summaryrefslogtreecommitdiff
path: root/gdb/gnu-v3-abi.c
blob: 2c7c83e67b1c25577158674fb138015e7a93eecf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
/* Abstraction of GNU v3 abi.
   Contributed by Jim Blandy <jimb@redhat.com>

   Copyright (C) 2001-2023 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "language.h"
#include "value.h"
#include "cp-abi.h"
#include "cp-support.h"
#include "demangle.h"
#include "dwarf2.h"
#include "objfiles.h"
#include "valprint.h"
#include "c-lang.h"
#include "typeprint.h"
#include <algorithm>
#include "cli/cli-style.h"
#include "dwarf2/loc.h"
#include "inferior.h"

static struct cp_abi_ops gnu_v3_abi_ops;

/* A gdbarch key for std::type_info, in the event that it can't be
   found in the debug info.  */

static const registry<gdbarch>::key<struct type> std_type_info_gdbarch_data;


static int
gnuv3_is_vtable_name (const char *name)
{
  return startswith (name, "_ZTV");
}

static int
gnuv3_is_operator_name (const char *name)
{
  return startswith (name, CP_OPERATOR_STR);
}


/* To help us find the components of a vtable, we build ourselves a
   GDB type object representing the vtable structure.  Following the
   V3 ABI, it goes something like this:

   struct gdb_gnu_v3_abi_vtable {

     / * An array of virtual call and virtual base offsets.  The real
	 length of this array depends on the class hierarchy; we use
	 negative subscripts to access the elements.  Yucky, but
	 better than the alternatives.  * /
     ptrdiff_t vcall_and_vbase_offsets[0];

     / * The offset from a virtual pointer referring to this table
	 to the top of the complete object.  * /
     ptrdiff_t offset_to_top;

     / * The type_info pointer for this class.  This is really a
	 std::type_info *, but GDB doesn't really look at the
	 type_info object itself, so we don't bother to get the type
	 exactly right.  * /
     void *type_info;

     / * Virtual table pointers in objects point here.  * /

     / * Virtual function pointers.  Like the vcall/vbase array, the
	 real length of this table depends on the class hierarchy.  * /
     void (*virtual_functions[0]) ();

   };

   The catch, of course, is that the exact layout of this table
   depends on the ABI --- word size, endianness, alignment, etc.  So
   the GDB type object is actually a per-architecture kind of thing.

   vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
   which refers to the struct type * for this structure, laid out
   appropriately for the architecture.  */
static const registry<gdbarch>::key<struct type> vtable_type_gdbarch_data;


/* Human-readable names for the numbers of the fields above.  */
enum {
  vtable_field_vcall_and_vbase_offsets,
  vtable_field_offset_to_top,
  vtable_field_type_info,
  vtable_field_virtual_functions
};


/* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
   described above, laid out appropriately for ARCH.

   We use this function as the gdbarch per-architecture data
   initialization function.  */
static struct type *
get_gdb_vtable_type (struct gdbarch *arch)
{
  struct type *t;
  struct field *field_list, *field;
  int offset;

  struct type *result = vtable_type_gdbarch_data.get (arch);
  if (result != nullptr)
    return result;

  struct type *void_ptr_type
    = builtin_type (arch)->builtin_data_ptr;
  struct type *ptr_to_void_fn_type
    = builtin_type (arch)->builtin_func_ptr;

  type_allocator alloc (arch);

  /* ARCH can't give us the true ptrdiff_t type, so we guess.  */
  struct type *ptrdiff_type
    = init_integer_type (alloc, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");

  /* We assume no padding is necessary, since GDB doesn't know
     anything about alignment at the moment.  If this assumption bites
     us, we should add a gdbarch method which, given a type, returns
     the alignment that type requires, and then use that here.  */

  /* Build the field list.  */
  field_list = XCNEWVEC (struct field, 4);
  field = &field_list[0];
  offset = 0;

  /* ptrdiff_t vcall_and_vbase_offsets[0]; */
  field->set_name ("vcall_and_vbase_offsets");
  field->set_type (lookup_array_range_type (ptrdiff_type, 0, -1));
  field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
  offset += field->type ()->length ();
  field++;

  /* ptrdiff_t offset_to_top; */
  field->set_name ("offset_to_top");
  field->set_type (ptrdiff_type);
  field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
  offset += field->type ()->length ();
  field++;

  /* void *type_info; */
  field->set_name ("type_info");
  field->set_type (void_ptr_type);
  field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
  offset += field->type ()->length ();
  field++;

  /* void (*virtual_functions[0]) (); */
  field->set_name ("virtual_functions");
  field->set_type (lookup_array_range_type (ptr_to_void_fn_type, 0, -1));
  field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
  offset += field->type ()->length ();
  field++;

  /* We assumed in the allocation above that there were four fields.  */
  gdb_assert (field == (field_list + 4));

  t = alloc.new_type (TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
  t->set_num_fields (field - field_list);
  t->set_fields (field_list);
  t->set_name ("gdb_gnu_v3_abi_vtable");
  INIT_CPLUS_SPECIFIC (t);

  result = make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
  vtable_type_gdbarch_data.set (arch, result);
  return result;
}


/* Return the ptrdiff_t type used in the vtable type.  */
static struct type *
vtable_ptrdiff_type (struct gdbarch *gdbarch)
{
  struct type *vtable_type = get_gdb_vtable_type (gdbarch);

  /* The "offset_to_top" field has the appropriate (ptrdiff_t) type.  */
  return vtable_type->field (vtable_field_offset_to_top).type ();
}

/* Return the offset from the start of the imaginary `struct
   gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
   (i.e., where objects' virtual table pointers point).  */
static int
vtable_address_point_offset (struct gdbarch *gdbarch)
{
  struct type *vtable_type = get_gdb_vtable_type (gdbarch);

  return (vtable_type->field (vtable_field_virtual_functions).loc_bitpos ()
	  / TARGET_CHAR_BIT);
}


