summaryrefslogtreecommitdiff
path: root/gdb/mips-tdep.c
blob: da4bef6f8297442e57e1dc6e4b98de695d19d1bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.

   Copyright (C) 1988-2016 Free Software Foundation, Inc.

   Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
   and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "value.h"
#include "gdbcmd.h"
#include "language.h"
#include "gdbcore.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "target.h"
#include "arch-utils.h"
#include "regcache.h"
#include "osabi.h"
#include "mips-tdep.h"
#include "block.h"
#include "reggroups.h"
#include "opcode/mips.h"
#include "elf/mips.h"
#include "elf-bfd.h"
#include "symcat.h"
#include "sim-regno.h"
#include "dis-asm.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "infcall.h"
#include "floatformat.h"
#include "remote.h"
#include "target-descriptions.h"
#include "dwarf2-frame.h"
#include "user-regs.h"
#include "valprint.h"
#include "ax.h"
#include <algorithm>

static const struct objfile_data *mips_pdr_data;

static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);

static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
					      ULONGEST inst);
static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
static int mips16_instruction_has_delay_slot (unsigned short inst,
					      int mustbe32);

static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
					     CORE_ADDR addr);
static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
						CORE_ADDR addr, int mustbe32);
static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
					     CORE_ADDR addr, int mustbe32);

static void mips_print_float_info (struct gdbarch *, struct ui_file *,
				   struct frame_info *, const char *);

/* A useful bit in the CP0 status register (MIPS_PS_REGNUM).  */
/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip.  */
#define ST0_FR (1 << 26)

/* The sizes of floating point registers.  */

enum
{
  MIPS_FPU_SINGLE_REGSIZE = 4,
  MIPS_FPU_DOUBLE_REGSIZE = 8
};

enum
{
  MIPS32_REGSIZE = 4,
  MIPS64_REGSIZE = 8
};

static const char *mips_abi_string;

static const char *const mips_abi_strings[] = {
  "auto",
  "n32",
  "o32",
  "n64",
  "o64",
  "eabi32",
  "eabi64",
  NULL
};

/* Enum describing the different kinds of breakpoints.  */

enum mips_breakpoint_kind
{
  /* 16-bit MIPS16 mode breakpoint.  */
  MIPS_BP_KIND_MIPS16 = 2,

  /* 16-bit microMIPS mode breakpoint.  */
  MIPS_BP_KIND_MICROMIPS16 = 3,

  /* 32-bit standard MIPS mode breakpoint.  */
  MIPS_BP_KIND_MIPS32 = 4,

  /* 32-bit microMIPS mode breakpoint.  */
  MIPS_BP_KIND_MICROMIPS32 = 5,
};

/* For backwards compatibility we default to MIPS16.  This flag is
   overridden as soon as unambiguous ELF file flags tell us the
   compressed ISA encoding used.  */
static const char mips_compression_mips16[] = "mips16";
static const char mips_compression_micromips[] = "micromips";
static const char *const mips_compression_strings[] =
{
  mips_compression_mips16,
  mips_compression_micromips,
  NULL
};

static const char *mips_compression_string = mips_compression_mips16;

/* The standard register names, and all the valid aliases for them.  */
struct register_alias
{
  const char *name;
  int regnum;
};

/* Aliases for o32 and most other ABIs.  */
const struct register_alias mips_o32_aliases[] = {
  { "ta0", 12 },
  { "ta1", 13 },
  { "ta2", 14 },
  { "ta3", 15 }
};

/* Aliases for n32 and n64.  */
const struct register_alias mips_n32_n64_aliases[] = {
  { "ta0", 8 },
  { "ta1", 9 },
  { "ta2", 10 },
  { "ta3", 11 }
};

/* Aliases for ABI-independent registers.  */
const struct register_alias mips_register_aliases[] = {
  /* The architecture manuals specify these ABI-independent names for
     the GPRs.  */
#define R(n) { "r" #n, n }
  R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
  R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
  R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
  R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
#undef R

  /* k0 and k1 are sometimes called these instead (for "kernel
     temp").  */
  { "kt0", 26 },
  { "kt1", 27 },

  /* This is the traditional GDB name for the CP0 status register.  */
  { "sr", MIPS_PS_REGNUM },

  /* This is the traditional GDB name for the CP0 BadVAddr register.  */
  { "bad", MIPS_EMBED_BADVADDR_REGNUM },

  /* This is the traditional GDB name for the FCSR.  */
  { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
};

const struct register_alias mips_numeric_register_aliases[] = {
#define R(n) { #n, n }
  R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
  R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
  R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
  R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
#undef R
};

#ifndef MIPS_DEFAULT_FPU_TYPE
#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
#endif
static int mips_fpu_type_auto = 1;
static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;

static unsigned int mips_debug = 0;

/* Properties (for struct target_desc) describing the g/G packet
   layout.  */
#define PROPERTY_GP32 "internal: transfers-32bit-registers"
#define PROPERTY_GP64 "internal: transfers-64bit-registers"

struct target_desc *mips_tdesc_gp32;
struct target_desc *mips_tdesc_gp64;

const struct mips_regnum *
mips_regnum (struct gdbarch *gdbarch)
{
  return gdbarch_tdep (gdbarch)->regnum;
}

static int
mips_fpa0_regnum (struct gdbarch *gdbarch)
{
  return mips_regnum (gdbarch)->fp0 + 12;
}

/* Return 1 if REGNUM refers to a floating-point general register, raw
   or cooked.  Otherwise return 0.  */

static int
mips_float_register_p (struct gdbarch *gdbarch, int regnum)
{
  int rawnum = regnum % gdbarch_num_regs (gdbarch);

  return (rawnum >= mips_regnum (gdbarch)->fp0
	  && rawnum < mips_regnum (gdbarch)->fp0 + 32);
}

#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
		     == MIPS_ABI_EABI32 \
		   || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)

#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
  (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)

#define MIPS_LAST_ARG_REGNUM(gdbarch) \
  (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)

#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)

/* Return the MIPS ABI associated with GDBARCH.  */
enum mips_abi
mips_abi (struct gdbarch *gdbarch)
{
  return gdbarch_tdep (gdbarch)->mips_abi;
}

int
mips_isa_regsize (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* If we know how big the registers are, use that size.  */
  if (tdep->register_size_valid_p)
    return tdep->register_size;

  /* Fall back to the previous behavior.  */
  return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
	  / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
}

/* Return the currently configured (or set) saved register size.  */

unsigned int
mips_abi_regsize (struct gdbarch *gdbarch)
{
  switch (mips_abi (gdbarch))
    {
    case MIPS_ABI_EABI32:
    case MIPS_ABI_O32:
      return 4;
    case MIPS_ABI_N32:
    case MIPS_ABI_N64:
    case MIPS_ABI_O64:
    case MIPS_ABI_EABI64:
      return 8;
    case MIPS_ABI_UNKNOWN:
    case MIPS_ABI_LAST:
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
}

/* MIPS16/microMIPS function addresses are odd (bit 0 is set).  Here
   are some functions to handle addresses associated with compressed
   code including but not limited to testing, setting, or clearing
   bit 0 of such addresses.  */

/* Return one iff compressed code is the MIPS16 instruction set.  */

static int
is_mips16_isa (struct gdbarch *gdbarch)
{
  return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
}

/* Return one iff compressed code is the microMIPS instruction set.  */

static int
is_micromips_isa (struct gdbarch *gdbarch)
{
  return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
}

/* Return one iff ADDR denotes compressed code.  */

static int
is_compact_addr (CORE_ADDR addr)
{
  return ((addr) & 1);
}

/* Return one iff ADDR denotes standard ISA code.  */

static int
is_mips_addr (CORE_ADDR addr)
{
  return !is_compact_addr (addr);
}

/* Return one iff ADDR denotes MIPS16 code.  */

static int
is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return is_compact_addr (addr) && is_mips16_isa (gdbarch);
}

/* Return one iff ADDR denotes microMIPS code.  */

static int
is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return is_compact_addr (addr) && is_micromips_isa (gdbarch);
}

/* Strip the ISA (compression) bit off from ADDR.  */

static CORE_ADDR
unmake_compact_addr (CORE_ADDR addr)
{
  return ((addr) & ~(CORE_ADDR) 1);
}

/* Add the ISA (compression) bit to ADDR.  */

static CORE_ADDR
make_compact_addr (CORE_ADDR addr)
{
  return ((addr) | (CORE_ADDR) 1);
}

/* Extern version of unmake_compact_addr; we use a separate function
   so that unmake_compact_addr can be inlined throughout this file.  */

CORE_ADDR
mips_unmake_compact_addr (CORE_ADDR addr)
{
  return unmake_compact_addr (addr);
}

/* Functions for setting and testing a bit in a minimal symbol that
   marks it as MIPS16 or microMIPS function.  The MSB of the minimal
   symbol's "info" field is used for this purpose.

   gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
   "special", i.e. refers to a MIPS16 or microMIPS function, and sets
   one of the "special" bits in a minimal symbol to mark it accordingly.
   The test checks an ELF-private flag that is valid for true function
   symbols only; for synthetic symbols such as for PLT stubs that have
   no ELF-private part at all the MIPS BFD backend arranges for this
   information to be carried in the asymbol's udata field instead.

   msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
   in a minimal symbol.  */

static void
mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
{
  elf_symbol_type *elfsym = (elf_symbol_type *) sym;
  unsigned char st_other;

  if ((sym->flags & BSF_SYNTHETIC) == 0)
    st_other = elfsym->internal_elf_sym.st_other;
  else if ((sym->flags & BSF_FUNCTION) != 0)
    st_other = sym->udata.i;
  else
    return;

  if (ELF_ST_IS_MICROMIPS (st_other))
    {
      MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
      SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
    }
  else if (ELF_ST_IS_MIPS16 (st_other))
    {
      MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
      SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
    }
}

/* Return one iff MSYM refers to standard ISA code.  */

static int
msymbol_is_mips (struct minimal_symbol *msym)
{
  return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
	   | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
}

/* Return one iff MSYM refers to MIPS16 code.  */

static int
msymbol_is_mips16 (struct minimal_symbol *msym)
{
  return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
}

/* Return one iff MSYM refers to microMIPS code.  */

static int
msymbol_is_micromips (struct minimal_symbol *msym)
{
  return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
}

/* Set the ISA bit in the main symbol too, complementing the corresponding
   minimal symbol setting and reflecting the run-time value of the symbol.
   The need for comes from the ISA bit having been cleared as code in
   `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
   `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
   of symbols referring to compressed code different in GDB to the values
   used by actual code.  That in turn makes them evaluate incorrectly in
   expressions, producing results different to what the same expressions
   yield when compiled into the program being debugged.  */

static void
mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
{
  if (SYMBOL_CLASS (sym) == LOC_BLOCK)
    {
      /* We are in symbol reading so it is OK to cast away constness.  */
      struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
      CORE_ADDR compact_block_start;
      struct bound_minimal_symbol msym;

      compact_block_start = BLOCK_START (block) | 1;
      msym = lookup_minimal_symbol_by_pc (compact_block_start);
      if (msym.minsym && !msymbol_is_mips (msym.minsym))
	{
	  BLOCK_START (block) = compact_block_start;
	}
    }
}

/* XFER a value from the big/little/left end of the register.
   Depending on the size of the value it might occupy the entire
   register or just part of it.  Make an allowance for this, aligning
   things accordingly.  */

static void
mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
		    int reg_num, int length,
		    enum bfd_endian endian, gdb_byte *in,
		    const gdb_byte *out, int buf_offset)
{
  int reg_offset = 0;

  gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
  /* Need to transfer the left or right part of the register, based on
     the targets byte order.  */
  switch (endian)
    {
    case BFD_ENDIAN_BIG:
      reg_offset = register_size (gdbarch, reg_num) - length;
      break;
    case BFD_ENDIAN_LITTLE:
      reg_offset = 0;
      break;
    case BFD_ENDIAN_UNKNOWN:	/* Indicates no alignment.  */
      reg_offset = 0;
      break;
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
  if (mips_debug)
    fprintf_unfiltered (gdb_stderr,
			"xfer $%d, reg offset %d, buf offset %d, length %d, ",
			reg_num, reg_offset, buf_offset, length);
  if (mips_debug && out != NULL)
    {
      int i;
      fprintf_unfiltered (gdb_stdlog, "out ");
      for (i = 0; i < length; i++)
	fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
    }
  if (in != NULL)
    regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
			       in + buf_offset);
  if (out != NULL)
    regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
				out + buf_offset);
  if (mips_debug && in != NULL)
    {
      int i;
      fprintf_unfiltered (gdb_stdlog, "in ");
      for (i = 0; i < length; i++)
	fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
    }
  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog, "\n");
}

/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
   compatiblity mode.  A return value of 1 means that we have
   physical 64-bit registers, but should treat them as 32-bit registers.  */

static int
mips2_fp_compat (struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
     meaningful.  */
  if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
    return 0;

#if 0
  /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
     in all the places we deal with FP registers.  PR gdb/413.  */
  /* Otherwise check the FR bit in the status register - it controls
     the FP compatiblity mode.  If it is clear we are in compatibility
     mode.  */
  if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
    return 1;
#endif

  return 0;
}

#define VM_MIN_ADDRESS (CORE_ADDR)0x400000

static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);

static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);

/* The list of available "set mips " and "show mips " commands.  */

static struct cmd_list_element *setmipscmdlist = NULL;
static struct cmd_list_element *showmipscmdlist = NULL;

/* Integer registers 0 thru 31 are handled explicitly by
   mips_register_name().  Processor specific registers 32 and above
   are listed in the following tables.  */

enum
{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };

/* Generic MIPS.  */

static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
  "sr", "lo", "hi", "bad", "cause", "pc",
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
  "fsr", "fir",
};

/* Names of tx39 registers.  */

static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
  "sr", "lo", "hi", "bad", "cause", "pc",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "config", "cache", "debug", "depc", "epc",
};

/* Names of registers with Linux kernels.  */
static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
  "sr", "lo", "hi", "bad", "cause", "pc",
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
  "fsr", "fir"
};


/* Return the name of the register corresponding to REGNO.  */
static const char *
mips_register_name (struct gdbarch *gdbarch, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  /* GPR names for all ABIs other than n32/n64.  */
  static char *mips_gpr_names[] = {
    "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
    "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
    "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
    "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
  };

  /* GPR names for n32 and n64 ABIs.  */
  static char *mips_n32_n64_gpr_names[] = {
    "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
    "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
    "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
    "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
  };

  enum mips_abi abi = mips_abi (gdbarch);

  /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers, 
     but then don't make the raw register names visible.  This (upper)
     range of user visible register numbers are the pseudo-registers.

     This approach was adopted accommodate the following scenario:
     It is possible to debug a 64-bit device using a 32-bit
     programming model.  In such instances, the raw registers are
     configured to be 64-bits wide, while the pseudo registers are
     configured to be 32-bits wide.  The registers that the user
     sees - the pseudo registers - match the users expectations
     given the programming model being used.  */
  int rawnum = regno % gdbarch_num_regs (gdbarch);
  if (regno < gdbarch_num_regs (gdbarch))
    return "";

  /* The MIPS integer registers are always mapped from 0 to 31.  The
     names of the registers (which reflects the conventions regarding
     register use) vary depending on the ABI.  */
  if (0 <= rawnum && rawnum < 32)
    {
      if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
	return mips_n32_n64_gpr_names[rawnum];
      else
	return mips_gpr_names[rawnum];
    }
  else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
    return tdesc_register_name (gdbarch, rawnum);
  else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
    {
      gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
      if (tdep->mips_processor_reg_names[rawnum - 32])
	return tdep->mips_processor_reg_names[rawnum - 32];
      return "";
    }
  else
    internal_error (__FILE__, __LINE__,
		    _("mips_register_name: bad register number %d"), rawnum);
}

/* Return the groups that a MIPS register can be categorised into.  */

static int
mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			  struct reggroup *reggroup)
{
  int vector_p;
  int float_p;
  int raw_p;
  int rawnum = regnum % gdbarch_num_regs (gdbarch);
  int pseudo = regnum / gdbarch_num_regs (gdbarch);
  if (reggroup == all_reggroup)
    return pseudo;
  vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
  float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
  /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
     (gdbarch), as not all architectures are multi-arch.  */
  raw_p = rawnum < gdbarch_num_regs (gdbarch);
  if (gdbarch_register_name (gdbarch, regnum) == NULL
      || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
    return 0;
  if (reggroup == float_reggroup)
    return float_p && pseudo;
  if (reggroup == vector_reggroup)
    return vector_p && pseudo;
  if (reggroup == general_reggroup)
    return (!vector_p && !float_p) && pseudo;
  /* Save the pseudo registers.  Need to make certain that any code
     extracting register values from a saved register cache also uses
     pseudo registers.  */
  if (reggroup == save_reggroup)
    return raw_p && pseudo;
  /* Restore the same pseudo register.  */
  if (reggroup == restore_reggroup)
    return raw_p && pseudo;
  return 0;
}

/* Return the groups that a MIPS register can be categorised into.
   This version is only used if we have a target description which
   describes real registers (and their groups).  */

static int
mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
				struct reggroup *reggroup)
{
  int rawnum = regnum % gdbarch_num_regs (gdbarch);
  int pseudo = regnum / gdbarch_num_regs (gdbarch);
  int ret;

  /* Only save, restore, and display the pseudo registers.  Need to
     make certain that any code extracting register values from a
     saved register cache also uses pseudo registers.

     Note: saving and restoring the pseudo registers is slightly
     strange; if we have 64 bits, we should save and restore all
     64 bits.  But this is hard and has little benefit.  */
  if (!pseudo)
    return 0;

  ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
  if (ret != -1)
    return ret;

  return mips_register_reggroup_p (gdbarch, regnum, reggroup);
}

/* Map the symbol table registers which live in the range [1 *
   gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
   registers.  Take care of alignment and size problems.  */

static enum register_status
mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int cookednum, gdb_byte *buf)
{
  int rawnum = cookednum % gdbarch_num_regs (gdbarch);
  gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
	      && cookednum < 2 * gdbarch_num_regs (gdbarch));
  if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
    return regcache_raw_read (regcache, rawnum, buf);
  else if (register_size (gdbarch, rawnum) >
	   register_size (gdbarch, cookednum))
    {
      if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
	return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
      else
	{
	  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
	  LONGEST regval;
	  enum register_status status;

	  status = regcache_raw_read_signed (regcache, rawnum, &regval);
	  if (status == REG_VALID)
	    store_signed_integer (buf, 4, byte_order, regval);
	  return status;
	}
    }
  else
    internal_error (__FILE__, __LINE__, _("bad register size"));
}

static void
mips_pseudo_register_write (struct gdbarch *gdbarch,
			    struct regcache *regcache, int cookednum,
			    const gdb_byte *buf)
{
  int rawnum = cookednum % gdbarch_num_regs (gdbarch);
  gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
	      && cookednum < 2 * gdbarch_num_regs (gdbarch));
  if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
    regcache_raw_write (regcache, rawnum, buf);
  else if (register_size (gdbarch, rawnum) >
	   register_size (gdbarch, cookednum))
    {
      if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
	regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
      else
	{
	  /* Sign extend the shortened version of the register prior
	     to placing it in the raw register.  This is required for
	     some mips64 parts in order to avoid unpredictable behavior.  */
	  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
	  LONGEST regval = extract_signed_integer (buf, 4, byte_order);
	  regcache_raw_write_signed (regcache, rawnum, regval);
	}
    }
  else
    internal_error (__FILE__, __LINE__, _("bad register size"));
}

static int
mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
				 struct agent_expr *ax, int reg)
{
  int rawnum = reg % gdbarch_num_regs (gdbarch);
  gdb_assert (reg >= gdbarch_num_regs (gdbarch)
	      && reg < 2 * gdbarch_num_regs (gdbarch));

  ax_reg_mask (ax, rawnum);

  return 0;
}

static int
mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
				    struct agent_expr *ax, int reg)
{
  int rawnum = reg % gdbarch_num_regs (gdbarch);
  gdb_assert (reg >= gdbarch_num_regs (gdbarch)
	      && reg < 2 * gdbarch_num_regs (gdbarch));
  if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
    {
      ax_reg (ax, rawnum);

      if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
        {
	  if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
	      || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
	    {
	      ax_const_l (ax, 32);
	      ax_simple (ax, aop_lsh);
	    }
	  ax_const_l (ax, 32);
	  ax_simple (ax, aop_rsh_signed);
	}
    }
  else
    internal_error (__FILE__, __LINE__, _("bad register size"));

  return 0;
}

/* Table to translate 3-bit register field to actual register number.  */
static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };

/* Heuristic_proc_start may hunt through the text section for a long
   time across a 2400 baud serial line.  Allows the user to limit this
   search.  */

static int heuristic_fence_post = 0;

/* Number of bytes of storage in the actual machine representation for
   register N.  NOTE: This defines the pseudo register type so need to
   rebuild the architecture vector.  */

static int mips64_transfers_32bit_regs_p = 0;

static void
set_mips64_transfers_32bit_regs (char *args, int from_tty,
				 struct cmd_list_element *c)
{
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
     instead of relying on globals.  Doing that would let generic code
     handle the search for this specific architecture.  */
  if (!gdbarch_update_p (info))
    {
      mips64_transfers_32bit_regs_p = 0;
      error (_("32-bit compatibility mode not supported"));
    }
}

/* Convert to/from a register and the corresponding memory value.  */

/* This predicate tests for the case of an 8 byte floating point
   value that is being transferred to or from a pair of floating point
   registers each of which are (or are considered to be) only 4 bytes
   wide.  */
static int
mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
				    struct type *type)
{
  return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
	  && register_size (gdbarch, regnum) == 4
	  && mips_float_register_p (gdbarch, regnum)
	  && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
}

/* This predicate tests for the case of a value of less than 8
   bytes in width that is being transfered to or from an 8 byte
   general purpose register.  */
static int
mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
				    struct type *type)
{
  int num_regs = gdbarch_num_regs (gdbarch);

  return (register_size (gdbarch, regnum) == 8
          && regnum % num_regs > 0 && regnum % num_regs < 32
          && TYPE_LENGTH (type) < 8);
}

static int
mips_convert_register_p (struct gdbarch *gdbarch,
			 int regnum, struct type *type)
{
  return (mips_convert_register_float_case_p (gdbarch, regnum, type)
	  || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
}

static int
mips_register_to_value (struct frame_info *frame, int regnum,
			struct type *type, gdb_byte *to,
			int *optimizedp, int *unavailablep)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);

  if (mips_convert_register_float_case_p (gdbarch, regnum, type))
    {
      get_frame_register (frame, regnum + 0, to + 4);
      get_frame_register (frame, regnum + 1, to + 0);

      if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
				     optimizedp, unavailablep))
	return 0;

      if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
				     optimizedp, unavailablep))
	return 0;
      *optimizedp = *unavailablep = 0;
      return 1;
    }
  else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
    {
      int len = TYPE_LENGTH (type);
      CORE_ADDR offset;

      offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
      if (!get_frame_register_bytes (frame, regnum, offset, len, to,
				     optimizedp, unavailablep))
	return 0;

      *optimizedp = *unavailablep = 0;
      return 1;
    }
  else
    {
      internal_error (__FILE__, __LINE__,
                      _("mips_register_to_value: unrecognized case"));
    }
}

static void
mips_value_to_register (struct frame_info *frame, int regnum,
			struct type *type, const gdb_byte *from)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);

  if (mips_convert_register_float_case_p (gdbarch, regnum, type))
    {
      put_frame_register (frame, regnum + 0, from + 4);
      put_frame_register (frame, regnum + 1, from + 0);
    }
  else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
    {
      gdb_byte fill[8];
      int len = TYPE_LENGTH (type);
      
      /* Sign extend values, irrespective of type, that are stored to 
         a 64-bit general purpose register.  (32-bit unsigned values
	 are stored as signed quantities within a 64-bit register.
	 When performing an operation, in compiled code, that combines
	 a 32-bit unsigned value with a signed 64-bit value, a type
	 conversion is first performed that zeroes out the high 32 bits.)  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	{
	  if (from[0] & 0x80)
	    store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
	  else
	    store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
	  put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
	  put_frame_register_bytes (frame, regnum, 8 - len, len, from);
	}
      else
	{
	  if (from[len-1] & 0x80)
	    store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
	  else
	    store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
	  put_frame_register_bytes (frame, regnum, 0, len, from);
	  put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
	}
    }
  else
    {
      internal_error (__FILE__, __LINE__,
                      _("mips_value_to_register: unrecognized case"));
    }
}

/* Return the GDB type object for the "standard" data type of data in
   register REG.  */

static struct type *
mips_register_type (struct gdbarch *gdbarch, int regnum)
{
  gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
  if (mips_float_register_p (gdbarch, regnum))
    {
      /* The floating-point registers raw, or cooked, always match
         mips_isa_regsize(), and also map 1:1, byte for byte.  */
      if (mips_isa_regsize (gdbarch) == 4)
	return builtin_type (gdbarch)->builtin_float;
      else
	return builtin_type (gdbarch)->builtin_double;
    }
  else if (regnum < gdbarch_num_regs (gdbarch))
    {
      /* The raw or ISA registers.  These are all sized according to
	 the ISA regsize.  */
      if (mips_isa_regsize (gdbarch) == 4)
	return builtin_type (gdbarch)->builtin_int32;
      else
	return builtin_type (gdbarch)->builtin_int64;
    }
  else
    {
      int rawnum = regnum - gdbarch_num_regs (gdbarch);

      /* The cooked or ABI registers.  These are sized according to
	 the ABI (with a few complications).  */
      if (rawnum == mips_regnum (gdbarch)->fp_control_status
	  || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
	return builtin_type (gdbarch)->builtin_int32;
      else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
	       && rawnum >= MIPS_FIRST_EMBED_REGNUM
	       && rawnum <= MIPS_LAST_EMBED_REGNUM)
	/* The pseudo/cooked view of the embedded registers is always
	   32-bit.  The raw view is handled below.  */
	return builtin_type (gdbarch)->builtin_int32;
      else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
	/* The target, while possibly using a 64-bit register buffer,
	   is only transfering 32-bits of each integer register.
	   Reflect this in the cooked/pseudo (ABI) register value.  */
	return builtin_type (gdbarch)->builtin_int32;
      else if (mips_abi_regsize (gdbarch) == 4)
	/* The ABI is restricted to 32-bit registers (the ISA could be
	   32- or 64-bit).  */
	return builtin_type (gdbarch)->builtin_int32;
      else
	/* 64-bit ABI.  */
	return builtin_type (gdbarch)->builtin_int64;
    }
}

/* Return the GDB type for the pseudo register REGNUM, which is the
   ABI-level view.  This function is only called if there is a target
   description which includes registers, so we know precisely the
   types of hardware registers.  */

static struct type *
mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
  const int num_regs = gdbarch_num_regs (gdbarch);
  int rawnum = regnum % num_regs;
  struct type *rawtype;

  gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);

  /* Absent registers are still absent.  */
  rawtype = gdbarch_register_type (gdbarch, rawnum);
  if (TYPE_LENGTH (rawtype) == 0)
    return rawtype;

  /* Present the floating point registers however the hardware did;
     do not try to convert between FPU layouts.  */
  if (mips_float_register_p (gdbarch, rawnum))
    return rawtype;

  /* Floating-point control registers are always 32-bit even though for
     backwards compatibility reasons 64-bit targets will transfer them
     as 64-bit quantities even if using XML descriptions.  */
  if (rawnum == mips_regnum (gdbarch)->fp_control_status
      || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
    return builtin_type (gdbarch)->builtin_int32;

  /* Use pointer types for registers if we can.  For n32 we can not,
     since we do not have a 64-bit pointer type.  */
  if (mips_abi_regsize (gdbarch)
      == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
    {
      if (rawnum == MIPS_SP_REGNUM
	  || rawnum == mips_regnum (gdbarch)->badvaddr)
	return builtin_type (gdbarch)->builtin_data_ptr;
      else if (rawnum == mips_regnum (gdbarch)->pc)
	return builtin_type (gdbarch)->builtin_func_ptr;
    }

  if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
      && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
	  || rawnum == mips_regnum (gdbarch)->lo
	  || rawnum == mips_regnum (gdbarch)->hi
	  || rawnum == mips_regnum (gdbarch)->badvaddr
	  || rawnum == mips_regnum (gdbarch)->cause
	  || rawnum == mips_regnum (gdbarch)->pc
	  || (mips_regnum (gdbarch)->dspacc != -1
	      && rawnum >= mips_regnum (gdbarch)->dspacc
	      && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
    return builtin_type (gdbarch)->builtin_int32;

  /* The pseudo/cooked view of embedded registers is always
     32-bit, even if the target transfers 64-bit values for them.
     New targets relying on XML descriptions should only transfer
     the necessary 32 bits, but older versions of GDB expected 64,
     so allow the target to provide 64 bits without interfering
     with the displayed type.  */
  if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
      && rawnum >= MIPS_FIRST_EMBED_REGNUM
      && rawnum <= MIPS_LAST_EMBED_REGNUM)
    return builtin_type (gdbarch)->builtin_int32;

  /* For all other registers, pass through the hardware type.  */
  return rawtype;
}

/* Should the upper word of 64-bit addresses be zeroed?  */
enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;

static int
mips_mask_address_p (struct gdbarch_tdep *tdep)
{
  switch (mask_address_var)
    {
    case AUTO_BOOLEAN_TRUE:
      return 1;
    case AUTO_BOOLEAN_FALSE:
      return 0;
      break;
    case AUTO_BOOLEAN_AUTO:
      return tdep->default_mask_address_p;
    default:
      internal_error (__FILE__, __LINE__,
		      _("mips_mask_address_p: bad switch"));
      return -1;
    }
}

static void
show_mask_address (struct ui_file *file, int from_tty,
		   struct cmd_list_element *c, const char *value)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());

  deprecated_show_value_hack (file, from_tty, c, value);
  switch (mask_address_var)
    {
    case AUTO_BOOLEAN_TRUE:
      printf_filtered ("The 32 bit mips address mask is enabled\n");
      break;
    case AUTO_BOOLEAN_FALSE:
      printf_filtered ("The 32 bit mips address mask is disabled\n");
      break;
    case AUTO_BOOLEAN_AUTO:
      printf_filtered
	("The 32 bit address mask is set automatically.  Currently %s\n",
	 mips_mask_address_p (tdep) ? "enabled" : "disabled");
      break;
    default:
      internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
      break;
    }
}

/* Tell if the program counter value in MEMADDR is in a standard ISA
   function.  */

int
mips_pc_is_mips (CORE_ADDR memaddr)
{
  struct bound_minimal_symbol sym;

  /* Flags indicating that this is a MIPS16 or microMIPS function is
     stored by elfread.c in the high bit of the info field.  Use this
     to decide if the function is standard MIPS.  Otherwise if bit 0
     of the address is clear, then this is a standard MIPS function.  */
  sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
  if (sym.minsym)
    return msymbol_is_mips (sym.minsym);
  else
    return is_mips_addr (memaddr);
}

/* Tell if the program counter value in MEMADDR is in a MIPS16 function.  */

int
mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
{
  struct bound_minimal_symbol sym;

  /* A flag indicating that this is a MIPS16 function is stored by
     elfread.c in the high bit of the info field.  Use this to decide
     if the function is MIPS16.  Otherwise if bit 0 of the address is
     set, then ELF file flags will tell if this is a MIPS16 function.  */
  sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
  if (sym.minsym)
    return msymbol_is_mips16 (sym.minsym);
  else
    return is_mips16_addr (gdbarch, memaddr);
}

/* Tell if the program counter value in MEMADDR is in a microMIPS function.  */

int
mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
{
  struct bound_minimal_symbol sym;

  /* A flag indicating that this is a microMIPS function is stored by
     elfread.c in the high bit of the info field.  Use this to decide
     if the function is microMIPS.  Otherwise if bit 0 of the address
     is set, then ELF file flags will tell if this is a microMIPS
     function.  */
  sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
  if (sym.minsym)
    return msymbol_is_micromips (sym.minsym);
  else
    return is_micromips_addr (gdbarch, memaddr);
}

/* Tell the ISA type of the function the program counter value in MEMADDR
   is in.  */

static enum mips_isa
mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
{
  struct bound_minimal_symbol sym;

  /* A flag indicating that this is a MIPS16 or a microMIPS function
     is stored by elfread.c in the high bit of the info field.  Use
     this to decide if the function is MIPS16 or microMIPS or normal
     MIPS.  Otherwise if bit 0 of the address is set, then ELF file
     flags will tell if this is a MIPS16 or a microMIPS function.  */
  sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
  if (sym.minsym)
    {
      if (msymbol_is_micromips (sym.minsym))
	return ISA_MICROMIPS;
      else if (msymbol_is_mips16 (sym.minsym))
	return ISA_MIPS16;
      else
	return ISA_MIPS;
    }
  else
    {
      if (is_mips_addr (memaddr))
	return ISA_MIPS;
      else if (is_micromips_addr (gdbarch, memaddr))
	return ISA_MICROMIPS;
      else
	return ISA_MIPS16;
    }
}

/* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
   The need for comes from the ISA bit having been cleared, making
   addresses in FDE, range records, etc. referring to compressed code
   different to those in line information, the symbol table and finally
   the PC register.  That in turn confuses many operations.  */

static CORE_ADDR
mips_adjust_dwarf2_addr (CORE_ADDR pc)
{
  pc = unmake_compact_addr (pc);
  return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
}

/* Recalculate the line record requested so that the resulting PC has
   the ISA bit set correctly, used by DWARF-2 machinery.  The need for
   this adjustment comes from some records associated with compressed
   code having the ISA bit cleared, most notably at function prologue
   ends.  The ISA bit is in this context retrieved from the minimal
   symbol covering the address requested, which in turn has been
   constructed from the binary's symbol table rather than DWARF-2
   information.  The correct setting of the ISA bit is required for
   breakpoint addresses to correctly match against the stop PC.

