
	  (tdep->ppc_gp0_regnum + argpos->greg, offset, len, val);
      argpos->greg++;
    }
}

/* The same as ppc64_sysv_abi_push_val, but using a single-word integer
   value VAL as argument.  */

static void
ppc64_sysv_abi_push_integer (struct gdbarch *gdbarch, ULONGEST val,
			     struct ppc64_sysv_argpos *argpos)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[PPC_MAX_REGISTER_SIZE];

  if (argpos->regcache)
    store_unsigned_integer (buf, tdep->wordsize, byte_order, val);
  ppc64_sysv_abi_push_val (gdbarch, buf, tdep->wordsize, 0, argpos);
}

/* VAL is a value of TYPE, a (binary or decimal) floating-point type.
   Load it into a floating-point register if required by the ABI,
   and update ARGPOS.  */

static void
ppc64_sysv_abi_push_freg (struct gdbarch *gdbarch,
			  struct type *type, const bfd_byte *val,
			  struct ppc64_sysv_argpos *argpos)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (tdep->soft_float)
    return;

  if (TYPE_LENGTH (type) <= 8
      && type->code () == TYPE_CODE_FLT)
    {
      /* Floats and doubles go in f1 .. f13.  32-bit floats are converted
 	 to double first.  */
      if (argpos->regcache && argpos->freg <= 13)
	{
	  int regnum = tdep->ppc_fp0_regnum + argpos->freg;
	  struct type *regtype = register_type (gdbarch, regnum);
	  gdb_byte regval[PPC_MAX_REGISTER_SIZE];

	  target_float_convert (val, type, regval, regtype);
	  argpos->regcache->cooked_write (regnum, regval);
	}

      argpos->freg++;
    }
  else if (TYPE_LENGTH (type) <= 8
	   && type->code () == TYPE_CODE_DECFLOAT)
    {
      /* Floats and doubles go in f1 .. f13.  32-bit decimal floats are
	 placed in the least significant word.  */
      if (argpos->regcache && argpos->freg <= 13)
	{
	  int regnum = tdep->ppc_fp0_regnum + argpos->freg;
	  int offset = 0;

	  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	    offset = 8 - TYPE_LENGTH (type);

	  argpos->regcache->cooked_write_part (regnum, offset,
					       TYPE_LENGTH (type), val);
	}

      argpos->freg++;
    }
  else if (TYPE_LENGTH (type) == 16
	   && type->code () == TYPE_CODE_FLT
	   && (gdbarch_long_double_format (gdbarch)
	       == floatformats_ibm_long_double))
    {
      /* IBM long double stored in two consecutive FPRs.  */
      if (argpos->regcache && argpos->freg <= 13)
	{
	  int regnum = tdep->ppc_fp0_regnum + argpos->freg;

	  argpos->regcache->cooked_write (regnum, val);
	  if (argpos->freg <= 12)
	    argpos->regcache->cooked_write (regnum + 1, val + 8);
	}

      argpos->freg += 2;
    }
  else if (TYPE_LENGTH (type) == 16
	   && type->code () == TYPE_CODE_DECFLOAT)
    {
      /* 128-bit decimal floating-point values are stored in and even/odd
	 pair of FPRs, with the even FPR holding the most significant half.  */
      argpos->freg += argpos->freg & 1;

      if (argpos->regcache && argpos->freg <= 12)
	{
	  int regnum = tdep->ppc_fp0_regnum + argpos->freg;
	  int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0;
	  int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;

	  argpos->regcache->cooked_write (regnum, val + hipart);
	  argpos->regcache->cooked_write (regnum + 1, val + lopart);
	}

      argpos->freg += 2;
    }
}

/* VAL is a value of AltiVec vector type.  Load it into a vector register
   if required by the ABI, and update ARGPOS.  */

static void
ppc64_sysv_abi_push_vreg (struct gdbarch *gdbarch, const bfd_byte *val,
			  struct ppc64_sysv_argpos *argpos)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (argpos->regcache && argpos->vreg <= 13)
    argpos->regcache->cooked_write (tdep->ppc_vr0_regnum + argpos->vreg, val);

  argpos->vreg++;
}

/* VAL is a value of TYPE.  Load it into memory and/or registers
   as required by the ABI, and update ARGPOS.  */

static void
ppc64_sysv_abi_push_param (struct gdbarch *gdbarch,
			   struct type *type, const bfd_byte *val,
			   struct ppc64_sysv_argpos *argpos)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (type->code () == TYPE_CODE_FLT
      || type->code () == TYPE_CODE_DECFLOAT)
    {
      /* Floating-point scalars are passed in floating-point registers.  */
      ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 0, argpos);
      ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos);
    }
  else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
	   && tdep->vector_abi == POWERPC_VEC_ALTIVEC
	   && TYPE_LENGTH (type) == 16)
    {
      /* AltiVec vectors are passed aligned, and in vector registers.  */
      ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 16, argpos);
      ppc64_sysv_abi_push_vreg (gdbarch, val, argpos);
    }
  else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
	   && TYPE_LENGTH (type) >= 16)
    {
      /* Non-Altivec vectors are passed by reference.  */