/* Determine whether structure TYPE is a dynamic class.  Cache the
   result.  */

static int
gnuv3_dynamic_class (struct type *type)
{
  int fieldnum, fieldelem;

  type = check_typedef (type);
  gdb_assert (type->code () == TYPE_CODE_STRUCT
	      || type->code () == TYPE_CODE_UNION);

  if (type->code () == TYPE_CODE_UNION)
    return 0;

  if (TYPE_CPLUS_DYNAMIC (type))
    return TYPE_CPLUS_DYNAMIC (type) == 1;

  ALLOCATE_CPLUS_STRUCT_TYPE (type);

  for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
    if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
	|| gnuv3_dynamic_class (type->field (fieldnum).type ()))
      {
	TYPE_CPLUS_DYNAMIC (type) = 1;
	return 1;
      }

  for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
    for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
	 fieldelem++)
      {
	struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);

	if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
	  {
	    TYPE_CPLUS_DYNAMIC (type) = 1;
	    return 1;
	  }
      }

  TYPE_CPLUS_DYNAMIC (type) = -1;
  return 0;
}

/* Find the vtable for a value of CONTAINER_TYPE located at
   CONTAINER_ADDR.  Return a value of the correct vtable type for this
   architecture, or NULL if CONTAINER does not have a vtable.  */

static struct value *
gnuv3_get_vtable (struct gdbarch *gdbarch,
		  struct type *container_type, CORE_ADDR container_addr)
{
  struct type *vtable_type = get_gdb_vtable_type (gdbarch);
  struct type *vtable_pointer_type;
  struct value *vtable_pointer;
  CORE_ADDR vtable_address;

  container_type = check_typedef (container_type);
  gdb_assert (container_type->code () == TYPE_CODE_STRUCT);

  /* If this type does not have a virtual table, don't read the first
     field.  */
  if (!gnuv3_dynamic_class (container_type))
    return NULL;

  /* We do not consult the debug information to find the virtual table.
     The ABI specifies that it is always at offset zero in any class,
     and debug information may not represent it.

     We avoid using value_contents on principle, because the object might
     be large.  */

  /* Find the type "pointer to virtual table".  */
  vtable_pointer_type = lookup_pointer_type (vtable_type);

  /* Load it from the start of the class.  */
  vtable_pointer = value_at (vtable_pointer_type, container_addr);
  vtable_address = value_as_address (vtable_pointer);

  /* Correct it to point at the start of the virtual table, rather
     than the address point.  */
  return value_at_lazy (vtable_type,
			vtable_address
			- vtable_address_point_offset (gdbarch));
}


static struct type *
gnuv3_rtti_type (struct value *value,
		 int *full_p, LONGEST *top_p, int *using_enc_p)
{
  struct gdbarch *gdbarch;
  struct type *values_type = check_typedef (value->type ());
  struct value *vtable;
  struct minimal_symbol *vtable_symbol;
  const char *vtable_symbol_name;
  const char *class_name;
  struct type *run_time_type;
  LONGEST offset_to_top;
  const char *atsign;

  /* We only have RTTI for dynamic class objects.  */
  if (values_type->code () != TYPE_CODE_STRUCT
      || !gnuv3_dynamic_class (values_type))
    return NULL;

  /* Determine architecture.  */
  gdbarch = values_type->arch ();

  if (using_enc_p)
    *using_enc_p = 0;

  vtable = gnuv3_get_vtable (gdbarch, values_type,
			     value_as_address (value_addr (value)));
  if (vtable == NULL)
    return NULL;

  /* Find the linker symbol for this vtable.  */
  vtable_symbol
    = lookup_minimal_symbol_by_pc (vtable->address ()
				   + vtable->embedded_offset ()).minsym;
  if (! vtable_symbol)
    return NULL;
  
  /* The symbol's demangled name should be something like "vtable for
     CLASS", where CLASS is the name of the run-time type of VALUE.
     If we didn't like this approach, we could instead look in the
     type_info object itself to get the class name.  But this way
     should work just as well, and doesn't read target memory.  */
  vtable_symbol_name = vtable_symbol->demangled_name ();
  if (vtable_symbol_name == NULL
      || !startswith (vtable_symbol_name, "vtable for "))
    {
      warning (_("can't find linker symbol for virtual table for `%s' value"),
	       TYPE_SAFE_NAME (values_type));
      if (vtable_symbol_name)
	warning (_("  found `%s' instead"), vtable_symbol_name);
      return NULL;
    }
  class_name = vtable_symbol_name + 11;

  /* Strip off @plt and version suffixes.  */
  atsign = strchr (class_name, '@');
  if (atsign != NULL)
    {
      char *copy;

      copy = (char *) alloca (atsign - class_name + 1);
      memcpy (copy, class_name, atsign - class_name);
      copy[atsign - class_name] = '\0';
      class_name = copy;
    }

  /* Try to look up the class name as a type name.  */
  /* FIXME: chastain/2003-11-26: block=NULL is bogus.  See pr gdb/1465.  */
  run_time_type = cp_lookup_rtti_type (class_name, NULL);
  if (run_time_type == NULL)
    return NULL;

  /* Get the offset from VALUE to the top of the complete object.
     NOTE: this is the reverse of the meaning of *TOP_P.  */
  offset_to_top
    = value_as_long (value_field (vtable, vtable_field_offset_to_top));

  if (full_p)
    *full_p = (- offset_to_top == value->embedded_offset ()
	       && (value->enclosing_type ()->length ()
		   >= run_time_type->length ()));
  if (top_p)
    *top_p = - offset_to_top;
  return run_time_type;
}

/* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
   function, of type FNTYPE.  */

static struct value *
gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
		      struct type *fntype, int vtable_index)
{
  struct value *vtable, *vfn;

  /* Every class with virtual functions must have a vtable.  */
  vtable = gnuv3_get_vtable (gdbarch, container->type (),
			     value_as_address (value_addr (container)));
  gdb_assert (vtable != NULL);

  /* Fetch the appropriate function pointer from the vtable.  */
  vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
			 vtable_index);

