summaryrefslogtreecommitdiff
path: root/gdb/ada-lang.c
blob: 023f984d50ae29b6ff3e6fe1d2bed4bf25a8d153 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
/* Ada language support routines for GDB, the GNU debugger.  Copyright (C)

   1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005 Free
   Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */


#include "defs.h"
#include <stdio.h>
#include "gdb_string.h"
#include <ctype.h>
#include <stdarg.h>
#include "demangle.h"
#include "gdb_regex.h"
#include "frame.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "expression.h"
#include "parser-defs.h"
#include "language.h"
#include "c-lang.h"
#include "inferior.h"
#include "symfile.h"
#include "objfiles.h"
#include "breakpoint.h"
#include "gdbcore.h"
#include "hashtab.h"
#include "gdb_obstack.h"
#include "ada-lang.h"
#include "completer.h"
#include "gdb_stat.h"
#ifdef UI_OUT
#include "ui-out.h"
#endif
#include "block.h"
#include "infcall.h"
#include "dictionary.h"
#include "exceptions.h"

#ifndef ADA_RETAIN_DOTS
#define ADA_RETAIN_DOTS 0
#endif

/* Define whether or not the C operator '/' truncates towards zero for
   differently signed operands (truncation direction is undefined in C). 
   Copied from valarith.c.  */

#ifndef TRUNCATION_TOWARDS_ZERO
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
#endif


static void extract_string (CORE_ADDR addr, char *buf);

static struct type *ada_create_fundamental_type (struct objfile *, int);

static void modify_general_field (char *, LONGEST, int, int);

static struct type *desc_base_type (struct type *);

static struct type *desc_bounds_type (struct type *);

static struct value *desc_bounds (struct value *);

static int fat_pntr_bounds_bitpos (struct type *);

static int fat_pntr_bounds_bitsize (struct type *);

static struct type *desc_data_type (struct type *);

static struct value *desc_data (struct value *);

static int fat_pntr_data_bitpos (struct type *);

static int fat_pntr_data_bitsize (struct type *);

static struct value *desc_one_bound (struct value *, int, int);

static int desc_bound_bitpos (struct type *, int, int);

static int desc_bound_bitsize (struct type *, int, int);

static struct type *desc_index_type (struct type *, int);

static int desc_arity (struct type *);

static int ada_type_match (struct type *, struct type *, int);

static int ada_args_match (struct symbol *, struct value **, int);

static struct value *ensure_lval (struct value *, CORE_ADDR *);

static struct value *convert_actual (struct value *, struct type *,
                                     CORE_ADDR *);

static struct value *make_array_descriptor (struct type *, struct value *,
                                            CORE_ADDR *);

static void ada_add_block_symbols (struct obstack *,
                                   struct block *, const char *,
                                   domain_enum, struct objfile *,
                                   struct symtab *, int);

static int is_nonfunction (struct ada_symbol_info *, int);

static void add_defn_to_vec (struct obstack *, struct symbol *,
                             struct block *, struct symtab *);

static int num_defns_collected (struct obstack *);

static struct ada_symbol_info *defns_collected (struct obstack *, int);

static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
                                                         *, const char *, int,
                                                         domain_enum, int);

static struct symtab *symtab_for_sym (struct symbol *);

static struct value *resolve_subexp (struct expression **, int *, int,
                                     struct type *);

static void replace_operator_with_call (struct expression **, int, int, int,
                                        struct symbol *, struct block *);

static int possible_user_operator_p (enum exp_opcode, struct value **);

static char *ada_op_name (enum exp_opcode);

static const char *ada_decoded_op_name (enum exp_opcode);

static int numeric_type_p (struct type *);

static int integer_type_p (struct type *);

static int scalar_type_p (struct type *);

static int discrete_type_p (struct type *);

static struct type *ada_lookup_struct_elt_type (struct type *, char *,
                                                int, int, int *);

static struct value *evaluate_subexp (struct type *, struct expression *,
                                      int *, enum noside);

static struct value *evaluate_subexp_type (struct expression *, int *);

static int is_dynamic_field (struct type *, int);

static struct type *to_fixed_variant_branch_type (struct type *,
						  const gdb_byte *,
                                                  CORE_ADDR, struct value *);

static struct type *to_fixed_array_type (struct type *, struct value *, int);

static struct type *to_fixed_range_type (char *, struct value *,
                                         struct objfile *);

static struct type *to_static_fixed_type (struct type *);

static struct value *unwrap_value (struct value *);

static struct type *packed_array_type (struct type *, long *);

static struct type *decode_packed_array_type (struct type *);

static struct value *decode_packed_array (struct value *);

static struct value *value_subscript_packed (struct value *, int,
                                             struct value **);

static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);

static struct value *coerce_unspec_val_to_type (struct value *,
                                                struct type *);

static struct value *get_var_value (char *, char *);

static int lesseq_defined_than (struct symbol *, struct symbol *);

static int equiv_types (struct type *, struct type *);

static int is_name_suffix (const char *);

static int wild_match (const char *, int, const char *);

static struct value *ada_coerce_ref (struct value *);

static LONGEST pos_atr (struct value *);

static struct value *value_pos_atr (struct value *);

static struct value *value_val_atr (struct type *, struct value *);

static struct symbol *standard_lookup (const char *, const struct block *,
                                       domain_enum);

static struct value *ada_search_struct_field (char *, struct value *, int,
                                              struct type *);

static struct value *ada_value_primitive_field (struct value *, int, int,
                                                struct type *);

static int find_struct_field (char *, struct type *, int,
                              struct type **, int *, int *, int *, int *);

static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
                                                struct value *);

static struct value *ada_to_fixed_value (struct value *);

static int ada_resolve_function (struct ada_symbol_info *, int,
                                 struct value **, int, const char *,
                                 struct type *);

static struct value *ada_coerce_to_simple_array (struct value *);