   As line entries can specify relative address adjustments we need to
   keep track of the absolute value of the last line address recorded
   in line information, so that we can calculate the actual address to
   apply the ISA bit adjustment to.  We use PC for this tracking and
   keep the original address there.

   As such relative address adjustments can be odd within compressed
   code we need to keep track of the last line address with the ISA
   bit adjustment applied too, as the original address may or may not
   have had the ISA bit set.  We use ADJ_PC for this tracking and keep
   the adjusted address there.

   For relative address adjustments we then use these variables to
   calculate the address intended by line information, which will be
   PC-relative, and return an updated adjustment carrying ISA bit
   information, which will be ADJ_PC-relative.  For absolute address
   adjustments we just return the same address that we store in ADJ_PC
   too.

   As the first line entry can be relative to an implied address value
   of 0 we need to have the initial address set up that we store in PC
   and ADJ_PC.  This is arranged with a call from `dwarf_decode_lines_1'
   that sets PC to 0 and ADJ_PC accordingly, usually 0 as well.  */

static CORE_ADDR
mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
{
  static CORE_ADDR adj_pc;
  static CORE_ADDR pc;
  CORE_ADDR isa_pc;

  pc = rel ? pc + addr : addr;
  isa_pc = mips_adjust_dwarf2_addr (pc);
  addr = rel ? isa_pc - adj_pc : isa_pc;
  adj_pc = isa_pc;
  return addr;
}

/* Various MIPS16 thunk (aka stub or trampoline) names.  */

static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
static const char mips_str_call_stub[] = "__call_stub_";
static const char mips_str_fn_stub[] = "__fn_stub_";

/* This is used as a PIC thunk prefix.  */

static const char mips_str_pic[] = ".pic.";

/* Return non-zero if the PC is inside a call thunk (aka stub or
   trampoline) that should be treated as a temporary frame.  */

static int
mips_in_frame_stub (CORE_ADDR pc)
{
  CORE_ADDR start_addr;
  const char *name;

  /* Find the starting address of the function containing the PC.  */
  if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
    return 0;

  /* If the PC is in __mips16_call_stub_*, this is a call/return stub.  */
  if (startswith (name, mips_str_mips16_call_stub))
    return 1;
  /* If the PC is in __call_stub_*, this is a call/return or a call stub.  */
  if (startswith (name, mips_str_call_stub))
    return 1;
  /* If the PC is in __fn_stub_*, this is a call stub.  */
  if (startswith (name, mips_str_fn_stub))
    return 1;

  return 0;			/* Not a stub.  */
}

/* MIPS believes that the PC has a sign extended value.  Perhaps the
   all registers should be sign extended for simplicity?  */

static CORE_ADDR
mips_read_pc (struct regcache *regcache)
{
  int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
  LONGEST pc;

  regcache_cooked_read_signed (regcache, regnum, &pc);
  return pc;
}

static CORE_ADDR
mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  CORE_ADDR pc;

  pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
  /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
     intermediate frames.  In this case we can get the caller's address
     from $ra, or if $ra contains an address within a thunk as well, then
     it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
     and thus the caller's address is in $s2.  */
  if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
    {
      pc = frame_unwind_register_signed
	     (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
      if (mips_in_frame_stub (pc))
	pc = frame_unwind_register_signed
	       (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
    }
  return pc;
}

static CORE_ADDR
mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_unwind_register_signed
	   (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
}

/* Assuming THIS_FRAME is a dummy, return the frame ID of that
   dummy frame.  The frame ID's base needs to match the TOS value
   saved by save_dummy_frame_tos(), and the PC match the dummy frame's
   breakpoint.  */

static struct frame_id
mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  return frame_id_build
	   (get_frame_register_signed (this_frame,
				       gdbarch_num_regs (gdbarch)
				       + MIPS_SP_REGNUM),
	    get_frame_pc (this_frame));
}

/* Implement the "write_pc" gdbarch method.  */

void
mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
  int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));

  regcache_cooked_write_unsigned (regcache, regnum, pc);
}

/* Fetch and return instruction from the specified location.  Handle
   MIPS16/microMIPS as appropriate.  */

static ULONGEST
mips_fetch_instruction (struct gdbarch *gdbarch,
			enum mips_isa isa, CORE_ADDR addr, int *errp)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[MIPS_INSN32_SIZE];
  int instlen;
  int err;

  switch (isa)
    {
    case ISA_MICROMIPS:
    case ISA_MIPS16:
      instlen = MIPS_INSN16_SIZE;
      addr = unmake_compact_addr (addr);
      break;
    case ISA_MIPS:
      instlen = MIPS_INSN32_SIZE;
      break;
    default:
      internal_error (__FILE__, __LINE__, _("invalid ISA"));
      break;
    }
  err = target_read_memory (addr, buf, instlen);
  if (errp != NULL)
    *errp = err;
  if (err != 0)
    {
      if (errp == NULL)
	memory_error (TARGET_XFER_E_IO, addr);
      return 0;
    }
  return extract_unsigned_integer (buf, instlen, byte_order);
}

/* These are the fields of 32 bit mips instructions.  */
#define mips32_op(x) (x >> 26)
#define itype_op(x) (x >> 26)
#define itype_rs(x) ((x >> 21) & 0x1f)
#define itype_rt(x) ((x >> 16) & 0x1f)
#define itype_immediate(x) (x & 0xffff)

#define jtype_op(x) (x >> 26)
#define jtype_target(x) (x & 0x03ffffff)

#define rtype_op(x) (x >> 26)
#define rtype_rs(x) ((x >> 21) & 0x1f)
#define rtype_rt(x) ((x >> 16) & 0x1f)
#define rtype_rd(x) ((x >> 11) & 0x1f)
#define rtype_shamt(x) ((x >> 6) & 0x1f)
#define rtype_funct(x) (x & 0x3f)

/* MicroMIPS instruction fields.  */
#define micromips_op(x) ((x) >> 10)

/* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
   bit and the size respectively of the field extracted.  */
#define b0s4_imm(x) ((x) & 0xf)
#define b0s5_imm(x) ((x) & 0x1f)
#define b0s5_reg(x) ((x) & 0x1f)
#define b0s7_imm(x) ((x) & 0x7f)
#define b0s10_imm(x) ((x) & 0x3ff)
#define b1s4_imm(x) (((x) >> 1) & 0xf)
#define b1s9_imm(x) (((x) >> 1) & 0x1ff)
#define b2s3_cc(x) (((x) >> 2) & 0x7)
#define b4s2_regl(x) (((x) >> 4) & 0x3)
#define b5s5_op(x) (((x) >> 5) & 0x1f)
#define b5s5_reg(x) (((x) >> 5) & 0x1f)
#define b6s4_op(x) (((x) >> 6) & 0xf)
#define b7s3_reg(x) (((x) >> 7) & 0x7)

/* 32-bit instruction formats, B and S refer to the lowest bit and the size
   respectively of the field extracted.  */
#define b0s6_op(x) ((x) & 0x3f)
#define b0s11_op(x) ((x) & 0x7ff)
#define b0s12_imm(x) ((x) & 0xfff)
#define b0s16_imm(x) ((x) & 0xffff)
#define b0s26_imm(x) ((x) & 0x3ffffff)
#define b6s10_ext(x) (((x) >> 6) & 0x3ff)
#define b11s5_reg(x) (((x) >> 11) & 0x1f)
#define b12s4_op(x) (((x) >> 12) & 0xf)

/* Return the size in bytes of the instruction INSN encoded in the ISA
   instruction set.  */

static int
mips_insn_size (enum mips_isa isa, ULONGEST insn)
{
  switch (isa)
    {
    case ISA_MICROMIPS:
      if ((micromips_op (insn) & 0x4) == 0x4
	  || (micromips_op (insn) & 0x7) == 0x0)
        return 2 * MIPS_INSN16_SIZE;
      else
        return MIPS_INSN16_SIZE;
    case ISA_MIPS16:
      if ((insn & 0xf800) == 0xf000)
	return 2 * MIPS_INSN16_SIZE;
      else
	return MIPS_INSN16_SIZE;
    case ISA_MIPS:
	return MIPS_INSN32_SIZE;
    }
  internal_error (__FILE__, __LINE__, _("invalid ISA"));
}

static LONGEST
mips32_relative_offset (ULONGEST inst)
{
  return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
}

/* Determine the address of the next instruction executed after the INST
   floating condition branch instruction at PC.  COUNT specifies the
   number of the floating condition bits tested by the branch.  */

static CORE_ADDR
mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
	       ULONGEST inst, CORE_ADDR pc, int count)
{
  int fcsr = mips_regnum (gdbarch)->fp_control_status;
  int cnum = (itype_rt (inst) >> 2) & (count - 1);
  int tf = itype_rt (inst) & 1;
  int mask = (1 << count) - 1;
  ULONGEST fcs;
  int cond;

  if (fcsr == -1)
    /* No way to handle; it'll most likely trap anyway.  */
    return pc;

  fcs = get_frame_register_unsigned (frame, fcsr);
  cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);

  if (((cond >> cnum) & mask) != mask * !tf)
    pc += mips32_relative_offset (inst);
  else
    pc += 4;

  return pc;
}

/* Return nonzero if the gdbarch is an Octeon series.  */

static int
is_octeon (struct gdbarch *gdbarch)
{
  const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);

  return (info->mach == bfd_mach_mips_octeon
         || info->mach == bfd_mach_mips_octeonp
         || info->mach == bfd_mach_mips_octeon2);
}

/* Return true if the OP represents the Octeon's BBIT instruction.  */

static int
is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
{
  if (!is_octeon (gdbarch))
    return 0;
  /* BBIT0 is encoded as LWC2: 110 010.  */
  /* BBIT032 is encoded as LDC2: 110 110.  */
  /* BBIT1 is encoded as SWC2: 111 010.  */
  /* BBIT132 is encoded as SDC2: 111 110.  */
  if (op == 50 || op == 54 || op == 58 || op == 62)
    return 1;
  return 0;
}


/* Determine where to set a single step breakpoint while considering
   branch prediction.  */

static CORE_ADDR
mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  unsigned long inst;
  int op;
  inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
  op = itype_op (inst);
  if ((inst & 0xe0000000) != 0)		/* Not a special, jump or branch
					   instruction.  */
    {
      if (op >> 2 == 5)
	/* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
	{
	  switch (op & 0x03)
	    {
	    case 0:		/* BEQL */
	      goto equal_branch;
	    case 1:		/* BNEL */
	      goto neq_branch;
	    case 2:		/* BLEZL */
	      goto less_branch;
	    case 3:		/* BGTZL */
	      goto greater_branch;
	    default:
	      pc += 4;
	    }
	}
      else if (op == 17 && itype_rs (inst) == 8)
	/* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
	pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
      else if (op == 17 && itype_rs (inst) == 9
	       && (itype_rt (inst) & 2) == 0)
	/* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
	pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
      else if (op == 17 && itype_rs (inst) == 10
	       && (itype_rt (inst) & 2) == 0)
	/* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
	pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
      else if (op == 29)
	/* JALX: 011101 */
	/* The new PC will be alternate mode.  */
	{
	  unsigned long reg;

	  reg = jtype_target (inst) << 2;
	  /* Add 1 to indicate 16-bit mode -- invert ISA mode.  */
	  pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
	}
      else if (is_octeon_bbit_op (op, gdbarch))
	{
	  int bit, branch_if;

	  branch_if = op == 58 || op == 62;
	  bit = itype_rt (inst);

	  /* Take into account the *32 instructions.  */
	  if (op == 54 || op == 62)
	    bit += 32;

	  if (((get_frame_register_signed (frame,
					   itype_rs (inst)) >> bit) & 1)
              == branch_if)
	    pc += mips32_relative_offset (inst) + 4;
          else
	    pc += 8;        /* After the delay slot.  */
	}

      else
	pc += 4;		/* Not a branch, next instruction is easy.  */
    }
  else
    {				/* This gets way messy.  */

      /* Further subdivide into SPECIAL, REGIMM and other.  */
      switch (op & 0x07)	/* Extract bits 28,27,26.  */
	{
	case 0:		/* SPECIAL */
	  op = rtype_funct (inst);
	  switch (op)
	    {
	    case 8:		/* JR */
	    case 9:		/* JALR */
	      /* Set PC to that address.  */
	      pc = get_frame_register_signed (frame, rtype_rs (inst));
	      break;
	    case 12:            /* SYSCALL */
	      {
		struct gdbarch_tdep *tdep;

		tdep = gdbarch_tdep (get_frame_arch (frame));
		if (tdep->syscall_next_pc != NULL)
		  pc = tdep->syscall_next_pc (frame);
		else
		  pc += 4;
	      }
	      break;
	    default:
	      pc += 4;
	    }

	  break;		/* end SPECIAL */
	case 1:			/* REGIMM */
	  {
	    op = itype_rt (inst);	/* branch condition */
	    switch (op)
	      {
	      case 0:		/* BLTZ */
	      case 2:		/* BLTZL */
	      case 16:		/* BLTZAL */
	      case 18:		/* BLTZALL */
	      less_branch:
		if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
		  pc += mips32_relative_offset (inst) + 4;
		else
		  pc += 8;	/* after the delay slot */
		break;
	      case 1:		/* BGEZ */
	      case 3:		/* BGEZL */
	      case 17:		/* BGEZAL */
	      case 19:		/* BGEZALL */
		if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
		  pc += mips32_relative_offset (inst) + 4;
		else
		  pc += 8;	/* after the delay slot */
		break;
	      case 0x1c:	/* BPOSGE32 */
	      case 0x1e:	/* BPOSGE64 */
		pc += 4;
		if (itype_rs (inst) == 0)
		  {
		    unsigned int pos = (op & 2) ? 64 : 32;
		    int dspctl = mips_regnum (gdbarch)->dspctl;

		    if (dspctl == -1)
		      /* No way to handle; it'll most likely trap anyway.  */
		      break;

		    if ((get_frame_register_unsigned (frame,
						      dspctl) & 0x7f) >= pos)
		      pc += mips32_relative_offset (inst);
		    else
		      pc += 4;
		  }
		break;
		/* All of the other instructions in the REGIMM category */
	      default:
		pc += 4;
	      }
	  }
	  break;		/* end REGIMM */
	case 2:		/* J */
	case 3:		/* JAL */
	  {
	    unsigned long reg;
	    reg = jtype_target (inst) << 2;
	    /* Upper four bits get never changed...  */
	    pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
	  }
	  break;
	case 4:		/* BEQ, BEQL */
	equal_branch:
	  if (get_frame_register_signed (frame, itype_rs (inst)) ==
	      get_frame_register_signed (frame, itype_rt (inst)))
	    pc += mips32_relative_offset (inst) + 4;
	  else
	    pc += 8;
	  break;
	case 5:		/* BNE, BNEL */
	neq_branch:
	  if (get_frame_register_signed (frame, itype_rs (inst)) !=
	      get_frame_register_signed (frame, itype_rt (inst)))
	    pc += mips32_relative_offset (inst) + 4;
	  else
	    pc += 8;
	  break;
	case 6:		/* BLEZ, BLEZL */
	  if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
	    pc += mips32_relative_offset (inst) + 4;
	  else
	    pc += 8;
	  break;
	case 7:
	default:
	greater_branch:	/* BGTZ, BGTZL */
	  if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
	    pc += mips32_relative_offset (inst) + 4;
	  else
	    pc += 8;
	  break;
	}			/* switch */
    }				/* else */
  return pc;
}				/* mips32_next_pc */

/* Extract the 7-bit signed immediate offset from the microMIPS instruction
   INSN.  */

static LONGEST
micromips_relative_offset7 (ULONGEST insn)
{
  return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
}

/* Extract the 10-bit signed immediate offset from the microMIPS instruction
   INSN.  */

static LONGEST
micromips_relative_offset10 (ULONGEST insn)
{
  return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
}

/* Extract the 16-bit signed immediate offset from the microMIPS instruction
   INSN.  */

static LONGEST
micromips_relative_offset16 (ULONGEST insn)
{
  return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
}

/* Return the size in bytes of the microMIPS instruction at the address PC.  */

static int
micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  ULONGEST insn;

  insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
  return mips_insn_size (ISA_MICROMIPS, insn);
}

/* Calculate the address of the next microMIPS instruction to execute
   after the INSN coprocessor 1 conditional branch instruction at the
   address PC.  COUNT denotes the number of coprocessor condition bits
   examined by the branch.  */

static CORE_ADDR
micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
		  ULONGEST insn, CORE_ADDR pc, int count)
{
  int fcsr = mips_regnum (gdbarch)->fp_control_status;
  int cnum = b2s3_cc (insn >> 16) & (count - 1);
  int tf = b5s5_op (insn >> 16) & 1;
  int mask = (1 << count) - 1;
  ULONGEST fcs;
  int cond;

  if (fcsr == -1)
    /* No way to handle; it'll most likely trap anyway.  */
    return pc;

  fcs = get_frame_register_unsigned (frame, fcsr);
  cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);

  if (((cond >> cnum) & mask) != mask * !tf)
    pc += micromips_relative_offset16 (insn);
  else
    pc += micromips_pc_insn_size (gdbarch, pc);

  return pc;
}

/* Calculate the address of the next microMIPS instruction to execute
   after the instruction at the address PC.  */

static CORE_ADDR
micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  ULONGEST insn;

  insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
  pc += MIPS_INSN16_SIZE;
  switch (mips_insn_size (ISA_MICROMIPS, insn))
    {
    /* 32-bit instructions.  */
    case 2 * MIPS_INSN16_SIZE:
      insn <<= 16;
      insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
      pc += MIPS_INSN16_SIZE;
      switch (micromips_op (insn >> 16))
	{
	case 0x00: /* POOL32A: bits 000000 */
	  if (b0s6_op (insn) == 0x3c
				/* POOL32Axf: bits 000000 ... 111100 */
	      && (b6s10_ext (insn) & 0x2bf) == 0x3c)
				/* JALR, JALR.HB: 000000 000x111100 111100 */
				/* JALRS, JALRS.HB: 000000 010x111100 111100 */
	    pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
	  break;

	case 0x10: /* POOL32I: bits 010000 */
	  switch (b5s5_op (insn >> 16))
	    {
	    case 0x00: /* BLTZ: bits 010000 00000 */
	    case 0x01: /* BLTZAL: bits 010000 00001 */
	    case 0x11: /* BLTZALS: bits 010000 10001 */
	      if (get_frame_register_signed (frame,
					     b0s5_reg (insn >> 16)) < 0)
		pc += micromips_relative_offset16 (insn);
	      else
		pc += micromips_pc_insn_size (gdbarch, pc);
	      break;

	    case 0x02: /* BGEZ: bits 010000 00010 */
	    case 0x03: /* BGEZAL: bits 010000 00011 */
	    case 0x13: /* BGEZALS: bits 010000 10011 */
	      if (get_frame_register_signed (frame,
					     b0s5_reg (insn >> 16)) >= 0)
		pc += micromips_relative_offset16 (insn);
	      else
		pc += micromips_pc_insn_size (gdbarch, pc);
	      break;

	    case 0x04: /* BLEZ: bits 010000 00100 */
	      if (get_frame_register_signed (frame,
					     b0s5_reg (insn >> 16)) <= 0)
		pc += micromips_relative_offset16 (insn);
	      else
		pc += micromips_pc_insn_size (gdbarch, pc);
	      break;

	    case 0x05: /* BNEZC: bits 010000 00101 */
	      if (get_frame_register_signed (frame,
					     b0s5_reg (insn >> 16)) != 0)
		pc += micromips_relative_offset16 (insn);
	      break;

	    case 0x06: /* BGTZ: bits 010000 00110 */
	      if (get_frame_register_signed (frame,
					     b0s5_reg (insn >> 16)) > 0)
		pc += micromips_relative_offset16 (insn);
	      else
		pc += micromips_pc_insn_size (gdbarch, pc);
	      break;

	    case 0x07: /* BEQZC: bits 010000 00111 */
	      if (get_frame_register_signed (frame,
					     b0s5_reg (insn >> 16)) == 0)
		pc += micromips_relative_offset16 (insn);
	      break;

	    case 0x14: /* BC2F: bits 010000 10100 xxx00 */
	    case 0x15: /* BC2T: bits 010000 10101 xxx00 */
	      if (((insn >> 16) & 0x3) == 0x0)
		/* BC2F, BC2T: don't know how to handle these.  */
		break;
	      break;

	    case 0x1a: /* BPOSGE64: bits 010000 11010 */
	    case 0x1b: /* BPOSGE32: bits 010000 11011 */
	      {
		unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
		int dspctl = mips_regnum (gdbarch)->dspctl;

		if (dspctl == -1)
		  /* No way to handle; it'll most likely trap anyway.  */
		  break;

		if ((get_frame_register_unsigned (frame,
						  dspctl) & 0x7f) >= pos)
		  pc += micromips_relative_offset16 (insn);
		else
		  pc += micromips_pc_insn_size (gdbarch, pc);
	      }
	      break;

	    case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
		       /* BC1ANY2F: bits 010000 11100 xxx01 */
	    case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
		       /* BC1ANY2T: bits 010000 11101 xxx01 */
	      if (((insn >> 16) & 0x2) == 0x0)
		pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
				       ((insn >> 16) & 0x1) + 1);
	      break;

	    case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
	    case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
	      if (((insn >> 16) & 0x3) == 0x1)
		pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
	      break;
	    }
	  break;

	case 0x1d: /* JALS: bits 011101 */
	case 0x35: /* J: bits 110101 */
	case 0x3d: /* JAL: bits 111101 */
	    pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
	  break;

	case 0x25: /* BEQ: bits 100101 */
	    if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
		== get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
	      pc += micromips_relative_offset16 (insn);
	    else
	      pc += micromips_pc_insn_size (gdbarch, pc);
	  break;

	case 0x2d: /* BNE: bits 101101 */
	    if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
		!= get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
	      pc += micromips_relative_offset16 (insn);
	    else
	      pc += micromips_pc_insn_size (gdbarch, pc);
	  break;

	case 0x3c: /* JALX: bits 111100 */
	    pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
	  break;
	}
      break;

    /* 16-bit instructions.  */
    case MIPS_INSN16_SIZE:
      switch (micromips_op (insn))
	{
	case 0x11: /* POOL16C: bits 010001 */
	  if ((b5s5_op (insn) & 0x1c) == 0xc)
	    /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
	    pc = get_frame_register_signed (frame, b0s5_reg (insn));
	  else if (b5s5_op (insn) == 0x18)
	    /* JRADDIUSP: bits 010001 11000 */
	    pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
	  break;

	case 0x23: /* BEQZ16: bits 100011 */
	  {
	    int rs = mips_reg3_to_reg[b7s3_reg (insn)];

	    if (get_frame_register_signed (frame, rs) == 0)
	      pc += micromips_relative_offset7 (insn);
	    else
	      pc += micromips_pc_insn_size (gdbarch, pc);
	  }
	  break;

	case 0x2b: /* BNEZ16: bits 101011 */
	  {
	    int rs = mips_reg3_to_reg[b7s3_reg (insn)];

	    if (get_frame_register_signed (frame, rs) != 0)
	      pc += micromips_relative_offset7 (insn);
	    else
	      pc += micromips_pc_insn_size (gdbarch, pc);
	  }
	  break;

	case 0x33: /* B16: bits 110011 */
	  pc += micromips_relative_offset10 (insn);
	  break;
	}
      break;
    }

  return pc;
}

/* Decoding the next place to set a breakpoint is irregular for the
   mips 16 variant, but fortunately, there fewer instructions.  We have
   to cope ith extensions for 16 bit instructions and a pair of actual
   32 bit instructions.  We dont want to set a single step instruction
   on the extend instruction either.  */

/* Lots of mips16 instruction formats */
/* Predicting jumps requires itype,ritype,i8type
   and their extensions      extItype,extritype,extI8type.  */
enum mips16_inst_fmts
{
  itype,			/* 0  immediate 5,10 */
  ritype,			/* 1   5,3,8 */
  rrtype,			/* 2   5,3,3,5 */
  rritype,			/* 3   5,3,3,5 */
  rrrtype,			/* 4   5,3,3,3,2 */
  rriatype,			/* 5   5,3,3,1,4 */
  shifttype,			/* 6   5,3,3,3,2 */
  i8type,			/* 7   5,3,8 */
  i8movtype,			/* 8   5,3,3,5 */
  i8mov32rtype,			/* 9   5,3,5,3 */
  i64type,			/* 10  5,3,8 */
  ri64type,			/* 11  5,3,3,5 */
  jalxtype,			/* 12  5,1,5,5,16 - a 32 bit instruction */
  exiItype,			/* 13  5,6,5,5,1,1,1,1,1,1,5 */
  extRitype,			/* 14  5,6,5,5,3,1,1,1,5 */
  extRRItype,			/* 15  5,5,5,5,3,3,5 */
  extRRIAtype,			/* 16  5,7,4,5,3,3,1,4 */
  EXTshifttype,			/* 17  5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
  extI8type,			/* 18  5,6,5,5,3,1,1,1,5 */
  extI64type,			/* 19  5,6,5,5,3,1,1,1,5 */
  extRi64type,			/* 20  5,6,5,5,3,3,5 */
  extshift64type		/* 21  5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
};
/* I am heaping all the fields of the formats into one structure and
   then, only the fields which are involved in instruction extension.  */
struct upk_mips16
{
  CORE_ADDR offset;
  unsigned int regx;		/* Function in i8 type.  */
  unsigned int regy;
};


/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
   for the bits which make up the immediate extension.  */

static CORE_ADDR
extended_offset (unsigned int extension)
{
  CORE_ADDR value;

  value = (extension >> 16) & 0x1f;	/* Extract 15:11.  */
  value = value << 6;
  value |= (extension >> 21) & 0x3f;	/* Extract 10:5.  */
  value = value << 5;
  value |= extension & 0x1f;		/* Extract 4:0.  */

  return value;
}

/* Only call this function if you know that this is an extendable
   instruction.  It won't malfunction, but why make excess remote memory
   references?  If the immediate operands get sign extended or something,
   do it after the extension is performed.  */
/* FIXME: Every one of these cases needs to worry about sign extension
   when the offset is to be used in relative addressing.  */

static unsigned int
fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[8];

  pc = unmake_compact_addr (pc);	/* Clear the low order bit.  */
  target_read_memory (pc, buf, 2);
  return extract_unsigned_integer (buf, 2, byte_order);
}

static void
unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
	       unsigned int extension,
	       unsigned int inst,
	       enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
{
  CORE_ADDR offset;
  int regx;
  int regy;
  switch (insn_format)
    {
    case itype:
      {
	CORE_ADDR value;
	if (extension)
	  {
	    value = extended_offset ((extension << 16) | inst);
	    value = (value ^ 0x8000) - 0x8000;		/* Sign-extend.  */
	  }
	else
	  {
	    value = inst & 0x7ff;
	    value = (value ^ 0x400) - 0x400;		/* Sign-extend.  */
	  }
	offset = value;
	regx = -1;
	regy = -1;
      }
      break;
    case ritype:
    case i8type:
      {				/* A register identifier and an offset.  */
	/* Most of the fields are the same as I type but the
	   immediate value is of a different length.  */
	CORE_ADDR value;
	if (extension)
	  {
	    value = extended_offset ((extension << 16) | inst);
	    value = (value ^ 0x8000) - 0x8000;		/* Sign-extend.  */
	  }
	else
	  {
	    value = inst & 0xff;			/* 8 bits */
	    value = (value ^ 0x80) - 0x80;		/* Sign-extend.  */
	  }
	offset = value;
	regx = (inst >> 8) & 0x07;			/* i8 funct */
	regy = -1;
	break;
      }
    case jalxtype:
      {
	unsigned long value;
	unsigned int nexthalf;
	value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
	value = value << 16;
	nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
						/* Low bit still set.  */
	value |= nexthalf;
	offset = value;
	regx = -1;
	regy = -1;
	break;
      }
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
  upk->offset = offset;
  upk->regx = regx;
  upk->regy = regy;
}


/* Calculate the destination of a branch whose 16-bit opcode word is at PC,
   and having a signed 16-bit OFFSET.  */

static CORE_ADDR
add_offset_16 (CORE_ADDR pc, int offset)
{
  return pc + (offset << 1) + 2;
}

static CORE_ADDR
extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
			 unsigned int extension, unsigned int insn)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  int op = (insn >> 11);
  switch (op)
    {
    case 2:			/* Branch */
      {
	struct upk_mips16 upk;
	unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
	pc = add_offset_16 (pc, upk.offset);
	break;
      }
    case 3:			/* JAL , JALX - Watch out, these are 32 bit
				   instructions.  */
      {
	struct upk_mips16 upk;
	unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
	pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
	if ((insn >> 10) & 0x01)	/* Exchange mode */
	  pc = pc & ~0x01;	/* Clear low bit, indicate 32 bit mode.  */
	else
	  pc |= 0x01;
	break;
      }
    case 4:			/* beqz */
      {
	struct upk_mips16 upk;
	int reg;
	unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
	reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
	if (reg == 0)
	  pc = add_offset_16 (pc, upk.offset);
	else
	  pc += 2;
	break;
      }
    case 5:			/* bnez */
      {
	struct upk_mips16 upk;
	int reg;
	unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
	reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
	if (reg != 0)
	  pc = add_offset_16 (pc, upk.offset);
	else
	  pc += 2;
	break;
      }
    case 12:			/* I8 Formats btez btnez */
      {
	struct upk_mips16 upk;
	int reg;
	unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
	/* upk.regx contains the opcode */
	reg = get_frame_register_signed (frame, 24);  /* Test register is 24 */
	if (((upk.regx == 0) && (reg == 0))	/* BTEZ */
	    || ((upk.regx == 1) && (reg != 0)))	/* BTNEZ */
	  pc = add_offset_16 (pc, upk.offset);
	else
	  pc += 2;
	break;
      }
    case 29:			/* RR Formats JR, JALR, JALR-RA */
      {
	struct upk_mips16 upk;
	/* upk.fmt = rrtype; */
	op = insn & 0x1f;
	if (op == 0)
	  {
	    int reg;
	    upk.regx = (insn >> 8) & 0x07;
	    upk.regy = (insn >> 5) & 0x07;
	    if ((upk.regy & 1) == 0)
	      reg = mips_reg3_to_reg[upk.regx];
	    else
	      reg = 31;		/* Function return instruction.  */
	    pc = get_frame_register_signed (frame, reg);
	  }
	else
	  pc += 2;
	break;
      }
    case 30:
      /* This is an instruction extension.  Fetch the real instruction
         (which follows the extension) and decode things based on
         that.  */
      {
	pc += 2;
	pc = extended_mips16_next_pc (frame, pc, insn,
				      fetch_mips_16 (gdbarch, pc));
	break;
      }
    default:
      {
	pc += 2;
	break;
      }
    }
  return pc;
}

static CORE_ADDR
mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  unsigned int insn = fetch_mips_16 (gdbarch, pc);
  return extended_mips16_next_pc (frame, pc, 0, insn);
}

/* The mips_next_pc function supports single_step when the remote
   target monitor or stub is not developed enough to do a single_step.
   It works by decoding the current instruction and predicting where a
   branch will go.  This isn't hard because all the data is available.
   The MIPS32, MIPS16 and microMIPS variants are quite different.  */
static CORE_ADDR
mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);

  if (mips_pc_is_mips16 (gdbarch, pc))
    return mips16_next_pc (frame, pc);
  else if (mips_pc_is_micromips (gdbarch, pc))
    return micromips_next_pc (frame, pc);
  else
    return mips32_next_pc (frame, pc);
}

/* Return non-zero if the MIPS16 instruction INSN is a compact branch
   or jump.  */

static int
mips16_instruction_is_compact_branch (unsigned short insn)
{
  switch (insn & 0xf800)
    {
    case 0xe800:
      return (insn & 0x009f) == 0x80;	/* JALRC/JRC */
    case 0x6000:
      return (insn & 0x0600) == 0;	/* BTNEZ/BTEQZ */
    case 0x2800:			/* BNEZ */
    case 0x2000:			/* BEQZ */
    case 0x1000:			/* B */
      return 1;
    default:
      return 0;
    }
}

/* Return non-zero if the microMIPS instruction INSN is a compact branch
   or jump.  */

static int
micromips_instruction_is_compact_branch (unsigned short insn)
{
  switch (micromips_op (insn))
    {
    case 0x11:			/* POOL16C: bits 010001 */
      return (b5s5_op (insn) == 0x18
				/* JRADDIUSP: bits 010001 11000 */
	      || b5s5_op (insn) == 0xd);
				/* JRC: bits 010011 01101 */
    case 0x10:			/* POOL32I: bits 010000 */
      return (b5s5_op (insn) & 0x1d) == 0x5;
				/* BEQZC/BNEZC: bits 010000 001x1 */
    default:
      return 0;
    }
}

struct mips_frame_cache
{
  CORE_ADDR base;
  struct trad_frame_saved_reg *saved_regs;
};

/* Set a register's saved stack address in temp_saved_regs.  If an
   address has already been set for this register, do nothing; this
   way we will only recognize the first save of a given register in a
   function prologue.