  /* If this architecture uses function descriptors directly in the vtable,
     then the address of the vtable entry is actually a "function pointer"
     (i.e. points to the descriptor).  We don't need to scale the index
     by the size of a function descriptor; GCC does that before outputting
     debug information.  */
  if (gdbarch_vtable_function_descriptors (gdbarch))
    vfn = value_addr (vfn);

  /* Cast the function pointer to the appropriate type.  */
  vfn = value_cast (lookup_pointer_type (fntype), vfn);

  return vfn;
}

/* GNU v3 implementation of value_virtual_fn_field.  See cp-abi.h
   for a description of the arguments.  */

static struct value *
gnuv3_virtual_fn_field (struct value **value_p,
			struct fn_field *f, int j,
			struct type *vfn_base, int offset)
{
  struct type *values_type = check_typedef ((*value_p)->type ());
  struct gdbarch *gdbarch;

  /* Some simple sanity checks.  */
  if (values_type->code () != TYPE_CODE_STRUCT)
    error (_("Only classes can have virtual functions."));

  /* Determine architecture.  */
  gdbarch = values_type->arch ();

  /* Cast our value to the base class which defines this virtual
     function.  This takes care of any necessary `this'
     adjustments.  */
  if (vfn_base != values_type)
    *value_p = value_cast (vfn_base, *value_p);

  return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
			       TYPE_FN_FIELD_VOFFSET (f, j));
}

/* Compute the offset of the baseclass which is
   the INDEXth baseclass of class TYPE,
   for value at VALADDR (in host) at ADDRESS (in target).
   The result is the offset of the baseclass value relative
   to (the address of)(ARG) + OFFSET.

   -1 is returned on error.  */

static int
gnuv3_baseclass_offset (struct type *type, int index,
			const bfd_byte *valaddr, LONGEST embedded_offset,
			CORE_ADDR address, const struct value *val)
{
  struct gdbarch *gdbarch;
  struct type *ptr_type;
  struct value *vtable;
  struct value *vbase_array;
  long int cur_base_offset, base_offset;

  /* Determine architecture.  */
  gdbarch = type->arch ();
  ptr_type = builtin_type (gdbarch)->builtin_data_ptr;

  /* If it isn't a virtual base, this is easy.  The offset is in the
     type definition.  */
  if (!BASETYPE_VIA_VIRTUAL (type, index))
    return TYPE_BASECLASS_BITPOS (type, index) / 8;

  /* If we have a DWARF expression for the offset, evaluate it.  */
  if (type->field (index).loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK)
    {
      struct dwarf2_property_baton baton;
      baton.property_type
	= lookup_pointer_type (type->field (index).type ());
      baton.locexpr = *type->field (index).loc_dwarf_block ();

      struct dynamic_prop prop;
      prop.set_locexpr (&baton);

      struct property_addr_info addr_stack;
      addr_stack.type = type;
      /* Note that we don't set "valaddr" here.  Doing so causes
	 regressions.  FIXME.  */
      addr_stack.addr = address + embedded_offset;
      addr_stack.next = nullptr;

      CORE_ADDR result;
      if (dwarf2_evaluate_property (&prop, nullptr, &addr_stack, &result,
				    {addr_stack.addr}))
	return (int) (result - addr_stack.addr);
    }

  /* To access a virtual base, we need to use the vbase offset stored in
     our vtable.  Recent GCC versions provide this information.  If it isn't
     available, we could get what we needed from RTTI, or from drawing the
     complete inheritance graph based on the debug info.  Neither is
     worthwhile.  */
  cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
  if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
    error (_("Expected a negative vbase offset (old compiler?)"));

  cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
  if ((- cur_base_offset) % ptr_type->length () != 0)
    error (_("Misaligned vbase offset."));
  cur_base_offset = cur_base_offset / ((int) ptr_type->length ());

  vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
  gdb_assert (vtable != NULL);
  vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
  base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
  return base_offset;
}

/* Locate a virtual method in DOMAIN or its non-virtual base classes
   which has virtual table index VOFFSET.  The method has an associated
   "this" adjustment of ADJUSTMENT bytes.  */

static const char *
gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
		      LONGEST adjustment)
{
  int i;

  /* Search this class first.  */
  if (adjustment == 0)
    {
      int len;

      len = TYPE_NFN_FIELDS (domain);
      for (i = 0; i < len; i++)
	{
	  int len2, j;
	  struct fn_field *f;

	  f = TYPE_FN_FIELDLIST1 (domain, i);
	  len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);

	  check_stub_method_group (domain, i);
	  for (j = 0; j < len2; j++)
	    if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
	      return TYPE_FN_FIELD_PHYSNAME (f, j);
	}
    }

  /* Next search non-virtual bases.  If it's in a virtual base,
     we're out of luck.  */
  for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
    {
      int pos;
      struct type *basetype;

      if (BASETYPE_VIA_VIRTUAL (domain, i))
	continue;

      pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
      basetype = domain->field (i).type ();
      /* Recurse with a modified adjustment.  We don't need to adjust
	 voffset.  */
      if (adjustment >= pos && adjustment < pos + basetype->length ())
	return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
    }

  return NULL;
}

/* Decode GNU v3 method pointer.  */

static int
gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
			 const gdb_byte *contents,
			 CORE_ADDR *value_p,
			 LONGEST *adjustment_p)
{
  struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
  struct type *offset_type = vtable_ptrdiff_type (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR ptr_value;
  LONGEST voffset, adjustment;
  int vbit;

  /* Extract the pointer to member.  The first element is either a pointer
     or a vtable offset.  For pointers, we need to use extract_typed_address
     to allow the back-end to convert the pointer to a GDB address -- but
     vtable offsets we must handle as integers.  At this point, we do not
     yet know which case we have, so we extract the value under both
     interpretations and choose the right one later on.  */
  ptr_value = extract_typed_address (contents, funcptr_type);
  voffset = extract_signed_integer (contents,
				    funcptr_type->length (), byte_order);
  contents += funcptr_type->length ();
  adjustment = extract_signed_integer (contents,
				       offset_type->length (), byte_order);

  if (!gdbarch_vbit_in_delta (gdbarch))
    {
      vbit = voffset & 1;
      voffset = voffset ^ vbit;
    }
  else
    {
      vbit = adjustment & 1;
      adjustment = adjustment >> 1;
    }