static int ada_is_direct_array_type (struct type *);

static void ada_language_arch_info (struct gdbarch *,
				    struct language_arch_info *);

static void check_size (const struct type *);

static struct value *ada_index_struct_field (int, struct value *, int,
					     struct type *);

static struct value *assign_aggregate (struct value *, struct value *, 
				       struct expression *, int *, enum noside);

static void aggregate_assign_from_choices (struct value *, struct value *, 
					   struct expression *,
					   int *, LONGEST *, int *,
					   int, LONGEST, LONGEST);

static void aggregate_assign_positional (struct value *, struct value *,
					 struct expression *,
					 int *, LONGEST *, int *, int,
					 LONGEST, LONGEST);


static void aggregate_assign_others (struct value *, struct value *,
				     struct expression *,
				     int *, LONGEST *, int, LONGEST, LONGEST);


static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);


static struct value *ada_evaluate_subexp (struct type *, struct expression *,
					  int *, enum noside);

static void ada_forward_operator_length (struct expression *, int, int *,
					 int *);



/* Maximum-sized dynamic type.  */
static unsigned int varsize_limit;

/* FIXME: brobecker/2003-09-17: No longer a const because it is
   returned by a function that does not return a const char *.  */
static char *ada_completer_word_break_characters =
#ifdef VMS
  " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
#else
  " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
#endif

/* The name of the symbol to use to get the name of the main subprogram.  */
static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
  = "__gnat_ada_main_program_name";

/* The name of the runtime function called when an exception is raised.  */
static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";

/* The name of the runtime function called when an unhandled exception
   is raised.  */
static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";

/* The name of the runtime function called when an assert failure is
   raised.  */
static const char raise_assert_sym_name[] =
  "system__assertions__raise_assert_failure";

/* A string that reflects the longest exception expression rewrite,
   aside from the exception name.  */
static const char longest_exception_template[] =
  "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";

/* Limit on the number of warnings to raise per expression evaluation.  */
static int warning_limit = 2;

/* Number of warning messages issued; reset to 0 by cleanups after
   expression evaluation.  */
static int warnings_issued = 0;

static const char *known_runtime_file_name_patterns[] = {
  ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
};

static const char *known_auxiliary_function_name_patterns[] = {
  ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
};

/* Space for allocating results of ada_lookup_symbol_list.  */
static struct obstack symbol_list_obstack;

                        /* Utilities */


static char *
ada_get_gdb_completer_word_break_characters (void)
{
  return ada_completer_word_break_characters;
}

/* Print an array element index using the Ada syntax.  */

static void
ada_print_array_index (struct value *index_value, struct ui_file *stream,
                       int format, enum val_prettyprint pretty)
{
  LA_VALUE_PRINT (index_value, stream, format, pretty);
  fprintf_filtered (stream, " => ");
}

/* Read the string located at ADDR from the inferior and store the
   result into BUF.  */

static void
extract_string (CORE_ADDR addr, char *buf)
{
  int char_index = 0;

  /* Loop, reading one byte at a time, until we reach the '\000'
     end-of-string marker.  */
  do
    {
      target_read_memory (addr + char_index * sizeof (char),
                          buf + char_index * sizeof (char), sizeof (char));
      char_index++;
    }
  while (buf[char_index - 1] != '\000');
}

/* Assuming VECT points to an array of *SIZE objects of size
   ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
   updating *SIZE as necessary and returning the (new) array.  */

void *
grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
{
  if (*size < min_size)
    {
      *size *= 2;
      if (*size < min_size)
        *size = min_size;
      vect = xrealloc (vect, *size * element_size);
    }
  return vect;
}

/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
   suffix of FIELD_NAME beginning "___".  */

static int
field_name_match (const char *field_name, const char *target)
{
  int len = strlen (target);
  return
    (strncmp (field_name, target, len) == 0
     && (field_name[len] == '\0'
         || (strncmp (field_name + len, "___", 3) == 0
             && strcmp (field_name + strlen (field_name) - 6,
                        "___XVN") != 0)));
}


/* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
   FIELD_NAME, and return its index.  This function also handles fields
   whose name have ___ suffixes because the compiler sometimes alters
   their name by adding such a suffix to represent fields with certain
   constraints.  If the field could not be found, return a negative
   number if MAYBE_MISSING is set.  Otherwise raise an error.  */

int
ada_get_field_index (const struct type *type, const char *field_name,
                     int maybe_missing)
{
  int fieldno;
  for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
    if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
      return fieldno;

  if (!maybe_missing)
    error (_("Unable to find field %s in struct %s.  Aborting"),
           field_name, TYPE_NAME (type));

  return -1;
}

/* The length of the prefix of NAME prior to any "___" suffix.  */

int
ada_name_prefix_len (const char *name)
{
  if (name == NULL)
    return 0;
  else
    {
      const char *p = strstr (name, "___");
      if (p == NULL)
        return strlen (name);
      else
        return p - name;
    }
}

/* Return non-zero if SUFFIX is a suffix of STR.
   Return zero if STR is null.  */

static int
is_suffix (const char *str, const char *suffix)
{
  int len1, len2;
  if (str == NULL)
    return 0;
  len1 = strlen (str);
  len2 = strlen (suffix);
  return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
}

/* Create a value of type TYPE whose contents come from VALADDR, if it
   is non-null, and whose memory address (in the inferior) is
   ADDRESS.  */

struct value *
value_from_contents_and_address (struct type *type,
				 const gdb_byte *valaddr,
                                 CORE_ADDR address)
{
  struct value *v = allocate_value (type);
  if (valaddr == NULL)
    set_value_lazy (v, 1);
  else
    memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
  VALUE_ADDRESS (v) = address;
  if (address != 0)
    VALUE_LVAL (v) = lval_memory;
  return v;
}