      /* Copy value onto the stack ...  */
      CORE_ADDR addr = align_up (argpos->refparam, 16);
      if (argpos->regcache)
	write_memory (addr, val, TYPE_LENGTH (type));
      argpos->refparam = align_up (addr + TYPE_LENGTH (type), tdep->wordsize);

      /* ... and pass a pointer to the copy as parameter.  */
      ppc64_sysv_abi_push_integer (gdbarch, addr, argpos);
    }
  else if ((type->code () == TYPE_CODE_INT
	    || type->code () == TYPE_CODE_ENUM
	    || type->code () == TYPE_CODE_BOOL
	    || type->code () == TYPE_CODE_CHAR
	    || type->code () == TYPE_CODE_PTR
	    || TYPE_IS_REFERENCE (type))
	   && TYPE_LENGTH (type) <= tdep->wordsize)
    {
      ULONGEST word = 0;

      if (argpos->regcache)
	{
	  /* Sign extend the value, then store it unsigned.  */
	  word = unpack_long (type, val);

	  /* Convert any function code addresses into descriptors.  */
	  if (tdep->elf_abi == POWERPC_ELF_V1
	      && (type->code () == TYPE_CODE_PTR
		  || type->code () == TYPE_CODE_REF))
	    {
	      struct type *target_type
		= check_typedef (TYPE_TARGET_TYPE (type));

	      if (target_type->code () == TYPE_CODE_FUNC
		  || target_type->code () == TYPE_CODE_METHOD)
		{
		  CORE_ADDR desc = word;

		  convert_code_addr_to_desc_addr (word, &desc);
		  word = desc;
		}
	    }
	}

      ppc64_sysv_abi_push_integer (gdbarch, word, argpos);
    }
  else
    {
      ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 0, argpos);

      /* The ABI (version 1.9) specifies that structs containing a
	 single floating-point value, at any level of nesting of
	 single-member structs, are passed in floating-point registers.  */
      if (type->code () == TYPE_CODE_STRUCT
	  && TYPE_NFIELDS (type) == 1)
	{
	  while (type->code () == TYPE_CODE_STRUCT
		 && TYPE_NFIELDS (type) == 1)
	    type = check_typedef (TYPE_FIELD_TYPE (type, 0));

	  if (type->code () == TYPE_CODE_FLT)
	    ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos);
	}

      /* In the ELFv2 ABI, homogeneous floating-point or vector
	 aggregates are passed in a series of registers.  */
      if (tdep->elf_abi == POWERPC_ELF_V2)
	{
	  struct type *eltype;
	  int i, nelt;

	  if (ppc64_elfv2_abi_homogeneous_aggregate (type, &eltype, &nelt))
	    for (i = 0; i < nelt; i++)
	      {
		const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);

		if (eltype->code () == TYPE_CODE_FLT
		    || eltype->code () == TYPE_CODE_DECFLOAT)
		  ppc64_sysv_abi_push_freg (gdbarch, eltype, elval, argpos);
		else if (eltype->code () == TYPE_CODE_ARRAY
			 && TYPE_VECTOR (eltype)
			 && tdep->vector_abi == POWERPC_VEC_ALTIVEC
			 && TYPE_LENGTH (eltype) == 16)
		  ppc64_sysv_abi_push_vreg (gdbarch, elval, argpos);
	      }
	}
    }
}

/* Pass the arguments in either registers, or in the stack.  Using the
   ppc 64 bit SysV ABI.