  *value_p = vbit? voffset : ptr_value;
  *adjustment_p = adjustment;
  return vbit;
}

/* GNU v3 implementation of cplus_print_method_ptr.  */

static void
gnuv3_print_method_ptr (const gdb_byte *contents,
			struct type *type,
			struct ui_file *stream)
{
  struct type *self_type = TYPE_SELF_TYPE (type);
  struct gdbarch *gdbarch = self_type->arch ();
  CORE_ADDR ptr_value;
  LONGEST adjustment;
  int vbit;

  /* Extract the pointer to member.  */
  vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);

  /* Check for NULL.  */
  if (ptr_value == 0 && vbit == 0)
    {
      gdb_printf (stream, "NULL");
      return;
    }

  /* Search for a virtual method.  */
  if (vbit)
    {
      CORE_ADDR voffset;
      const char *physname;

      /* It's a virtual table offset, maybe in this class.  Search
	 for a field with the correct vtable offset.  First convert it
	 to an index, as used in TYPE_FN_FIELD_VOFFSET.  */
      voffset = ptr_value / vtable_ptrdiff_type (gdbarch)->length ();

      physname = gnuv3_find_method_in (self_type, voffset, adjustment);

      /* If we found a method, print that.  We don't bother to disambiguate
	 possible paths to the method based on the adjustment.  */
      if (physname)
	{
	  gdb::unique_xmalloc_ptr<char> demangled_name
	    = gdb_demangle (physname, DMGL_ANSI | DMGL_PARAMS);

	  gdb_printf (stream, "&virtual ");
	  if (demangled_name == NULL)
	    gdb_puts (physname, stream);
	  else
	    gdb_puts (demangled_name.get (), stream);
	  return;
	}
    }
  else if (ptr_value != 0)
    {
      /* Found a non-virtual function: print out the type.  */
      gdb_puts ("(", stream);
      c_print_type (type, "", stream, -1, 0, current_language->la_language,
		    &type_print_raw_options);
      gdb_puts (") ", stream);
    }

  /* We didn't find it; print the raw data.  */
  if (vbit)
    {
      gdb_printf (stream, "&virtual table offset ");
      print_longest (stream, 'd', 1, ptr_value);
    }
  else
    {
      struct value_print_options opts;

      get_user_print_options (&opts);
      print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
    }

  if (adjustment)
    {
      gdb_printf (stream, ", this adjustment ");
      print_longest (stream, 'd', 1, adjustment);
    }
}

/* GNU v3 implementation of cplus_method_ptr_size.  */

static int
gnuv3_method_ptr_size (struct type *type)
{
  return 2 * builtin_type (type->arch ())->builtin_data_ptr->length ();
}

/* GNU v3 implementation of cplus_make_method_ptr.  */

static void
gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
		       CORE_ADDR value, int is_virtual)
{
  struct gdbarch *gdbarch = type->arch ();
  int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
  enum bfd_endian byte_order = type_byte_order (type);

  /* FIXME drow/2006-12-24: The adjustment of "this" is currently
     always zero, since the method pointer is of the correct type.
     But if the method pointer came from a base class, this is
     incorrect - it should be the offset to the base.  The best
     fix might be to create the pointer to member pointing at the
     base class and cast it to the derived class, but that requires
     support for adjusting pointers to members when casting them -
     not currently supported by GDB.  */

  if (!gdbarch_vbit_in_delta (gdbarch))
    {
      store_unsigned_integer (contents, size, byte_order, value | is_virtual);
      store_unsigned_integer (contents + size, size, byte_order, 0);
    }
  else
    {
      store_unsigned_integer (contents, size, byte_order, value);
      store_unsigned_integer (contents + size, size, byte_order, is_virtual);
    }
}

/* GNU v3 implementation of cplus_method_ptr_to_value.  */

static struct value *
gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
{
  struct gdbarch *gdbarch;
  const gdb_byte *contents = method_ptr->contents ().data ();
  CORE_ADDR ptr_value;
  struct type *self_type, *final_type, *method_type;
  LONGEST adjustment;
  int vbit;

  self_type = TYPE_SELF_TYPE (check_typedef (method_ptr->type ()));
  final_type = lookup_pointer_type (self_type);

  method_type = check_typedef (method_ptr->type ())->target_type ();

  /* Extract the pointer to member.  */
  gdbarch = self_type->arch ();
  vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);

  /* First convert THIS to match the containing type of the pointer to
     member.  This cast may adjust the value of THIS.  */
  *this_p = value_cast (final_type, *this_p);

  /* Then apply whatever adjustment is necessary.  This creates a somewhat
     strange pointer: it claims to have type FINAL_TYPE, but in fact it
     might not be a valid FINAL_TYPE.  For instance, it might be a
     base class of FINAL_TYPE.  And if it's not the primary base class,
     then printing it out as a FINAL_TYPE object would produce some pretty
     garbage.

     But we don't really know the type of the first argument in
     METHOD_TYPE either, which is why this happens.  We can't
     dereference this later as a FINAL_TYPE, but once we arrive in the
     called method we'll have debugging information for the type of
     "this" - and that'll match the value we produce here.