/* The contents of value VAL, treated as a value of type TYPE.  The
   result is an lval in memory if VAL is.  */

static struct value *
coerce_unspec_val_to_type (struct value *val, struct type *type)
{
  type = ada_check_typedef (type);
  if (value_type (val) == type)
    return val;
  else
    {
      struct value *result;

      /* Make sure that the object size is not unreasonable before
         trying to allocate some memory for it.  */
      check_size (type);

      result = allocate_value (type);
      VALUE_LVAL (result) = VALUE_LVAL (val);
      set_value_bitsize (result, value_bitsize (val));
      set_value_bitpos (result, value_bitpos (val));
      VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
      if (value_lazy (val)
          || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
        set_value_lazy (result, 1);
      else
        memcpy (value_contents_raw (result), value_contents (val),
                TYPE_LENGTH (type));
      return result;
    }
}

static const gdb_byte *
cond_offset_host (const gdb_byte *valaddr, long offset)
{
  if (valaddr == NULL)
    return NULL;
  else
    return valaddr + offset;
}

static CORE_ADDR
cond_offset_target (CORE_ADDR address, long offset)
{
  if (address == 0)
    return 0;
  else
    return address + offset;
}

/* Issue a warning (as for the definition of warning in utils.c, but
   with exactly one argument rather than ...), unless the limit on the
   number of warnings has passed during the evaluation of the current
   expression.  */

/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
   provided by "complaint".  */
static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);

static void
lim_warning (const char *format, ...)
{
  va_list args;
  va_start (args, format);

  warnings_issued += 1;
  if (warnings_issued <= warning_limit)
    vwarning (format, args);

  va_end (args);
}

/* Issue an error if the size of an object of type T is unreasonable,
   i.e. if it would be a bad idea to allocate a value of this type in
   GDB.  */

static void
check_size (const struct type *type)
{
  if (TYPE_LENGTH (type) > varsize_limit)
    error (_("object size is larger than varsize-limit"));
}


/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
   gdbtypes.h, but some of the necessary definitions in that file
   seem to have gone missing. */

/* Maximum value of a SIZE-byte signed integer type. */
static LONGEST
max_of_size (int size)
{
  LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
  return top_bit | (top_bit - 1);
}

/* Minimum value of a SIZE-byte signed integer type. */
static LONGEST
min_of_size (int size)
{
  return -max_of_size (size) - 1;
}

/* Maximum value of a SIZE-byte unsigned integer type. */
static ULONGEST
umax_of_size (int size)
{
  ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
  return top_bit | (top_bit - 1);
}

/* Maximum value of integral type T, as a signed quantity. */
static LONGEST
max_of_type (struct type *t)
{
  if (TYPE_UNSIGNED (t))
    return (LONGEST) umax_of_size (TYPE_LENGTH (t));
  else
    return max_of_size (TYPE_LENGTH (t));
}

/* Minimum value of integral type T, as a signed quantity. */
static LONGEST
min_of_type (struct type *t)
{
  if (TYPE_UNSIGNED (t)) 
    return 0;
  else
    return min_of_size (TYPE_LENGTH (t));
}

/* The largest value in the domain of TYPE, a discrete type, as an integer.  */
static struct value *
discrete_type_high_bound (struct type *type)
{
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_RANGE:
      return value_from_longest (TYPE_TARGET_TYPE (type),
                                 TYPE_HIGH_BOUND (type));
    case TYPE_CODE_ENUM:
      return
        value_from_longest (type,
                            TYPE_FIELD_BITPOS (type,
                                               TYPE_NFIELDS (type) - 1));
    case TYPE_CODE_INT:
      return value_from_longest (type, max_of_type (type));
    default:
      error (_("Unexpected type in discrete_type_high_bound."));
    }
}

/* The largest value in the domain of TYPE, a discrete type, as an integer.  */
static struct value *
discrete_type_low_bound (struct type *type)
{
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_RANGE:
      return value_from_longest (TYPE_TARGET_TYPE (type),
                                 TYPE_LOW_BOUND (type));
    case TYPE_CODE_ENUM:
      return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
    case TYPE_CODE_INT:
      return value_from_longest (type, min_of_type (type));
    default:
      error (_("Unexpected type in discrete_type_low_bound."));
    }
}

/* The identity on non-range types.  For range types, the underlying
   non-range scalar type.  */

static struct type *
base_type (struct type *type)
{
  while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
    {
      if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
        return type;
      type = TYPE_TARGET_TYPE (type);
    }
  return type;
}


                                /* Language Selection */

/* If the main program is in Ada, return language_ada, otherwise return LANG
   (the main program is in Ada iif the adainit symbol is found).

   MAIN_PST is not used.  */

enum language
ada_update_initial_language (enum language lang,
                             struct partial_symtab *main_pst)
{
  if (lookup_minimal_symbol ("adainit", (const char *) NULL,
                             (struct objfile *) NULL) != NULL)
    return language_ada;

  return lang;
}

/* If the main procedure is written in Ada, then return its name.
   The result is good until the next call.  Return NULL if the main
   procedure doesn't appear to be in Ada.  */

char *
ada_main_name (void)
{
  struct minimal_symbol *msym;
  CORE_ADDR main_program_name_addr;
  static char main_program_name[1024];

  /* For Ada, the name of the main procedure is stored in a specific
     string constant, generated by the binder.  Look for that symbol,
     extract its address, and then read that string.  If we didn't find
     that string, then most probably the main procedure is not written
     in Ada.  */
  msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);

  if (msym != NULL)
    {
      main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
      if (main_program_name_addr == 0)
        error (_("Invalid address for Ada main program name."));

      extract_string (main_program_name_addr, main_program_name);
      return main_program_name;
    }