   For simplicity, save the address in both [0 .. gdbarch_num_regs) and
   [gdbarch_num_regs .. 2*gdbarch_num_regs).
   Strictly speaking, only the second range is used as it is only second
   range (the ABI instead of ISA registers) that comes into play when finding
   saved registers in a frame.  */

static void
set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
		int regnum, CORE_ADDR offset)
{
  if (this_cache != NULL
      && this_cache->saved_regs[regnum].addr == -1)
    {
      this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
        = offset;
      this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
        = offset;
    }
}


/* Fetch the immediate value from a MIPS16 instruction.
   If the previous instruction was an EXTEND, use it to extend
   the upper bits of the immediate value.  This is a helper function
   for mips16_scan_prologue.  */

static int
mips16_get_imm (unsigned short prev_inst,	/* previous instruction */
		unsigned short inst,	/* current instruction */
		int nbits,	/* number of bits in imm field */
		int scale,	/* scale factor to be applied to imm */
		int is_signed)	/* is the imm field signed?  */
{
  int offset;

  if ((prev_inst & 0xf800) == 0xf000)	/* prev instruction was EXTEND? */
    {
      offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
      if (offset & 0x8000)	/* check for negative extend */
	offset = 0 - (0x10000 - (offset & 0xffff));
      return offset | (inst & 0x1f);
    }
  else
    {
      int max_imm = 1 << nbits;
      int mask = max_imm - 1;
      int sign_bit = max_imm >> 1;

      offset = inst & mask;
      if (is_signed && (offset & sign_bit))
	offset = 0 - (max_imm - offset);
      return offset * scale;
    }
}


/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
   the associated FRAME_CACHE if not null.
   Return the address of the first instruction past the prologue.  */

static CORE_ADDR
mips16_scan_prologue (struct gdbarch *gdbarch,
		      CORE_ADDR start_pc, CORE_ADDR limit_pc,
                      struct frame_info *this_frame,
                      struct mips_frame_cache *this_cache)
{
  int prev_non_prologue_insn = 0;
  int this_non_prologue_insn;
  int non_prologue_insns = 0;
  CORE_ADDR prev_pc;
  CORE_ADDR cur_pc;
  CORE_ADDR frame_addr = 0;	/* Value of $r17, used as frame pointer.  */
  CORE_ADDR sp;
  long frame_offset = 0;        /* Size of stack frame.  */
  long frame_adjust = 0;        /* Offset of FP from SP.  */
  int frame_reg = MIPS_SP_REGNUM;
  unsigned short prev_inst = 0;	/* saved copy of previous instruction.  */
  unsigned inst = 0;		/* current instruction */
  unsigned entry_inst = 0;	/* the entry instruction */
  unsigned save_inst = 0;	/* the save instruction */
  int prev_delay_slot = 0;
  int in_delay_slot;
  int reg, offset;

  int extend_bytes = 0;
  int prev_extend_bytes = 0;
  CORE_ADDR end_prologue_addr;

  /* Can be called when there's no process, and hence when there's no
     THIS_FRAME.  */
  if (this_frame != NULL)
    sp = get_frame_register_signed (this_frame,
				    gdbarch_num_regs (gdbarch)
				    + MIPS_SP_REGNUM);
  else
    sp = 0;

  if (limit_pc > start_pc + 200)
    limit_pc = start_pc + 200;
  prev_pc = start_pc;

  /* Permit at most one non-prologue non-control-transfer instruction
     in the middle which may have been reordered by the compiler for
     optimisation.  */
  for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
    {
      this_non_prologue_insn = 0;
      in_delay_slot = 0;

      /* Save the previous instruction.  If it's an EXTEND, we'll extract
         the immediate offset extension from it in mips16_get_imm.  */
      prev_inst = inst;

      /* Fetch and decode the instruction.  */
      inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
						      cur_pc, NULL);

      /* Normally we ignore extend instructions.  However, if it is
         not followed by a valid prologue instruction, then this
         instruction is not part of the prologue either.  We must
         remember in this case to adjust the end_prologue_addr back
         over the extend.  */
      if ((inst & 0xf800) == 0xf000)    /* extend */
        {
          extend_bytes = MIPS_INSN16_SIZE;
          continue;
        }

      prev_extend_bytes = extend_bytes;
      extend_bytes = 0;

      if ((inst & 0xff00) == 0x6300	/* addiu sp */
	  || (inst & 0xff00) == 0xfb00)	/* daddiu sp */
	{
	  offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
	  if (offset < 0)	/* Negative stack adjustment?  */
	    frame_offset -= offset;
	  else
	    /* Exit loop if a positive stack adjustment is found, which
	       usually means that the stack cleanup code in the function
	       epilogue is reached.  */
	    break;
	}
      else if ((inst & 0xf800) == 0xd000)	/* sw reg,n($sp) */
	{
	  offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
	  reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	}
      else if ((inst & 0xff00) == 0xf900)	/* sd reg,n($sp) */
	{
	  offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
	  reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	}
      else if ((inst & 0xff00) == 0x6200)	/* sw $ra,n($sp) */
	{
	  offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
	  set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
	}
      else if ((inst & 0xff00) == 0xfa00)	/* sd $ra,n($sp) */
	{
	  offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
	  set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
	}
      else if (inst == 0x673d)	/* move $s1, $sp */
	{
	  frame_addr = sp;
	  frame_reg = 17;
	}
      else if ((inst & 0xff00) == 0x0100)	/* addiu $s1,sp,n */
	{
	  offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
	  frame_addr = sp + offset;
	  frame_reg = 17;
	  frame_adjust = offset;
	}
      else if ((inst & 0xFF00) == 0xd900)	/* sw reg,offset($s1) */
	{
	  offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
	  reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
	  set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
	}
      else if ((inst & 0xFF00) == 0x7900)	/* sd reg,offset($s1) */
	{
	  offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
	  reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
	  set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
	}
      else if ((inst & 0xf81f) == 0xe809
               && (inst & 0x700) != 0x700)	/* entry */
	entry_inst = inst;	/* Save for later processing.  */
      else if ((inst & 0xff80) == 0x6480)	/* save */
	{
	  save_inst = inst;	/* Save for later processing.  */
	  if (prev_extend_bytes)		/* extend */
	    save_inst |= prev_inst << 16;
	}
      else if ((inst & 0xff1c) == 0x6704)	/* move reg,$a0-$a3 */
        {
          /* This instruction is part of the prologue, but we don't
             need to do anything special to handle it.  */
        }
      else if (mips16_instruction_has_delay_slot (inst, 0))
						/* JAL/JALR/JALX/JR */
	{
	  /* The instruction in the delay slot can be a part
	     of the prologue, so move forward once more.  */
	  in_delay_slot = 1;
	  if (mips16_instruction_has_delay_slot (inst, 1))
						/* JAL/JALX */
	    {
	      prev_extend_bytes = MIPS_INSN16_SIZE;
	      cur_pc += MIPS_INSN16_SIZE;	/* 32-bit instruction */
	    }
	}
      else
        {
	  this_non_prologue_insn = 1;
        }

      non_prologue_insns += this_non_prologue_insn;

      /* A jump or branch, or enough non-prologue insns seen?  If so,
         then we must have reached the end of the prologue by now.  */
      if (prev_delay_slot || non_prologue_insns > 1
	  || mips16_instruction_is_compact_branch (inst))
	break;

      prev_non_prologue_insn = this_non_prologue_insn;
      prev_delay_slot = in_delay_slot;
      prev_pc = cur_pc - prev_extend_bytes;
    }

  /* The entry instruction is typically the first instruction in a function,
     and it stores registers at offsets relative to the value of the old SP
     (before the prologue).  But the value of the sp parameter to this
     function is the new SP (after the prologue has been executed).  So we
     can't calculate those offsets until we've seen the entire prologue,
     and can calculate what the old SP must have been.  */
  if (entry_inst != 0)
    {
      int areg_count = (entry_inst >> 8) & 7;
      int sreg_count = (entry_inst >> 6) & 3;

      /* The entry instruction always subtracts 32 from the SP.  */
      frame_offset += 32;

      /* Now we can calculate what the SP must have been at the
         start of the function prologue.  */
      sp += frame_offset;

      /* Check if a0-a3 were saved in the caller's argument save area.  */
      for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
	{
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	  offset += mips_abi_regsize (gdbarch);
	}

      /* Check if the ra register was pushed on the stack.  */
      offset = -4;
      if (entry_inst & 0x20)
	{
	  set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}

      /* Check if the s0 and s1 registers were pushed on the stack.  */
      for (reg = 16; reg < sreg_count + 16; reg++)
	{
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}
    }

  /* The SAVE instruction is similar to ENTRY, except that defined by the
     MIPS16e ASE of the MIPS Architecture.  Unlike with ENTRY though, the
     size of the frame is specified as an immediate field of instruction
     and an extended variation exists which lets additional registers and
     frame space to be specified.  The instruction always treats registers
     as 32-bit so its usefulness for 64-bit ABIs is questionable.  */
  if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
    {
      static int args_table[16] = {
	0, 0, 0, 0, 1, 1, 1, 1,
	2, 2, 2, 0, 3, 3, 4, -1,
      };
      static int astatic_table[16] = {
	0, 1, 2, 3, 0, 1, 2, 3,
	0, 1, 2, 4, 0, 1, 0, -1,
      };
      int aregs = (save_inst >> 16) & 0xf;
      int xsregs = (save_inst >> 24) & 0x7;
      int args = args_table[aregs];
      int astatic = astatic_table[aregs];
      long frame_size;

      if (args < 0)
	{
	  warning (_("Invalid number of argument registers encoded in SAVE."));
	  args = 0;
	}
      if (astatic < 0)
	{
	  warning (_("Invalid number of static registers encoded in SAVE."));
	  astatic = 0;
	}

      /* For standard SAVE the frame size of 0 means 128.  */
      frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
      if (frame_size == 0 && (save_inst >> 16) == 0)
	frame_size = 16;
      frame_size *= 8;
      frame_offset += frame_size;

      /* Now we can calculate what the SP must have been at the
         start of the function prologue.  */
      sp += frame_offset;

      /* Check if A0-A3 were saved in the caller's argument save area.  */
      for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
	{
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	  offset += mips_abi_regsize (gdbarch);
	}

      offset = -4;

      /* Check if the RA register was pushed on the stack.  */
      if (save_inst & 0x40)
	{
	  set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}

      /* Check if the S8 register was pushed on the stack.  */
      if (xsregs > 6)
	{
	  set_reg_offset (gdbarch, this_cache, 30, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	  xsregs--;
	}
      /* Check if S2-S7 were pushed on the stack.  */
      for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
	{
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}

      /* Check if the S1 register was pushed on the stack.  */
      if (save_inst & 0x10)
	{
	  set_reg_offset (gdbarch, this_cache, 17, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}
      /* Check if the S0 register was pushed on the stack.  */
      if (save_inst & 0x20)
	{
	  set_reg_offset (gdbarch, this_cache, 16, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}

      /* Check if A0-A3 were pushed on the stack.  */
      for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
	{
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}
    }

  if (this_cache != NULL)
    {
      this_cache->base =
        (get_frame_register_signed (this_frame,
				    gdbarch_num_regs (gdbarch) + frame_reg)
         + frame_offset - frame_adjust);
      /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
         be able to get rid of the assignment below, evetually.  But it's
         still needed for now.  */
      this_cache->saved_regs[gdbarch_num_regs (gdbarch)
			     + mips_regnum (gdbarch)->pc]
        = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
    }

  /* Set end_prologue_addr to the address of the instruction immediately
     after the last one we scanned.  Unless the last one looked like a
     non-prologue instruction (and we looked ahead), in which case use
     its address instead.  */
  end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
		       ? prev_pc : cur_pc - prev_extend_bytes);

  return end_prologue_addr;
}

/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
   Procedures that use the 32-bit instruction set are handled by the
   mips_insn32 unwinder.  */

static struct mips_frame_cache *
mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct mips_frame_cache *cache;

  if ((*this_cache) != NULL)
    return (struct mips_frame_cache *) (*this_cache);
  cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
  (*this_cache) = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  /* Analyze the function prologue.  */
  {
    const CORE_ADDR pc = get_frame_address_in_block (this_frame);
    CORE_ADDR start_addr;

    find_pc_partial_function (pc, NULL, &start_addr, NULL);
    if (start_addr == 0)
      start_addr = heuristic_proc_start (gdbarch, pc);
    /* We can't analyze the prologue if we couldn't find the begining
       of the function.  */
    if (start_addr == 0)
      return cache;

    mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
			  (struct mips_frame_cache *) *this_cache);
  }
  
  /* gdbarch_sp_regnum contains the value and not the address.  */
  trad_frame_set_value (cache->saved_regs,
			gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
			cache->base);

  return (struct mips_frame_cache *) (*this_cache);
}

static void
mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
			   struct frame_id *this_id)
{
  struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
							   this_cache);
  /* This marks the outermost frame.  */
  if (info->base == 0)
    return;
  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}

static struct value *
mips_insn16_frame_prev_register (struct frame_info *this_frame,
				 void **this_cache, int regnum)
{
  struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
							   this_cache);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}

static int
mips_insn16_frame_sniffer (const struct frame_unwind *self,
			   struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  CORE_ADDR pc = get_frame_pc (this_frame);
  if (mips_pc_is_mips16 (gdbarch, pc))
    return 1;
  return 0;
}

static const struct frame_unwind mips_insn16_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  mips_insn16_frame_this_id,
  mips_insn16_frame_prev_register,
  NULL,
  mips_insn16_frame_sniffer
};

static CORE_ADDR
mips_insn16_frame_base_address (struct frame_info *this_frame,
				void **this_cache)
{
  struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
							   this_cache);
  return info->base;
}

static const struct frame_base mips_insn16_frame_base =
{
  &mips_insn16_frame_unwind,
  mips_insn16_frame_base_address,
  mips_insn16_frame_base_address,
  mips_insn16_frame_base_address
};

static const struct frame_base *
mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  CORE_ADDR pc = get_frame_pc (this_frame);
  if (mips_pc_is_mips16 (gdbarch, pc))
    return &mips_insn16_frame_base;
  else
    return NULL;
}

/* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
   to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
   interpreted directly, and then multiplied by 4.  */

static int
micromips_decode_imm9 (int imm)
{
  imm = (imm ^ 0x100) - 0x100;
  if (imm > -3 && imm < 2)
    imm ^= 0x100;
  return imm << 2;
}

/* Analyze the function prologue from START_PC to LIMIT_PC.  Return
   the address of the first instruction past the prologue.  */

static CORE_ADDR
micromips_scan_prologue (struct gdbarch *gdbarch,
			 CORE_ADDR start_pc, CORE_ADDR limit_pc,
			 struct frame_info *this_frame,
			 struct mips_frame_cache *this_cache)
{
  CORE_ADDR end_prologue_addr;
  int prev_non_prologue_insn = 0;
  int frame_reg = MIPS_SP_REGNUM;
  int this_non_prologue_insn;
  int non_prologue_insns = 0;
  long frame_offset = 0;	/* Size of stack frame.  */
  long frame_adjust = 0;	/* Offset of FP from SP.  */
  int prev_delay_slot = 0;
  int in_delay_slot;
  CORE_ADDR prev_pc;
  CORE_ADDR cur_pc;
  ULONGEST insn;		/* current instruction */
  CORE_ADDR sp;
  long offset;
  long sp_adj;
  long v1_off = 0;		/* The assumption is LUI will replace it.  */
  int reglist;
  int breg;
  int dreg;
  int sreg;
  int treg;
  int loc;
  int op;
  int s;
  int i;

  /* Can be called when there's no process, and hence when there's no
     THIS_FRAME.  */
  if (this_frame != NULL)
    sp = get_frame_register_signed (this_frame,
				    gdbarch_num_regs (gdbarch)
				    + MIPS_SP_REGNUM);
  else
    sp = 0;

  if (limit_pc > start_pc + 200)
    limit_pc = start_pc + 200;
  prev_pc = start_pc;

  /* Permit at most one non-prologue non-control-transfer instruction
     in the middle which may have been reordered by the compiler for
     optimisation.  */
  for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
    {
      this_non_prologue_insn = 0;
      in_delay_slot = 0;
      sp_adj = 0;
      loc = 0;
      insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
      loc += MIPS_INSN16_SIZE;
      switch (mips_insn_size (ISA_MICROMIPS, insn))
	{
	/* 32-bit instructions.  */
	case 2 * MIPS_INSN16_SIZE:
	  insn <<= 16;
	  insn |= mips_fetch_instruction (gdbarch,
					  ISA_MICROMIPS, cur_pc + loc, NULL);
	  loc += MIPS_INSN16_SIZE;
	  switch (micromips_op (insn >> 16))
	    {
	    /* Record $sp/$fp adjustment.  */
	    /* Discard (D)ADDU $gp,$jp used for PIC code.  */
	    case 0x0: /* POOL32A: bits 000000 */
	    case 0x16: /* POOL32S: bits 010110 */
	      op = b0s11_op (insn);
	      sreg = b0s5_reg (insn >> 16);
	      treg = b5s5_reg (insn >> 16);
	      dreg = b11s5_reg (insn);
	      if (op == 0x1d0
				/* SUBU: bits 000000 00111010000 */
				/* DSUBU: bits 010110 00111010000 */
		  && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
		  && treg == 3)
				/* (D)SUBU $sp, $v1 */
		    sp_adj = v1_off;
	      else if (op != 0x150
				/* ADDU: bits 000000 00101010000 */
				/* DADDU: bits 010110 00101010000 */
		       || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
		this_non_prologue_insn = 1;
	      break;

	    case 0x8: /* POOL32B: bits 001000 */
	      op = b12s4_op (insn);
	      breg = b0s5_reg (insn >> 16);
	      reglist = sreg = b5s5_reg (insn >> 16);
	      offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
	      if ((op == 0x9 || op == 0xc)
				/* SWP: bits 001000 1001 */
				/* SDP: bits 001000 1100 */
		  && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
				/* S[DW]P reg,offset($sp) */
		{
		  s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
		  set_reg_offset (gdbarch, this_cache,
				  sreg, sp + offset);
		  set_reg_offset (gdbarch, this_cache,
				  sreg + 1, sp + offset + s);
		}
	      else if ((op == 0xd || op == 0xf)
				/* SWM: bits 001000 1101 */
				/* SDM: bits 001000 1111 */
		       && breg == MIPS_SP_REGNUM
				/* SWM reglist,offset($sp) */
		       && ((reglist >= 1 && reglist <= 9)
			   || (reglist >= 16 && reglist <= 25)))
		{
		  int sreglist = std::min(reglist & 0xf, 8);

		  s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
		  for (i = 0; i < sreglist; i++)
		    set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
		  if ((reglist & 0xf) > 8)
		    set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
		  if ((reglist & 0x10) == 0x10)
		    set_reg_offset (gdbarch, this_cache,
				    MIPS_RA_REGNUM, sp + s * i++);
		}
	      else
		this_non_prologue_insn = 1;
	      break;

	    /* Record $sp/$fp adjustment.  */
	    /* Discard (D)ADDIU $gp used for PIC code.  */
	    case 0xc: /* ADDIU: bits 001100 */
	    case 0x17: /* DADDIU: bits 010111 */
	      sreg = b0s5_reg (insn >> 16);
	      dreg = b5s5_reg (insn >> 16);
	      offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
	      if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
				/* (D)ADDIU $sp, imm */
		sp_adj = offset;
	      else if (sreg == MIPS_SP_REGNUM && dreg == 30)
				/* (D)ADDIU $fp, $sp, imm */
		{
		  frame_adjust = offset;
		  frame_reg = 30;
		}
	      else if (sreg != 28 || dreg != 28)
				/* (D)ADDIU $gp, imm */
		this_non_prologue_insn = 1;
	      break;

	    /* LUI $v1 is used for larger $sp adjustments.  */
	    /* Discard LUI $gp used for PIC code.  */
	    case 0x10: /* POOL32I: bits 010000 */
	      if (b5s5_op (insn >> 16) == 0xd
				/* LUI: bits 010000 001101 */
		  && b0s5_reg (insn >> 16) == 3)
				/* LUI $v1, imm */
		v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
	      else if (b5s5_op (insn >> 16) != 0xd
				/* LUI: bits 010000 001101 */
		       || b0s5_reg (insn >> 16) != 28)
				/* LUI $gp, imm */
		this_non_prologue_insn = 1;
	      break;

	    /* ORI $v1 is used for larger $sp adjustments.  */
	    case 0x14: /* ORI: bits 010100 */
	      sreg = b0s5_reg (insn >> 16);
	      dreg = b5s5_reg (insn >> 16);
	      if (sreg == 3 && dreg == 3)
				/* ORI $v1, imm */
		v1_off |= b0s16_imm (insn);
	      else
		this_non_prologue_insn = 1;
	      break;

	    case 0x26: /* SWC1: bits 100110 */
	    case 0x2e: /* SDC1: bits 101110 */
	      breg = b0s5_reg (insn >> 16);
	      if (breg != MIPS_SP_REGNUM)
				/* S[DW]C1 reg,offset($sp) */
		this_non_prologue_insn = 1;
	      break;

	    case 0x36: /* SD: bits 110110 */
	    case 0x3e: /* SW: bits 111110 */
	      breg = b0s5_reg (insn >> 16);
	      sreg = b5s5_reg (insn >> 16);
	      offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
	      if (breg == MIPS_SP_REGNUM)
				/* S[DW] reg,offset($sp) */
		set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
	      else
		this_non_prologue_insn = 1;
	      break;

	    default:
	      /* The instruction in the delay slot can be a part
	         of the prologue, so move forward once more.  */
	      if (micromips_instruction_has_delay_slot (insn, 0))
		in_delay_slot = 1;
	      else
		this_non_prologue_insn = 1;
	      break;
	    }
	  insn >>= 16;
	  break;

	/* 16-bit instructions.  */
	case MIPS_INSN16_SIZE:
	  switch (micromips_op (insn))
	    {
	    case 0x3: /* MOVE: bits 000011 */
	      sreg = b0s5_reg (insn);
	      dreg = b5s5_reg (insn);
	      if (sreg == MIPS_SP_REGNUM && dreg == 30)
				/* MOVE  $fp, $sp */
		frame_reg = 30;
	      else if ((sreg & 0x1c) != 0x4)
				/* MOVE  reg, $a0-$a3 */
		this_non_prologue_insn = 1;
	      break;

	    case 0x11: /* POOL16C: bits 010001 */
	      if (b6s4_op (insn) == 0x5)
				/* SWM: bits 010001 0101 */
		{
		  offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
		  reglist = b4s2_regl (insn);
		  for (i = 0; i <= reglist; i++)
		    set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
		  set_reg_offset (gdbarch, this_cache,
				  MIPS_RA_REGNUM, sp + 4 * i++);
		}
	      else
		this_non_prologue_insn = 1;
	      break;

	    case 0x13: /* POOL16D: bits 010011 */
	      if ((insn & 0x1) == 0x1)
				/* ADDIUSP: bits 010011 1 */
		sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
	      else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
				/* ADDIUS5: bits 010011 0 */
				/* ADDIUS5 $sp, imm */
		sp_adj = (b1s4_imm (insn) ^ 8) - 8;
	      else
		this_non_prologue_insn = 1;
	      break;

	    case 0x32: /* SWSP: bits 110010 */
	      offset = b0s5_imm (insn) << 2;
	      sreg = b5s5_reg (insn);
	      set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
	      break;

	    default:
	      /* The instruction in the delay slot can be a part
	         of the prologue, so move forward once more.  */
	      if (micromips_instruction_has_delay_slot (insn << 16, 0))
		in_delay_slot = 1;
	      else
		this_non_prologue_insn = 1;
	      break;
	    }
	  break;
	}
      if (sp_adj < 0)
	frame_offset -= sp_adj;

      non_prologue_insns += this_non_prologue_insn;

      /* A jump or branch, enough non-prologue insns seen or positive
         stack adjustment?  If so, then we must have reached the end
         of the prologue by now.  */
      if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
	  || micromips_instruction_is_compact_branch (insn))
	break;

      prev_non_prologue_insn = this_non_prologue_insn;
      prev_delay_slot = in_delay_slot;
      prev_pc = cur_pc;
    }

  if (this_cache != NULL)
    {
      this_cache->base =
	(get_frame_register_signed (this_frame,
				    gdbarch_num_regs (gdbarch) + frame_reg)
	 + frame_offset - frame_adjust);
      /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
	 be able to get rid of the assignment below, evetually. But it's
	 still needed for now.  */
      this_cache->saved_regs[gdbarch_num_regs (gdbarch)
			     + mips_regnum (gdbarch)->pc]
	= this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
    }

  /* Set end_prologue_addr to the address of the instruction immediately
     after the last one we scanned.  Unless the last one looked like a
     non-prologue instruction (and we looked ahead), in which case use
     its address instead.  */
  end_prologue_addr
    = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;

  return end_prologue_addr;
}

/* Heuristic unwinder for procedures using microMIPS instructions.
   Procedures that use the 32-bit instruction set are handled by the
   mips_insn32 unwinder.  Likewise MIPS16 and the mips_insn16 unwinder. */

static struct mips_frame_cache *
mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct mips_frame_cache *cache;

  if ((*this_cache) != NULL)
    return (struct mips_frame_cache *) (*this_cache);

  cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
  (*this_cache) = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  /* Analyze the function prologue.  */
  {
    const CORE_ADDR pc = get_frame_address_in_block (this_frame);
    CORE_ADDR start_addr;

    find_pc_partial_function (pc, NULL, &start_addr, NULL);
    if (start_addr == 0)
      start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
    /* We can't analyze the prologue if we couldn't find the begining
       of the function.  */
    if (start_addr == 0)
      return cache;

    micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
			     (struct mips_frame_cache *) *this_cache);
  }

  /* gdbarch_sp_regnum contains the value and not the address.  */
  trad_frame_set_value (cache->saved_regs,
			gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
			cache->base);

  return (struct mips_frame_cache *) (*this_cache);
}

static void
mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
			  struct frame_id *this_id)
{
  struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
							  this_cache);
  /* This marks the outermost frame.  */
  if (info->base == 0)
    return;
  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}

static struct value *
mips_micro_frame_prev_register (struct frame_info *this_frame,
				void **this_cache, int regnum)
{
  struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
							  this_cache);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}

static int
mips_micro_frame_sniffer (const struct frame_unwind *self,
			  struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  CORE_ADDR pc = get_frame_pc (this_frame);

  if (mips_pc_is_micromips (gdbarch, pc))
    return 1;
  return 0;
}

static const struct frame_unwind mips_micro_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  mips_micro_frame_this_id,
  mips_micro_frame_prev_register,
  NULL,
  mips_micro_frame_sniffer
};

static CORE_ADDR
mips_micro_frame_base_address (struct frame_info *this_frame,
			       void **this_cache)
{
  struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
							  this_cache);
  return info->base;
}

static const struct frame_base mips_micro_frame_base =
{
  &mips_micro_frame_unwind,
  mips_micro_frame_base_address,
  mips_micro_frame_base_address,
  mips_micro_frame_base_address
};

static const struct frame_base *
mips_micro_frame_base_sniffer (struct frame_info *this_frame)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  CORE_ADDR pc = get_frame_pc (this_frame);

  if (mips_pc_is_micromips (gdbarch, pc))
    return &mips_micro_frame_base;
  else
    return NULL;
}

/* Mark all the registers as unset in the saved_regs array
   of THIS_CACHE.  Do nothing if THIS_CACHE is null.  */

static void
reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
{
  if (this_cache == NULL || this_cache->saved_regs == NULL)
    return;

  {
    const int num_regs = gdbarch_num_regs (gdbarch);
    int i;

    for (i = 0; i < num_regs; i++)
      {
        this_cache->saved_regs[i].addr = -1;
      }
  }
}