     You can provoke this case by casting a Base::* to a Derived::*, for
     instance.  */
  *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
  *this_p = value_ptradd (*this_p, adjustment);
  *this_p = value_cast (final_type, *this_p);

  if (vbit)
    {
      LONGEST voffset;

      voffset = ptr_value / vtable_ptrdiff_type (gdbarch)->length ();
      return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
				   method_type, voffset);
    }
  else
    return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
}

/* Objects of this type are stored in a hash table and a vector when
   printing the vtables for a class.  */

struct value_and_voffset
{
  /* The value representing the object.  */
  struct value *value;

  /* The maximum vtable offset we've found for any object at this
     offset in the outermost object.  */
  int max_voffset;
};

/* Hash function for value_and_voffset.  */

static hashval_t
hash_value_and_voffset (const void *p)
{
  const struct value_and_voffset *o = (const struct value_and_voffset *) p;

  return o->value->address () + o->value->embedded_offset ();
}

/* Equality function for value_and_voffset.  */

static int
eq_value_and_voffset (const void *a, const void *b)
{
  const struct value_and_voffset *ova = (const struct value_and_voffset *) a;
  const struct value_and_voffset *ovb = (const struct value_and_voffset *) b;

  return (ova->value->address () + ova->value->embedded_offset ()
	  == ovb->value->address () + ovb->value->embedded_offset ());
}

/* Comparison function for value_and_voffset.  */

static bool
compare_value_and_voffset (const struct value_and_voffset *va,
			   const struct value_and_voffset *vb)
{
  CORE_ADDR addra = (va->value->address ()
		     + va->value->embedded_offset ());
  CORE_ADDR addrb = (vb->value->address ()
		     + vb->value->embedded_offset ());

  return addra < addrb;
}

/* A helper function used when printing vtables.  This determines the
   key (most derived) sub-object at each address and also computes the
   maximum vtable offset seen for the corresponding vtable.  Updates
   OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
   needed.  VALUE is the object to examine.  */

static void
compute_vtable_size (htab_t offset_hash,
		     std::vector<value_and_voffset *> *offset_vec,
		     struct value *value)
{
  int i;
  struct type *type = check_typedef (value->type ());
  void **slot;
  struct value_and_voffset search_vo, *current_vo;

  gdb_assert (type->code () == TYPE_CODE_STRUCT);

  /* If the object is not dynamic, then we are done; as it cannot have
     dynamic base types either.  */
  if (!gnuv3_dynamic_class (type))
    return;

  /* Update the hash and the vec, if needed.  */
  search_vo.value = value;
  slot = htab_find_slot (offset_hash, &search_vo, INSERT);
  if (*slot)
    current_vo = (struct value_and_voffset *) *slot;
  else
    {
      current_vo = XNEW (struct value_and_voffset);
      current_vo->value = value;
      current_vo->max_voffset = -1;
      *slot = current_vo;
      offset_vec->push_back (current_vo);
    }

  /* Update the value_and_voffset object with the highest vtable
     offset from this class.  */
  for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
    {
      int j;
      struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);

      for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
	{
	  if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
	    {
	      int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);

	      if (voffset > current_vo->max_voffset)
		current_vo->max_voffset = voffset;
	    }
	}
    }

  /* Recurse into base classes.  */
  for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
    compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
}

/* Helper for gnuv3_print_vtable that prints a single vtable.  */

static void
print_one_vtable (struct gdbarch *gdbarch, struct value *value,
		  int max_voffset,
		  struct value_print_options *opts)
{
  int i;
  struct type *type = check_typedef (value->type ());
  struct value *vtable;
  CORE_ADDR vt_addr;

  vtable = gnuv3_get_vtable (gdbarch, type,
			     value->address ()
			     + value->embedded_offset ());
  vt_addr = value_field (vtable,
			 vtable_field_virtual_functions)->address ();

  gdb_printf (_("vtable for '%s' @ %s (subobject @ %s):\n"),
	      TYPE_SAFE_NAME (type),
	      paddress (gdbarch, vt_addr),
	      paddress (gdbarch, (value->address ()
				  + value->embedded_offset ())));

  for (i = 0; i <= max_voffset; ++i)
    {
      /* Initialize it just to avoid a GCC false warning.  */
      CORE_ADDR addr = 0;
      int got_error = 0;
      struct value *vfn;

      gdb_printf ("[%d]: ", i);

      vfn = value_subscript (value_field (vtable,
					  vtable_field_virtual_functions),
			     i);

      if (gdbarch_vtable_function_descriptors (gdbarch))
	vfn = value_addr (vfn);

      try
	{
	  addr = value_as_address (vfn);
	}
      catch (const gdb_exception_error &ex)
	{
	  fprintf_styled (gdb_stdout, metadata_style.style (),
			  _("<error: %s>"), ex.what ());
	  got_error = 1;
	}

      if (!got_error)
	print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
      gdb_printf ("\n");
    }
}

/* Implementation of the print_vtable method.  */

static void
gnuv3_print_vtable (struct value *value)
{
  struct gdbarch *gdbarch;
  struct type *type;
  struct value *vtable;
  struct value_print_options opts;
  int count;

  value = coerce_ref (value);
  type = check_typedef (value->type ());
  if (type->code () == TYPE_CODE_PTR)
    {
      value = value_ind (value);
      type = check_typedef (value->type ());
    }

  get_user_print_options (&opts);

  /* Respect 'set print object'.  */
  if (opts.objectprint)
    {
      value = value_full_object (value, NULL, 0, 0, 0);
      type = check_typedef (value->type ());
    }

  gdbarch = type->arch ();

  vtable = NULL;
  if (type->code () == TYPE_CODE_STRUCT)
    vtable = gnuv3_get_vtable (gdbarch, type,
			       value_as_address (value_addr (value)));

  if (!vtable)
    {
      gdb_printf (_("This object does not have a virtual function table\n"));
      return;
    }

  htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
					  eq_value_and_voffset,
					  xfree, xcalloc, xfree));
  std::vector<value_and_voffset *> result_vec;

  compute_vtable_size (offset_hash.get (), &result_vec, value);
  std::sort (result_vec.begin (), result_vec.end (),
	     compare_value_and_voffset);

  count = 0;
  for (value_and_voffset *iter : result_vec)
    {
      if (iter->max_voffset >= 0)
	{
	  if (count > 0)
	    gdb_printf ("\n");
	  print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
	  ++count;
	}
    }
}

/* Return a GDB type representing `struct std::type_info', laid out
   appropriately for ARCH.