  /* The main procedure doesn't seem to be in Ada.  */
  return NULL;
}

                                /* Symbols */

/* Table of Ada operators and their GNAT-encoded names.  Last entry is pair
   of NULLs.  */

const struct ada_opname_map ada_opname_table[] = {
  {"Oadd", "\"+\"", BINOP_ADD},
  {"Osubtract", "\"-\"", BINOP_SUB},
  {"Omultiply", "\"*\"", BINOP_MUL},
  {"Odivide", "\"/\"", BINOP_DIV},
  {"Omod", "\"mod\"", BINOP_MOD},
  {"Orem", "\"rem\"", BINOP_REM},
  {"Oexpon", "\"**\"", BINOP_EXP},
  {"Olt", "\"<\"", BINOP_LESS},
  {"Ole", "\"<=\"", BINOP_LEQ},
  {"Ogt", "\">\"", BINOP_GTR},
  {"Oge", "\">=\"", BINOP_GEQ},
  {"Oeq", "\"=\"", BINOP_EQUAL},
  {"One", "\"/=\"", BINOP_NOTEQUAL},
  {"Oand", "\"and\"", BINOP_BITWISE_AND},
  {"Oor", "\"or\"", BINOP_BITWISE_IOR},
  {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
  {"Oconcat", "\"&\"", BINOP_CONCAT},
  {"Oabs", "\"abs\"", UNOP_ABS},
  {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
  {"Oadd", "\"+\"", UNOP_PLUS},
  {"Osubtract", "\"-\"", UNOP_NEG},
  {NULL, NULL}
};

/* Return non-zero if STR should be suppressed in info listings.  */

static int
is_suppressed_name (const char *str)
{
  if (strncmp (str, "_ada_", 5) == 0)
    str += 5;
  if (str[0] == '_' || str[0] == '\000')
    return 1;
  else
    {
      const char *p;
      const char *suffix = strstr (str, "___");
      if (suffix != NULL && suffix[3] != 'X')
        return 1;
      if (suffix == NULL)
        suffix = str + strlen (str);
      for (p = suffix - 1; p != str; p -= 1)
        if (isupper (*p))
          {
            int i;
            if (p[0] == 'X' && p[-1] != '_')
              goto OK;
            if (*p != 'O')
              return 1;
            for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
              if (strncmp (ada_opname_table[i].encoded, p,
                           strlen (ada_opname_table[i].encoded)) == 0)
                goto OK;
            return 1;
          OK:;
          }
      return 0;
    }
}

/* The "encoded" form of DECODED, according to GNAT conventions.
   The result is valid until the next call to ada_encode.  */

char *
ada_encode (const char *decoded)
{
  static char *encoding_buffer = NULL;
  static size_t encoding_buffer_size = 0;
  const char *p;
  int k;

  if (decoded == NULL)
    return NULL;

  GROW_VECT (encoding_buffer, encoding_buffer_size,
             2 * strlen (decoded) + 10);

  k = 0;
  for (p = decoded; *p != '\0'; p += 1)
    {
      if (!ADA_RETAIN_DOTS && *p == '.')
        {
          encoding_buffer[k] = encoding_buffer[k + 1] = '_';
          k += 2;
        }
      else if (*p == '"')
        {
          const struct ada_opname_map *mapping;

          for (mapping = ada_opname_table;
               mapping->encoded != NULL
               && strncmp (mapping->decoded, p,
                           strlen (mapping->decoded)) != 0; mapping += 1)
            ;
          if (mapping->encoded == NULL)
            error (_("invalid Ada operator name: %s"), p);
          strcpy (encoding_buffer + k, mapping->encoded);
          k += strlen (mapping->encoded);
          break;
        }
      else
        {
          encoding_buffer[k] = *p;
          k += 1;
        }
    }

  encoding_buffer[k] = '\0';
  return encoding_buffer;
}

/* Return NAME folded to lower case, or, if surrounded by single
   quotes, unfolded, but with the quotes stripped away.  Result good
   to next call.  */

char *
ada_fold_name (const char *name)
{
  static char *fold_buffer = NULL;
  static size_t fold_buffer_size = 0;

  int len = strlen (name);
  GROW_VECT (fold_buffer, fold_buffer_size, len + 1);

  if (name[0] == '\'')
    {
      strncpy (fold_buffer, name + 1, len - 2);
      fold_buffer[len - 2] = '\000';
    }
  else
    {
      int i;
      for (i = 0; i <= len; i += 1)
        fold_buffer[i] = tolower (name[i]);
    }

  return fold_buffer;
}

/* Return nonzero if C is either a digit or a lowercase alphabet character.  */

static int
is_lower_alphanum (const char c)
{
  return (isdigit (c) || (isalpha (c) && islower (c)));
}

/* Decode:
      . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
        These are suffixes introduced by GNAT5 to nested subprogram
        names, and do not serve any purpose for the debugger.
      . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
      . Discard final N if it follows a lowercase alphanumeric character
        (protected object subprogram suffix)
      . Convert other instances of embedded "__" to `.'.
      . Discard leading _ada_.
      . Convert operator names to the appropriate quoted symbols.
      . Remove everything after first ___ if it is followed by
        'X'.
      . Replace TK__ with __, and a trailing B or TKB with nothing.
      . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
      . Put symbols that should be suppressed in <...> brackets.
      . Remove trailing X[bn]* suffix (indicating names in package bodies).