   This implements a dumbed down version of the ABI.  It always writes
   values to memory, GPR and FPR, even when not necessary.  Doing this
   greatly simplifies the logic.  */

CORE_ADDR
ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch,
				struct value *function,
				struct regcache *regcache, CORE_ADDR bp_addr,
				int nargs, struct value **args, CORE_ADDR sp,
				function_call_return_method return_method,
				CORE_ADDR struct_addr)
{
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int opencl_abi = ppc_sysv_use_opencl_abi (value_type (function));
  ULONGEST back_chain;
  /* See for-loop comment below.  */
  int write_pass;
  /* Size of the by-reference parameter copy region, the final value is
     computed in the for-loop below.  */
  LONGEST refparam_size = 0;
  /* Size of the general parameter region, the final value is computed
     in the for-loop below.  */
  LONGEST gparam_size = 0;
  /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
     calls to align_up(), align_down(), etc. because this makes it
     easier to reuse this code (in a copy/paste sense) in the future,
     but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
     at some point makes it easier to verify that this function is
     correct without having to do a non-local analysis to figure out
     the possible values of tdep->wordsize.  */
  gdb_assert (tdep->wordsize == 8);

  /* This function exists to support a calling convention that
     requires floating-point registers.  It shouldn't be used on
     processors that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (gdbarch));

  /* By this stage in the proceedings, SP has been decremented by "red
     zone size" + "struct return size".  Fetch the stack-pointer from
     before this and use that as the BACK_CHAIN.  */
  regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
				 &back_chain);

  /* Go through the argument list twice.

     Pass 1: Compute the function call's stack space and register
     requirements.

     Pass 2: Replay the same computation but this time also write the
     values out to the target.  */

  for (write_pass = 0; write_pass < 2; write_pass++)
    {
      int argno;

      struct ppc64_sysv_argpos argpos;
      argpos.greg = 3;
      argpos.freg = 1;
      argpos.vreg = 2;

      if (!write_pass)
	{
	  /* During the first pass, GPARAM and REFPARAM are more like
	     offsets (start address zero) than addresses.  That way
	     they accumulate the total stack space each region
	     requires.  */
	  argpos.regcache = NULL;
	  argpos.gparam = 0;
	  argpos.refparam = 0;
	}
      else
	{
	  /* Decrement the stack pointer making space for the Altivec
	     and general on-stack parameters.  Set refparam and gparam
	     to their corresponding regions.  */
	  argpos.regcache = regcache;
	  argpos.refparam = align_down (sp - refparam_size, 16);
	  argpos.gparam = align_down (argpos.refparam - gparam_size, 16);
	  /* Add in space for the TOC, link editor double word (v1 only),
	     compiler double word (v1 only), LR save area, CR save area,
	     and backchain.  */
	  if (tdep->elf_abi == POWERPC_ELF_V1)
	    sp = align_down (argpos.gparam - 48, 16);
	  else
	    sp = align_down (argpos.gparam - 32, 16);
	}

      /* If the function is returning a `struct', then there is an
         extra hidden parameter (which will be passed in r3)
         containing the address of that struct..  In that case we
         should advance one word and start from r4 register to copy
         parameters.  This also consumes one on-stack parameter slot.  */
      if (return_method == return_method_struct)
	ppc64_sysv_abi_push_integer (gdbarch, struct_addr, &argpos);

      for (argno = 0; argno < nargs; argno++)
	{
	  struct value *arg = args[argno];
	  struct type *type = check_typedef (value_type (arg));
	  const bfd_byte *val = value_contents (arg);

	  if (type->code () == TYPE_CODE_COMPLEX)
	    {
	      /* Complex types are passed as if two independent scalars.  */
	      struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));

	      ppc64_sysv_abi_push_param (gdbarch, eltype, val, &argpos);
	      ppc64_sysv_abi_push_param (gdbarch, eltype,
				 	 val + TYPE_LENGTH (eltype), &argpos);
	    }
	  else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
		   && opencl_abi)
	    {
	      /* OpenCL vectors shorter than 16 bytes are passed as if
		 a series of independent scalars; OpenCL vectors 16 bytes
		 or longer are passed as if a series of AltiVec vectors.  */
	      struct type *eltype;
	      int i, nelt;

	      if (TYPE_LENGTH (type) < 16)
		eltype = check_typedef (TYPE_TARGET_TYPE (type));
	      else
		eltype = register_type (gdbarch, tdep->ppc_vr0_regnum);

	      nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
	      for (i = 0; i < nelt; i++)
		{
		  const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);

		  ppc64_sysv_abi_push_param (gdbarch, eltype, elval, &argpos);
		}
	    }
	  else
	    {
	      /* All other types are passed as single arguments.  */
	      ppc64_sysv_abi_push_param (gdbarch, type, val, &argpos);
	    }
	}

      if (!write_pass)
	{
	  /* Save the true region sizes ready for the second pass.  */
	  refparam_size = argpos.refparam;
	  /* Make certain that the general parameter save area is at
	     least the minimum 8 registers (or doublewords) in size.  */
	  if (argpos.greg < 8)
	    gparam_size = 8 * tdep->wordsize;
	  else
	    gparam_size = argpos.gparam;
	}
    }