   We use this function as the gdbarch per-architecture data
   initialization function.  */

static struct type *
build_std_type_info_type (struct gdbarch *arch)
{
  struct type *t;
  struct field *field_list, *field;
  int offset;
  struct type *void_ptr_type
    = builtin_type (arch)->builtin_data_ptr;
  struct type *char_type
    = builtin_type (arch)->builtin_char;
  struct type *char_ptr_type
    = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);

  field_list = XCNEWVEC (struct field, 2);
  field = &field_list[0];
  offset = 0;

  /* The vtable.  */
  field->set_name ("_vptr.type_info");
  field->set_type (void_ptr_type);
  field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
  offset += field->type ()->length ();
  field++;

  /* The name.  */
  field->set_name ("__name");
  field->set_type (char_ptr_type);
  field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
  offset += field->type ()->length ();
  field++;

  gdb_assert (field == (field_list + 2));

  t = type_allocator (arch).new_type (TYPE_CODE_STRUCT,
				      offset * TARGET_CHAR_BIT, nullptr);
  t->set_num_fields (field - field_list);
  t->set_fields (field_list);
  t->set_name ("gdb_gnu_v3_type_info");
  INIT_CPLUS_SPECIFIC (t);

  return t;
}

/* Implement the 'get_typeid_type' method.  */

static struct type *
gnuv3_get_typeid_type (struct gdbarch *gdbarch)
{
  struct symbol *typeinfo;
  struct type *typeinfo_type;

  typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
			    NULL).symbol;
  if (typeinfo == NULL)
    {
      typeinfo_type = std_type_info_gdbarch_data.get (gdbarch);
      if (typeinfo_type == nullptr)
	{
	  typeinfo_type = build_std_type_info_type (gdbarch);
	  std_type_info_gdbarch_data.set (gdbarch, typeinfo_type);
	}
    }
  else
    typeinfo_type = typeinfo->type ();

  return typeinfo_type;
}

/* Implement the 'get_typeid' method.  */

static struct value *
gnuv3_get_typeid (struct value *value)
{
  struct type *typeinfo_type;
  struct type *type;
  struct gdbarch *gdbarch;
  struct value *result;
  std::string type_name;
  gdb::unique_xmalloc_ptr<char> canonical;

  /* We have to handle values a bit trickily here, to allow this code
     to work properly with non_lvalue values that are really just
     disguised types.  */
  if (value->lval () == lval_memory)
    value = coerce_ref (value);

  type = check_typedef (value->type ());

  /* In the non_lvalue case, a reference might have slipped through
     here.  */
  if (type->code () == TYPE_CODE_REF)
    type = check_typedef (type->target_type ());

  /* Ignore top-level cv-qualifiers.  */
  type = make_cv_type (0, 0, type, NULL);
  gdbarch = type->arch ();

  type_name = type_to_string (type);
  if (type_name.empty ())
    error (_("cannot find typeinfo for unnamed type"));

  /* We need to canonicalize the type name here, because we do lookups
     using the demangled name, and so we must match the format it
     uses.  E.g., GDB tends to use "const char *" as a type name, but
     the demangler uses "char const *".  */
  canonical = cp_canonicalize_string (type_name.c_str ());
  const char *name = (canonical == nullptr
		      ? type_name.c_str ()
		      : canonical.get ());

  typeinfo_type = gnuv3_get_typeid_type (gdbarch);

  /* We check for lval_memory because in the "typeid (type-id)" case,
     the type is passed via a not_lval value object.  */
  if (type->code () == TYPE_CODE_STRUCT
      && value->lval () == lval_memory
      && gnuv3_dynamic_class (type))
    {
      struct value *vtable, *typeinfo_value;
      CORE_ADDR address = value->address () + value->embedded_offset ();

      vtable = gnuv3_get_vtable (gdbarch, type, address);
      if (vtable == NULL)
	error (_("cannot find typeinfo for object of type '%s'"),
	       name);
      typeinfo_value = value_field (vtable, vtable_field_type_info);
      result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
				      typeinfo_value));
    }
  else
    {
      std::string sym_name = std::string ("typeinfo for ") + name;
      bound_minimal_symbol minsym
	= lookup_minimal_symbol (sym_name.c_str (), NULL, NULL);

      if (minsym.minsym == NULL)
	error (_("could not find typeinfo symbol for '%s'"), name);

      result = value_at_lazy (typeinfo_type, minsym.value_address ());
    }

  return result;
}

/* Implement the 'get_typename_from_type_info' method.  */

static std::string
gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
{
  struct gdbarch *gdbarch = type_info_ptr->type ()->arch ();
  struct bound_minimal_symbol typeinfo_sym;
  CORE_ADDR addr;
  const char *symname;
  const char *class_name;
  const char *atsign;

  addr = value_as_address (type_info_ptr);
  typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
  if (typeinfo_sym.minsym == NULL)
    error (_("could not find minimal symbol for typeinfo address %s"),
	   paddress (gdbarch, addr));

#define TYPEINFO_PREFIX "typeinfo for "
#define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
  symname = typeinfo_sym.minsym->demangled_name ();
  if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
				  TYPEINFO_PREFIX_LEN))
    error (_("typeinfo symbol '%s' has unexpected name"),
	   typeinfo_sym.minsym->linkage_name ());
  class_name = symname + TYPEINFO_PREFIX_LEN;

  /* Strip off @plt and version suffixes.  */
  atsign = strchr (class_name, '@');
  if (atsign != NULL)
    return std::string (class_name, atsign - class_name);
  return class_name;
}

/* Implement the 'get_type_from_type_info' method.  */

static struct type *
gnuv3_get_type_from_type_info (struct value *type_info_ptr)
{
  /* We have to parse the type name, since in general there is not a
     symbol for a type.  This is somewhat bogus since there may be a
     mis-parse.  Another approach might be to re-use the demangler's
     internal form to reconstruct the type somehow.  */
  std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
  expression_up expr (parse_expression (type_name.c_str ()));
  struct value *type_val = expr->evaluate_type ();
  return type_val->type ();
}