   The resulting string is valid until the next call of ada_decode.
   If the string is unchanged by demangling, the original string pointer
   is returned.  */

const char *
ada_decode (const char *encoded)
{
  int i, j;
  int len0;
  const char *p;
  char *decoded;
  int at_start_name;
  static char *decoding_buffer = NULL;
  static size_t decoding_buffer_size = 0;

  if (strncmp (encoded, "_ada_", 5) == 0)
    encoded += 5;

  if (encoded[0] == '_' || encoded[0] == '<')
    goto Suppress;

  /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+.  */
  len0 = strlen (encoded);
  if (len0 > 1 && isdigit (encoded[len0 - 1]))
    {
      i = len0 - 2;
      while (i > 0 && isdigit (encoded[i]))
        i--;
      if (i >= 0 && encoded[i] == '.')
        len0 = i;
      else if (i >= 0 && encoded[i] == '$')
        len0 = i;
      else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
        len0 = i - 2;
      else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
        len0 = i - 1;
    }

  /* Remove trailing N.  */

  /* Protected entry subprograms are broken into two
     separate subprograms: The first one is unprotected, and has
     a 'N' suffix; the second is the protected version, and has
     the 'P' suffix. The second calls the first one after handling
     the protection.  Since the P subprograms are internally generated,
     we leave these names undecoded, giving the user a clue that this
     entity is internal.  */

  if (len0 > 1
      && encoded[len0 - 1] == 'N'
      && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
    len0--;

  /* Remove the ___X.* suffix if present.  Do not forget to verify that
     the suffix is located before the current "end" of ENCODED.  We want
     to avoid re-matching parts of ENCODED that have previously been
     marked as discarded (by decrementing LEN0).  */
  p = strstr (encoded, "___");
  if (p != NULL && p - encoded < len0 - 3)
    {
      if (p[3] == 'X')
        len0 = p - encoded;
      else
        goto Suppress;
    }

  if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
    len0 -= 3;

  if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
    len0 -= 1;

  /* Make decoded big enough for possible expansion by operator name.  */
  GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
  decoded = decoding_buffer;

  if (len0 > 1 && isdigit (encoded[len0 - 1]))
    {
      i = len0 - 2;
      while ((i >= 0 && isdigit (encoded[i]))
             || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
        i -= 1;
      if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
        len0 = i - 1;
      else if (encoded[i] == '$')
        len0 = i;
    }

  for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
    decoded[j] = encoded[i];

  at_start_name = 1;
  while (i < len0)
    {
      if (at_start_name && encoded[i] == 'O')
        {
          int k;
          for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
            {
              int op_len = strlen (ada_opname_table[k].encoded);
              if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
                            op_len - 1) == 0)
                  && !isalnum (encoded[i + op_len]))
                {
                  strcpy (decoded + j, ada_opname_table[k].decoded);
                  at_start_name = 0;
                  i += op_len;
                  j += strlen (ada_opname_table[k].decoded);
                  break;
                }
            }
          if (ada_opname_table[k].encoded != NULL)
            continue;
        }
      at_start_name = 0;

      /* Replace "TK__" with "__", which will eventually be translated
         into "." (just below).  */

      if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
        i += 2;

      /* Remove _E{DIGITS}+[sb] */

      /* Just as for protected object subprograms, there are 2 categories
         of subprograms created by the compiler for each entry. The first
         one implements the actual entry code, and has a suffix following
         the convention above; the second one implements the barrier and
         uses the same convention as above, except that the 'E' is replaced
         by a 'B'.

         Just as above, we do not decode the name of barrier functions
         to give the user a clue that the code he is debugging has been
         internally generated.  */

      if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
          && isdigit (encoded[i+2]))
        {
          int k = i + 3;

          while (k < len0 && isdigit (encoded[k]))
            k++;

          if (k < len0
              && (encoded[k] == 'b' || encoded[k] == 's'))
            {
              k++;
              /* Just as an extra precaution, make sure that if this
                 suffix is followed by anything else, it is a '_'.
                 Otherwise, we matched this sequence by accident.  */
              if (k == len0
                  || (k < len0 && encoded[k] == '_'))
                i = k;
            }
        }

      /* Remove trailing "N" in [a-z0-9]+N__.  The N is added by
         the GNAT front-end in protected object subprograms.  */

      if (i < len0 + 3
          && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
        {
          /* Backtrack a bit up until we reach either the begining of
             the encoded name, or "__".  Make sure that we only find
             digits or lowercase characters.  */
          const char *ptr = encoded + i - 1;

          while (ptr >= encoded && is_lower_alphanum (ptr[0]))
            ptr--;
          if (ptr < encoded
              || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
            i++;
        }

      if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
        {
          do
            i += 1;
          while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
          if (i < len0)
            goto Suppress;
        }
      else if (!ADA_RETAIN_DOTS
               && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
        {
          decoded[j] = '.';
          at_start_name = 1;
          i += 2;
          j += 1;
        }
      else
        {
          decoded[j] = encoded[i];
          i += 1;
          j += 1;
        }
    }
  decoded[j] = '\000';

  for (i = 0; decoded[i] != '\0'; i += 1)
    if (isupper (decoded[i]) || decoded[i] == ' ')
      goto Suppress;

  if (strcmp (decoded, encoded) == 0)
    return encoded;
  else
    return decoded;

Suppress:
  GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
  decoded = decoding_buffer;
  if (encoded[0] == '<')
    strcpy (decoded, encoded);
  else
    sprintf (decoded, "<%s>", encoded);
  return decoded;

}

/* Table for keeping permanent unique copies of decoded names.  Once
   allocated, names in this table are never released.  While this is a
   storage leak, it should not be significant unless there are massive
   changes in the set of decoded names in successive versions of a 
   symbol table loaded during a single session.  */
static struct htab *decoded_names_store;