/* Analyze the function prologue from START_PC to LIMIT_PC.  Builds
   the associated FRAME_CACHE if not null.  
   Return the address of the first instruction past the prologue.  */

static CORE_ADDR
mips32_scan_prologue (struct gdbarch *gdbarch,
		      CORE_ADDR start_pc, CORE_ADDR limit_pc,
                      struct frame_info *this_frame,
                      struct mips_frame_cache *this_cache)
{
  int prev_non_prologue_insn;
  int this_non_prologue_insn;
  int non_prologue_insns;
  CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
			       frame-pointer.  */
  int prev_delay_slot;
  CORE_ADDR prev_pc;
  CORE_ADDR cur_pc;
  CORE_ADDR sp;
  long frame_offset;
  int  frame_reg = MIPS_SP_REGNUM;

  CORE_ADDR end_prologue_addr;
  int seen_sp_adjust = 0;
  int load_immediate_bytes = 0;
  int in_delay_slot;
  int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);

  /* Can be called when there's no process, and hence when there's no
     THIS_FRAME.  */
  if (this_frame != NULL)
    sp = get_frame_register_signed (this_frame,
				    gdbarch_num_regs (gdbarch)
				    + MIPS_SP_REGNUM);
  else
    sp = 0;

  if (limit_pc > start_pc + 200)
    limit_pc = start_pc + 200;

restart:
  prev_non_prologue_insn = 0;
  non_prologue_insns = 0;
  prev_delay_slot = 0;
  prev_pc = start_pc;

  /* Permit at most one non-prologue non-control-transfer instruction
     in the middle which may have been reordered by the compiler for
     optimisation.  */
  frame_offset = 0;
  for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
    {
      unsigned long inst, high_word;
      long offset;
      int reg;

      this_non_prologue_insn = 0;
      in_delay_slot = 0;

      /* Fetch the instruction.  */
      inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
						     cur_pc, NULL);

      /* Save some code by pre-extracting some useful fields.  */
      high_word = (inst >> 16) & 0xffff;
      offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
      reg = high_word & 0x1f;

      if (high_word == 0x27bd		/* addiu $sp,$sp,-i */
	  || high_word == 0x23bd	/* addi $sp,$sp,-i */
	  || high_word == 0x67bd)	/* daddiu $sp,$sp,-i */
	{
	  if (offset < 0)		/* Negative stack adjustment?  */
            frame_offset -= offset;
	  else
	    /* Exit loop if a positive stack adjustment is found, which
	       usually means that the stack cleanup code in the function
	       epilogue is reached.  */
	    break;
          seen_sp_adjust = 1;
	}
      else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
               && !regsize_is_64_bits)
	{
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	}
      else if (((high_word & 0xFFE0) == 0xffa0)	/* sd reg,offset($sp) */
               && regsize_is_64_bits)
	{
	  /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra.  */
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	}
      else if (high_word == 0x27be)	/* addiu $30,$sp,size */
	{
	  /* Old gcc frame, r30 is virtual frame pointer.  */
	  if (offset != frame_offset)
	    frame_addr = sp + offset;
	  else if (this_frame && frame_reg == MIPS_SP_REGNUM)
	    {
	      unsigned alloca_adjust;

	      frame_reg = 30;
	      frame_addr = get_frame_register_signed
		(this_frame, gdbarch_num_regs (gdbarch) + 30);
	      frame_offset = 0;

	      alloca_adjust = (unsigned) (frame_addr - (sp + offset));
	      if (alloca_adjust > 0)
		{
                  /* FP > SP + frame_size.  This may be because of
                     an alloca or somethings similar.  Fix sp to
                     "pre-alloca" value, and try again.  */
		  sp += alloca_adjust;
                  /* Need to reset the status of all registers.  Otherwise,
                     we will hit a guard that prevents the new address
                     for each register to be recomputed during the second
                     pass.  */
                  reset_saved_regs (gdbarch, this_cache);
		  goto restart;
		}
	    }
	}
      /* move $30,$sp.  With different versions of gas this will be either
         `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
         Accept any one of these.  */
      else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
	{
	  /* New gcc frame, virtual frame pointer is at r30 + frame_size.  */
	  if (this_frame && frame_reg == MIPS_SP_REGNUM)
	    {
	      unsigned alloca_adjust;

	      frame_reg = 30;
	      frame_addr = get_frame_register_signed
		(this_frame, gdbarch_num_regs (gdbarch) + 30);

	      alloca_adjust = (unsigned) (frame_addr - sp);
	      if (alloca_adjust > 0)
	        {
                  /* FP > SP + frame_size.  This may be because of
                     an alloca or somethings similar.  Fix sp to
                     "pre-alloca" value, and try again.  */
	          sp = frame_addr;
                  /* Need to reset the status of all registers.  Otherwise,
                     we will hit a guard that prevents the new address
                     for each register to be recomputed during the second
                     pass.  */
                  reset_saved_regs (gdbarch, this_cache);
	          goto restart;
	        }
	    }
	}
      else if ((high_word & 0xFFE0) == 0xafc0 	/* sw reg,offset($30) */
               && !regsize_is_64_bits)
	{
	  set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
	}
      else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
               || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
               || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
               || high_word == 0x3c1c /* lui $gp,n */
               || high_word == 0x279c /* addiu $gp,$gp,n */
               || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
               || inst == 0x033ce021 /* addu $gp,$t9,$gp */
              )
	{
	  /* These instructions are part of the prologue, but we don't
	     need to do anything special to handle them.  */
	}
      /* The instructions below load $at or $t0 with an immediate
         value in preparation for a stack adjustment via
         subu $sp,$sp,[$at,$t0].  These instructions could also
         initialize a local variable, so we accept them only before
         a stack adjustment instruction was seen.  */
      else if (!seen_sp_adjust
	       && !prev_delay_slot
	       && (high_word == 0x3c01 /* lui $at,n */
		   || high_word == 0x3c08 /* lui $t0,n */
		   || high_word == 0x3421 /* ori $at,$at,n */
		   || high_word == 0x3508 /* ori $t0,$t0,n */
		   || high_word == 0x3401 /* ori $at,$zero,n */
		   || high_word == 0x3408 /* ori $t0,$zero,n */
		  ))
	{
	  load_immediate_bytes += MIPS_INSN32_SIZE;		/* FIXME!  */
	}
      /* Check for branches and jumps.  The instruction in the delay
         slot can be a part of the prologue, so move forward once more.  */
      else if (mips32_instruction_has_delay_slot (gdbarch, inst))
	{
	  in_delay_slot = 1;
	}
      /* This instruction is not an instruction typically found
         in a prologue, so we must have reached the end of the
         prologue.  */
      else
	{
	  this_non_prologue_insn = 1;
	}

      non_prologue_insns += this_non_prologue_insn;

      /* A jump or branch, or enough non-prologue insns seen?  If so,
         then we must have reached the end of the prologue by now.  */
      if (prev_delay_slot || non_prologue_insns > 1)
	break;

      prev_non_prologue_insn = this_non_prologue_insn;
      prev_delay_slot = in_delay_slot;
      prev_pc = cur_pc;
    }

  if (this_cache != NULL)
    {
      this_cache->base = 
        (get_frame_register_signed (this_frame,
				    gdbarch_num_regs (gdbarch) + frame_reg)
         + frame_offset);
      /* FIXME: brobecker/2004-09-15: We should be able to get rid of
         this assignment below, eventually.  But it's still needed
         for now.  */
      this_cache->saved_regs[gdbarch_num_regs (gdbarch)
			     + mips_regnum (gdbarch)->pc]
        = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
				 + MIPS_RA_REGNUM];
    }

  /* Set end_prologue_addr to the address of the instruction immediately
     after the last one we scanned.  Unless the last one looked like a
     non-prologue instruction (and we looked ahead), in which case use
     its address instead.  */
  end_prologue_addr
    = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
     
  /* In a frameless function, we might have incorrectly
     skipped some load immediate instructions.  Undo the skipping
     if the load immediate was not followed by a stack adjustment.  */
  if (load_immediate_bytes && !seen_sp_adjust)
    end_prologue_addr -= load_immediate_bytes;

  return end_prologue_addr;
}

/* Heuristic unwinder for procedures using 32-bit instructions (covers
   both 32-bit and 64-bit MIPS ISAs).  Procedures using 16-bit
   instructions (a.k.a. MIPS16) are handled by the mips_insn16
   unwinder.  Likewise microMIPS and the mips_micro unwinder. */

static struct mips_frame_cache *
mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct mips_frame_cache *cache;

  if ((*this_cache) != NULL)
    return (struct mips_frame_cache *) (*this_cache);

  cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
  (*this_cache) = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  /* Analyze the function prologue.  */
  {
    const CORE_ADDR pc = get_frame_address_in_block (this_frame);
    CORE_ADDR start_addr;

    find_pc_partial_function (pc, NULL, &start_addr, NULL);
    if (start_addr == 0)
      start_addr = heuristic_proc_start (gdbarch, pc);
    /* We can't analyze the prologue if we couldn't find the begining
       of the function.  */
    if (start_addr == 0)
      return cache;

    mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
			  (struct mips_frame_cache *) *this_cache);
  }
  
  /* gdbarch_sp_regnum contains the value and not the address.  */
  trad_frame_set_value (cache->saved_regs,
			gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
			cache->base);

  return (struct mips_frame_cache *) (*this_cache);
}

static void
mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
			   struct frame_id *this_id)
{
  struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
							   this_cache);
  /* This marks the outermost frame.  */
  if (info->base == 0)
    return;
  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}

static struct value *
mips_insn32_frame_prev_register (struct frame_info *this_frame,
				 void **this_cache, int regnum)
{
  struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
							   this_cache);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}

static int
mips_insn32_frame_sniffer (const struct frame_unwind *self,
			   struct frame_info *this_frame, void **this_cache)
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  if (mips_pc_is_mips (pc))
    return 1;
  return 0;
}

static const struct frame_unwind mips_insn32_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  mips_insn32_frame_this_id,
  mips_insn32_frame_prev_register,
  NULL,
  mips_insn32_frame_sniffer
};

static CORE_ADDR
mips_insn32_frame_base_address (struct frame_info *this_frame,
				void **this_cache)
{
  struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
							   this_cache);
  return info->base;
}

static const struct frame_base mips_insn32_frame_base =
{
  &mips_insn32_frame_unwind,
  mips_insn32_frame_base_address,
  mips_insn32_frame_base_address,
  mips_insn32_frame_base_address
};

static const struct frame_base *
mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  if (mips_pc_is_mips (pc))
    return &mips_insn32_frame_base;
  else
    return NULL;
}

static struct trad_frame_cache *
mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  CORE_ADDR pc;
  CORE_ADDR start_addr;
  CORE_ADDR stack_addr;
  struct trad_frame_cache *this_trad_cache;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  int num_regs = gdbarch_num_regs (gdbarch);

  if ((*this_cache) != NULL)
    return (struct trad_frame_cache *) (*this_cache);
  this_trad_cache = trad_frame_cache_zalloc (this_frame);
  (*this_cache) = this_trad_cache;

  /* The return address is in the link register.  */
  trad_frame_set_reg_realreg (this_trad_cache,
			      gdbarch_pc_regnum (gdbarch),
			      num_regs + MIPS_RA_REGNUM);

  /* Frame ID, since it's a frameless / stackless function, no stack
     space is allocated and SP on entry is the current SP.  */
  pc = get_frame_pc (this_frame);
  find_pc_partial_function (pc, NULL, &start_addr, NULL);
  stack_addr = get_frame_register_signed (this_frame,
					  num_regs + MIPS_SP_REGNUM);
  trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));

  /* Assume that the frame's base is the same as the
     stack-pointer.  */
  trad_frame_set_this_base (this_trad_cache, stack_addr);

  return this_trad_cache;
}

static void
mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
			 struct frame_id *this_id)
{
  struct trad_frame_cache *this_trad_cache
    = mips_stub_frame_cache (this_frame, this_cache);
  trad_frame_get_id (this_trad_cache, this_id);
}

static struct value *
mips_stub_frame_prev_register (struct frame_info *this_frame,
			       void **this_cache, int regnum)
{
  struct trad_frame_cache *this_trad_cache
    = mips_stub_frame_cache (this_frame, this_cache);
  return trad_frame_get_register (this_trad_cache, this_frame, regnum);
}

static int
mips_stub_frame_sniffer (const struct frame_unwind *self,
			 struct frame_info *this_frame, void **this_cache)
{
  gdb_byte dummy[4];
  struct obj_section *s;
  CORE_ADDR pc = get_frame_address_in_block (this_frame);
  struct bound_minimal_symbol msym;

  /* Use the stub unwinder for unreadable code.  */
  if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
    return 1;

  if (in_plt_section (pc) || in_mips_stubs_section (pc))
    return 1;

  /* Calling a PIC function from a non-PIC function passes through a
     stub.  The stub for foo is named ".pic.foo".  */
  msym = lookup_minimal_symbol_by_pc (pc);
  if (msym.minsym != NULL
      && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
      && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
    return 1;

  return 0;
}

static const struct frame_unwind mips_stub_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  mips_stub_frame_this_id,
  mips_stub_frame_prev_register,
  NULL,
  mips_stub_frame_sniffer
};

static CORE_ADDR
mips_stub_frame_base_address (struct frame_info *this_frame,
			      void **this_cache)
{
  struct trad_frame_cache *this_trad_cache
    = mips_stub_frame_cache (this_frame, this_cache);
  return trad_frame_get_this_base (this_trad_cache);
}

static const struct frame_base mips_stub_frame_base =
{
  &mips_stub_frame_unwind,
  mips_stub_frame_base_address,
  mips_stub_frame_base_address,
  mips_stub_frame_base_address
};

static const struct frame_base *
mips_stub_frame_base_sniffer (struct frame_info *this_frame)
{
  if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
    return &mips_stub_frame_base;
  else
    return NULL;
}

/* mips_addr_bits_remove - remove useless address bits  */

static CORE_ADDR
mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
    /* This hack is a work-around for existing boards using PMON, the
       simulator, and any other 64-bit targets that doesn't have true
       64-bit addressing.  On these targets, the upper 32 bits of
       addresses are ignored by the hardware.  Thus, the PC or SP are
       likely to have been sign extended to all 1s by instruction
       sequences that load 32-bit addresses.  For example, a typical
       piece of code that loads an address is this:

       lui $r2, <upper 16 bits>
       ori $r2, <lower 16 bits>

       But the lui sign-extends the value such that the upper 32 bits
       may be all 1s.  The workaround is simply to mask off these
       bits.  In the future, gcc may be changed to support true 64-bit
       addressing, and this masking will have to be disabled.  */
    return addr &= 0xffffffffUL;
  else
    return addr;
}


/* Checks for an atomic sequence of instructions beginning with a LL/LLD
   instruction and ending with a SC/SCD instruction.  If such a sequence
   is found, attempt to step through it.  A breakpoint is placed at the end of 
   the sequence.  */

/* Instructions used during single-stepping of atomic sequences, standard
   ISA version.  */
#define LL_OPCODE 0x30
#define LLD_OPCODE 0x34
#define SC_OPCODE 0x38
#define SCD_OPCODE 0x3c

static int
mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
 				struct address_space *aspace, CORE_ADDR pc)
{
  CORE_ADDR breaks[2] = {-1, -1};
  CORE_ADDR loc = pc;
  CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination.  */
  ULONGEST insn;
  int insn_count;
  int index;
  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */  
  const int atomic_sequence_length = 16; /* Instruction sequence length.  */

  insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
  /* Assume all atomic sequences start with a ll/lld instruction.  */
  if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
    return 0;

  /* Assume that no atomic sequence is longer than "atomic_sequence_length" 
     instructions.  */
  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
    {
      int is_branch = 0;
      loc += MIPS_INSN32_SIZE;
      insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);

      /* Assume that there is at most one branch in the atomic
	 sequence.  If a branch is found, put a breakpoint in its
	 destination address.  */
      switch (itype_op (insn))
	{
	case 0: /* SPECIAL */
	  if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
	    return 0; /* fallback to the standard single-step code.  */
	  break;
	case 1: /* REGIMM */
	  is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
		       || ((itype_rt (insn) & 0x1e) == 0
			   && itype_rs (insn) == 0)); /* BPOSGE* */
	  break;
	case 2: /* J */
	case 3: /* JAL */
	  return 0; /* fallback to the standard single-step code.  */
	case 4: /* BEQ */
	case 5: /* BNE */
	case 6: /* BLEZ */
	case 7: /* BGTZ */
	case 20: /* BEQL */
	case 21: /* BNEL */
	case 22: /* BLEZL */
	case 23: /* BGTTL */
	  is_branch = 1;
	  break;
	case 17: /* COP1 */
	  is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
		       && (itype_rt (insn) & 0x2) == 0);
	  if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
	    break;
	/* Fall through.  */
	case 18: /* COP2 */
	case 19: /* COP3 */
	  is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
	  break;
	}
      if (is_branch)
	{
	  branch_bp = loc + mips32_relative_offset (insn) + 4;
	  if (last_breakpoint >= 1)
	    return 0; /* More than one branch found, fallback to the
			 standard single-step code.  */
	  breaks[1] = branch_bp;
	  last_breakpoint++;
	}

      if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
	break;
    }

  /* Assume that the atomic sequence ends with a sc/scd instruction.  */
  if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
    return 0;

  loc += MIPS_INSN32_SIZE;

  /* Insert a breakpoint right after the end of the atomic sequence.  */
  breaks[0] = loc;

  /* Check for duplicated breakpoints.  Check also for a breakpoint
     placed (branch instruction's destination) in the atomic sequence.  */
  if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
    last_breakpoint = 0;

  /* Effectively inserts the breakpoints.  */
  for (index = 0; index <= last_breakpoint; index++)
    insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);

  return 1;
}

static int
micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
				     struct address_space *aspace,
				     CORE_ADDR pc)
{
  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
  CORE_ADDR breaks[2] = {-1, -1};
  CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
			      destination.  */
  CORE_ADDR loc = pc;
  int sc_found = 0;
  ULONGEST insn;
  int insn_count;
  int index;

  /* Assume all atomic sequences start with a ll/lld instruction.  */
  insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
  if (micromips_op (insn) != 0x18)	/* POOL32C: bits 011000 */
    return 0;
  loc += MIPS_INSN16_SIZE;
  insn <<= 16;
  insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
  if ((b12s4_op (insn) & 0xb) != 0x3)	/* LL, LLD: bits 011000 0x11 */
    return 0;
  loc += MIPS_INSN16_SIZE;

  /* Assume all atomic sequences end with an sc/scd instruction.  Assume
     that no atomic sequence is longer than "atomic_sequence_length"
     instructions.  */
  for (insn_count = 0;
       !sc_found && insn_count < atomic_sequence_length;
       ++insn_count)
    {
      int is_branch = 0;

      insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
      loc += MIPS_INSN16_SIZE;

      /* Assume that there is at most one conditional branch in the
         atomic sequence.  If a branch is found, put a breakpoint in
         its destination address.  */
      switch (mips_insn_size (ISA_MICROMIPS, insn))
	{
	/* 32-bit instructions.  */
	case 2 * MIPS_INSN16_SIZE:
	  switch (micromips_op (insn))
	    {
	    case 0x10: /* POOL32I: bits 010000 */
	      if ((b5s5_op (insn) & 0x18) != 0x0
				/* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
				/* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
		  && (b5s5_op (insn) & 0x1d) != 0x11
				/* BLTZALS, BGEZALS: bits 010000 100x1 */
		  && ((b5s5_op (insn) & 0x1e) != 0x14
		      || (insn & 0x3) != 0x0)
				/* BC2F, BC2T: bits 010000 1010x xxx00 */
		  && (b5s5_op (insn) & 0x1e) != 0x1a
				/* BPOSGE64, BPOSGE32: bits 010000 1101x */
		  && ((b5s5_op (insn) & 0x1e) != 0x1c
		      || (insn & 0x3) != 0x0)
				/* BC1F, BC1T: bits 010000 1110x xxx00 */
		  && ((b5s5_op (insn) & 0x1c) != 0x1c
		      || (insn & 0x3) != 0x1))
				/* BC1ANY*: bits 010000 111xx xxx01 */
		break;
	      /* Fall through.  */

	    case 0x25: /* BEQ: bits 100101 */
	    case 0x2d: /* BNE: bits 101101 */
	      insn <<= 16;
	      insn |= mips_fetch_instruction (gdbarch,
					      ISA_MICROMIPS, loc, NULL);
	      branch_bp = (loc + MIPS_INSN16_SIZE
			   + micromips_relative_offset16 (insn));
	      is_branch = 1;
	      break;

	    case 0x00: /* POOL32A: bits 000000 */
	      insn <<= 16;
	      insn |= mips_fetch_instruction (gdbarch,
					      ISA_MICROMIPS, loc, NULL);
	      if (b0s6_op (insn) != 0x3c
				/* POOL32Axf: bits 000000 ... 111100 */
		  || (b6s10_ext (insn) & 0x2bf) != 0x3c)
				/* JALR, JALR.HB: 000000 000x111100 111100 */
				/* JALRS, JALRS.HB: 000000 010x111100 111100 */
		break;
	      /* Fall through.  */

	    case 0x1d: /* JALS: bits 011101 */
	    case 0x35: /* J: bits 110101 */
	    case 0x3d: /* JAL: bits 111101 */
	    case 0x3c: /* JALX: bits 111100 */
	      return 0; /* Fall back to the standard single-step code. */

	    case 0x18: /* POOL32C: bits 011000 */
	      if ((b12s4_op (insn) & 0xb) == 0xb)
				/* SC, SCD: bits 011000 1x11 */
		sc_found = 1;
	      break;
	    }
	  loc += MIPS_INSN16_SIZE;
	  break;

	/* 16-bit instructions.  */
	case MIPS_INSN16_SIZE:
	  switch (micromips_op (insn))
	    {
	    case 0x23: /* BEQZ16: bits 100011 */
	    case 0x2b: /* BNEZ16: bits 101011 */
	      branch_bp = loc + micromips_relative_offset7 (insn);
	      is_branch = 1;
	      break;

	    case 0x11: /* POOL16C: bits 010001 */
	      if ((b5s5_op (insn) & 0x1c) != 0xc
				/* JR16, JRC, JALR16, JALRS16: 010001 011xx */
	          && b5s5_op (insn) != 0x18)
				/* JRADDIUSP: bits 010001 11000 */
	        break;
	      return 0; /* Fall back to the standard single-step code. */

	    case 0x33: /* B16: bits 110011 */
	      return 0; /* Fall back to the standard single-step code. */
	    }
	  break;
	}
      if (is_branch)
	{
	  if (last_breakpoint >= 1)
	    return 0; /* More than one branch found, fallback to the
			 standard single-step code.  */
	  breaks[1] = branch_bp;
	  last_breakpoint++;
	}
    }
  if (!sc_found)
    return 0;

  /* Insert a breakpoint right after the end of the atomic sequence.  */
  breaks[0] = loc;

  /* Check for duplicated breakpoints.  Check also for a breakpoint
     placed (branch instruction's destination) in the atomic sequence */
  if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
    last_breakpoint = 0;

  /* Effectively inserts the breakpoints.  */
  for (index = 0; index <= last_breakpoint; index++)
    insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);

  return 1;
}

static int
deal_with_atomic_sequence (struct gdbarch *gdbarch,
			   struct address_space *aspace, CORE_ADDR pc)
{
  if (mips_pc_is_mips (pc))
    return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
  else if (mips_pc_is_micromips (gdbarch, pc))
    return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
  else
    return 0;
}

/* mips_software_single_step() is called just before we want to resume
   the inferior, if we want to single-step it but there is no hardware
   or kernel single-step support (MIPS on GNU/Linux for example).  We find
   the target of the coming instruction and breakpoint it.  */

int
mips_software_single_step (struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct address_space *aspace = get_frame_address_space (frame);
  CORE_ADDR pc, next_pc;

  pc = get_frame_pc (frame);
  if (deal_with_atomic_sequence (gdbarch, aspace, pc))
    return 1;

  next_pc = mips_next_pc (frame, pc);

  insert_single_step_breakpoint (gdbarch, aspace, next_pc);
  return 1;
}

/* Test whether the PC points to the return instruction at the
   end of a function.  */

static int
mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  ULONGEST insn;
  ULONGEST hint;

  /* This used to check for MIPS16, but this piece of code is never
     called for MIPS16 functions.  And likewise microMIPS ones.  */
  gdb_assert (mips_pc_is_mips (pc));

  insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
  hint = 0x7c0;
  return (insn & ~hint) == 0x3e00008;			/* jr(.hb) $ra */
}


/* This fencepost looks highly suspicious to me.  Removing it also
   seems suspicious as it could affect remote debugging across serial
   lines.  */

static CORE_ADDR
heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR start_pc;
  CORE_ADDR fence;
  int instlen;
  int seen_adjsp = 0;
  struct inferior *inf;

  pc = gdbarch_addr_bits_remove (gdbarch, pc);
  start_pc = pc;
  fence = start_pc - heuristic_fence_post;
  if (start_pc == 0)
    return 0;

  if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
    fence = VM_MIN_ADDRESS;

  instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;

  inf = current_inferior ();

  /* Search back for previous return.  */
  for (start_pc -= instlen;; start_pc -= instlen)
    if (start_pc < fence)
      {
	/* It's not clear to me why we reach this point when
	   stop_soon, but with this test, at least we
	   don't print out warnings for every child forked (eg, on
	   decstation).  22apr93 rich@cygnus.com.  */
	if (inf->control.stop_soon == NO_STOP_QUIETLY)
	  {
	    static int blurb_printed = 0;

	    warning (_("GDB can't find the start of the function at %s."),
		     paddress (gdbarch, pc));

	    if (!blurb_printed)
	      {
		/* This actually happens frequently in embedded
		   development, when you first connect to a board
		   and your stack pointer and pc are nowhere in
		   particular.  This message needs to give people
		   in that situation enough information to
		   determine that it's no big deal.  */
		printf_filtered ("\n\
    GDB is unable to find the start of the function at %s\n\
and thus can't determine the size of that function's stack frame.\n\
This means that GDB may be unable to access that stack frame, or\n\
the frames below it.\n\
    This problem is most likely caused by an invalid program counter or\n\
stack pointer.\n\
    However, if you think GDB should simply search farther back\n\
from %s for code which looks like the beginning of a\n\
function, you can increase the range of the search using the `set\n\
heuristic-fence-post' command.\n",
			paddress (gdbarch, pc), paddress (gdbarch, pc));
		blurb_printed = 1;
	      }
	  }

	return 0;
      }
    else if (mips_pc_is_mips16 (gdbarch, start_pc))
      {
	unsigned short inst;

	/* On MIPS16, any one of the following is likely to be the
	   start of a function:
  	   extend save
	   save
	   entry
	   addiu sp,-n
	   daddiu sp,-n
	   extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'.  */
	inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
	if ((inst & 0xff80) == 0x6480)		/* save */
	  {
	    if (start_pc - instlen >= fence)
	      {
		inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
					       start_pc - instlen, NULL);
		if ((inst & 0xf800) == 0xf000)	/* extend */
		  start_pc -= instlen;
	      }
	    break;
	  }
	else if (((inst & 0xf81f) == 0xe809
		  && (inst & 0x700) != 0x700)	/* entry */
		 || (inst & 0xff80) == 0x6380	/* addiu sp,-n */
		 || (inst & 0xff80) == 0xfb80	/* daddiu sp,-n */
		 || ((inst & 0xf810) == 0xf010 && seen_adjsp))	/* extend -n */
	  break;
	else if ((inst & 0xff00) == 0x6300	/* addiu sp */
		 || (inst & 0xff00) == 0xfb00)	/* daddiu sp */
	  seen_adjsp = 1;
	else
	  seen_adjsp = 0;
      }
    else if (mips_pc_is_micromips (gdbarch, start_pc))
      {
	ULONGEST insn;
	int stop = 0;
	long offset;
	int dreg;
	int sreg;

	/* On microMIPS, any one of the following is likely to be the
	   start of a function:
	   ADDIUSP -imm
	   (D)ADDIU $sp, -imm
	   LUI $gp, imm  */
	insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
	switch (micromips_op (insn))
	  {
	  case 0xc: /* ADDIU: bits 001100 */
	  case 0x17: /* DADDIU: bits 010111 */
	    sreg = b0s5_reg (insn);
	    dreg = b5s5_reg (insn);
	    insn <<= 16;
	    insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
					    pc + MIPS_INSN16_SIZE, NULL);
	    offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
	    if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
				/* (D)ADDIU $sp, imm */
		&& offset < 0)
	      stop = 1;
	    break;

	  case 0x10: /* POOL32I: bits 010000 */
	    if (b5s5_op (insn) == 0xd
				/* LUI: bits 010000 001101 */
		&& b0s5_reg (insn >> 16) == 28)
				/* LUI $gp, imm */
	      stop = 1;
	    break;

	  case 0x13: /* POOL16D: bits 010011 */
	    if ((insn & 0x1) == 0x1)
				/* ADDIUSP: bits 010011 1 */
	      {
		offset = micromips_decode_imm9 (b1s9_imm (insn));
		if (offset < 0)
				/* ADDIUSP -imm */
		  stop = 1;
	      }
	    else
				/* ADDIUS5: bits 010011 0 */
	      {
		dreg = b5s5_reg (insn);
		offset = (b1s4_imm (insn) ^ 8) - 8;
		if (dreg == MIPS_SP_REGNUM && offset < 0)
				/* ADDIUS5  $sp, -imm */
		  stop = 1;
	      }
	    break;
	  }
	if (stop)
	  break;
      }
    else if (mips_about_to_return (gdbarch, start_pc))
      {
	/* Skip return and its delay slot.  */
	start_pc += 2 * MIPS_INSN32_SIZE;
	break;
      }

  return start_pc;
}

struct mips_objfile_private
{
  bfd_size_type size;
  char *contents;
};

/* According to the current ABI, should the type be passed in a
   floating-point register (assuming that there is space)?  When there
   is no FPU, FP are not even considered as possible candidates for
   FP registers and, consequently this returns false - forces FP
   arguments into integer registers.  */

static int
fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
		   struct type *arg_type)
{
  return ((typecode == TYPE_CODE_FLT
	   || (MIPS_EABI (gdbarch)
	       && (typecode == TYPE_CODE_STRUCT
		   || typecode == TYPE_CODE_UNION)
	       && TYPE_NFIELDS (arg_type) == 1
	       && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0))) 
	       == TYPE_CODE_FLT))
	  && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
}

/* On o32, argument passing in GPRs depends on the alignment of the type being
   passed.  Return 1 if this type must be aligned to a doubleword boundary.  */

static int
mips_type_needs_double_align (struct type *type)
{
  enum type_code typecode = TYPE_CODE (type);

  if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
    return 1;
  else if (typecode == TYPE_CODE_STRUCT)
    {
      if (TYPE_NFIELDS (type) < 1)
	return 0;
      return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
    }
  else if (typecode == TYPE_CODE_UNION)
    {
      int i, n;

      n = TYPE_NFIELDS (type);
      for (i = 0; i < n; i++)
	if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
	  return 1;
      return 0;
    }
  return 0;
}

/* Adjust the address downward (direction of stack growth) so that it
   is correctly aligned for a new stack frame.  */
static CORE_ADDR
mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return align_down (addr, 16);
}

/* Implement the "push_dummy_code" gdbarch method.  */

static CORE_ADDR
mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
		      CORE_ADDR funaddr, struct value **args,
		      int nargs, struct type *value_type,
		      CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
		      struct regcache *regcache)
{
  static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
  CORE_ADDR nop_addr;
  CORE_ADDR bp_slot;

  /* Reserve enough room on the stack for our breakpoint instruction.  */
  bp_slot = sp - sizeof (nop_insn);