/* Determine if we are currently in a C++ thunk.  If so, get the address
   of the routine we are thunking to and continue to there instead.  */

static CORE_ADDR 
gnuv3_skip_trampoline (frame_info_ptr frame, CORE_ADDR stop_pc)
{
  CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct bound_minimal_symbol thunk_sym, fn_sym;
  struct obj_section *section;
  const char *thunk_name, *fn_name;
  
  real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
  if (real_stop_pc == 0)
    real_stop_pc = stop_pc;

  /* Find the linker symbol for this potential thunk.  */
  thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
  section = find_pc_section (real_stop_pc);
  if (thunk_sym.minsym == NULL || section == NULL)
    return 0;

  /* The symbol's demangled name should be something like "virtual
     thunk to FUNCTION", where FUNCTION is the name of the function
     being thunked to.  */
  thunk_name = thunk_sym.minsym->demangled_name ();
  if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
    return 0;

  fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
  fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
  if (fn_sym.minsym == NULL)
    return 0;

  method_stop_pc = fn_sym.value_address ();

  /* Some targets have minimal symbols pointing to function descriptors
     (powerpc 64 for example).  Make sure to retrieve the address
     of the real function from the function descriptor before passing on
     the address to other layers of GDB.  */
  func_addr = gdbarch_convert_from_func_ptr_addr
    (gdbarch, method_stop_pc, current_inferior ()->top_target ());
  if (func_addr != 0)
    method_stop_pc = func_addr;

  real_stop_pc = gdbarch_skip_trampoline_code
		   (gdbarch, frame, method_stop_pc);
  if (real_stop_pc == 0)
    real_stop_pc = method_stop_pc;

  return real_stop_pc;
}

/* A member function is in one these states.  */

enum definition_style
{
  DOES_NOT_EXIST_IN_SOURCE,
  DEFAULTED_INSIDE,
  DEFAULTED_OUTSIDE,
  DELETED,
  EXPLICIT,
};

/* Return how the given field is defined.  */

static definition_style
get_def_style (struct fn_field *fn, int fieldelem)
{
  if (TYPE_FN_FIELD_DELETED (fn, fieldelem))
    return DELETED;

  if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
    return DOES_NOT_EXIST_IN_SOURCE;

  switch (TYPE_FN_FIELD_DEFAULTED (fn, fieldelem))
    {
    case DW_DEFAULTED_no:
      return EXPLICIT;
    case DW_DEFAULTED_in_class:
      return DEFAULTED_INSIDE;
    case DW_DEFAULTED_out_of_class:
      return DEFAULTED_OUTSIDE;
    default:
      break;
    }

  return EXPLICIT;
}

/* Helper functions to determine whether the given definition style
   denotes that the definition is user-provided or implicit.
   Being defaulted outside the class decl counts as an explicit
   user-definition, while being defaulted inside is implicit.  */

static bool
is_user_provided_def (definition_style def)
{
  return def == EXPLICIT || def == DEFAULTED_OUTSIDE;
}

static bool
is_implicit_def (definition_style def)
{
  return def == DOES_NOT_EXIST_IN_SOURCE || def == DEFAULTED_INSIDE;
}

/* Helper function to decide if METHOD_TYPE is a copy/move
   constructor type for CLASS_TYPE.  EXPECTED is the expected
   type code for the "right-hand-side" argument.
   This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE
   and IS_MOVE_CONSTRUCTOR_TYPE functions below.  Normally, you should
   not need to call this directly.  */

static bool
is_copy_or_move_constructor_type (struct type *class_type,
				  struct type *method_type,
				  type_code expected)
{
  /* The method should take at least two arguments...  */
  if (method_type->num_fields () < 2)
    return false;

  /* ...and the second argument should be the same as the class
     type, with the expected type code...  */
  struct type *arg_type = method_type->field (1).type ();

  if (arg_type->code () != expected)
    return false;

  struct type *target = check_typedef (arg_type->target_type ());
  if (!(class_types_same_p (target, class_type)))
    return false;

  /* ...and if any of the remaining arguments don't have a default value
     then this is not a copy or move constructor, but just a
     constructor.  */
  for (int i = 2; i < method_type->num_fields (); i++)
    {
      arg_type = method_type->field (i).type ();
      /* FIXME aktemur/2019-10-31: As of this date, neither
	 clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value
	 attribute.  GDB is also not set to read this attribute, yet.
	 Hence, we immediately return false if there are more than
	 2 parameters.
	 GCC bug link:
	 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959
      */
      return false;
    }

  return true;
}

/* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE.  */

static bool
is_copy_constructor_type (struct type *class_type,
			  struct type *method_type)
{
  return is_copy_or_move_constructor_type (class_type, method_type,
					   TYPE_CODE_REF);
}

/* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE.  */

static bool
is_move_constructor_type (struct type *class_type,
			  struct type *method_type)
{
  return is_copy_or_move_constructor_type (class_type, method_type,
					   TYPE_CODE_RVALUE_REF);
}

/* Return pass-by-reference information for the given TYPE.

   The rule in the v3 ABI document comes from section 3.1.1.  If the
   type has a non-trivial copy constructor or destructor, then the
   caller must make a copy (by calling the copy constructor if there
   is one or perform the copy itself otherwise), pass the address of
   the copy, and then destroy the temporary (if necessary).

   For return values with non-trivial copy/move constructors or
   destructors, space will be allocated in the caller, and a pointer
   will be passed as the first argument (preceding "this").