/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
   in the language-specific part of GSYMBOL, if it has not been
   previously computed.  Tries to save the decoded name in the same
   obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
   in any case, the decoded symbol has a lifetime at least that of
   GSYMBOL).  
   The GSYMBOL parameter is "mutable" in the C++ sense: logically
   const, but nevertheless modified to a semantically equivalent form
   when a decoded name is cached in it.
*/

char *
ada_decode_symbol (const struct general_symbol_info *gsymbol)
{
  char **resultp =
    (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
  if (*resultp == NULL)
    {
      const char *decoded = ada_decode (gsymbol->name);
      if (gsymbol->bfd_section != NULL)
        {
          bfd *obfd = gsymbol->bfd_section->owner;
          if (obfd != NULL)
            {
              struct objfile *objf;
              ALL_OBJFILES (objf)
              {
                if (obfd == objf->obfd)
                  {
                    *resultp = obsavestring (decoded, strlen (decoded),
                                             &objf->objfile_obstack);
                    break;
                  }
              }
            }
        }
      /* Sometimes, we can't find a corresponding objfile, in which
         case, we put the result on the heap.  Since we only decode
         when needed, we hope this usually does not cause a
         significant memory leak (FIXME).  */
      if (*resultp == NULL)
        {
          char **slot = (char **) htab_find_slot (decoded_names_store,
                                                  decoded, INSERT);
          if (*slot == NULL)
            *slot = xstrdup (decoded);
          *resultp = *slot;
        }
    }

  return *resultp;
}

char *
ada_la_decode (const char *encoded, int options)
{
  return xstrdup (ada_decode (encoded));
}

/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
   suffixes that encode debugging information or leading _ada_ on
   SYM_NAME (see is_name_suffix commentary for the debugging
   information that is ignored).  If WILD, then NAME need only match a
   suffix of SYM_NAME minus the same suffixes.  Also returns 0 if
   either argument is NULL.  */

int
ada_match_name (const char *sym_name, const char *name, int wild)
{
  if (sym_name == NULL || name == NULL)
    return 0;
  else if (wild)
    return wild_match (name, strlen (name), sym_name);
  else
    {
      int len_name = strlen (name);
      return (strncmp (sym_name, name, len_name) == 0
              && is_name_suffix (sym_name + len_name))
        || (strncmp (sym_name, "_ada_", 5) == 0
            && strncmp (sym_name + 5, name, len_name) == 0
            && is_name_suffix (sym_name + len_name + 5));
    }
}

/* True (non-zero) iff, in Ada mode, the symbol SYM should be
   suppressed in info listings.  */

int
ada_suppress_symbol_printing (struct symbol *sym)
{
  if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
    return 1;
  else
    return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
}


                                /* Arrays */

/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors.  */

static char *bound_name[] = {
  "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
  "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
};

/* Maximum number of array dimensions we are prepared to handle.  */

#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))

/* Like modify_field, but allows bitpos > wordlength.  */

static void
modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
{
  modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
}


/* The desc_* routines return primitive portions of array descriptors
   (fat pointers).  */

/* The descriptor or array type, if any, indicated by TYPE; removes
   level of indirection, if needed.  */

static struct type *
desc_base_type (struct type *type)
{
  if (type == NULL)
    return NULL;
  type = ada_check_typedef (type);
  if (type != NULL
      && (TYPE_CODE (type) == TYPE_CODE_PTR
          || TYPE_CODE (type) == TYPE_CODE_REF))
    return ada_check_typedef (TYPE_TARGET_TYPE (type));
  else
    return type;
}

/* True iff TYPE indicates a "thin" array pointer type.  */

static int
is_thin_pntr (struct type *type)
{
  return
    is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
    || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
}

/* The descriptor type for thin pointer type TYPE.  */

static struct type *
thin_descriptor_type (struct type *type)
{
  struct type *base_type = desc_base_type (type);
  if (base_type == NULL)
    return NULL;
  if (is_suffix (ada_type_name (base_type), "___XVE"))
    return base_type;
  else
    {
      struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
      if (alt_type == NULL)
        return base_type;
      else
        return alt_type;
    }
}

/* A pointer to the array data for thin-pointer value VAL.  */

static struct value *
thin_data_pntr (struct value *val)
{
  struct type *type = value_type (val);
  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    return value_cast (desc_data_type (thin_descriptor_type (type)),
                       value_copy (val));
  else
    return value_from_longest (desc_data_type (thin_descriptor_type (type)),
                               VALUE_ADDRESS (val) + value_offset (val));
}

/* True iff TYPE indicates a "thick" array pointer type.  */

static int
is_thick_pntr (struct type *type)
{
  type = desc_base_type (type);
  return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
          && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
}

/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
   pointer to one, the type of its bounds data; otherwise, NULL.  */

static struct type *
desc_bounds_type (struct type *type)
{
  struct type *r;

  type = desc_base_type (type);

  if (type == NULL)
    return NULL;
  else if (is_thin_pntr (type))
    {
      type = thin_descriptor_type (type);
      if (type == NULL)
        return NULL;
      r = lookup_struct_elt_type (type, "BOUNDS", 1);
      if (r != NULL)
        return ada_check_typedef (r);
    }
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    {
      r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
      if (r != NULL)
        return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
    }
  return NULL;
}

/* If ARR is an array descriptor (fat or thin pointer), or pointer to
   one, a pointer to its bounds data.   Otherwise NULL.  */

static struct value *
desc_bounds (struct value *arr)
{
  struct type *type = ada_check_typedef (value_type (arr));
  if (is_thin_pntr (type))
    {
      struct type *bounds_type =
        desc_bounds_type (thin_descriptor_type (type));
      LONGEST addr;

      if (desc_bounds_type == NULL)
        error (_("Bad GNAT array descriptor"));

      /* NOTE: The following calculation is not really kosher, but
         since desc_type is an XVE-encoded type (and shouldn't be),
         the correct calculation is a real pain.  FIXME (and fix GCC).  */
      if (TYPE_CODE (type) == TYPE_CODE_PTR)
        addr = value_as_long (arr);
      else
        addr = VALUE_ADDRESS (arr) + value_offset (arr);

      return
        value_from_longest (lookup_pointer_type (bounds_type),
                            addr - TYPE_LENGTH (bounds_type));
    }

  else if (is_thick_pntr (type))
    return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
                             _("Bad GNAT array descriptor"));
  else
    return NULL;
}

/* If TYPE is the type of an array-descriptor (fat pointer),  the bit
   position of the field containing the address of the bounds data.  */

static int
fat_pntr_bounds_bitpos (struct type *type)
{
  return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
}