  /* Update %sp.   */
  regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);

  /* Write the backchain (it occupies WORDSIZED bytes).  */
  write_memory_signed_integer (sp, tdep->wordsize, byte_order, back_chain);

  /* Point the inferior function call's return address at the dummy's
     breakpoint.  */
  regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);

  /* In the ELFv1 ABI, use the func_addr to find the descriptor, and use
     that to find the TOC.  If we're calling via a function pointer,
     the pointer itself identifies the descriptor.  */
  if (tdep->elf_abi == POWERPC_ELF_V1)
    {
      struct type *ftype = check_typedef (value_type (function));
      CORE_ADDR desc_addr = value_as_address (function);

      if (ftype->code () == TYPE_CODE_PTR
	  || convert_code_addr_to_desc_addr (func_addr, &desc_addr))
	{
	  /* The TOC is the second double word in the descriptor.  */
	  CORE_ADDR toc =
	    read_memory_unsigned_integer (desc_addr + tdep->wordsize,
					  tdep->wordsize, byte_order);

	  regcache_cooked_write_unsigned (regcache,
					  tdep->ppc_gp0_regnum + 2, toc);
	}
    }

  /* In the ELFv2 ABI, we need to pass the target address in r12 since
     we may be calling a global entry point.  */
  if (tdep->elf_abi == POWERPC_ELF_V2)
    regcache_cooked_write_unsigned (regcache,
				    tdep->ppc_gp0_regnum + 12, func_addr);

  return sp;
}

/* Subroutine of ppc64_sysv_abi_return_value that handles "base" types:
   integer, floating-point, and AltiVec vector types.

   This routine also handles components of aggregate return types;
   INDEX describes which part of the aggregate is to be handled.

   Returns true if VALTYPE is some such base type that could be handled,
   false otherwise.  */
static int
ppc64_sysv_abi_return_value_base (struct gdbarch *gdbarch, struct type *valtype,
				  struct regcache *regcache, gdb_byte *readbuf,
				  const gdb_byte *writebuf, int index)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* Integers live in GPRs starting at r3.  */
  if ((valtype->code () == TYPE_CODE_INT
       || valtype->code () == TYPE_CODE_ENUM
       || valtype->code () == TYPE_CODE_CHAR
       || valtype->code () == TYPE_CODE_BOOL)
      && TYPE_LENGTH (valtype) <= 8)
    {
      int regnum = tdep->ppc_gp0_regnum + 3 + index;

      if (writebuf != NULL)
	{
	  /* Be careful to sign extend the value.  */
	  regcache_cooked_write_unsigned (regcache, regnum,
					  unpack_long (valtype, writebuf));
	}
      if (readbuf != NULL)
	{
	  /* Extract the integer from GPR.  Since this is truncating the
	     value, there isn't a sign extension problem.  */
	  ULONGEST regval;

	  regcache_cooked_read_unsigned (regcache, regnum, &regval);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (valtype),
				  gdbarch_byte_order (gdbarch), regval);
	}
      return 1;
    }

  /* Floats and doubles go in f1 .. f13.  32-bit floats are converted
     to double first.  */
  if (TYPE_LENGTH (valtype) <= 8
      && valtype->code () == TYPE_CODE_FLT)
    {
      int regnum = tdep->ppc_fp0_regnum + 1 + index;
      struct type *regtype = register_type (gdbarch, regnum);
      gdb_byte regval[PPC_MAX_REGISTER_SIZE];

      if (writebuf != NULL)
	{
	  target_float_convert (writebuf, valtype, regval, regtype);
	  regcache->cooked_write (regnum, regval);
	}
      if (readbuf != NULL)
	{
	  regcache->cooked_read (regnum, regval);
	  target_float_convert (regval, regtype, readbuf, valtype);
	}
      return 1;
    }

  /* Floats and doubles go in f1 .. f13.  32-bit decimal floats are
     placed in the least significant word.  */
  if (TYPE_LENGTH (valtype) <= 8
      && valtype->code () == TYPE_CODE_DECFLOAT)
    {
      int regnum = tdep->ppc_fp0_regnum + 1 + index;
      int offset = 0;