  /* Return to microMIPS mode if calling microMIPS code to avoid
     triggering an address error exception on processors that only
     support microMIPS execution.  */
  *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
	      ? make_compact_addr (bp_slot) : bp_slot);

  /* The breakpoint layer automatically adjusts the address of
     breakpoints inserted in a branch delay slot.  With enough
     bad luck, the 4 bytes located just before our breakpoint
     instruction could look like a branch instruction, and thus
     trigger the adjustement, and break the function call entirely.
     So, we reserve those 4 bytes and write a nop instruction
     to prevent that from happening.  */
  nop_addr = bp_slot - sizeof (nop_insn);
  write_memory (nop_addr, nop_insn, sizeof (nop_insn));
  sp = mips_frame_align (gdbarch, nop_addr);

  /* Inferior resumes at the function entry point.  */
  *real_pc = funaddr;

  return sp;
}

static CORE_ADDR
mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			   struct regcache *regcache, CORE_ADDR bp_addr,
			   int nargs, struct value **args, CORE_ADDR sp,
			   int struct_return, CORE_ADDR struct_addr)
{
  int argreg;
  int float_argreg;
  int argnum;
  int len = 0;
  int stack_offset = 0;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  int regsize = mips_abi_regsize (gdbarch);

  /* For shared libraries, "t9" needs to point at the function
     address.  */
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);

  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);

  /* First ensure that the stack and structure return address (if any)
     are properly aligned.  The stack has to be at least 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned, so we round to this widest known alignment.  */

  sp = align_down (sp, 16);
  struct_addr = align_down (struct_addr, 16);

  /* Now make space on the stack for the args.  We allocate more
     than necessary for EABI, because the first few arguments are
     passed in registers, but that's OK.  */
  for (argnum = 0; argnum < nargs; argnum++)
    len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
  sp -= align_up (len, 16);

  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
			paddress (gdbarch, sp), (long) align_up (len, 16));

  /* Initialize the integer and float register pointers.  */
  argreg = MIPS_A0_REGNUM;
  float_argreg = mips_fpa0_regnum (gdbarch);

  /* The struct_return pointer occupies the first parameter-passing reg.  */
  if (struct_return)
    {
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_eabi_push_dummy_call: "
			    "struct_return reg=%d %s\n",
			    argreg, paddress (gdbarch, struct_addr));
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
    }

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop thru args
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      const gdb_byte *val;
      gdb_byte valbuf[MAX_REGISTER_SIZE];
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);

      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_eabi_push_dummy_call: %d len=%d type=%d",
			    argnum + 1, len, (int) typecode);

      /* The EABI passes structures that do not fit in a register by
         reference.  */
      if (len > regsize
	  && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
	{
	  store_unsigned_integer (valbuf, regsize, byte_order,
				  value_address (arg));
	  typecode = TYPE_CODE_PTR;
	  len = regsize;
	  val = valbuf;
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stdlog, " push");
	}
      else
	val = value_contents (arg);

      /* 32-bit ABIs always start floating point arguments in an
         even-numbered floating point register.  Round the FP register
         up before the check to see if there are any FP registers
         left.  Non MIPS_EABI targets also pass the FP in the integer
         registers so also round up normal registers.  */
      if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
	{
	  if ((float_argreg & 1))
	    float_argreg++;
	}

      /* Floating point arguments passed in registers have to be
         treated specially.  On 32-bit architectures, doubles
         are passed in register pairs; the even register gets
         the low word, and the odd register gets the high word.
         On non-EABI processors, the first two floating point arguments are
         also copied to general registers, because MIPS16 functions
         don't use float registers for arguments.  This duplication of
         arguments in general registers can't hurt non-MIPS16 functions
         because those registers are normally skipped.  */
      /* MIPS_EABI squeezes a struct that contains a single floating
         point value into an FP register instead of pushing it onto the
         stack.  */
      if (fp_register_arg_p (gdbarch, typecode, arg_type)
	  && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
	{
	  /* EABI32 will pass doubles in consecutive registers, even on
	     64-bit cores.  At one time, we used to check the size of
	     `float_argreg' to determine whether or not to pass doubles
	     in consecutive registers, but this is not sufficient for
	     making the ABI determination.  */
	  if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
	    {
	      int low_offset = gdbarch_byte_order (gdbarch)
			       == BFD_ENDIAN_BIG ? 4 : 0;
	      long regval;

	      /* Write the low word of the double to the even register(s).  */
	      regval = extract_signed_integer (val + low_offset,
					       4, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg, phex (regval, 4));
	      regcache_cooked_write_signed (regcache, float_argreg++, regval);

	      /* Write the high word of the double to the odd register(s).  */
	      regval = extract_signed_integer (val + 4 - low_offset,
					       4, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg, phex (regval, 4));
	      regcache_cooked_write_signed (regcache, float_argreg++, regval);
	    }
	  else
	    {
	      /* This is a floating point value that fits entirely
	         in a single register.  */
	      /* On 32 bit ABI's the float_argreg is further adjusted
	         above to ensure that it is even register aligned.  */
	      LONGEST regval = extract_signed_integer (val, len, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg, phex (regval, len));
	      regcache_cooked_write_signed (regcache, float_argreg++, regval);
	    }
	}
      else
	{
	  /* Copy the argument to general registers or the stack in
	     register-sized pieces.  Large arguments are split between
	     registers and stack.  */
	  /* Note: structs whose size is not a multiple of regsize
	     are treated specially: Irix cc passes
	     them in registers where gcc sometimes puts them on the
	     stack.  For maximum compatibility, we will put them in
	     both places.  */
	  int odd_sized_struct = (len > regsize && len % regsize != 0);

	  /* Note: Floating-point values that didn't fit into an FP
	     register are only written to memory.  */
	  while (len > 0)
	    {
	      /* Remember if the argument was written to the stack.  */
	      int stack_used_p = 0;
	      int partial_len = (len < regsize ? len : regsize);

	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
				    partial_len);

	      /* Write this portion of the argument to the stack.  */
	      if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
		  || odd_sized_struct
		  || fp_register_arg_p (gdbarch, typecode, arg_type))
		{
		  /* Should shorter than int integer values be
		     promoted to int before being stored?  */
		  int longword_offset = 0;
		  CORE_ADDR addr;
		  stack_used_p = 1;
		  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
		    {
		      if (regsize == 8
			  && (typecode == TYPE_CODE_INT
			      || typecode == TYPE_CODE_PTR
			      || typecode == TYPE_CODE_FLT) && len <= 4)
			longword_offset = regsize - len;
		      else if ((typecode == TYPE_CODE_STRUCT
				|| typecode == TYPE_CODE_UNION)
			       && TYPE_LENGTH (arg_type) < regsize)
			longword_offset = regsize - len;
		    }

		  if (mips_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
					  paddress (gdbarch, stack_offset));
		      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
					  paddress (gdbarch, longword_offset));
		    }

		  addr = sp + stack_offset + longword_offset;

		  if (mips_debug)
		    {
		      int i;
		      fprintf_unfiltered (gdb_stdlog, " @%s ",
					  paddress (gdbarch, addr));
		      for (i = 0; i < partial_len; i++)
			{
			  fprintf_unfiltered (gdb_stdlog, "%02x",
					      val[i] & 0xff);
			}
		    }
		  write_memory (addr, val, partial_len);
		}

	      /* Note!!! This is NOT an else clause.  Odd sized
	         structs may go thru BOTH paths.  Floating point
	         arguments will not.  */
	      /* Write this portion of the argument to a general
	         purpose register.  */
	      if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
		  && !fp_register_arg_p (gdbarch, typecode, arg_type))
		{
		  LONGEST regval =
		    extract_signed_integer (val, partial_len, byte_order);

		  if (mips_debug)
		    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
				      argreg,
				      phex (regval, regsize));
		  regcache_cooked_write_signed (regcache, argreg, regval);
		  argreg++;
		}

	      len -= partial_len;
	      val += partial_len;

	      /* Compute the offset into the stack at which we will
	         copy the next parameter.

	         In the new EABI (and the NABI32), the stack_offset
	         only needs to be adjusted when it has been used.  */

	      if (stack_used_p)
		stack_offset += align_up (partial_len, regsize);
	    }
	}
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog, "\n");
    }

  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);

  /* Return adjusted stack pointer.  */
  return sp;
}

/* Determine the return value convention being used.  */

static enum return_value_convention
mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
			struct type *type, struct regcache *regcache,
			gdb_byte *readbuf, const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int fp_return_type = 0;
  int offset, regnum, xfer;

  if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
    return RETURN_VALUE_STRUCT_CONVENTION;

  /* Floating point type?  */
  if (tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
      if (TYPE_CODE (type) == TYPE_CODE_FLT)
	fp_return_type = 1;
      /* Structs with a single field of float type 
	 are returned in a floating point register.  */
      if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
	   || TYPE_CODE (type) == TYPE_CODE_UNION)
	  && TYPE_NFIELDS (type) == 1)
	{
	  struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);

	  if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
	    fp_return_type = 1;
	}
    }

  if (fp_return_type)      
    {
      /* A floating-point value belongs in the least significant part
	 of FP0/FP1.  */
      if (mips_debug)
	fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
      regnum = mips_regnum (gdbarch)->fp0;
    }
  else 
    {
      /* An integer value goes in V0/V1.  */
      if (mips_debug)
	fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
      regnum = MIPS_V0_REGNUM;
    }
  for (offset = 0;
       offset < TYPE_LENGTH (type);
       offset += mips_abi_regsize (gdbarch), regnum++)
    {
      xfer = mips_abi_regsize (gdbarch);
      if (offset + xfer > TYPE_LENGTH (type))
	xfer = TYPE_LENGTH (type) - offset;
      mips_xfer_register (gdbarch, regcache,
			  gdbarch_num_regs (gdbarch) + regnum, xfer,
			  gdbarch_byte_order (gdbarch), readbuf, writebuf,
			  offset);
    }

  return RETURN_VALUE_REGISTER_CONVENTION;
}


/* N32/N64 ABI stuff.  */

/* Search for a naturally aligned double at OFFSET inside a struct
   ARG_TYPE.  The N32 / N64 ABIs pass these in floating point
   registers.  */

static int
mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
			    int offset)
{
  int i;

  if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
    return 0;

  if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
    return 0;

  if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
    return 0;

  for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
    {
      int pos;
      struct type *field_type;

      /* We're only looking at normal fields.  */
      if (field_is_static (&TYPE_FIELD (arg_type, i))
	  || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
	continue;

      /* If we have gone past the offset, there is no double to pass.  */
      pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
      if (pos > offset)
	return 0;

      field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));

      /* If this field is entirely before the requested offset, go
	 on to the next one.  */
      if (pos + TYPE_LENGTH (field_type) <= offset)
	continue;

      /* If this is our special aligned double, we can stop.  */
      if (TYPE_CODE (field_type) == TYPE_CODE_FLT
	  && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
	return 1;

      /* This field starts at or before the requested offset, and
	 overlaps it.  If it is a structure, recurse inwards.  */
      return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
    }

  return 0;
}

static CORE_ADDR
mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			     struct regcache *regcache, CORE_ADDR bp_addr,
			     int nargs, struct value **args, CORE_ADDR sp,
			     int struct_return, CORE_ADDR struct_addr)
{
  int argreg;
  int float_argreg;
  int argnum;
  int len = 0;
  int stack_offset = 0;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR func_addr = find_function_addr (function, NULL);

  /* For shared libraries, "t9" needs to point at the function
     address.  */
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);

  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);

  /* First ensure that the stack and structure return address (if any)
     are properly aligned.  The stack has to be at least 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned, so we round to this widest known alignment.  */

  sp = align_down (sp, 16);
  struct_addr = align_down (struct_addr, 16);

  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
    len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
  sp -= align_up (len, 16);

  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
			paddress (gdbarch, sp), (long) align_up (len, 16));

  /* Initialize the integer and float register pointers.  */
  argreg = MIPS_A0_REGNUM;
  float_argreg = mips_fpa0_regnum (gdbarch);

  /* The struct_return pointer occupies the first parameter-passing reg.  */
  if (struct_return)
    {
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_n32n64_push_dummy_call: "
			    "struct_return reg=%d %s\n",
			    argreg, paddress (gdbarch, struct_addr));
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
    }

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop thru args
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      const gdb_byte *val;
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);

      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_n32n64_push_dummy_call: %d len=%d type=%d",
			    argnum + 1, len, (int) typecode);

      val = value_contents (arg);

      /* A 128-bit long double value requires an even-odd pair of
	 floating-point registers.  */
      if (len == 16
	  && fp_register_arg_p (gdbarch, typecode, arg_type)
	  && (float_argreg & 1))
	{
	  float_argreg++;
	  argreg++;
	}

      if (fp_register_arg_p (gdbarch, typecode, arg_type)
	  && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
	{
	  /* This is a floating point value that fits entirely
	     in a single register or a pair of registers.  */
	  int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
	  LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				float_argreg, phex (regval, reglen));
	  regcache_cooked_write_unsigned (regcache, float_argreg, regval);

	  if (mips_debug)
	    fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
				argreg, phex (regval, reglen));
	  regcache_cooked_write_unsigned (regcache, argreg, regval);
	  float_argreg++;
	  argreg++;
	  if (len == 16)
	    {
	      regval = extract_unsigned_integer (val + reglen,
						 reglen, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg, phex (regval, reglen));
	      regcache_cooked_write_unsigned (regcache, float_argreg, regval);

	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
				    argreg, phex (regval, reglen));
	      regcache_cooked_write_unsigned (regcache, argreg, regval);
	      float_argreg++;
	      argreg++;
	    }
	}
      else
	{
	  /* Copy the argument to general registers or the stack in
	     register-sized pieces.  Large arguments are split between
	     registers and stack.  */
	  /* For N32/N64, structs, unions, or other composite types are
	     treated as a sequence of doublewords, and are passed in integer
	     or floating point registers as though they were simple scalar
	     parameters to the extent that they fit, with any excess on the
	     stack packed according to the normal memory layout of the
	     object.
	     The caller does not reserve space for the register arguments;
	     the callee is responsible for reserving it if required.  */
	  /* Note: Floating-point values that didn't fit into an FP
	     register are only written to memory.  */
	  while (len > 0)
	    {
	      /* Remember if the argument was written to the stack.  */
	      int stack_used_p = 0;
	      int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);

	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
				    partial_len);

	      if (fp_register_arg_p (gdbarch, typecode, arg_type))
		gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));

	      /* Write this portion of the argument to the stack.  */
	      if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
		{
		  /* Should shorter than int integer values be
		     promoted to int before being stored?  */
		  int longword_offset = 0;
		  CORE_ADDR addr;
		  stack_used_p = 1;
		  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
		    {
		      if ((typecode == TYPE_CODE_INT
			   || typecode == TYPE_CODE_PTR)
			  && len <= 4)
			longword_offset = MIPS64_REGSIZE - len;
		    }

		  if (mips_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
					  paddress (gdbarch, stack_offset));
		      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
					  paddress (gdbarch, longword_offset));
		    }

		  addr = sp + stack_offset + longword_offset;

		  if (mips_debug)
		    {
		      int i;
		      fprintf_unfiltered (gdb_stdlog, " @%s ",
					  paddress (gdbarch, addr));
		      for (i = 0; i < partial_len; i++)
			{
			  fprintf_unfiltered (gdb_stdlog, "%02x",
					      val[i] & 0xff);
			}
		    }
		  write_memory (addr, val, partial_len);
		}

	      /* Note!!! This is NOT an else clause.  Odd sized
	         structs may go thru BOTH paths.  */
	      /* Write this portion of the argument to a general
	         purpose register.  */
	      if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
		{
		  LONGEST regval;

		  /* Sign extend pointers, 32-bit integers and signed
		     16-bit and 8-bit integers; everything else is taken
		     as is.  */

		  if ((partial_len == 4
		       && (typecode == TYPE_CODE_PTR
			   || typecode == TYPE_CODE_INT))
		      || (partial_len < 4
			  && typecode == TYPE_CODE_INT
			  && !TYPE_UNSIGNED (arg_type)))
		    regval = extract_signed_integer (val, partial_len,
						     byte_order);
		  else
		    regval = extract_unsigned_integer (val, partial_len,
						       byte_order);

		  /* A non-floating-point argument being passed in a
		     general register.  If a struct or union, and if
		     the remaining length is smaller than the register
		     size, we have to adjust the register value on
		     big endian targets.

		     It does not seem to be necessary to do the
		     same for integral types.  */

		  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
		      && partial_len < MIPS64_REGSIZE
		      && (typecode == TYPE_CODE_STRUCT
			  || typecode == TYPE_CODE_UNION))
		    regval <<= ((MIPS64_REGSIZE - partial_len)
				* TARGET_CHAR_BIT);

		  if (mips_debug)
		    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
				      argreg,
				      phex (regval, MIPS64_REGSIZE));
		  regcache_cooked_write_unsigned (regcache, argreg, regval);

		  if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
						  TYPE_LENGTH (arg_type) - len))
		    {
		      if (mips_debug)
			fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
					  float_argreg,
					  phex (regval, MIPS64_REGSIZE));
		      regcache_cooked_write_unsigned (regcache, float_argreg,
						      regval);
		    }

		  float_argreg++;
		  argreg++;
		}

	      len -= partial_len;
	      val += partial_len;

	      /* Compute the offset into the stack at which we will
	         copy the next parameter.

	         In N32 (N64?), the stack_offset only needs to be
	         adjusted when it has been used.  */

	      if (stack_used_p)
		stack_offset += align_up (partial_len, MIPS64_REGSIZE);
	    }
	}
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog, "\n");
    }

  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);

  /* Return adjusted stack pointer.  */
  return sp;
}

static enum return_value_convention
mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
			  struct type *type, struct regcache *regcache,
			  gdb_byte *readbuf, const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004

     Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
     if needed), as appropriate for the type.  Composite results (struct,
     union, or array) are returned in $2/$f0 and $3/$f2 according to the
     following rules:

     * A struct with only one or two floating point fields is returned in $f0
     (and $f2 if necessary).  This is a generalization of the Fortran COMPLEX
     case.

     * Any other composite results of at most 128 bits are returned in
     $2 (first 64 bits) and $3 (remainder, if necessary).

     * Larger composite results are handled by converting the function to a
     procedure with an implicit first parameter, which is a pointer to an area
     reserved by the caller to receive the result.  [The o32-bit ABI requires
     that all composite results be handled by conversion to implicit first
     parameters.  The MIPS/SGI Fortran implementation has always made a
     specific exception to return COMPLEX results in the floating point
     registers.]  */

  if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
    return RETURN_VALUE_STRUCT_CONVENTION;
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
	   && TYPE_LENGTH (type) == 16
	   && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
      /* A 128-bit floating-point value fills both $f0 and $f2.  The
	 two registers are used in the same as memory order, so the
	 eight bytes with the lower memory address are in $f0.  */
      if (mips_debug)
	fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
      mips_xfer_register (gdbarch, regcache,
			  (gdbarch_num_regs (gdbarch)
			   + mips_regnum (gdbarch)->fp0),
			  8, gdbarch_byte_order (gdbarch),
			  readbuf, writebuf, 0);
      mips_xfer_register (gdbarch, regcache,
			  (gdbarch_num_regs (gdbarch)
			   + mips_regnum (gdbarch)->fp0 + 2),
			  8, gdbarch_byte_order (gdbarch),
			  readbuf ? readbuf + 8 : readbuf,
			  writebuf ? writebuf + 8 : writebuf, 0);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
	   && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
      /* A single or double floating-point value that fits in FP0.  */
      if (mips_debug)
	fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
      mips_xfer_register (gdbarch, regcache,
			  (gdbarch_num_regs (gdbarch)
			   + mips_regnum (gdbarch)->fp0),
			  TYPE_LENGTH (type),
			  gdbarch_byte_order (gdbarch),
			  readbuf, writebuf, 0);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
	   && TYPE_NFIELDS (type) <= 2
	   && TYPE_NFIELDS (type) >= 1
	   && ((TYPE_NFIELDS (type) == 1
		&& (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
		    == TYPE_CODE_FLT))
	       || (TYPE_NFIELDS (type) == 2
		   && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
		       == TYPE_CODE_FLT)
		   && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
		       == TYPE_CODE_FLT))))
    {
      /* A struct that contains one or two floats.  Each value is part
         in the least significant part of their floating point
         register (or GPR, for soft float).  */
      int regnum;
      int field;
      for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
				? mips_regnum (gdbarch)->fp0
				: MIPS_V0_REGNUM);
	   field < TYPE_NFIELDS (type); field++, regnum += 2)
	{
	  int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
			/ TARGET_CHAR_BIT);
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
				offset);
	  if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
	    {
	      /* A 16-byte long double field goes in two consecutive
		 registers.  */
	      mips_xfer_register (gdbarch, regcache,
				  gdbarch_num_regs (gdbarch) + regnum,
				  8,
				  gdbarch_byte_order (gdbarch),
				  readbuf, writebuf, offset);
	      mips_xfer_register (gdbarch, regcache,
				  gdbarch_num_regs (gdbarch) + regnum + 1,
				  8,
				  gdbarch_byte_order (gdbarch),
				  readbuf, writebuf, offset + 8);
	    }
	  else
	    mips_xfer_register (gdbarch, regcache,
				gdbarch_num_regs (gdbarch) + regnum,
				TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
				gdbarch_byte_order (gdbarch),
				readbuf, writebuf, offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
	   || TYPE_CODE (type) == TYPE_CODE_UNION
	   || TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      /* A composite type.  Extract the left justified value,
         regardless of the byte order.  I.e. DO NOT USE
         mips_xfer_lower.  */
      int offset;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
	   offset < TYPE_LENGTH (type);
	   offset += register_size (gdbarch, regnum), regnum++)
	{
	  int xfer = register_size (gdbarch, regnum);
	  if (offset + xfer > TYPE_LENGTH (type))
	    xfer = TYPE_LENGTH (type) - offset;
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
				offset, xfer, regnum);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + regnum,
			      xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
			      offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else
    {
      /* A scalar extract each part but least-significant-byte
         justified.  */
      int offset;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
	   offset < TYPE_LENGTH (type);
	   offset += register_size (gdbarch, regnum), regnum++)
	{
	  int xfer = register_size (gdbarch, regnum);
	  if (offset + xfer > TYPE_LENGTH (type))
	    xfer = TYPE_LENGTH (type) - offset;
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
				offset, xfer, regnum);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + regnum,
			      xfer, gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
}

/* Which registers to use for passing floating-point values between
   function calls, one of floating-point, general and both kinds of
   registers.  O32 and O64 use different register kinds for standard
   MIPS and MIPS16 code; to make the handling of cases where we may
   not know what kind of code is being used (e.g. no debug information)
   easier we sometimes use both kinds.  */

enum mips_fval_reg
{
  mips_fval_fpr,
  mips_fval_gpr,
  mips_fval_both
};

/* O32 ABI stuff.  */

static CORE_ADDR
mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			  struct regcache *regcache, CORE_ADDR bp_addr,
			  int nargs, struct value **args, CORE_ADDR sp,
			  int struct_return, CORE_ADDR struct_addr)
{
  int argreg;
  int float_argreg;
  int argnum;
  int len = 0;
  int stack_offset = 0;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR func_addr = find_function_addr (function, NULL);

  /* For shared libraries, "t9" needs to point at the function
     address.  */
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);

  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);

  /* First ensure that the stack and structure return address (if any)
     are properly aligned.  The stack has to be at least 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned, so we round to this widest known alignment.  */

  sp = align_down (sp, 16);
  struct_addr = align_down (struct_addr, 16);

  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      struct type *arg_type = check_typedef (value_type (args[argnum]));

      /* Align to double-word if necessary.  */
      if (mips_type_needs_double_align (arg_type))
	len = align_up (len, MIPS32_REGSIZE * 2);
      /* Allocate space on the stack.  */
      len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
    }
  sp -= align_up (len, 16);

  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_o32_push_dummy_call: sp=%s allocated %ld\n",
			paddress (gdbarch, sp), (long) align_up (len, 16));

  /* Initialize the integer and float register pointers.  */
  argreg = MIPS_A0_REGNUM;
  float_argreg = mips_fpa0_regnum (gdbarch);

  /* The struct_return pointer occupies the first parameter-passing reg.  */
  if (struct_return)
    {
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_o32_push_dummy_call: "
			    "struct_return reg=%d %s\n",
			    argreg, paddress (gdbarch, struct_addr));
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
      stack_offset += MIPS32_REGSIZE;
    }

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop thru args
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      const gdb_byte *val;
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);

      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_o32_push_dummy_call: %d len=%d type=%d",
			    argnum + 1, len, (int) typecode);

      val = value_contents (arg);

      /* 32-bit ABIs always start floating point arguments in an
         even-numbered floating point register.  Round the FP register
         up before the check to see if there are any FP registers
         left.  O32 targets also pass the FP in the integer registers
         so also round up normal registers.  */
      if (fp_register_arg_p (gdbarch, typecode, arg_type))
	{
	  if ((float_argreg & 1))
	    float_argreg++;
	}

      /* Floating point arguments passed in registers have to be
         treated specially.  On 32-bit architectures, doubles are
         passed in register pairs; the even FP register gets the
         low word, and the odd FP register gets the high word.
         On O32, the first two floating point arguments are also
         copied to general registers, following their memory order,
         because MIPS16 functions don't use float registers for
         arguments.  This duplication of arguments in general
         registers can't hurt non-MIPS16 functions, because those
         registers are normally skipped.  */

      if (fp_register_arg_p (gdbarch, typecode, arg_type)
	  && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
	{
	  if (register_size (gdbarch, float_argreg) < 8 && len == 8)
	    {
	      int freg_offset = gdbarch_byte_order (gdbarch)
				== BFD_ENDIAN_BIG ? 1 : 0;
	      unsigned long regval;

	      /* First word.  */
	      regval = extract_unsigned_integer (val, 4, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg + freg_offset,
				    phex (regval, 4));
	      regcache_cooked_write_unsigned (regcache,
					      float_argreg++ + freg_offset,
					      regval);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
				    argreg, phex (regval, 4));
	      regcache_cooked_write_unsigned (regcache, argreg++, regval);

	      /* Second word.  */
	      regval = extract_unsigned_integer (val + 4, 4, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg - freg_offset,
				    phex (regval, 4));
	      regcache_cooked_write_unsigned (regcache,
					      float_argreg++ - freg_offset,
					      regval);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
				    argreg, phex (regval, 4));
	      regcache_cooked_write_unsigned (regcache, argreg++, regval);
	    }
	  else
	    {
	      /* This is a floating point value that fits entirely
	         in a single register.  */
	      /* On 32 bit ABI's the float_argreg is further adjusted
	         above to ensure that it is even register aligned.  */
	      LONGEST regval = extract_unsigned_integer (val, len, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg, phex (regval, len));
	      regcache_cooked_write_unsigned (regcache,
					      float_argreg++, regval);
	      /* Although two FP registers are reserved for each
		 argument, only one corresponding integer register is
		 reserved.  */
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
				    argreg, phex (regval, len));
	      regcache_cooked_write_unsigned (regcache, argreg++, regval);
	    }
	  /* Reserve space for the FP register.  */
	  stack_offset += align_up (len, MIPS32_REGSIZE);
	}
      else
	{
	  /* Copy the argument to general registers or the stack in
	     register-sized pieces.  Large arguments are split between
	     registers and stack.  */
	  /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
	     are treated specially: Irix cc passes
	     them in registers where gcc sometimes puts them on the
	     stack.  For maximum compatibility, we will put them in
	     both places.  */
	  int odd_sized_struct = (len > MIPS32_REGSIZE
				  && len % MIPS32_REGSIZE != 0);
	  /* Structures should be aligned to eight bytes (even arg registers)
	     on MIPS_ABI_O32, if their first member has double precision.  */
	  if (mips_type_needs_double_align (arg_type))
	    {
	      if ((argreg & 1))
		{
		  argreg++;
		  stack_offset += MIPS32_REGSIZE;
		}
	    }
	  while (len > 0)
	    {
	      int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);

	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
				    partial_len);

	      /* Write this portion of the argument to the stack.  */
	      if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
		  || odd_sized_struct)
		{
		  /* Should shorter than int integer values be
		     promoted to int before being stored?  */
		  int longword_offset = 0;
		  CORE_ADDR addr;

		  if (mips_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
					  paddress (gdbarch, stack_offset));
		      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
					  paddress (gdbarch, longword_offset));
		    }

		  addr = sp + stack_offset + longword_offset;

		  if (mips_debug)
		    {
		      int i;
		      fprintf_unfiltered (gdb_stdlog, " @%s ",
					  paddress (gdbarch, addr));
		      for (i = 0; i < partial_len; i++)
			{
			  fprintf_unfiltered (gdb_stdlog, "%02x",
					      val[i] & 0xff);
			}
		    }
		  write_memory (addr, val, partial_len);
		}

	      /* Note!!! This is NOT an else clause.  Odd sized
	         structs may go thru BOTH paths.  */
	      /* Write this portion of the argument to a general
	         purpose register.  */
	      if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
		{
		  LONGEST regval = extract_signed_integer (val, partial_len,
							   byte_order);
		  /* Value may need to be sign extended, because
		     mips_isa_regsize() != mips_abi_regsize().  */

		  /* A non-floating-point argument being passed in a
		     general register.  If a struct or union, and if
		     the remaining length is smaller than the register
		     size, we have to adjust the register value on
		     big endian targets.

		     It does not seem to be necessary to do the
		     same for integral types.

		     Also don't do this adjustment on O64 binaries.

		     cagney/2001-07-23: gdb/179: Also, GCC, when
		     outputting LE O32 with sizeof (struct) <
		     mips_abi_regsize(), generates a left shift
		     as part of storing the argument in a register
		     (the left shift isn't generated when
		     sizeof (struct) >= mips_abi_regsize()).  Since
		     it is quite possible that this is GCC
		     contradicting the LE/O32 ABI, GDB has not been
		     adjusted to accommodate this.  Either someone
		     needs to demonstrate that the LE/O32 ABI
		     specifies such a left shift OR this new ABI gets
		     identified as such and GDB gets tweaked
		     accordingly.  */

		  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
		      && partial_len < MIPS32_REGSIZE
		      && (typecode == TYPE_CODE_STRUCT
			  || typecode == TYPE_CODE_UNION))
		    regval <<= ((MIPS32_REGSIZE - partial_len)
				* TARGET_CHAR_BIT);

		  if (mips_debug)
		    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
				      argreg,
				      phex (regval, MIPS32_REGSIZE));
		  regcache_cooked_write_unsigned (regcache, argreg, regval);
		  argreg++;

		  /* Prevent subsequent floating point arguments from
		     being passed in floating point registers.  */
		  float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
		}

	      len -= partial_len;
	      val += partial_len;

	      /* Compute the offset into the stack at which we will
	         copy the next parameter.