   We don't have a bulletproof mechanism for determining whether a
   constructor or destructor is trivial.  For GCC and DWARF5 debug
   information, we can check the calling_convention attribute,
   the 'artificial' flag, the 'defaulted' attribute, and the
   'deleted' attribute.  */

static struct language_pass_by_ref_info
gnuv3_pass_by_reference (struct type *type)
{
  int fieldnum, fieldelem;

  type = check_typedef (type);

  /* Start with the default values.  */
  struct language_pass_by_ref_info info;

  bool has_cc_attr = false;
  bool is_pass_by_value = false;
  bool is_dynamic = false;
  definition_style cctor_def = DOES_NOT_EXIST_IN_SOURCE;
  definition_style dtor_def = DOES_NOT_EXIST_IN_SOURCE;
  definition_style mctor_def = DOES_NOT_EXIST_IN_SOURCE;

  /* We're only interested in things that can have methods.  */
  if (type->code () != TYPE_CODE_STRUCT
      && type->code () != TYPE_CODE_UNION)
    return info;

  /* The compiler may have emitted the calling convention attribute.
     Note: GCC does not produce this attribute as of version 9.2.1.
     Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418  */
  if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_value)
    {
      has_cc_attr = true;
      is_pass_by_value = true;
      /* Do not return immediately.  We have to find out if this type
	 is copy_constructible and destructible.  */
    }

  if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_reference)
    {
      has_cc_attr = true;
      is_pass_by_value = false;
    }

  /* A dynamic class has a non-trivial copy constructor.
     See c++98 section 12.8 Copying class objects [class.copy].  */
  if (gnuv3_dynamic_class (type))
    is_dynamic = true;

  for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
    for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
	 fieldelem++)
      {
	struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
	const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
	struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);

	if (name[0] == '~')
	  {
	    /* We've found a destructor.
	       There should be at most one dtor definition.  */
	    gdb_assert (dtor_def == DOES_NOT_EXIST_IN_SOURCE);
	    dtor_def = get_def_style (fn, fieldelem);
	  }
	else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
		 || TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
	  {
	    /* FIXME drow/2007-09-23: We could do this using the name of
	       the method and the name of the class instead of dealing
	       with the mangled name.  We don't have a convenient function
	       to strip off both leading scope qualifiers and trailing
	       template arguments yet.  */
	    if (is_copy_constructor_type (type, fieldtype))
	      {
		/* There may be more than one cctors.  E.g.: one that
		   take a const parameter and another that takes a
		   non-const parameter.  Such as:

		   class K {
		     K (const K &k)...
		     K (K &k)...
		   };

		   It is sufficient for the type to be non-trivial
		   even only one of the cctors is explicit.
		   Therefore, update the cctor_def value in the
		   implicit -> explicit direction, not backwards.  */

		if (is_implicit_def (cctor_def))
		  cctor_def = get_def_style (fn, fieldelem);
	      }
	    else if (is_move_constructor_type (type, fieldtype))
	      {
		/* Again, there may be multiple move ctors.  Update the
		   mctor_def value if we found an explicit def and the
		   existing one is not explicit.  Otherwise retain the
		   existing value.  */
		if (is_implicit_def (mctor_def))
		  mctor_def = get_def_style (fn, fieldelem);
	      }
	  }
      }

  bool cctor_implicitly_deleted
    = (mctor_def != DOES_NOT_EXIST_IN_SOURCE
       && cctor_def == DOES_NOT_EXIST_IN_SOURCE);

  bool cctor_explicitly_deleted = (cctor_def == DELETED);

  if (cctor_implicitly_deleted || cctor_explicitly_deleted)
    info.copy_constructible = false;

  if (dtor_def == DELETED)
    info.destructible = false;

  info.trivially_destructible = is_implicit_def (dtor_def);

  info.trivially_copy_constructible
    = (is_implicit_def (cctor_def)
       && !is_dynamic);

  info.trivially_copyable
    = (info.trivially_copy_constructible
       && info.trivially_destructible
       && !is_user_provided_def (mctor_def));

  /* Even if all the constructors and destructors were artificial, one
     of them may have invoked a non-artificial constructor or
     destructor in a base class.  If any base class needs to be passed
     by reference, so does this class.  Similarly for members, which
     are constructed whenever this class is.  We do not need to worry
     about recursive loops here, since we are only looking at members
     of complete class type.  Also ignore any static members.  */
  for (fieldnum = 0; fieldnum < type->num_fields (); fieldnum++)
    if (!type->field (fieldnum).is_static ())
      {
	struct type *field_type = type->field (fieldnum).type ();

	/* For arrays, make the decision based on the element type.  */
	if (field_type->code () == TYPE_CODE_ARRAY)
	  field_type = check_typedef (field_type->target_type ());

	struct language_pass_by_ref_info field_info
	  = gnuv3_pass_by_reference (field_type);

	if (!field_info.copy_constructible)
	  info.copy_constructible = false;
	if (!field_info.destructible)
	  info.destructible = false;
	if (!field_info.trivially_copyable)
	  info.trivially_copyable = false;
	if (!field_info.trivially_copy_constructible)
	  info.trivially_copy_constructible = false;
	if (!field_info.trivially_destructible)
	  info.trivially_destructible = false;
      }

  /* Consistency check.  */
  if (has_cc_attr && info.trivially_copyable != is_pass_by_value)
    {
      /* DWARF CC attribute is not the same as the inferred value;
	 use the DWARF attribute.  */
      info.trivially_copyable = is_pass_by_value;
    }

  return info;
}

static void
init_gnuv3_ops (void)
{
  gnu_v3_abi_ops.shortname = "gnu-v3";
  gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
  gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
  gnu_v3_abi_ops.is_destructor_name =
    (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
  gnu_v3_abi_ops.is_constructor_name =
    (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
  gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
  gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
  gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
  gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
  gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
  gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
  gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
  gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
  gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
  gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
  gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
  gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
  gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
  gnu_v3_abi_ops.get_typename_from_type_info
    = gnuv3_get_typename_from_type_info;
  gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
  gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
}

void _initialize_gnu_v3_abi ();
void
_initialize_gnu_v3_abi ()
{
  init_gnuv3_ops ();

  register_cp_abi (&gnu_v3_abi_ops);
  set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
}