      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	offset = 8 - TYPE_LENGTH (valtype);

      if (writebuf != NULL)
	regcache->cooked_write_part (regnum, offset, TYPE_LENGTH (valtype),
				     writebuf);
      if (readbuf != NULL)
	regcache->cooked_read_part (regnum, offset, TYPE_LENGTH (valtype),
				    readbuf);
      return 1;
    }

  /* IBM long double stored in two consecutive FPRs.  */
  if (TYPE_LENGTH (valtype) == 16
      && valtype->code () == TYPE_CODE_FLT
      && (gdbarch_long_double_format (gdbarch)
	  == floatformats_ibm_long_double))
    {
      int regnum = tdep->ppc_fp0_regnum + 1 + 2 * index;

      if (writebuf != NULL)
	{
	  regcache->cooked_write (regnum, writebuf);
	  regcache->cooked_write (regnum + 1, writebuf + 8);
	}
      if (readbuf != NULL)
	{
	  regcache->cooked_read (regnum, readbuf);
	  regcache->cooked_read (regnum + 1, readbuf + 8);
	}
      return 1;
    }

  /* 128-bit decimal floating-point values are stored in an even/odd
     pair of FPRs, with the even FPR holding the most significant half.  */
  if (TYPE_LENGTH (valtype) == 16
      && valtype->code () == TYPE_CODE_DECFLOAT)
    {
      int regnum = tdep->ppc_fp0_regnum + 2 + 2 * index;
      int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0;
      int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;

      if (writebuf != NULL)
	{
	  regcache->cooked_write (regnum, writebuf + hipart);
	  regcache->cooked_write (regnum + 1, writebuf + lopart);
	}
      if (readbuf != NULL)
	{
	  regcache->cooked_read (regnum, readbuf + hipart);
	  regcache->cooked_read (regnum + 1, readbuf + lopart);
	}
      return 1;
    }

  /* AltiVec vectors are returned in VRs starting at v2.  */
  if (TYPE_LENGTH (valtype) == 16
      && valtype->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
      && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
    {
      int regnum = tdep->ppc_vr0_regnum + 2 + index;

      if (writebuf != NULL)
	regcache->cooked_write (regnum, writebuf);
      if (readbuf != NULL)
	regcache->cooked_read (regnum, readbuf);
      return 1;
    }

  /* Short vectors are returned in GPRs starting at r3.  */
  if (TYPE_LENGTH (valtype) <= 8
      && valtype->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype))
    {
      int regnum = tdep->ppc_gp0_regnum + 3 + index;
      int offset = 0;

      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	offset = 8 - TYPE_LENGTH (valtype);

      if (writebuf != NULL)
	regcache->cooked_write_part (regnum, offset, TYPE_LENGTH (valtype),
				     writebuf);
      if (readbuf != NULL)
	regcache->cooked_read_part (regnum, offset, TYPE_LENGTH (valtype),
				    readbuf);
      return 1;
    }

  return 0;
}

/* The 64 bit ABI return value convention.

   Return non-zero if the return-value is stored in a register, return
   0 if the return-value is instead stored on the stack (a.k.a.,
   struct return convention).

   For a return-value stored in a register: when WRITEBUF is non-NULL,
   copy the buffer to the corresponding register return-value location
   location; when READBUF is non-NULL, fill the buffer from the
   corresponding register return-value location.  */
enum return_value_convention
ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
			     struct type *valtype, struct regcache *regcache,
			     gdb_byte *readbuf, const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct type *func_type = function ? value_type (function) : NULL;
  int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
  struct type *eltype;
  int nelt, ok;

  /* This function exists to support a calling convention that
     requires floating-point registers.  It shouldn't be used on
     processors that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (gdbarch));

  /* Complex types are returned as if two independent scalars.  */
  if (valtype->code () == TYPE_CODE_COMPLEX)
    {
      eltype = check_typedef (TYPE_TARGET_TYPE (valtype));

      for (int i = 0; i < 2; i++)
	{
	  ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
						 readbuf, writebuf, i);
	  gdb_assert (ok);

	  if (readbuf)
	    readbuf += TYPE_LENGTH (eltype);
	  if (writebuf)
	    writebuf += TYPE_LENGTH (eltype);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }

  /* OpenCL vectors shorter than 16 bytes are returned as if
     a series of independent scalars; OpenCL vectors 16 bytes
     or longer are returned as if a series of AltiVec vectors.  */
  if (valtype->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
      && opencl_abi)
    {
      if (TYPE_LENGTH (valtype) < 16)
	eltype = check_typedef (TYPE_TARGET_TYPE (valtype));
      else
	eltype = register_type (gdbarch, tdep->ppc_vr0_regnum);

      nelt = TYPE_LENGTH (valtype) / TYPE_LENGTH (eltype);
      for (int i = 0; i < nelt; i++)
	{
	  ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
						 readbuf, writebuf, i);
	  gdb_assert (ok);

	  if (readbuf)
	    readbuf += TYPE_LENGTH (eltype);
	  if (writebuf)
	    writebuf += TYPE_LENGTH (eltype);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }

  /* All pointers live in r3.  */
  if (valtype->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (valtype))
    {
      int regnum = tdep->ppc_gp0_regnum + 3;

      if (writebuf != NULL)
	regcache->cooked_write (regnum, writebuf);
      if (readbuf != NULL)
	regcache->cooked_read (regnum, readbuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }

  /* Small character arrays are returned, right justified, in r3.  */
  if (valtype->code () == TYPE_CODE_ARRAY
      && !TYPE_VECTOR (valtype)
      && TYPE_LENGTH (valtype) <= 8
      && TYPE_TARGET_TYPE (valtype)->code () == TYPE_CODE_INT
      && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
    {
      int regnum = tdep->ppc_gp0_regnum + 3;
      int offset = (register_size (gdbarch, regnum) - TYPE_LENGTH (valtype));

      if (writebuf != NULL)
	regcache->cooked_write_part (regnum, offset, TYPE_LENGTH (valtype),
				     writebuf);
      if (readbuf != NULL)
	regcache->cooked_read_part (regnum, offset, TYPE_LENGTH (valtype),
				    readbuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }

  /* In the ELFv2 ABI, homogeneous floating-point or vector
     aggregates are returned in registers.  */
  if (tdep->elf_abi == POWERPC_ELF_V2
      && ppc64_elfv2_abi_homogeneous_aggregate (valtype, &eltype, &nelt)
      && (eltype->code () == TYPE_CODE_FLT
	  || eltype->code () == TYPE_CODE_DECFLOAT
	  || (eltype->code () == TYPE_CODE_ARRAY
	      && TYPE_VECTOR (eltype)
	      && tdep->vector_abi == POWERPC_VEC_ALTIVEC
	      && TYPE_LENGTH (eltype) == 16)))
    {
      for (int i = 0; i < nelt; i++)
	{
	  ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
						 readbuf, writebuf, i);
	  gdb_assert (ok);

	  if (readbuf)
	    readbuf += TYPE_LENGTH (eltype);
	  if (writebuf)
	    writebuf += TYPE_LENGTH (eltype);
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
    }

  /* In the ELFv2 ABI, aggregate types of up to 16 bytes are
     returned in registers r3:r4.  */
  if (tdep->elf_abi == POWERPC_ELF_V2
      && TYPE_LENGTH (valtype) <= 16
      && (valtype->code () == TYPE_CODE_STRUCT
	  || valtype->code () == TYPE_CODE_UNION
	  || (valtype->code () == TYPE_CODE_ARRAY
	      && !TYPE_VECTOR (valtype))))
    {
      int n_regs = ((TYPE_LENGTH (valtype) + tdep->wordsize - 1)
		    / tdep->wordsize);

      for (int i = 0; i < n_regs; i++)
	{
	  gdb_byte regval[PPC_MAX_REGISTER_SIZE];
	  int regnum = tdep->ppc_gp0_regnum + 3 + i;
	  int offset = i * tdep->wordsize;
	  int len = TYPE_LENGTH (valtype) - offset;

	  if (len > tdep->wordsize)
	    len = tdep->wordsize;

	  if (writebuf != NULL)
	    {
	      memset (regval, 0, sizeof regval);
	      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
		  && offset == 0)
		memcpy (regval + tdep->wordsize - len, writebuf, len);
	      else
		memcpy (regval, writebuf + offset, len);
	      regcache->cooked_write (regnum, regval);
	    }
	  if (readbuf != NULL)
	    {
	      regcache->cooked_read (regnum, regval);
	      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
		  && offset == 0)
		memcpy (readbuf, regval + tdep->wordsize - len, len);
	      else
		memcpy (readbuf + offset, regval, len);
	    }
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }

  /* Handle plain base types.  */
  if (ppc64_sysv_abi_return_value_base (gdbarch, valtype, regcache,
					readbuf, writebuf, 0))
    return RETURN_VALUE_REGISTER_CONVENTION;

  return RETURN_VALUE_STRUCT_CONVENTION;
}