	         In older ABIs, the caller reserved space for
	         registers that contained arguments.  This was loosely
	         refered to as their "home".  Consequently, space is
	         always allocated.  */

	      stack_offset += align_up (partial_len, MIPS32_REGSIZE);
	    }
	}
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog, "\n");
    }

  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);

  /* Return adjusted stack pointer.  */
  return sp;
}

static enum return_value_convention
mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
		       struct type *type, struct regcache *regcache,
		       gdb_byte *readbuf, const gdb_byte *writebuf)
{
  CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
  int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum mips_fval_reg fval_reg;

  fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      || TYPE_CODE (type) == TYPE_CODE_UNION
      || TYPE_CODE (type) == TYPE_CODE_ARRAY)
    return RETURN_VALUE_STRUCT_CONVENTION;
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
	   && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
      /* A single-precision floating-point value.  If reading in or copying,
         then we get it from/put it to FP0 for standard MIPS code or GPR2
         for MIPS16 code.  If writing out only, then we put it to both FP0
         and GPR2.  We do not support reading in with no function known, if
         this safety check ever triggers, then we'll have to try harder.  */
      gdb_assert (function || !readbuf);
      if (mips_debug)
	switch (fval_reg)
	  {
	  case mips_fval_fpr:
	    fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
	    break;
	  case mips_fval_gpr:
	    fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
	    break;
	  case mips_fval_both:
	    fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
	    break;
	  }
      if (fval_reg != mips_fval_gpr)
	mips_xfer_register (gdbarch, regcache,
			    (gdbarch_num_regs (gdbarch)
			     + mips_regnum (gdbarch)->fp0),
			    TYPE_LENGTH (type),
			    gdbarch_byte_order (gdbarch),
			    readbuf, writebuf, 0);
      if (fval_reg != mips_fval_fpr)
	mips_xfer_register (gdbarch, regcache,
			    gdbarch_num_regs (gdbarch) + 2,
			    TYPE_LENGTH (type),
			    gdbarch_byte_order (gdbarch),
			    readbuf, writebuf, 0);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
	   && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
      /* A double-precision floating-point value.  If reading in or copying,
         then we get it from/put it to FP1 and FP0 for standard MIPS code or
         GPR2 and GPR3 for MIPS16 code.  If writing out only, then we put it
         to both FP1/FP0 and GPR2/GPR3.  We do not support reading in with
         no function known, if this safety check ever triggers, then we'll
         have to try harder.  */
      gdb_assert (function || !readbuf);
      if (mips_debug)
	switch (fval_reg)
	  {
	  case mips_fval_fpr:
	    fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
	    break;
	  case mips_fval_gpr:
	    fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
	    break;
	  case mips_fval_both:
	    fprintf_unfiltered (gdb_stderr,
				"Return float in $fp1/$fp0 and $2/$3\n");
	    break;
	  }
      if (fval_reg != mips_fval_gpr)
	{
	  /* The most significant part goes in FP1, and the least significant
	     in FP0.  */
	  switch (gdbarch_byte_order (gdbarch))
	    {
	    case BFD_ENDIAN_LITTLE:
	      mips_xfer_register (gdbarch, regcache,
				  (gdbarch_num_regs (gdbarch)
				   + mips_regnum (gdbarch)->fp0 + 0),
				  4, gdbarch_byte_order (gdbarch),
				  readbuf, writebuf, 0);
	      mips_xfer_register (gdbarch, regcache,
				  (gdbarch_num_regs (gdbarch)
				   + mips_regnum (gdbarch)->fp0 + 1),
				  4, gdbarch_byte_order (gdbarch),
				  readbuf, writebuf, 4);
	      break;
	    case BFD_ENDIAN_BIG:
	      mips_xfer_register (gdbarch, regcache,
				  (gdbarch_num_regs (gdbarch)
				   + mips_regnum (gdbarch)->fp0 + 1),
				  4, gdbarch_byte_order (gdbarch),
				  readbuf, writebuf, 0);
	      mips_xfer_register (gdbarch, regcache,
				  (gdbarch_num_regs (gdbarch)
				   + mips_regnum (gdbarch)->fp0 + 0),
				  4, gdbarch_byte_order (gdbarch),
				  readbuf, writebuf, 4);
	      break;
	    default:
	      internal_error (__FILE__, __LINE__, _("bad switch"));
	    }
	}
      if (fval_reg != mips_fval_fpr)
	{
	  /* The two 32-bit parts are always placed in GPR2 and GPR3
	     following these registers' memory order.  */
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + 2,
			      4, gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, 0);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + 3,
			      4, gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, 4);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
#if 0
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
	   && TYPE_NFIELDS (type) <= 2
	   && TYPE_NFIELDS (type) >= 1
	   && ((TYPE_NFIELDS (type) == 1
		&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
		    == TYPE_CODE_FLT))
	       || (TYPE_NFIELDS (type) == 2
		   && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
		       == TYPE_CODE_FLT)
		   && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
		       == TYPE_CODE_FLT)))
	   && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
      /* A struct that contains one or two floats.  Each value is part
         in the least significant part of their floating point
         register..  */
      gdb_byte reg[MAX_REGISTER_SIZE];
      int regnum;
      int field;
      for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
	   field < TYPE_NFIELDS (type); field++, regnum += 2)
	{
	  int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
			/ TARGET_CHAR_BIT);
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
				offset);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + regnum,
			      TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
			      gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
#endif
#if 0
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
	   || TYPE_CODE (type) == TYPE_CODE_UNION)
    {
      /* A structure or union.  Extract the left justified value,
         regardless of the byte order.  I.e. DO NOT USE
         mips_xfer_lower.  */
      int offset;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
	   offset < TYPE_LENGTH (type);
	   offset += register_size (gdbarch, regnum), regnum++)
	{
	  int xfer = register_size (gdbarch, regnum);
	  if (offset + xfer > TYPE_LENGTH (type))
	    xfer = TYPE_LENGTH (type) - offset;
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
				offset, xfer, regnum);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + regnum, xfer,
			      BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
#endif
  else
    {
      /* A scalar extract each part but least-significant-byte
         justified.  o32 thinks registers are 4 byte, regardless of
         the ISA.  */
      int offset;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
	   offset < TYPE_LENGTH (type);
	   offset += MIPS32_REGSIZE, regnum++)
	{
	  int xfer = MIPS32_REGSIZE;
	  if (offset + xfer > TYPE_LENGTH (type))
	    xfer = TYPE_LENGTH (type) - offset;
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
				offset, xfer, regnum);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + regnum, xfer,
			      gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
}

/* O64 ABI.  This is a hacked up kind of 64-bit version of the o32
   ABI.  */

static CORE_ADDR
mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			  struct regcache *regcache, CORE_ADDR bp_addr,
			  int nargs,
			  struct value **args, CORE_ADDR sp,
			  int struct_return, CORE_ADDR struct_addr)
{
  int argreg;
  int float_argreg;
  int argnum;
  int len = 0;
  int stack_offset = 0;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR func_addr = find_function_addr (function, NULL);

  /* For shared libraries, "t9" needs to point at the function
     address.  */
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);

  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);

  /* First ensure that the stack and structure return address (if any)
     are properly aligned.  The stack has to be at least 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned, so we round to this widest known alignment.  */

  sp = align_down (sp, 16);
  struct_addr = align_down (struct_addr, 16);

  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      struct type *arg_type = check_typedef (value_type (args[argnum]));

      /* Allocate space on the stack.  */
      len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
    }
  sp -= align_up (len, 16);

  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_o64_push_dummy_call: sp=%s allocated %ld\n",
			paddress (gdbarch, sp), (long) align_up (len, 16));

  /* Initialize the integer and float register pointers.  */
  argreg = MIPS_A0_REGNUM;
  float_argreg = mips_fpa0_regnum (gdbarch);

  /* The struct_return pointer occupies the first parameter-passing reg.  */
  if (struct_return)
    {
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_o64_push_dummy_call: "
			    "struct_return reg=%d %s\n",
			    argreg, paddress (gdbarch, struct_addr));
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
      stack_offset += MIPS64_REGSIZE;
    }

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop thru args
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      const gdb_byte *val;
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);

      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_o64_push_dummy_call: %d len=%d type=%d",
			    argnum + 1, len, (int) typecode);

      val = value_contents (arg);

      /* Floating point arguments passed in registers have to be
         treated specially.  On 32-bit architectures, doubles are
         passed in register pairs; the even FP register gets the
         low word, and the odd FP register gets the high word.
         On O64, the first two floating point arguments are also
         copied to general registers, because MIPS16 functions
         don't use float registers for arguments.  This duplication
         of arguments in general registers can't hurt non-MIPS16
         functions because those registers are normally skipped.  */

      if (fp_register_arg_p (gdbarch, typecode, arg_type)
	  && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
	{
	  LONGEST regval = extract_unsigned_integer (val, len, byte_order);
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				float_argreg, phex (regval, len));
	  regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
				argreg, phex (regval, len));
	  regcache_cooked_write_unsigned (regcache, argreg, regval);
	  argreg++;
	  /* Reserve space for the FP register.  */
	  stack_offset += align_up (len, MIPS64_REGSIZE);
	}
      else
	{
	  /* Copy the argument to general registers or the stack in
	     register-sized pieces.  Large arguments are split between
	     registers and stack.  */
	  /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
	     are treated specially: Irix cc passes them in registers
	     where gcc sometimes puts them on the stack.  For maximum
	     compatibility, we will put them in both places.  */
	  int odd_sized_struct = (len > MIPS64_REGSIZE
				  && len % MIPS64_REGSIZE != 0);
	  while (len > 0)
	    {
	      int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);

	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
				    partial_len);

	      /* Write this portion of the argument to the stack.  */
	      if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
		  || odd_sized_struct)
		{
		  /* Should shorter than int integer values be
		     promoted to int before being stored?  */
		  int longword_offset = 0;
		  CORE_ADDR addr;
		  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
		    {
		      if ((typecode == TYPE_CODE_INT
			   || typecode == TYPE_CODE_PTR
			   || typecode == TYPE_CODE_FLT)
			  && len <= 4)
			longword_offset = MIPS64_REGSIZE - len;
		    }

		  if (mips_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
					  paddress (gdbarch, stack_offset));
		      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
					  paddress (gdbarch, longword_offset));
		    }

		  addr = sp + stack_offset + longword_offset;

		  if (mips_debug)
		    {
		      int i;
		      fprintf_unfiltered (gdb_stdlog, " @%s ",
					  paddress (gdbarch, addr));
		      for (i = 0; i < partial_len; i++)
			{
			  fprintf_unfiltered (gdb_stdlog, "%02x",
					      val[i] & 0xff);
			}
		    }
		  write_memory (addr, val, partial_len);
		}

	      /* Note!!! This is NOT an else clause.  Odd sized
	         structs may go thru BOTH paths.  */
	      /* Write this portion of the argument to a general
	         purpose register.  */
	      if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
		{
		  LONGEST regval = extract_signed_integer (val, partial_len,
							   byte_order);
		  /* Value may need to be sign extended, because
		     mips_isa_regsize() != mips_abi_regsize().  */

		  /* A non-floating-point argument being passed in a
		     general register.  If a struct or union, and if
		     the remaining length is smaller than the register
		     size, we have to adjust the register value on
		     big endian targets.

		     It does not seem to be necessary to do the
		     same for integral types.  */

		  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
		      && partial_len < MIPS64_REGSIZE
		      && (typecode == TYPE_CODE_STRUCT
			  || typecode == TYPE_CODE_UNION))
		    regval <<= ((MIPS64_REGSIZE - partial_len)
				* TARGET_CHAR_BIT);

		  if (mips_debug)
		    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
				      argreg,
				      phex (regval, MIPS64_REGSIZE));
		  regcache_cooked_write_unsigned (regcache, argreg, regval);
		  argreg++;

		  /* Prevent subsequent floating point arguments from
		     being passed in floating point registers.  */
		  float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
		}

	      len -= partial_len;
	      val += partial_len;

	      /* Compute the offset into the stack at which we will
	         copy the next parameter.

	         In older ABIs, the caller reserved space for
	         registers that contained arguments.  This was loosely
	         refered to as their "home".  Consequently, space is
	         always allocated.  */

	      stack_offset += align_up (partial_len, MIPS64_REGSIZE);
	    }
	}
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog, "\n");
    }

  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);

  /* Return adjusted stack pointer.  */
  return sp;
}

static enum return_value_convention
mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
		       struct type *type, struct regcache *regcache,
		       gdb_byte *readbuf, const gdb_byte *writebuf)
{
  CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
  int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum mips_fval_reg fval_reg;

  fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      || TYPE_CODE (type) == TYPE_CODE_UNION
      || TYPE_CODE (type) == TYPE_CODE_ARRAY)
    return RETURN_VALUE_STRUCT_CONVENTION;
  else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
    {
      /* A floating-point value.  If reading in or copying, then we get it
         from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
         If writing out only, then we put it to both FP0 and GPR2.  We do
         not support reading in with no function known, if this safety
         check ever triggers, then we'll have to try harder.  */
      gdb_assert (function || !readbuf);
      if (mips_debug)
	switch (fval_reg)
	  {
	  case mips_fval_fpr:
	    fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
	    break;
	  case mips_fval_gpr:
	    fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
	    break;
	  case mips_fval_both:
	    fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
	    break;
	  }
      if (fval_reg != mips_fval_gpr)
	mips_xfer_register (gdbarch, regcache,
			    (gdbarch_num_regs (gdbarch)
			     + mips_regnum (gdbarch)->fp0),
			    TYPE_LENGTH (type),
			    gdbarch_byte_order (gdbarch),
			    readbuf, writebuf, 0);
      if (fval_reg != mips_fval_fpr)
	mips_xfer_register (gdbarch, regcache,
			    gdbarch_num_regs (gdbarch) + 2,
			    TYPE_LENGTH (type),
			    gdbarch_byte_order (gdbarch),
			    readbuf, writebuf, 0);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else
    {
      /* A scalar extract each part but least-significant-byte
         justified.  */
      int offset;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
	   offset < TYPE_LENGTH (type);
	   offset += MIPS64_REGSIZE, regnum++)
	{
	  int xfer = MIPS64_REGSIZE;
	  if (offset + xfer > TYPE_LENGTH (type))
	    xfer = TYPE_LENGTH (type) - offset;
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
				offset, xfer, regnum);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + regnum,
			      xfer, gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
}

/* Floating point register management.

   Background: MIPS1 & 2 fp registers are 32 bits wide.  To support
   64bit operations, these early MIPS cpus treat fp register pairs
   (f0,f1) as a single register (d0).  Later MIPS cpu's have 64 bit fp
   registers and offer a compatibility mode that emulates the MIPS2 fp
   model.  When operating in MIPS2 fp compat mode, later cpu's split
   double precision floats into two 32-bit chunks and store them in
   consecutive fp regs.  To display 64-bit floats stored in this
   fashion, we have to combine 32 bits from f0 and 32 bits from f1.
   Throw in user-configurable endianness and you have a real mess.

   The way this works is:
     - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
       double-precision value will be split across two logical registers.
       The lower-numbered logical register will hold the low-order bits,
       regardless of the processor's endianness.
     - If we are on a 64-bit processor, and we are looking for a
       single-precision value, it will be in the low ordered bits
       of a 64-bit GPR (after mfc1, for example) or a 64-bit register
       save slot in memory.
     - If we are in 64-bit mode, everything is straightforward.

   Note that this code only deals with "live" registers at the top of the
   stack.  We will attempt to deal with saved registers later, when
   the raw/cooked register interface is in place.  (We need a general
   interface that can deal with dynamic saved register sizes -- fp
   regs could be 32 bits wide in one frame and 64 on the frame above
   and below).  */

/* Copy a 32-bit single-precision value from the current frame
   into rare_buffer.  */

static void
mips_read_fp_register_single (struct frame_info *frame, int regno,
			      gdb_byte *rare_buffer)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  int raw_size = register_size (gdbarch, regno);
  gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);

  if (!deprecated_frame_register_read (frame, regno, raw_buffer))
    error (_("can't read register %d (%s)"),
	   regno, gdbarch_register_name (gdbarch, regno));
  if (raw_size == 8)
    {
      /* We have a 64-bit value for this register.  Find the low-order
         32 bits.  */
      int offset;

      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	offset = 4;
      else
	offset = 0;

      memcpy (rare_buffer, raw_buffer + offset, 4);
    }
  else
    {
      memcpy (rare_buffer, raw_buffer, 4);
    }
}

/* Copy a 64-bit double-precision value from the current frame into
   rare_buffer.  This may include getting half of it from the next
   register.  */

static void
mips_read_fp_register_double (struct frame_info *frame, int regno,
			      gdb_byte *rare_buffer)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  int raw_size = register_size (gdbarch, regno);

  if (raw_size == 8 && !mips2_fp_compat (frame))
    {
      /* We have a 64-bit value for this register, and we should use
         all 64 bits.  */
      if (!deprecated_frame_register_read (frame, regno, rare_buffer))
	error (_("can't read register %d (%s)"),
	       regno, gdbarch_register_name (gdbarch, regno));
    }
  else
    {
      int rawnum = regno % gdbarch_num_regs (gdbarch);

      if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
	internal_error (__FILE__, __LINE__,
			_("mips_read_fp_register_double: bad access to "
			"odd-numbered FP register"));

      /* mips_read_fp_register_single will find the correct 32 bits from
         each register.  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	{
	  mips_read_fp_register_single (frame, regno, rare_buffer + 4);
	  mips_read_fp_register_single (frame, regno + 1, rare_buffer);
	}
      else
	{
	  mips_read_fp_register_single (frame, regno, rare_buffer);
	  mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
	}
    }
}

static void
mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
			int regnum)
{				/* Do values for FP (float) regs.  */
  struct gdbarch *gdbarch = get_frame_arch (frame);
  gdb_byte *raw_buffer;
  double doub, flt1;	/* Doubles extracted from raw hex data.  */
  int inv1, inv2;

  raw_buffer
    = ((gdb_byte *)
       alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));

  fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
  fprintf_filtered (file, "%*s",
		    4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
		    "");

  if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
    {
      struct value_print_options opts;

      /* 4-byte registers: Print hex and floating.  Also print even
         numbered registers as doubles.  */
      mips_read_fp_register_single (frame, regnum, raw_buffer);
      flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
			    raw_buffer, &inv1);

      get_formatted_print_options (&opts, 'x');
      print_scalar_formatted (raw_buffer,
			      builtin_type (gdbarch)->builtin_uint32,
			      &opts, 'w', file);

      fprintf_filtered (file, " flt: ");
      if (inv1)
	fprintf_filtered (file, " <invalid float> ");
      else
	fprintf_filtered (file, "%-17.9g", flt1);

      if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
	{
	  mips_read_fp_register_double (frame, regnum, raw_buffer);
	  doub = unpack_double (builtin_type (gdbarch)->builtin_double,
				raw_buffer, &inv2);

	  fprintf_filtered (file, " dbl: ");
	  if (inv2)
	    fprintf_filtered (file, "<invalid double>");
	  else
	    fprintf_filtered (file, "%-24.17g", doub);
	}
    }
  else
    {
      struct value_print_options opts;

      /* Eight byte registers: print each one as hex, float and double.  */
      mips_read_fp_register_single (frame, regnum, raw_buffer);
      flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
			    raw_buffer, &inv1);

      mips_read_fp_register_double (frame, regnum, raw_buffer);
      doub = unpack_double (builtin_type (gdbarch)->builtin_double,
			    raw_buffer, &inv2);

      get_formatted_print_options (&opts, 'x');
      print_scalar_formatted (raw_buffer,
			      builtin_type (gdbarch)->builtin_uint64,
			      &opts, 'g', file);

      fprintf_filtered (file, " flt: ");
      if (inv1)
	fprintf_filtered (file, "<invalid float>");
      else
	fprintf_filtered (file, "%-17.9g", flt1);

      fprintf_filtered (file, " dbl: ");
      if (inv2)
	fprintf_filtered (file, "<invalid double>");
      else
	fprintf_filtered (file, "%-24.17g", doub);
    }
}

static void
mips_print_register (struct ui_file *file, struct frame_info *frame,
		     int regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct value_print_options opts;
  struct value *val;

  if (mips_float_register_p (gdbarch, regnum))
    {
      mips_print_fp_register (file, frame, regnum);
      return;
    }

  val = get_frame_register_value (frame, regnum);

  fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);

  /* The problem with printing numeric register names (r26, etc.) is that
     the user can't use them on input.  Probably the best solution is to
     fix it so that either the numeric or the funky (a2, etc.) names
     are accepted on input.  */
  if (regnum < MIPS_NUMREGS)
    fprintf_filtered (file, "(r%d): ", regnum);
  else
    fprintf_filtered (file, ": ");

  get_formatted_print_options (&opts, 'x');
  val_print_scalar_formatted (value_type (val),
			      value_contents_for_printing (val),
			      value_embedded_offset (val),
			      val,
			      &opts, 0, file);
}

/* Print IEEE exception condition bits in FLAGS.  */

static void
print_fpu_flags (struct ui_file *file, int flags)
{
  if (flags & (1 << 0))
    fputs_filtered (" inexact", file);
  if (flags & (1 << 1))
    fputs_filtered (" uflow", file);
  if (flags & (1 << 2))
    fputs_filtered (" oflow", file);
  if (flags & (1 << 3))
    fputs_filtered (" div0", file);
  if (flags & (1 << 4))
    fputs_filtered (" inval", file);
  if (flags & (1 << 5))
    fputs_filtered (" unimp", file);
  fputc_filtered ('\n', file);
}

/* Print interesting information about the floating point processor
   (if present) or emulator.  */

static void
mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
		      struct frame_info *frame, const char *args)
{
  int fcsr = mips_regnum (gdbarch)->fp_control_status;
  enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
  ULONGEST fcs = 0;
  int i;

  if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
    type = MIPS_FPU_NONE;

  fprintf_filtered (file, "fpu type: %s\n",
		    type == MIPS_FPU_DOUBLE ? "double-precision"
		    : type == MIPS_FPU_SINGLE ? "single-precision"
		    : "none / unused");

  if (type == MIPS_FPU_NONE)
    return;

  fprintf_filtered (file, "reg size: %d bits\n",
		    register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);

  fputs_filtered ("cond    :", file);
  if (fcs & (1 << 23))
    fputs_filtered (" 0", file);
  for (i = 1; i <= 7; i++)
    if (fcs & (1 << (24 + i)))
      fprintf_filtered (file, " %d", i);
  fputc_filtered ('\n', file);

  fputs_filtered ("cause   :", file);
  print_fpu_flags (file, (fcs >> 12) & 0x3f);
  fputs ("mask    :", stdout);
  print_fpu_flags (file, (fcs >> 7) & 0x1f);
  fputs ("flags   :", stdout);
  print_fpu_flags (file, (fcs >> 2) & 0x1f);

  fputs_filtered ("rounding: ", file);
  switch (fcs & 3)
    {
    case 0: fputs_filtered ("nearest\n", file); break;
    case 1: fputs_filtered ("zero\n", file); break;
    case 2: fputs_filtered ("+inf\n", file); break;
    case 3: fputs_filtered ("-inf\n", file); break;
    }

  fputs_filtered ("flush   :", file);
  if (fcs & (1 << 21))
    fputs_filtered (" nearest", file);
  if (fcs & (1 << 22))
    fputs_filtered (" override", file);
  if (fcs & (1 << 24))
    fputs_filtered (" zero", file);
  if ((fcs & (0xb << 21)) == 0)
    fputs_filtered (" no", file);
  fputc_filtered ('\n', file);

  fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
  fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
  fputc_filtered ('\n', file);

  default_print_float_info (gdbarch, file, frame, args);
}

/* Replacement for generic do_registers_info.
   Print regs in pretty columns.  */

static int
print_fp_register_row (struct ui_file *file, struct frame_info *frame,
		       int regnum)
{
  fprintf_filtered (file, " ");
  mips_print_fp_register (file, frame, regnum);
  fprintf_filtered (file, "\n");
  return regnum + 1;
}


/* Print a row's worth of GP (int) registers, with name labels above.  */

static int
print_gp_register_row (struct ui_file *file, struct frame_info *frame,
		       int start_regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  /* Do values for GP (int) regs.  */
  gdb_byte raw_buffer[MAX_REGISTER_SIZE];
  int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8);    /* display cols
							       per row.  */
  int col, byte;
  int regnum;

  /* For GP registers, we print a separate row of names above the vals.  */
  for (col = 0, regnum = start_regnum;
       col < ncols && regnum < gdbarch_num_regs (gdbarch)
			       + gdbarch_num_pseudo_regs (gdbarch);
       regnum++)
    {
      if (*gdbarch_register_name (gdbarch, regnum) == '\0')
	continue;		/* unused register */
      if (mips_float_register_p (gdbarch, regnum))
	break;			/* End the row: reached FP register.  */
      /* Large registers are handled separately.  */
      if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
	{
	  if (col > 0)
	    break;		/* End the row before this register.  */

	  /* Print this register on a row by itself.  */
	  mips_print_register (file, frame, regnum);
	  fprintf_filtered (file, "\n");
	  return regnum + 1;
	}
      if (col == 0)
	fprintf_filtered (file, "     ");
      fprintf_filtered (file,
			mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
			gdbarch_register_name (gdbarch, regnum));
      col++;
    }

  if (col == 0)
    return regnum;

  /* Print the R0 to R31 names.  */
  if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
    fprintf_filtered (file, "\n R%-4d",
		      start_regnum % gdbarch_num_regs (gdbarch));
  else
    fprintf_filtered (file, "\n      ");

  /* Now print the values in hex, 4 or 8 to the row.  */
  for (col = 0, regnum = start_regnum;
       col < ncols && regnum < gdbarch_num_regs (gdbarch)
			       + gdbarch_num_pseudo_regs (gdbarch);
       regnum++)
    {
      if (*gdbarch_register_name (gdbarch, regnum) == '\0')
	continue;		/* unused register */
      if (mips_float_register_p (gdbarch, regnum))
	break;			/* End row: reached FP register.  */
      if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
	break;			/* End row: large register.  */

      /* OK: get the data in raw format.  */
      if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
	error (_("can't read register %d (%s)"),
	       regnum, gdbarch_register_name (gdbarch, regnum));
      /* pad small registers */
      for (byte = 0;
	   byte < (mips_abi_regsize (gdbarch)
		   - register_size (gdbarch, regnum)); byte++)
	printf_filtered ("  ");
      /* Now print the register value in hex, endian order.  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	for (byte =
	     register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
	     byte < register_size (gdbarch, regnum); byte++)
	  fprintf_filtered (file, "%02x", raw_buffer[byte]);
      else
	for (byte = register_size (gdbarch, regnum) - 1;
	     byte >= 0; byte--)
	  fprintf_filtered (file, "%02x", raw_buffer[byte]);
      fprintf_filtered (file, " ");
      col++;
    }
  if (col > 0)			/* ie. if we actually printed anything...  */
    fprintf_filtered (file, "\n");

  return regnum;
}

/* MIPS_DO_REGISTERS_INFO(): called by "info register" command.  */

static void
mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
			   struct frame_info *frame, int regnum, int all)
{
  if (regnum != -1)		/* Do one specified register.  */
    {
      gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
      if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
	error (_("Not a valid register for the current processor type"));

      mips_print_register (file, frame, regnum);
      fprintf_filtered (file, "\n");
    }
  else
    /* Do all (or most) registers.  */
    {
      regnum = gdbarch_num_regs (gdbarch);
      while (regnum < gdbarch_num_regs (gdbarch)
		      + gdbarch_num_pseudo_regs (gdbarch))
	{
	  if (mips_float_register_p (gdbarch, regnum))
	    {
	      if (all)		/* True for "INFO ALL-REGISTERS" command.  */
		regnum = print_fp_register_row (file, frame, regnum);
	      else
		regnum += MIPS_NUMREGS;	/* Skip floating point regs.  */
	    }
	  else
	    regnum = print_gp_register_row (file, frame, regnum);
	}
    }
}

static int
mips_single_step_through_delay (struct gdbarch *gdbarch,
				struct frame_info *frame)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR pc = get_frame_pc (frame);
  struct address_space *aspace;
  enum mips_isa isa;
  ULONGEST insn;
  int status;
  int size;

  if ((mips_pc_is_mips (pc)
       && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
      || (mips_pc_is_micromips (gdbarch, pc)
	  && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
      || (mips_pc_is_mips16 (gdbarch, pc)
	  && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
    return 0;

  isa = mips_pc_isa (gdbarch, pc);
  /* _has_delay_slot above will have validated the read.  */
  insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
  size = mips_insn_size (isa, insn);
  aspace = get_frame_address_space (frame);
  return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
}

/* To skip prologues, I use this predicate.  Returns either PC itself
   if the code at PC does not look like a function prologue; otherwise
   returns an address that (if we're lucky) follows the prologue.  If
   LENIENT, then we must skip everything which is involved in setting
   up the frame (it's OK to skip more, just so long as we don't skip
   anything which might clobber the registers which are being saved.
   We must skip more in the case where part of the prologue is in the
   delay slot of a non-prologue instruction).  */

static CORE_ADDR
mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR limit_pc;
  CORE_ADDR func_addr;

  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever
     is greater.  */
  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);
      if (post_prologue_pc != 0)
	return std::max (pc, post_prologue_pc);
    }

  /* Can't determine prologue from the symbol table, need to examine
     instructions.  */

  /* Find an upper limit on the function prologue using the debug
     information.  If the debug information could not be used to provide
     that bound, then use an arbitrary large number as the upper bound.  */
  limit_pc = skip_prologue_using_sal (gdbarch, pc);
  if (limit_pc == 0)
    limit_pc = pc + 100;          /* Magic.  */

  if (mips_pc_is_mips16 (gdbarch, pc))
    return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
  else if (mips_pc_is_micromips (gdbarch, pc))
    return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
  else
    return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
}

/* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
   This is a helper function for mips_stack_frame_destroyed_p.  */

static int
mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr = 0, func_end = 0;

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      /* The MIPS epilogue is max. 12 bytes long.  */
      CORE_ADDR addr = func_end - 12;

      if (addr < func_addr + 4)
        addr = func_addr + 4;
      if (pc < addr)
        return 0;

      for (; pc < func_end; pc += MIPS_INSN32_SIZE)
	{
	  unsigned long high_word;
	  unsigned long inst;

	  inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
	  high_word = (inst >> 16) & 0xffff;

	  if (high_word != 0x27bd	/* addiu $sp,$sp,offset */
	      && high_word != 0x67bd	/* daddiu $sp,$sp,offset */
	      && inst != 0x03e00008	/* jr $ra */
	      && inst != 0x00000000)	/* nop */
	    return 0;
	}

      return 1;
    }

  return 0;
}

/* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
   This is a helper function for mips_stack_frame_destroyed_p.  */

static int
micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr = 0;
  CORE_ADDR func_end = 0;
  CORE_ADDR addr;
  ULONGEST insn;
  long offset;
  int dreg;
  int sreg;
  int loc;

  if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    return 0;

  /* The microMIPS epilogue is max. 12 bytes long.  */
  addr = func_end - 12;

  if (addr < func_addr + 2)
    addr = func_addr + 2;
  if (pc < addr)
    return 0;

  for (; pc < func_end; pc += loc)
    {
      loc = 0;
      insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
      loc += MIPS_INSN16_SIZE;
      switch (mips_insn_size (ISA_MICROMIPS, insn))
	{
	/* 32-bit instructions.  */
	case 2 * MIPS_INSN16_SIZE:
	  insn <<= 16;
	  insn |= mips_fetch_instruction (gdbarch,
					  ISA_MICROMIPS, pc + loc, NULL);
	  loc += MIPS_INSN16_SIZE;
	  switch (micromips_op (insn >> 16))
	    {
	    case 0xc: /* ADDIU: bits 001100 */
	    case 0x17: /* DADDIU: bits 010111 */
	      sreg = b0s5_reg (insn >> 16);
	      dreg = b5s5_reg (insn >> 16);
	      offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
	      if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
			    /* (D)ADDIU $sp, imm */
		  && offset >= 0)
		break;
	      return 0;

	    default:
	      return 0;
	    }
	  break;

	/* 16-bit instructions.  */
	case MIPS_INSN16_SIZE:
	  switch (micromips_op (insn))
	    {
	    case 0x3: /* MOVE: bits 000011 */
	      sreg = b0s5_reg (insn);
	      dreg = b5s5_reg (insn);
	      if (sreg == 0 && dreg == 0)
				/* MOVE $zero, $zero aka NOP */
		break;
	      return 0;

	    case 0x11: /* POOL16C: bits 010001 */
	      if (b5s5_op (insn) == 0x18
				/* JRADDIUSP: bits 010011 11000 */
		  || (b5s5_op (insn) == 0xd
				/* JRC: bits 010011 01101 */
		      && b0s5_reg (insn) == MIPS_RA_REGNUM))
				/* JRC $ra */
		break;
	      return 0;

	    case 0x13: /* POOL16D: bits 010011 */
	      offset = micromips_decode_imm9 (b1s9_imm (insn));
	      if ((insn & 0x1) == 0x1
				/* ADDIUSP: bits 010011 1 */
		  && offset > 0)
		break;
	      return 0;

	    default:
	      return 0;
	    }
	}
    }

  return 1;
}

/* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
   This is a helper function for mips_stack_frame_destroyed_p.  */

static int
mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr = 0, func_end = 0;

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      /* The MIPS epilogue is max. 12 bytes long.  */
      CORE_ADDR addr = func_end - 12;

      if (addr < func_addr + 4)
        addr = func_addr + 4;
      if (pc < addr)
        return 0;

      for (; pc < func_end; pc += MIPS_INSN16_SIZE)
	{
	  unsigned short inst;

	  inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);

	  if ((inst & 0xf800) == 0xf000)	/* extend */
	    continue;

	  if (inst != 0x6300		/* addiu $sp,offset */
	      && inst != 0xfb00		/* daddiu $sp,$sp,offset */
	      && inst != 0xe820		/* jr $ra */
	      && inst != 0xe8a0		/* jrc $ra */
	      && inst != 0x6500)	/* nop */
	    return 0;
	}

      return 1;
    }

  return 0;
}

/* Implement the stack_frame_destroyed_p gdbarch method.