/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   size of the field containing the address of the bounds data.  */

static int
fat_pntr_bounds_bitsize (struct type *type)
{
  type = desc_base_type (type);

  if (TYPE_FIELD_BITSIZE (type, 1) > 0)
    return TYPE_FIELD_BITSIZE (type, 1);
  else
    return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
}

/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
   pointer to one, the type of its array data (a
   pointer-to-array-with-no-bounds type); otherwise, NULL.  Use
   ada_type_of_array to get an array type with bounds data.  */

static struct type *
desc_data_type (struct type *type)
{
  type = desc_base_type (type);

  /* NOTE: The following is bogus; see comment in desc_bounds.  */
  if (is_thin_pntr (type))
    return lookup_pointer_type
      (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
  else if (is_thick_pntr (type))
    return lookup_struct_elt_type (type, "P_ARRAY", 1);
  else
    return NULL;
}

/* If ARR is an array descriptor (fat or thin pointer), a pointer to
   its array data.  */

static struct value *
desc_data (struct value *arr)
{
  struct type *type = value_type (arr);
  if (is_thin_pntr (type))
    return thin_data_pntr (arr);
  else if (is_thick_pntr (type))
    return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
                             _("Bad GNAT array descriptor"));
  else
    return NULL;
}


/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   position of the field containing the address of the data.  */

static int
fat_pntr_data_bitpos (struct type *type)
{
  return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
}

/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   size of the field containing the address of the data.  */

static int
fat_pntr_data_bitsize (struct type *type)
{
  type = desc_base_type (type);

  if (TYPE_FIELD_BITSIZE (type, 0) > 0)
    return TYPE_FIELD_BITSIZE (type, 0);
  else
    return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
}

/* If BOUNDS is an array-bounds structure (or pointer to one), return
   the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1.  */

static struct value *
desc_one_bound (struct value *bounds, int i, int which)
{
  return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
                           _("Bad GNAT array descriptor bounds"));
}

/* If BOUNDS is an array-bounds structure type, return the bit position
   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1.  */

static int
desc_bound_bitpos (struct type *type, int i, int which)
{
  return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
}

/* If BOUNDS is an array-bounds structure type, return the bit field size
   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1.  */

static int
desc_bound_bitsize (struct type *type, int i, int which)
{
  type = desc_base_type (type);

  if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
    return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
  else
    return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
}

/* If TYPE is the type of an array-bounds structure, the type of its
   Ith bound (numbering from 1).  Otherwise, NULL.  */

static struct type *
desc_index_type (struct type *type, int i)
{
  type = desc_base_type (type);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
  else
    return NULL;
}

/* The number of index positions in the array-bounds type TYPE.
   Return 0 if TYPE is NULL.  */

static int
desc_arity (struct type *type)
{
  type = desc_base_type (type);

  if (type != NULL)
    return TYPE_NFIELDS (type) / 2;
  return 0;
}

/* Non-zero iff TYPE is a simple array type (not a pointer to one) or 
   an array descriptor type (representing an unconstrained array
   type).  */

static int
ada_is_direct_array_type (struct type *type)
{
  if (type == NULL)
    return 0;
  type = ada_check_typedef (type);
  return (TYPE_CODE (type) == TYPE_CODE_ARRAY
          || ada_is_array_descriptor_type (type));
}

/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
 * to one. */

int
ada_is_array_type (struct type *type)
{
  while (type != NULL 
	 && (TYPE_CODE (type) == TYPE_CODE_PTR 
	     || TYPE_CODE (type) == TYPE_CODE_REF))
    type = TYPE_TARGET_TYPE (type);
  return ada_is_direct_array_type (type);
}

/* Non-zero iff TYPE is a simple array type or pointer to one.  */

int
ada_is_simple_array_type (struct type *type)
{
  if (type == NULL)
    return 0;
  type = ada_check_typedef (type);
  return (TYPE_CODE (type) == TYPE_CODE_ARRAY
          || (TYPE_CODE (type) == TYPE_CODE_PTR
              && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
}

/* Non-zero iff TYPE belongs to a GNAT array descriptor.  */

int
ada_is_array_descriptor_type (struct type *type)
{
  struct type *data_type = desc_data_type (type);

  if (type == NULL)
    return 0;
  type = ada_check_typedef (type);
  return
    data_type != NULL
    && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
         && TYPE_TARGET_TYPE (data_type) != NULL
         && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
        || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
    && desc_arity (desc_bounds_type (type)) > 0;
}

/* Non-zero iff type is a partially mal-formed GNAT array
   descriptor.  FIXME: This is to compensate for some problems with
   debugging output from GNAT.  Re-examine periodically to see if it
   is still needed.  */

int
ada_is_bogus_array_descriptor (struct type *type)
{
  return
    type != NULL
    && TYPE_CODE (type) == TYPE_CODE_STRUCT
    && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
        || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
    && !ada_is_array_descriptor_type (type);
}


/* If ARR has a record type in the form of a standard GNAT array descriptor,
   (fat pointer) returns the type of the array data described---specifically,
   a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled
   in from the descriptor; otherwise, they are left unspecified.  If
   the ARR denotes a null array descriptor and BOUNDS is non-zero,
   returns NULL.  The result is simply the type of ARR if ARR is not
   a descriptor.  */
struct type *
ada_type_of_array (struct value *arr, int bounds)
{
  if (ada_is_packed_array_type (value_type (arr)))
    return decode_packed_array_type (value_type (arr));

  if (!ada_is_array_descriptor_type (value_type (arr)))
    return value_type (arr);

  if (!bounds)
    return
      ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
  else
    {
      struct type *elt_type;
      int arity;
      struct value *descriptor;
      struct objfile *objf = TYPE_OBJFILE (value_type (arr));

      elt_type = ada_array_element_type (value_type (arr), -1);
      arity = ada_array_arity (value_type (arr));