   The epilogue is defined here as the area at the end of a function,
   after an instruction which destroys the function's stack frame.  */

static int
mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  if (mips_pc_is_mips16 (gdbarch, pc))
    return mips16_stack_frame_destroyed_p (gdbarch, pc);
  else if (mips_pc_is_micromips (gdbarch, pc))
    return micromips_stack_frame_destroyed_p (gdbarch, pc);
  else
    return mips32_stack_frame_destroyed_p (gdbarch, pc);
}

/* Root of all "set mips "/"show mips " commands.  This will eventually be
   used for all MIPS-specific commands.  */

static void
show_mips_command (char *args, int from_tty)
{
  help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
}

static void
set_mips_command (char *args, int from_tty)
{
  printf_unfiltered
    ("\"set mips\" must be followed by an appropriate subcommand.\n");
  help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
}

/* Commands to show/set the MIPS FPU type.  */

static void
show_mipsfpu_command (char *args, int from_tty)
{
  char *fpu;

  if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
    {
      printf_unfiltered
	("The MIPS floating-point coprocessor is unknown "
	 "because the current architecture is not MIPS.\n");
      return;
    }

  switch (MIPS_FPU_TYPE (target_gdbarch ()))
    {
    case MIPS_FPU_SINGLE:
      fpu = "single-precision";
      break;
    case MIPS_FPU_DOUBLE:
      fpu = "double-precision";
      break;
    case MIPS_FPU_NONE:
      fpu = "absent (none)";
      break;
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
  if (mips_fpu_type_auto)
    printf_unfiltered ("The MIPS floating-point coprocessor "
		       "is set automatically (currently %s)\n",
		       fpu);
  else
    printf_unfiltered
      ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
}


static void
set_mipsfpu_command (char *args, int from_tty)
{
  printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
		     "\"single\",\"none\" or \"auto\".\n");
  show_mipsfpu_command (args, from_tty);
}

static void
set_mipsfpu_single_command (char *args, int from_tty)
{
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  mips_fpu_type = MIPS_FPU_SINGLE;
  mips_fpu_type_auto = 0;
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
     instead of relying on globals.  Doing that would let generic code
     handle the search for this specific architecture.  */
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
}

static void
set_mipsfpu_double_command (char *args, int from_tty)
{
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  mips_fpu_type = MIPS_FPU_DOUBLE;
  mips_fpu_type_auto = 0;
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
     instead of relying on globals.  Doing that would let generic code
     handle the search for this specific architecture.  */
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
}

static void
set_mipsfpu_none_command (char *args, int from_tty)
{
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  mips_fpu_type = MIPS_FPU_NONE;
  mips_fpu_type_auto = 0;
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
     instead of relying on globals.  Doing that would let generic code
     handle the search for this specific architecture.  */
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
}

static void
set_mipsfpu_auto_command (char *args, int from_tty)
{
  mips_fpu_type_auto = 1;
}

/* Just like reinit_frame_cache, but with the right arguments to be
   callable as an sfunc.  */

static void
reinit_frame_cache_sfunc (char *args, int from_tty,
			  struct cmd_list_element *c)
{
  reinit_frame_cache ();
}

static int
gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
{
  struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;

  /* FIXME: cagney/2003-06-26: Is this even necessary?  The
     disassembler needs to be able to locally determine the ISA, and
     not rely on GDB.  Otherwize the stand-alone 'objdump -d' will not
     work.  */
  if (mips_pc_is_mips16 (gdbarch, memaddr))
    info->mach = bfd_mach_mips16;
  else if (mips_pc_is_micromips (gdbarch, memaddr))
    info->mach = bfd_mach_mips_micromips;

  /* Round down the instruction address to the appropriate boundary.  */
  memaddr &= (info->mach == bfd_mach_mips16
	      || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;

  /* Set the disassembler options.  */
  if (!info->disassembler_options)
    /* This string is not recognized explicitly by the disassembler,
       but it tells the disassembler to not try to guess the ABI from
       the bfd elf headers, such that, if the user overrides the ABI
       of a program linked as NewABI, the disassembly will follow the
       register naming conventions specified by the user.  */
    info->disassembler_options = "gpr-names=32";

  /* Call the appropriate disassembler based on the target endian-ness.  */
  if (info->endian == BFD_ENDIAN_BIG)
    return print_insn_big_mips (memaddr, info);
  else
    return print_insn_little_mips (memaddr, info);
}

static int
gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
{
  /* Set up the disassembler info, so that we get the right
     register names from libopcodes.  */
  info->disassembler_options = "gpr-names=n32";
  info->flavour = bfd_target_elf_flavour;

  return gdb_print_insn_mips (memaddr, info);
}

static int
gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
{
  /* Set up the disassembler info, so that we get the right
     register names from libopcodes.  */
  info->disassembler_options = "gpr-names=64";
  info->flavour = bfd_target_elf_flavour;

  return gdb_print_insn_mips (memaddr, info);
}

/* Implement the breakpoint_kind_from_pc gdbarch method.  */

static int
mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
  CORE_ADDR pc = *pcptr;

  if (mips_pc_is_mips16 (gdbarch, pc))
    {
      *pcptr = unmake_compact_addr (pc);
      return MIPS_BP_KIND_MIPS16;
    }
  else if (mips_pc_is_micromips (gdbarch, pc))
    {
      ULONGEST insn;
      int status;

      *pcptr = unmake_compact_addr (pc);
      insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
      if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
	return MIPS_BP_KIND_MICROMIPS16;
      else
	return MIPS_BP_KIND_MICROMIPS32;
    }
  else
    return MIPS_BP_KIND_MIPS32;
}

/* Implement the sw_breakpoint_from_kind gdbarch method.  */

static const gdb_byte *
mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
{
  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);

  switch (kind)
    {
    case MIPS_BP_KIND_MIPS16:
      {
	static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
	static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };

	*size = 2;
	if (byte_order_for_code == BFD_ENDIAN_BIG)
	  return mips16_big_breakpoint;
	else
	  return mips16_little_breakpoint;
      }
    case MIPS_BP_KIND_MICROMIPS16:
      {
	static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
	static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };

	*size = 2;

	if (byte_order_for_code == BFD_ENDIAN_BIG)
	  return micromips16_big_breakpoint;
	else
	  return micromips16_little_breakpoint;
      }
    case MIPS_BP_KIND_MICROMIPS32:
      {
	static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
	static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };

	*size = 4;
	if (byte_order_for_code == BFD_ENDIAN_BIG)
	  return micromips32_big_breakpoint;
	else
	  return micromips32_little_breakpoint;
      }
    case MIPS_BP_KIND_MIPS32:
      {
	static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
	static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };

	*size = 4;
	if (byte_order_for_code == BFD_ENDIAN_BIG)
	  return big_breakpoint;
	else
	  return little_breakpoint;
      }
    default:
      gdb_assert_not_reached ("unexpected mips breakpoint kind");
    };
}

/* Return non-zero if the standard MIPS instruction INST has a branch
   delay slot (i.e. it is a jump or branch instruction).  This function
   is based on mips32_next_pc.  */

static int
mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
{
  int op;
  int rs;
  int rt;

  op = itype_op (inst);
  if ((inst & 0xe0000000) != 0)
    {
      rs = itype_rs (inst);
      rt = itype_rt (inst);
      return (is_octeon_bbit_op (op, gdbarch) 
	      || op >> 2 == 5	/* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx  */
	      || op == 29	/* JALX: bits 011101  */
	      || (op == 17
		  && (rs == 8
				/* BC1F, BC1FL, BC1T, BC1TL: 010001 01000  */
		      || (rs == 9 && (rt & 0x2) == 0)
				/* BC1ANY2F, BC1ANY2T: bits 010001 01001  */
		      || (rs == 10 && (rt & 0x2) == 0))));
				/* BC1ANY4F, BC1ANY4T: bits 010001 01010  */
    }
  else
    switch (op & 0x07)		/* extract bits 28,27,26  */
      {
      case 0:			/* SPECIAL  */
	op = rtype_funct (inst);
	return (op == 8		/* JR  */
		|| op == 9);	/* JALR  */
	break;			/* end SPECIAL  */
      case 1:			/* REGIMM  */
	rs = itype_rs (inst);
	rt = itype_rt (inst);	/* branch condition  */
	return ((rt & 0xc) == 0
				/* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx  */
				/* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx  */
		|| ((rt & 0x1e) == 0x1c && rs == 0));
				/* BPOSGE32, BPOSGE64: bits 1110x  */
	break;			/* end REGIMM  */
      default:			/* J, JAL, BEQ, BNE, BLEZ, BGTZ  */
	return 1;
	break;
      }
}

/* Return non-zero if a standard MIPS instruction at ADDR has a branch
   delay slot (i.e. it is a jump or branch instruction).  */

static int
mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  ULONGEST insn;
  int status;

  insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
  if (status)
    return 0;

  return mips32_instruction_has_delay_slot (gdbarch, insn);
}

/* Return non-zero if the microMIPS instruction INSN, comprising the
   16-bit major opcode word in the high 16 bits and any second word
   in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
   jump or branch instruction).  The instruction must be 32-bit if
   MUSTBE32 is set or can be any instruction otherwise.  */

static int
micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
{
  ULONGEST major = insn >> 16;

  switch (micromips_op (major))
    {
    /* 16-bit instructions.  */
    case 0x33:			/* B16: bits 110011 */
    case 0x2b:			/* BNEZ16: bits 101011 */
    case 0x23:			/* BEQZ16: bits 100011 */
      return !mustbe32;
    case 0x11:			/* POOL16C: bits 010001 */
      return (!mustbe32
	      && ((b5s5_op (major) == 0xc
				/* JR16: bits 010001 01100 */
		  || (b5s5_op (major) & 0x1e) == 0xe)));
				/* JALR16, JALRS16: bits 010001 0111x */
    /* 32-bit instructions.  */
    case 0x3d:			/* JAL: bits 111101 */
    case 0x3c:			/* JALX: bits 111100 */
    case 0x35:			/* J: bits 110101 */
    case 0x2d:			/* BNE: bits 101101 */
    case 0x25:			/* BEQ: bits 100101 */
    case 0x1d:			/* JALS: bits 011101 */
      return 1;
    case 0x10:			/* POOL32I: bits 010000 */
      return ((b5s5_op (major) & 0x1c) == 0x0
				/* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
	      || (b5s5_op (major) & 0x1d) == 0x4
				/* BLEZ, BGTZ: bits 010000 001x0 */
	      || (b5s5_op (major) & 0x1d) == 0x11
				/* BLTZALS, BGEZALS: bits 010000 100x1 */
	      || ((b5s5_op (major) & 0x1e) == 0x14
		  && (major & 0x3) == 0x0)
				/* BC2F, BC2T: bits 010000 1010x xxx00 */
	      || (b5s5_op (major) & 0x1e) == 0x1a
				/* BPOSGE64, BPOSGE32: bits 010000 1101x */
	      || ((b5s5_op (major) & 0x1e) == 0x1c
		  && (major & 0x3) == 0x0)
				/* BC1F, BC1T: bits 010000 1110x xxx00 */
	      || ((b5s5_op (major) & 0x1c) == 0x1c
		  && (major & 0x3) == 0x1));
				/* BC1ANY*: bits 010000 111xx xxx01 */
    case 0x0:			/* POOL32A: bits 000000 */
      return (b0s6_op (insn) == 0x3c
				/* POOL32Axf: bits 000000 ... 111100 */
	      && (b6s10_ext (insn) & 0x2bf) == 0x3c);
				/* JALR, JALR.HB: 000000 000x111100 111100 */
				/* JALRS, JALRS.HB: 000000 010x111100 111100 */
    default:
      return 0;
    }
}

/* Return non-zero if a microMIPS instruction at ADDR has a branch delay
   slot (i.e. it is a non-compact jump instruction).  The instruction
   must be 32-bit if MUSTBE32 is set or can be any instruction otherwise.  */

static int
micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
				     CORE_ADDR addr, int mustbe32)
{
  ULONGEST insn;
  int status;
  int size;

  insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
  if (status)
    return 0;
  size = mips_insn_size (ISA_MICROMIPS, insn);
  insn <<= 16;
  if (size == 2 * MIPS_INSN16_SIZE)
    {
      insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
      if (status)
	return 0;
    }

  return micromips_instruction_has_delay_slot (insn, mustbe32);
}

/* Return non-zero if the MIPS16 instruction INST, which must be
   a 32-bit instruction if MUSTBE32 is set or can be any instruction
   otherwise, has a branch delay slot (i.e. it is a non-compact jump
   instruction).  This function is based on mips16_next_pc.  */

static int
mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
{
  if ((inst & 0xf89f) == 0xe800)	/* JR/JALR (16-bit instruction)  */
    return !mustbe32;
  return (inst & 0xf800) == 0x1800;	/* JAL/JALX (32-bit instruction)  */
}

/* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
   slot (i.e. it is a non-compact jump instruction).  The instruction
   must be 32-bit if MUSTBE32 is set or can be any instruction otherwise.  */

static int
mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
				  CORE_ADDR addr, int mustbe32)
{
  unsigned short insn;
  int status;

  insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
  if (status)
    return 0;

  return mips16_instruction_has_delay_slot (insn, mustbe32);
}

/* Calculate the starting address of the MIPS memory segment BPADDR is in.
   This assumes KSSEG exists.  */

static CORE_ADDR
mips_segment_boundary (CORE_ADDR bpaddr)
{
  CORE_ADDR mask = CORE_ADDR_MAX;
  int segsize;

  if (sizeof (CORE_ADDR) == 8)
    /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
       a compiler warning produced where CORE_ADDR is a 32-bit type even
       though in that case this is dead code).  */
    switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
      {
      case 3:
	if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
	  segsize = 29;			/* 32-bit compatibility segment  */
	else
	  segsize = 62;			/* xkseg  */
	break;
      case 2:				/* xkphys  */
	segsize = 59;
	break;
      default:				/* xksseg (1), xkuseg/kuseg (0)  */
	segsize = 62;
	break;
      }
  else if (bpaddr & 0x80000000)		/* kernel segment  */
    segsize = 29;
  else
    segsize = 31;			/* user segment  */
  mask <<= segsize;
  return bpaddr & mask;
}

/* Move the breakpoint at BPADDR out of any branch delay slot by shifting
   it backwards if necessary.  Return the address of the new location.  */

static CORE_ADDR
mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
{
  CORE_ADDR prev_addr;
  CORE_ADDR boundary;
  CORE_ADDR func_addr;

  /* If a breakpoint is set on the instruction in a branch delay slot,
     GDB gets confused.  When the breakpoint is hit, the PC isn't on
     the instruction in the branch delay slot, the PC will point to
     the branch instruction.  Since the PC doesn't match any known
     breakpoints, GDB reports a trap exception.

     There are two possible fixes for this problem.

     1) When the breakpoint gets hit, see if the BD bit is set in the
     Cause register (which indicates the last exception occurred in a
     branch delay slot).  If the BD bit is set, fix the PC to point to
     the instruction in the branch delay slot.

     2) When the user sets the breakpoint, don't allow him to set the
     breakpoint on the instruction in the branch delay slot.  Instead
     move the breakpoint to the branch instruction (which will have
     the same result).

     The problem with the first solution is that if the user then
     single-steps the processor, the branch instruction will get
     skipped (since GDB thinks the PC is on the instruction in the
     branch delay slot).

     So, we'll use the second solution.  To do this we need to know if
     the instruction we're trying to set the breakpoint on is in the
     branch delay slot.  */

  boundary = mips_segment_boundary (bpaddr);

  /* Make sure we don't scan back before the beginning of the current
     function, since we may fetch constant data or insns that look like
     a jump.  Of course we might do that anyway if the compiler has
     moved constants inline. :-(  */
  if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
      && func_addr > boundary && func_addr <= bpaddr)
    boundary = func_addr;

  if (mips_pc_is_mips (bpaddr))
    {
      if (bpaddr == boundary)
	return bpaddr;

      /* If the previous instruction has a branch delay slot, we have
         to move the breakpoint to the branch instruction. */
      prev_addr = bpaddr - 4;
      if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
	bpaddr = prev_addr;
    }
  else
    {
      int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
      CORE_ADDR addr, jmpaddr;
      int i;

      boundary = unmake_compact_addr (boundary);

      /* The only MIPS16 instructions with delay slots are JAL, JALX,
         JALR and JR.  An absolute JAL/JALX is always 4 bytes long,
         so try for that first, then try the 2 byte JALR/JR.
         The microMIPS ASE has a whole range of jumps and branches
         with delay slots, some of which take 4 bytes and some take
         2 bytes, so the idea is the same.
         FIXME: We have to assume that bpaddr is not the second half
         of an extended instruction.  */
      insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
				   ? micromips_insn_at_pc_has_delay_slot
				   : mips16_insn_at_pc_has_delay_slot);

      jmpaddr = 0;
      addr = bpaddr;
      for (i = 1; i < 4; i++)
	{
	  if (unmake_compact_addr (addr) == boundary)
	    break;
	  addr -= MIPS_INSN16_SIZE;
	  if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
	    /* Looks like a JR/JALR at [target-1], but it could be
	       the second word of a previous JAL/JALX, so record it
	       and check back one more.  */
	    jmpaddr = addr;
	  else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
	    {
	      if (i == 2)
		/* Looks like a JAL/JALX at [target-2], but it could also
		   be the second word of a previous JAL/JALX, record it,
		   and check back one more.  */
		jmpaddr = addr;
	      else
		/* Looks like a JAL/JALX at [target-3], so any previously
		   recorded JAL/JALX or JR/JALR must be wrong, because:

		   >-3: JAL
		    -2: JAL-ext (can't be JAL/JALX)
		    -1: bdslot (can't be JR/JALR)
		     0: target insn

		   Of course it could be another JAL-ext which looks
		   like a JAL, but in that case we'd have broken out
		   of this loop at [target-2]:

		    -4: JAL
		   >-3: JAL-ext
		    -2: bdslot (can't be jmp)
		    -1: JR/JALR
		     0: target insn  */
		jmpaddr = 0;
	    }
	  else
	    {
	      /* Not a jump instruction: if we're at [target-1] this
	         could be the second word of a JAL/JALX, so continue;
	         otherwise we're done.  */
	      if (i > 1)
		break;
	    }
	}

      if (jmpaddr)
	bpaddr = jmpaddr;
    }

  return bpaddr;
}

/* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
   call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0.  */

static int
mips_is_stub_suffix (const char *suffix, int zero)
{
  switch (suffix[0])
   {
   case '0':
     return zero && suffix[1] == '\0';
   case '1':
     return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
   case '2':
   case '5':
   case '6':
   case '9':
     return suffix[1] == '\0';
   default:
     return 0;
   }
}

/* Return non-zero if MODE is one of the mode infixes used for MIPS16
   call stubs, one of sf, df, sc, or dc.  */

static int
mips_is_stub_mode (const char *mode)
{
  return ((mode[0] == 's' || mode[0] == 'd')
	  && (mode[1] == 'f' || mode[1] == 'c'));
}

/* Code at PC is a compiler-generated stub.  Such a stub for a function
   bar might have a name like __fn_stub_bar, and might look like this:

      mfc1    $4, $f13
      mfc1    $5, $f12
      mfc1    $6, $f15
      mfc1    $7, $f14

   followed by (or interspersed with):

      j       bar

   or:

      lui     $25, %hi(bar)
      addiu   $25, $25, %lo(bar)
      jr      $25

   ($1 may be used in old code; for robustness we accept any register)
   or, in PIC code:

      lui     $28, %hi(_gp_disp)
      addiu   $28, $28, %lo(_gp_disp)
      addu    $28, $28, $25
      lw      $25, %got(bar)
      addiu   $25, $25, %lo(bar)
      jr      $25

   In the case of a __call_stub_bar stub, the sequence to set up
   arguments might look like this:

      mtc1    $4, $f13
      mtc1    $5, $f12
      mtc1    $6, $f15
      mtc1    $7, $f14

   followed by (or interspersed with) one of the jump sequences above.

   In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
   of J or JR, respectively, followed by:

      mfc1    $2, $f0
      mfc1    $3, $f1
      jr      $18

   We are at the beginning of the stub here, and scan down and extract
   the target address from the jump immediate instruction or, if a jump
   register instruction is used, from the register referred.  Return
   the value of PC calculated or 0 if inconclusive.

   The limit on the search is arbitrarily set to 20 instructions.  FIXME.  */

static CORE_ADDR
mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int addrreg = MIPS_ZERO_REGNUM;
  CORE_ADDR start_pc = pc;
  CORE_ADDR target_pc = 0;
  CORE_ADDR addr = 0;
  CORE_ADDR gp = 0;
  int status = 0;
  int i;

  for (i = 0;
       status == 0 && target_pc == 0 && i < 20;
       i++, pc += MIPS_INSN32_SIZE)
    {
      ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
      CORE_ADDR imm;
      int rt;
      int rs;
      int rd;

      switch (itype_op (inst))
	{
	case 0:		/* SPECIAL */
	  switch (rtype_funct (inst))
	    {
	    case 8:		/* JR */
	    case 9:		/* JALR */
	      rs = rtype_rs (inst);
	      if (rs == MIPS_GP_REGNUM)
		target_pc = gp;				/* Hmm...  */
	      else if (rs == addrreg)
		target_pc = addr;
	      break;

	    case 0x21:		/* ADDU */
	      rt = rtype_rt (inst);
	      rs = rtype_rs (inst);
	      rd = rtype_rd (inst);
	      if (rd == MIPS_GP_REGNUM
		  && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
		      || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
		gp += start_pc;
	      break;
	    }
	  break;

	case 2:		/* J */
	case 3:		/* JAL */
	  target_pc = jtype_target (inst) << 2;
	  target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
	  break;

	case 9:		/* ADDIU */
	  rt = itype_rt (inst);
	  rs = itype_rs (inst);
	  if (rt == rs)
	    {
	      imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
	      if (rt == MIPS_GP_REGNUM)
		gp += imm;
	      else if (rt == addrreg)
		addr += imm;
	    }
	  break;

	case 0xf:	/* LUI */
	  rt = itype_rt (inst);
	  imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
	  if (rt == MIPS_GP_REGNUM)
	    gp = imm;
	  else if (rt != MIPS_ZERO_REGNUM)
	    {
	      addrreg = rt;
	      addr = imm;
	    }
	  break;

	case 0x23:	/* LW */
	  rt = itype_rt (inst);
	  rs = itype_rs (inst);
	  imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
	  if (gp != 0 && rs == MIPS_GP_REGNUM)
	    {
	      gdb_byte buf[4];

	      memset (buf, 0, sizeof (buf));
	      status = target_read_memory (gp + imm, buf, sizeof (buf));
	      addrreg = rt;
	      addr = extract_signed_integer (buf, sizeof (buf), byte_order);
	    }
	  break;
	}
    }

  return target_pc;
}

/* If PC is in a MIPS16 call or return stub, return the address of the
   target PC, which is either the callee or the caller.  There are several
   cases which must be handled:

   * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
     and the target PC is in $31 ($ra).
   * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
     and the target PC is in $2.
   * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
     i.e. before the JALR instruction, this is effectively a call stub
     and the target PC is in $2.  Otherwise this is effectively
     a return stub and the target PC is in $18.
   * If the PC is at the start of __call_stub_fp_*, i.e. before the
     JAL or JALR instruction, this is effectively a call stub and the
     target PC is buried in the instruction stream.  Otherwise this
     is effectively a return stub and the target PC is in $18.
   * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
     stub and the target PC is buried in the instruction stream.

   See the source code for the stubs in gcc/config/mips/mips16.S, or the
   stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
   gory details.  */

static CORE_ADDR
mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  CORE_ADDR start_addr;
  const char *name;
  size_t prefixlen;

  /* Find the starting address and name of the function containing the PC.  */
  if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
    return 0;

  /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
     and the target PC is in $31 ($ra).  */
  prefixlen = strlen (mips_str_mips16_ret_stub);
  if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
      && mips_is_stub_mode (name + prefixlen)
      && name[prefixlen + 2] == '\0')
    return get_frame_register_signed
	     (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);

  /* If the PC is in __mips16_call_stub_*, this is one of the call
     call/return stubs.  */
  prefixlen = strlen (mips_str_mips16_call_stub);
  if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
    {
      /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
         and the target PC is in $2.  */
      if (mips_is_stub_suffix (name + prefixlen, 0))
	return get_frame_register_signed
		 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);

      /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
         i.e. before the JALR instruction, this is effectively a call stub
         and the target PC is in $2.  Otherwise this is effectively
         a return stub and the target PC is in $18.  */
      else if (mips_is_stub_mode (name + prefixlen)
	       && name[prefixlen + 2] == '_'
	       && mips_is_stub_suffix (name + prefixlen + 3, 0))
	{
	  if (pc == start_addr)
	    /* This is the 'call' part of a call stub.  The return
	       address is in $2.  */
	    return get_frame_register_signed
		     (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
	  else
	    /* This is the 'return' part of a call stub.  The return
	       address is in $18.  */
	    return get_frame_register_signed
		     (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
	}
      else
	return 0;		/* Not a stub.  */
    }

  /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
     compiler-generated call or call/return stubs.  */
  if (startswith (name, mips_str_fn_stub)
      || startswith (name, mips_str_call_stub))
    {
      if (pc == start_addr)
	/* This is the 'call' part of a call stub.  Call this helper
	   to scan through this code for interesting instructions
	   and determine the final PC.  */
	return mips_get_mips16_fn_stub_pc (frame, pc);
      else
	/* This is the 'return' part of a call stub.  The return address
	   is in $18.  */
	return get_frame_register_signed
		 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
    }

  return 0;			/* Not a stub.  */
}

/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
   This implements the IN_SOLIB_RETURN_TRAMPOLINE macro.  */

static int
mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
{
  CORE_ADDR start_addr;
  size_t prefixlen;

  /* Find the starting address of the function containing the PC.  */
  if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
    return 0;

  /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
     the start, i.e. after the JALR instruction, this is effectively
     a return stub.  */
  prefixlen = strlen (mips_str_mips16_call_stub);
  if (pc != start_addr
      && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
      && mips_is_stub_mode (name + prefixlen)
      && name[prefixlen + 2] == '_'
      && mips_is_stub_suffix (name + prefixlen + 3, 1))
    return 1;

  /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
     the JAL or JALR instruction, this is effectively a return stub.  */
  prefixlen = strlen (mips_str_call_fp_stub);
  if (pc != start_addr
      && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
    return 1;

  /* Consume the .pic. prefix of any PIC stub, this function must return
     true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
     or the call stub path will trigger in handle_inferior_event causing
     it to go astray.  */
  prefixlen = strlen (mips_str_pic);
  if (strncmp (name, mips_str_pic, prefixlen) == 0)
    name += prefixlen;

  /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub.  */
  prefixlen = strlen (mips_str_mips16_ret_stub);
  if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
      && mips_is_stub_mode (name + prefixlen)
      && name[prefixlen + 2] == '\0')
    return 1;

  return 0;			/* Not a stub.  */
}

/* If the current PC is the start of a non-PIC-to-PIC stub, return the
   PC of the stub target.  The stub just loads $t9 and jumps to it,
   so that $t9 has the correct value at function entry.  */

static CORE_ADDR
mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct bound_minimal_symbol msym;
  int i;
  gdb_byte stub_code[16];
  int32_t stub_words[4];

  /* The stub for foo is named ".pic.foo", and is either two
     instructions inserted before foo or a three instruction sequence
     which jumps to foo.  */
  msym = lookup_minimal_symbol_by_pc (pc);
  if (msym.minsym == NULL
      || BMSYMBOL_VALUE_ADDRESS (msym) != pc
      || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
      || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
    return 0;

  /* A two-instruction header.  */
  if (MSYMBOL_SIZE (msym.minsym) == 8)
    return pc + 8;

  /* A three-instruction (plus delay slot) trampoline.  */
  if (MSYMBOL_SIZE (msym.minsym) == 16)
    {
      if (target_read_memory (pc, stub_code, 16) != 0)
	return 0;
      for (i = 0; i < 4; i++)
	stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
						  4, byte_order);

      /* A stub contains these instructions:
	 lui	t9, %hi(target)
	 j	target
	  addiu	t9, t9, %lo(target)
	 nop

	 This works even for N64, since stubs are only generated with
	 -msym32.  */
      if ((stub_words[0] & 0xffff0000U) == 0x3c190000
	  && (stub_words[1] & 0xfc000000U) == 0x08000000
	  && (stub_words[2] & 0xffff0000U) == 0x27390000
	  && stub_words[3] == 0x00000000)
	return ((((stub_words[0] & 0x0000ffff) << 16)
		 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
    }

  /* Not a recognized stub.  */
  return 0;
}

static CORE_ADDR
mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  CORE_ADDR requested_pc = pc;
  CORE_ADDR target_pc;
  CORE_ADDR new_pc;

  do
    {
      target_pc = pc;

      new_pc = mips_skip_mips16_trampoline_code (frame, pc);
      if (new_pc)
	pc = new_pc;

      new_pc = find_solib_trampoline_target (frame, pc);
      if (new_pc)
	pc = new_pc;

      new_pc = mips_skip_pic_trampoline_code (frame, pc);
      if (new_pc)
	pc = new_pc;
    }
  while (pc != target_pc);

  return pc != requested_pc ? pc : 0;
}

/* Convert a dbx stab register number (from `r' declaration) to a GDB
   [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM.  */

static int
mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
  int regnum;
  if (num >= 0 && num < 32)
    regnum = num;
  else if (num >= 38 && num < 70)
    regnum = num + mips_regnum (gdbarch)->fp0 - 38;
  else if (num == 70)
    regnum = mips_regnum (gdbarch)->hi;
  else if (num == 71)
    regnum = mips_regnum (gdbarch)->lo;
  else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
    regnum = num + mips_regnum (gdbarch)->dspacc - 72;
  else
    return -1;
  return gdbarch_num_regs (gdbarch) + regnum;
}


/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
   gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM.  */

static int
mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
  int regnum;
  if (num >= 0 && num < 32)
    regnum = num;
  else if (num >= 32 && num < 64)
    regnum = num + mips_regnum (gdbarch)->fp0 - 32;
  else if (num == 64)
    regnum = mips_regnum (gdbarch)->hi;
  else if (num == 65)
    regnum = mips_regnum (gdbarch)->lo;
  else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
    regnum = num + mips_regnum (gdbarch)->dspacc - 66;
  else
    return -1;
  return gdbarch_num_regs (gdbarch) + regnum;
}

static int
mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
{
  /* Only makes sense to supply raw registers.  */
  gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
  /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
     decide if it is valid.  Should instead define a standard sim/gdb
     register numbering scheme.  */
  if (gdbarch_register_name (gdbarch,
			     gdbarch_num_regs (gdbarch) + regnum) != NULL
      && gdbarch_register_name (gdbarch,
			        gdbarch_num_regs (gdbarch)
				+ regnum)[0] != '\0')
    return regnum;
  else
    return LEGACY_SIM_REGNO_IGNORE;
}


/* Convert an integer into an address.  Extracting the value signed
   guarantees a correctly sign extended address.  */

static CORE_ADDR
mips_integer_to_address (struct gdbarch *gdbarch,
			 struct type *type, const gdb_byte *buf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
}

/* Dummy virtual frame pointer method.  This is no more or less accurate
   than most other architectures; we just need to be explicit about it,
   because the pseudo-register gdbarch_sp_regnum will otherwise lead to
   an assertion failure.  */

static void
mips_virtual_frame_pointer (struct gdbarch *gdbarch, 
			    CORE_ADDR pc, int *reg, LONGEST *offset)
{
  *reg = MIPS_SP_REGNUM;
  *offset = 0;
}

static void
mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
{
  enum mips_abi *abip = (enum mips_abi *) obj;
  const char *name = bfd_get_section_name (abfd, sect);

  if (*abip != MIPS_ABI_UNKNOWN)
    return;

  if (!startswith (name, ".mdebug."))
    return;

  if (strcmp (name, ".mdebug.abi32") == 0)
    *abip = MIPS_ABI_O32;
  else if (strcmp (name, ".mdebug.abiN32") == 0)
    *abip = MIPS_ABI_N32;
  else if (strcmp (name, ".mdebug.abi64") == 0)
    *abip = MIPS_ABI_N64;
  else if (strcmp (name, ".mdebug.abiO64") == 0)
    *abip = MIPS_ABI_O64;
  else if (strcmp (name, ".mdebug.eabi32") == 0)
    *abip = MIPS_ABI_EABI32;
  else if (strcmp (name, ".mdebug.eabi64") == 0)
    *abip = MIPS_ABI_EABI64;
  else
    warning (_("unsupported ABI %s."), name + 8);
}

static void
mips_find_long_section (bfd *abfd, asection *sect, void *obj)
{
  int *lbp = (int *) obj;
  const char *name = bfd_get_section_name (abfd, sect);

  if (startswith (name, ".gcc_compiled_long32"))
    *lbp = 32;
  else if (startswith (name, ".gcc_compiled_long64"))
    *lbp = 64;
  else if (startswith (name, ".gcc_compiled_long"))
    warning (_("unrecognized .gcc_compiled_longXX"));
}

static enum mips_abi
global_mips_abi (void)
{
  int i;

  for (i = 0; mips_abi_strings[i] != NULL; i++)
    if (mips_abi_strings[i] == mips_abi_string)
      return (enum mips_abi) i;

  internal_error (__FILE__, __LINE__, _("unknown ABI string"));
}

/* Return the default compressed instruction set, either of MIPS16
   or microMIPS, selected when none could have been determined from
   the ELF header of the binary being executed (or no binary has been
   selected.  */

static enum mips_isa
global_mips_compression (void)
{
  int i;

  for (i = 0; mips_compression_strings[i] != NULL; i++)
    if (mips_compression_strings[i] == mips_compression_string)
      return (enum mips_isa) i;

  internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
}

static void
mips_register_g_packet_guesses (struct gdbarch *gdbarch)
{
  /* If the size matches the set of 32-bit or 64-bit integer registers,
     assume that's what we've got.  */
  register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
  register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);

  /* If the size matches the full set of registers GDB traditionally
     knows about, including floating point, for either 32-bit or
     64-bit, assume that's what we've got.  */
  register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
  register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);

  /* Otherwise we don't have a useful guess.  */
}

static struct value *
value_of_mips_user_reg (struct frame_info *frame, const void *baton)
{
  const int *reg_p = (const int *) baton;
  return value_of_register (*reg_p, frame);
}

static struct gdbarch *
mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int elf_flags;
  enum mips_abi mips_abi, found_abi, wanted_abi;
  int i, num_regs;
  enum mips_fpu_type fpu_type;
  struct tdesc_arch_data *tdesc_data = NULL;
  int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
  const char **reg_names;
  struct mips_regnum mips_regnum, *regnum;
  enum mips_isa mips_isa;
  int dspacc;
  int dspctl;

  /* Fill in the OS dependent register numbers and names.  */
  if (info.osabi == GDB_OSABI_LINUX)
    {
      mips_regnum.fp0 = 38;
      mips_regnum.pc = 37;
      mips_regnum.cause = 36;
      mips_regnum.badvaddr = 35;
      mips_regnum.hi = 34;
      mips_regnum.lo = 33;
      mips_regnum.fp_control_status = 70;
      mips_regnum.fp_implementation_revision = 71;
      mips_regnum.dspacc = -1;
      mips_regnum.dspctl = -1;
      dspacc = 72;
      dspctl = 78;
      num_regs = 90;
      reg_names = mips_linux_reg_names;
    }
  else
    {
      mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
      mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
      mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
      mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
      mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
      mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
      mips_regnum.fp_control_status = 70;
      mips_regnum.fp_implementation_revision = 71;
      mips_regnum.dspacc = dspacc = -1;
      mips_regnum.dspctl = dspctl = -1;
      num_regs = MIPS_LAST_EMBED_REGNUM + 1;
      if (info.bfd_arch_info != NULL
          && info.bfd_arch_info->mach == bfd_mach_mips3900)
        reg_names = mips_tx39_reg_names;
      else
        reg_names = mips_generic_reg_names;
    }

  /* Check any target description for validity.  */
  if (tdesc_has_registers (info.target_desc))
    {
      static const char *const mips_gprs[] = {
	"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
	"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
	"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
      };
      static const char *const mips_fprs[] = {
	"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
	"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
	"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
	"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
      };

      const struct tdesc_feature *feature;
      int valid_p;

      feature = tdesc_find_feature (info.target_desc,
				    "org.gnu.gdb.mips.cpu");
      if (feature == NULL)
	return NULL;

      tdesc_data = tdesc_data_alloc ();

      valid_p = 1;
      for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
					    mips_gprs[i]);


      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  mips_regnum.lo, "lo");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  mips_regnum.hi, "hi");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  mips_regnum.pc, "pc");

      if (!valid_p)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      feature = tdesc_find_feature (info.target_desc,
				    "org.gnu.gdb.mips.cp0");
      if (feature == NULL)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      valid_p = 1;
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  mips_regnum.badvaddr, "badvaddr");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  MIPS_PS_REGNUM, "status");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  mips_regnum.cause, "cause");

      if (!valid_p)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      /* FIXME drow/2007-05-17: The FPU should be optional.  The MIPS
	 backend is not prepared for that, though.  */
      feature = tdesc_find_feature (info.target_desc,
				    "org.gnu.gdb.mips.fpu");
      if (feature == NULL)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      valid_p = 1;
      for (i = 0; i < 32; i++)
	valid_p &= tdesc_numbered_register (feature, tdesc_data,
					    i + mips_regnum.fp0, mips_fprs[i]);

      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  mips_regnum.fp_control_status,
					  "fcsr");
      valid_p
	&= tdesc_numbered_register (feature, tdesc_data,
				    mips_regnum.fp_implementation_revision,
				    "fir");

      if (!valid_p)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      num_regs = mips_regnum.fp_implementation_revision + 1;

      if (dspacc >= 0)
	{
	  feature = tdesc_find_feature (info.target_desc,
					"org.gnu.gdb.mips.dsp");
	  /* The DSP registers are optional; it's OK if they are absent.  */
	  if (feature != NULL)
	    {
	      i = 0;
	      valid_p = 1;
	      valid_p &= tdesc_numbered_register (feature, tdesc_data,
						  dspacc + i++, "hi1");
	      valid_p &= tdesc_numbered_register (feature, tdesc_data,
						  dspacc + i++, "lo1");
	      valid_p &= tdesc_numbered_register (feature, tdesc_data,
						  dspacc + i++, "hi2");
	      valid_p &= tdesc_numbered_register (feature, tdesc_data,
						  dspacc + i++, "lo2");
	      valid_p &= tdesc_numbered_register (feature, tdesc_data,
						  dspacc + i++, "hi3");
	      valid_p &= tdesc_numbered_register (feature, tdesc_data,
						  dspacc + i++, "lo3");

	      valid_p &= tdesc_numbered_register (feature, tdesc_data,
						  dspctl, "dspctl");

	      if (!valid_p)
		{
		  tdesc_data_cleanup (tdesc_data);
		  return NULL;
		}

	      mips_regnum.dspacc = dspacc;
	      mips_regnum.dspctl = dspctl;

	      num_regs = mips_regnum.dspctl + 1;
	    }
	}

      /* It would be nice to detect an attempt to use a 64-bit ABI
	 when only 32-bit registers are provided.  */
      reg_names = NULL;
    }

  /* First of all, extract the elf_flags, if available.  */
  if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
    elf_flags = elf_elfheader (info.abfd)->e_flags;
  else if (arches != NULL)
    elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
  else
    elf_flags = 0;
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);

  /* Check ELF_FLAGS to see if it specifies the ABI being used.  */
  switch ((elf_flags & EF_MIPS_ABI))
    {
    case E_MIPS_ABI_O32:
      found_abi = MIPS_ABI_O32;
      break;
    case E_MIPS_ABI_O64:
      found_abi = MIPS_ABI_O64;
      break;
    case E_MIPS_ABI_EABI32:
      found_abi = MIPS_ABI_EABI32;
      break;
    case E_MIPS_ABI_EABI64:
      found_abi = MIPS_ABI_EABI64;
      break;
    default:
      if ((elf_flags & EF_MIPS_ABI2))
	found_abi = MIPS_ABI_N32;
      else
	found_abi = MIPS_ABI_UNKNOWN;
      break;
    }

  /* GCC creates a pseudo-section whose name describes the ABI.  */
  if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
    bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);

  /* If we have no useful BFD information, use the ABI from the last
     MIPS architecture (if there is one).  */
  if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
    found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;

  /* Try the architecture for any hint of the correct ABI.  */
  if (found_abi == MIPS_ABI_UNKNOWN
      && info.bfd_arch_info != NULL
      && info.bfd_arch_info->arch == bfd_arch_mips)
    {
      switch (info.bfd_arch_info->mach)
	{
	case bfd_mach_mips3900:
	  found_abi = MIPS_ABI_EABI32;
	  break;
	case bfd_mach_mips4100:
	case bfd_mach_mips5000:
	  found_abi = MIPS_ABI_EABI64;
	  break;
	case bfd_mach_mips8000:
	case bfd_mach_mips10000:
	  /* On Irix, ELF64 executables use the N64 ABI.  The
	     pseudo-sections which describe the ABI aren't present
	     on IRIX.  (Even for executables created by gcc.)  */
	  if (info.abfd != NULL
	      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
	      && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
	    found_abi = MIPS_ABI_N64;
	  else
	    found_abi = MIPS_ABI_N32;
	  break;
	}
    }

  /* Default 64-bit objects to N64 instead of O32.  */
  if (found_abi == MIPS_ABI_UNKNOWN
      && info.abfd != NULL
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
      && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
    found_abi = MIPS_ABI_N64;

  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
			found_abi);

  /* What has the user specified from the command line?  */
  wanted_abi = global_mips_abi ();
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
			wanted_abi);

  /* Now that we have found what the ABI for this binary would be,
     check whether the user is overriding it.  */
  if (wanted_abi != MIPS_ABI_UNKNOWN)
    mips_abi = wanted_abi;
  else if (found_abi != MIPS_ABI_UNKNOWN)
    mips_abi = found_abi;
  else
    mips_abi = MIPS_ABI_O32;
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
			mips_abi);

  /* Determine the default compressed ISA.  */
  if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
      && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
    mips_isa = ISA_MICROMIPS;
  else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
	   && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
    mips_isa = ISA_MIPS16;
  else
    mips_isa = global_mips_compression ();
  mips_compression_string = mips_compression_strings[mips_isa];

  /* Also used when doing an architecture lookup.  */
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_gdbarch_init: "
			"mips64_transfers_32bit_regs_p = %d\n",
			mips64_transfers_32bit_regs_p);

  /* Determine the MIPS FPU type.  */
#ifdef HAVE_ELF
  if (info.abfd
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
    elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
					     Tag_GNU_MIPS_ABI_FP);
#endif /* HAVE_ELF */

  if (!mips_fpu_type_auto)
    fpu_type = mips_fpu_type;
  else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
    {
      switch (elf_fpu_type)
	{
	case Val_GNU_MIPS_ABI_FP_DOUBLE:
	  fpu_type = MIPS_FPU_DOUBLE;
	  break;
	case Val_GNU_MIPS_ABI_FP_SINGLE:
	  fpu_type = MIPS_FPU_SINGLE;
	  break;
	case Val_GNU_MIPS_ABI_FP_SOFT:
	default:
	  /* Soft float or unknown.  */
	  fpu_type = MIPS_FPU_NONE;
	  break;
	}
    }
  else if (info.bfd_arch_info != NULL
	   && info.bfd_arch_info->arch == bfd_arch_mips)
    switch (info.bfd_arch_info->mach)
      {
      case bfd_mach_mips3900:
      case bfd_mach_mips4100:
      case bfd_mach_mips4111:
      case bfd_mach_mips4120:
	fpu_type = MIPS_FPU_NONE;
	break;
      case bfd_mach_mips4650:
	fpu_type = MIPS_FPU_SINGLE;
	break;
      default:
	fpu_type = MIPS_FPU_DOUBLE;
	break;
      }
  else if (arches != NULL)
    fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
  else
    fpu_type = MIPS_FPU_DOUBLE;
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_gdbarch_init: fpu_type = %d\n", fpu_type);

  /* Check for blatant incompatibilities.  */

  /* If we have only 32-bit registers, then we can't debug a 64-bit
     ABI.  */
  if (info.target_desc
      && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
      && mips_abi != MIPS_ABI_EABI32
      && mips_abi != MIPS_ABI_O32)
    {
      if (tdesc_data != NULL)
	tdesc_data_cleanup (tdesc_data);
      return NULL;
    }

  /* Try to find a pre-existing architecture.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      /* MIPS needs to be pedantic about which ABI and the compressed
         ISA variation the object is using.  */
      if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
	continue;
      if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
	continue;
      if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
	continue;
      /* Need to be pedantic about which register virtual size is
         used.  */
      if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
	  != mips64_transfers_32bit_regs_p)
	continue;
      /* Be pedantic about which FPU is selected.  */
      if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
	continue;

      if (tdesc_data != NULL)
	tdesc_data_cleanup (tdesc_data);
      return arches->gdbarch;
    }

  /* Need a new architecture.  Fill in a target specific vector.  */
  tdep = XNEW (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);
  tdep->elf_flags = elf_flags;
  tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
  tdep->found_abi = found_abi;
  tdep->mips_abi = mips_abi;
  tdep->mips_isa = mips_isa;
  tdep->mips_fpu_type = fpu_type;
  tdep->register_size_valid_p = 0;
  tdep->register_size = 0;

  if (info.target_desc)
    {
      /* Some useful properties can be inferred from the target.  */
      if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
	{
	  tdep->register_size_valid_p = 1;
	  tdep->register_size = 4;
	}
      else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
	{
	  tdep->register_size_valid_p = 1;
	  tdep->register_size = 8;
	}
    }

  /* Initially set everything according to the default ABI/ISA.  */
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 64);
  set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
  set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);

  set_gdbarch_ax_pseudo_register_collect (gdbarch,
					  mips_ax_pseudo_register_collect);
  set_gdbarch_ax_pseudo_register_push_stack
      (gdbarch, mips_ax_pseudo_register_push_stack);

  set_gdbarch_elf_make_msymbol_special (gdbarch,
					mips_elf_make_msymbol_special);
  set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
  set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
  set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);

  regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
  *regnum = mips_regnum;
  set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
  set_gdbarch_num_regs (gdbarch, num_regs);
  set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
  set_gdbarch_register_name (gdbarch, mips_register_name);
  set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
  tdep->mips_processor_reg_names = reg_names;
  tdep->regnum = regnum;

  switch (mips_abi)
    {
    case MIPS_ABI_O32:
      set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_o32_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_long_long_bit (gdbarch, 64);
      break;
    case MIPS_ABI_O64:
      set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_o64_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_long_long_bit (gdbarch, 64);
      break;
    case MIPS_ABI_EABI32:
      set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_long_long_bit (gdbarch, 64);
      break;
    case MIPS_ABI_EABI64:
      set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      break;
    case MIPS_ABI_N32:
      set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_long_double_bit (gdbarch, 128);
      set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
      break;
    case MIPS_ABI_N64:
      set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_long_double_bit (gdbarch, 128);
      set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
      break;
    default:
      internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
    }

  /* GCC creates a pseudo-section whose name specifies the size of
     longs, since -mlong32 or -mlong64 may be used independent of
     other options.  How those options affect pointer sizes is ABI and
     architecture dependent, so use them to override the default sizes
     set by the ABI.  This table shows the relationship between ABI,
     -mlongXX, and size of pointers:

     ABI		-mlongXX	ptr bits
     ---		--------	--------
     o32		32		32
     o32		64		32
     n32		32		32
     n32		64		64
     o64		32		32
     o64		64		64
     n64		32		32
     n64		64		64
     eabi32		32		32
     eabi32		64		32
     eabi64		32		32
     eabi64		64		64

    Note that for o32 and eabi32, pointers are always 32 bits
    regardless of any -mlongXX option.  For all others, pointers and
    longs are the same, as set by -mlongXX or set by defaults.  */

  if (info.abfd != NULL)
    {
      int long_bit = 0;

      bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
      if (long_bit)
	{
	  set_gdbarch_long_bit (gdbarch, long_bit);
	  switch (mips_abi)
	    {
	    case MIPS_ABI_O32:
	    case MIPS_ABI_EABI32:
	      break;
	    case MIPS_ABI_N32:
	    case MIPS_ABI_O64:
	    case MIPS_ABI_N64:
	    case MIPS_ABI_EABI64:
	      set_gdbarch_ptr_bit (gdbarch, long_bit);
	      break;
	    default:
	      internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
	    }
	}
    }

  /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
     that could indicate -gp32 BUT gas/config/tc-mips.c contains the
     comment:

     ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
     flag in object files because to do so would make it impossible to
     link with libraries compiled without "-gp32".  This is
     unnecessarily restrictive.

     We could solve this problem by adding "-gp32" multilibs to gcc,
     but to set this flag before gcc is built with such multilibs will
     break too many systems.''

     But even more unhelpfully, the default linker output target for
     mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
     for 64-bit programs - you need to change the ABI to change this,
     and not all gcc targets support that currently.  Therefore using
     this flag to detect 32-bit mode would do the wrong thing given
     the current gcc - it would make GDB treat these 64-bit programs
     as 32-bit programs by default.  */

  set_gdbarch_read_pc (gdbarch, mips_read_pc);
  set_gdbarch_write_pc (gdbarch, mips_write_pc);

  /* Add/remove bits from an address.  The MIPS needs be careful to
     ensure that all 32 bit addresses are sign extended to 64 bits.  */
  set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);

  /* Unwind the frame.  */
  set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
  set_gdbarch_dummy_id (gdbarch, mips_dummy_id);

  /* Map debug register numbers onto internal register numbers.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
  set_gdbarch_ecoff_reg_to_regnum (gdbarch,
				   mips_dwarf_dwarf2_ecoff_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
				    mips_dwarf_dwarf2_ecoff_reg_to_regnum);
  set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);

  /* MIPS version of CALL_DUMMY.  */

  set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
  set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
  set_gdbarch_frame_align (gdbarch, mips_frame_align);

  set_gdbarch_print_float_info (gdbarch, mips_print_float_info);

  set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
  set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
  set_gdbarch_value_to_register (gdbarch, mips_value_to_register);

  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
  set_gdbarch_adjust_breakpoint_address (gdbarch,
					 mips_adjust_breakpoint_address);

  set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);

  set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);

  set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
  set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
  set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);

  set_gdbarch_register_type (gdbarch, mips_register_type);

  set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);

  if (mips_abi == MIPS_ABI_N32)
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
  else if (mips_abi == MIPS_ABI_N64)
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
  else
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);

  /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
     HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
     need to all be folded into the target vector.  Since they are
     being used as guards for target_stopped_by_watchpoint, why not have
     target_stopped_by_watchpoint return the type of watchpoint that the code
     is sitting on?  */
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);

  set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);

  /* NOTE drow/2012-04-25: We overload the core solib trampoline code
     to support MIPS16.  This is a bad thing.  Make sure not to do it
     if we have an OS ABI that actually supports shared libraries, since
     shared library support is more important.  If we have an OS someday
     that supports both shared libraries and MIPS16, we'll have to find
     a better place for these.
     macro/2012-04-25: But that applies to return trampolines only and
     currently no MIPS OS ABI uses shared libraries that have them.  */
  set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);

  set_gdbarch_single_step_through_delay (gdbarch,
					 mips_single_step_through_delay);

  /* Virtual tables.  */
  set_gdbarch_vbit_in_delta (gdbarch, 1);

  mips_register_g_packet_guesses (gdbarch);

  /* Hook in OS ABI-specific overrides, if they have been registered.  */
  info.tdep_info = tdesc_data;
  gdbarch_init_osabi (info, gdbarch);

  /* The hook may have adjusted num_regs, fetch the final value and
     set pc_regnum and sp_regnum now that it has been fixed.  */
  num_regs = gdbarch_num_regs (gdbarch);
  set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
  set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);

  /* Unwind the frame.  */
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
  frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);

  if (tdesc_data)
    {
      set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
      tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);

      /* Override the normal target description methods to handle our
	 dual real and pseudo registers.  */
      set_gdbarch_register_name (gdbarch, mips_register_name);
      set_gdbarch_register_reggroup_p (gdbarch,
				       mips_tdesc_register_reggroup_p);

      num_regs = gdbarch_num_regs (gdbarch);
      set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
      set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
      set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
    }

  /* Add ABI-specific aliases for the registers.  */
  if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
    for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
      user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
		    value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
  else
    for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
      user_reg_add (gdbarch, mips_o32_aliases[i].name,
		    value_of_mips_user_reg, &mips_o32_aliases[i].regnum);

  /* Add some other standard aliases.  */
  for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
    user_reg_add (gdbarch, mips_register_aliases[i].name,
		  value_of_mips_user_reg, &mips_register_aliases[i].regnum);

  for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
    user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
		  value_of_mips_user_reg, 
		  &mips_numeric_register_aliases[i].regnum);

  return gdbarch;
}

static void
mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
{
  struct gdbarch_info info;

  /* Force the architecture to update, and (if it's a MIPS architecture)
     mips_gdbarch_init will take care of the rest.  */
  gdbarch_info_init (&info);
  gdbarch_update_p (info);
}

/* Print out which MIPS ABI is in use.  */

static void
show_mips_abi (struct ui_file *file,
	       int from_tty,
	       struct cmd_list_element *ignored_cmd,
	       const char *ignored_value)
{
  if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
    fprintf_filtered
      (file, 
       "The MIPS ABI is unknown because the current architecture "
       "is not MIPS.\n");
  else
    {
      enum mips_abi global_abi = global_mips_abi ();
      enum mips_abi actual_abi = mips_abi (target_gdbarch ());
      const char *actual_abi_str = mips_abi_strings[actual_abi];

      if (global_abi == MIPS_ABI_UNKNOWN)
	fprintf_filtered
	  (file, 
	   "The MIPS ABI is set automatically (currently \"%s\").\n",
	   actual_abi_str);
      else if (global_abi == actual_abi)
	fprintf_filtered
	  (file,
	   "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
	   actual_abi_str);
      else
	{
	  /* Probably shouldn't happen...  */
	  fprintf_filtered (file,
			    "The (auto detected) MIPS ABI \"%s\" is in use "
			    "even though the user setting was \"%s\".\n",
	     actual_abi_str, mips_abi_strings[global_abi]);
	}
    }
}

/* Print out which MIPS compressed ISA encoding is used.  */

static void
show_mips_compression (struct ui_file *file, int from_tty,
		       struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
		    value);
}

static void
mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (tdep != NULL)
    {
      int ef_mips_arch;
      int ef_mips_32bitmode;
      /* Determine the ISA.  */
      switch (tdep->elf_flags & EF_MIPS_ARCH)
	{
	case E_MIPS_ARCH_1:
	  ef_mips_arch = 1;
	  break;
	case E_MIPS_ARCH_2:
	  ef_mips_arch = 2;
	  break;
	case E_MIPS_ARCH_3:
	  ef_mips_arch = 3;
	  break;
	case E_MIPS_ARCH_4:
	  ef_mips_arch = 4;
	  break;
	default:
	  ef_mips_arch = 0;
	  break;
	}
      /* Determine the size of a pointer.  */
      ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
      fprintf_unfiltered (file,
			  "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
			  tdep->elf_flags);
      fprintf_unfiltered (file,
			  "mips_dump_tdep: ef_mips_32bitmode = %d\n",
			  ef_mips_32bitmode);
      fprintf_unfiltered (file,
			  "mips_dump_tdep: ef_mips_arch = %d\n",
			  ef_mips_arch);
      fprintf_unfiltered (file,
			  "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
			  tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
      fprintf_unfiltered (file,
			  "mips_dump_tdep: "
			  "mips_mask_address_p() %d (default %d)\n",
			  mips_mask_address_p (tdep),
			  tdep->default_mask_address_p);
    }
  fprintf_unfiltered (file,
		      "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
		      MIPS_DEFAULT_FPU_TYPE,
		      (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
		       : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
		       : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
		       : "???"));
  fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
		      MIPS_EABI (gdbarch));
  fprintf_unfiltered (file,
		      "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
		      MIPS_FPU_TYPE (gdbarch),
		      (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
		       : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
		       : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
		       : "???"));
}

extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */

void
_initialize_mips_tdep (void)
{
  static struct cmd_list_element *mipsfpulist = NULL;
  struct cmd_list_element *c;

  mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
  if (MIPS_ABI_LAST + 1
      != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
    internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));

  gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);

  mips_pdr_data = register_objfile_data ();

  /* Create feature sets with the appropriate properties.  The values
     are not important.  */
  mips_tdesc_gp32 = allocate_target_description ();
  set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");

  mips_tdesc_gp64 = allocate_target_description ();
  set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");

  /* Add root prefix command for all "set mips"/"show mips" commands.  */
  add_prefix_cmd ("mips", no_class, set_mips_command,
		  _("Various MIPS specific commands."),
		  &setmipscmdlist, "set mips ", 0, &setlist);

  add_prefix_cmd ("mips", no_class, show_mips_command,
		  _("Various MIPS specific commands."),
		  &showmipscmdlist, "show mips ", 0, &showlist);

  /* Allow the user to override the ABI.  */
  add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
			&mips_abi_string, _("\
Set the MIPS ABI used by this program."), _("\
Show the MIPS ABI used by this program."), _("\
This option can be set to one of:\n\
  auto  - the default ABI associated with the current binary\n\
  o32\n\
  o64\n\
  n32\n\
  n64\n\
  eabi32\n\
  eabi64"),
			mips_abi_update,
			show_mips_abi,
			&setmipscmdlist, &showmipscmdlist);

  /* Allow the user to set the ISA to assume for compressed code if ELF
     file flags don't tell or there is no program file selected.  This
     setting is updated whenever unambiguous ELF file flags are interpreted,
     and carried over to subsequent sessions.  */
  add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
			&mips_compression_string, _("\
Set the compressed ISA encoding used by MIPS code."), _("\
Show the compressed ISA encoding used by MIPS code."), _("\
Select the compressed ISA encoding used in functions that have no symbol\n\
information available.  The encoding can be set to either of:\n\
  mips16\n\
  micromips\n\
and is updated automatically from ELF file flags if available."),
			mips_abi_update,
			show_mips_compression,
			&setmipscmdlist, &showmipscmdlist);

  /* Let the user turn off floating point and set the fence post for
     heuristic_proc_start.  */

  add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
		  _("Set use of MIPS floating-point coprocessor."),
		  &mipsfpulist, "set mipsfpu ", 0, &setlist);
  add_cmd ("single", class_support, set_mipsfpu_single_command,
	   _("Select single-precision MIPS floating-point coprocessor."),
	   &mipsfpulist);
  add_cmd ("double", class_support, set_mipsfpu_double_command,
	   _("Select double-precision MIPS floating-point coprocessor."),
	   &mipsfpulist);
  add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
  add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
  add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
  add_cmd ("none", class_support, set_mipsfpu_none_command,
	   _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
  add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
  add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
  add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
  add_cmd ("auto", class_support, set_mipsfpu_auto_command,
	   _("Select MIPS floating-point coprocessor automatically."),
	   &mipsfpulist);
  add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
	   _("Show current use of MIPS floating-point coprocessor target."),
	   &showlist);

  /* We really would like to have both "0" and "unlimited" work, but
     command.c doesn't deal with that.  So make it a var_zinteger
     because the user can always use "999999" or some such for unlimited.  */
  add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
			    &heuristic_fence_post, _("\
Set the distance searched for the start of a function."), _("\
Show the distance searched for the start of a function."), _("\
If you are debugging a stripped executable, GDB needs to search through the\n\
program for the start of a function.  This command sets the distance of the\n\
search.  The only need to set it is when debugging a stripped executable."),
			    reinit_frame_cache_sfunc,
			    NULL, /* FIXME: i18n: The distance searched for
				     the start of a function is %s.  */
			    &setlist, &showlist);

  /* Allow the user to control whether the upper bits of 64-bit
     addresses should be zeroed.  */
  add_setshow_auto_boolean_cmd ("mask-address", no_class,
				&mask_address_var, _("\
Set zeroing of upper 32 bits of 64-bit addresses."), _("\
Show zeroing of upper 32 bits of 64-bit addresses."), _("\
Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
allow GDB to determine the correct value."),
				NULL, show_mask_address,
				&setmipscmdlist, &showmipscmdlist);

  /* Allow the user to control the size of 32 bit registers within the
     raw remote packet.  */
  add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
			   &mips64_transfers_32bit_regs_p, _("\
Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
			   _("\
Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
			   _("\
Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
64 bits for others.  Use \"off\" to disable compatibility mode"),
			   set_mips64_transfers_32bit_regs,
			   NULL, /* FIXME: i18n: Compatibility with 64-bit
				    MIPS target that transfers 32-bit
				    quantities is %s.  */
			   &setlist, &showlist);

  /* Debug this files internals.  */
  add_setshow_zuinteger_cmd ("mips", class_maintenance,
			     &mips_debug, _("\
Set mips debugging."), _("\
Show mips debugging."), _("\
When non-zero, mips specific debugging is enabled."),
			     NULL,
			     NULL, /* FIXME: i18n: Mips debugging is
				      currently %s.  */
			     &setdebuglist, &showdebuglist);
}