      if (elt_type == NULL || arity == 0)
        return ada_check_typedef (value_type (arr));

      descriptor = desc_bounds (arr);
      if (value_as_long (descriptor) == 0)
        return NULL;
      while (arity > 0)
        {
          struct type *range_type = alloc_type (objf);
          struct type *array_type = alloc_type (objf);
          struct value *low = desc_one_bound (descriptor, arity, 0);
          struct value *high = desc_one_bound (descriptor, arity, 1);
          arity -= 1;

          create_range_type (range_type, value_type (low),
                             longest_to_int (value_as_long (low)),
                             longest_to_int (value_as_long (high)));
          elt_type = create_array_type (array_type, elt_type, range_type);
        }

      return lookup_pointer_type (elt_type);
    }
}

/* If ARR does not represent an array, returns ARR unchanged.
   Otherwise, returns either a standard GDB array with bounds set
   appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
   GDB array.  Returns NULL if ARR is a null fat pointer.  */

struct value *
ada_coerce_to_simple_array_ptr (struct value *arr)
{
  if (ada_is_array_descriptor_type (value_type (arr)))
    {
      struct type *arrType = ada_type_of_array (arr, 1);
      if (arrType == NULL)
        return NULL;
      return value_cast (arrType, value_copy (desc_data (arr)));
    }
  else if (ada_is_packed_array_type (value_type (arr)))
    return decode_packed_array (arr);
  else
    return arr;
}

/* If ARR does not represent an array, returns ARR unchanged.
   Otherwise, returns a standard GDB array describing ARR (which may
   be ARR itself if it already is in the proper form).  */

static struct value *
ada_coerce_to_simple_array (struct value *arr)
{
  if (ada_is_array_descriptor_type (value_type (arr)))
    {
      struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
      if (arrVal == NULL)
        error (_("Bounds unavailable for null array pointer."));
      check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
      return value_ind (arrVal);
    }
  else if (ada_is_packed_array_type (value_type (arr)))
    return decode_packed_array (arr);
  else
    return arr;
}

/* If TYPE represents a GNAT array type, return it translated to an
   ordinary GDB array type (possibly with BITSIZE fields indicating
   packing).  For other types, is the identity.  */

struct type *
ada_coerce_to_simple_array_type (struct type *type)
{
  struct value *mark = value_mark ();
  struct value *dummy = value_from_longest (builtin_type_long, 0);
  struct type *result;
  deprecated_set_value_type (dummy, type);
  result = ada_type_of_array (dummy, 0);
  value_free_to_mark (mark);
  return result;
}

/* Non-zero iff TYPE represents a standard GNAT packed-array type.  */

int
ada_is_packed_array_type (struct type *type)
{
  if (type == NULL)
    return 0;
  type = desc_base_type (type);
  type = ada_check_typedef (type);
  return
    ada_type_name (type) != NULL
    && strstr (ada_type_name (type), "___XP") != NULL;
}

/* Given that TYPE is a standard GDB array type with all bounds filled
   in, and that the element size of its ultimate scalar constituents
   (that is, either its elements, or, if it is an array of arrays, its
   elements' elements, etc.) is *ELT_BITS, return an identical type,
   but with the bit sizes of its elements (and those of any
   constituent arrays) recorded in the BITSIZE components of its
   TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
   in bits.  */

static struct type *
packed_array_type (struct type *type, long *elt_bits)
{
  struct type *new_elt_type;
  struct type *new_type;
  LONGEST low_bound, high_bound;

  type = ada_check_typedef (type);
  if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
    return type;

  new_type = alloc_type (TYPE_OBJFILE (type));
  new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
                                    elt_bits);
  create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
  TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
  TYPE_NAME (new_type) = ada_type_name (type);

  if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
                           &low_bound, &high_bound) < 0)
    low_bound = high_bound = 0;
  if (high_bound < low_bound)
    *elt_bits = TYPE_LENGTH (new_type) = 0;
  else
    {
      *elt_bits *= (high_bound - low_bound + 1);
      TYPE_LENGTH (new_type) =
        (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
    }

  TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
  return new_type;
}

/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE).  */

static struct type *
decode_packed_array_type (struct type *type)
{
  struct symbol *sym;
  struct block **blocks;
  const char *raw_name = ada_type_name (ada_check_typedef (type));
  char *name = (char *) alloca (strlen (raw_name) + 1);
  char *tail = strstr (raw_name, "___XP");
  struct type *shadow_type;
  long bits;
  int i, n;

  type = desc_base_type (type);

  memcpy (name, raw_name, tail - raw_name);
  name[tail - raw_name] = '\000';

  sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
  if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
    {
      lim_warning (_("could not find bounds information on packed array"));
      return NULL;
    }
  shadow_type = SYMBOL_TYPE (sym);

  if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
    {
      lim_warning (_("could not understand bounds information on packed array"));
      return NULL;
    }

  if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
    {
      lim_warning
	(_("could not understand bit size information on packed array"));
      return NULL;
    }

  return packed_array_type (shadow_type, &bits);
}

/* Given that ARR is a struct value *indicating a GNAT packed array,
   returns a simple array that denotes that array.  Its type is a
   standard GDB array type except that the BITSIZEs of the array
   target types are set to the number of bits in each element, and the
   type length is set appropriately.  */

static struct value *
decode_packed_array (struct value *arr)
{
  struct type *type;

  arr = ada_coerce_ref (arr);
  if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
    arr = ada_value_ind (arr);

  type = decode_packed_array_type (value_type (arr));
  if (type == NULL)
    {
      error (_("can't unpack array"));
      return NULL;
    }

  if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
    {
       /* This is a (right-justified) modular type representing a packed
 	 array with no wrapper.  In order to interpret the value through
 	 the (left-justified) packed array type we just built, we must
 	 first left-justify it.  */
      int bit_size, bit_pos;
      ULONGEST mod;

      mod = ada_modulus (value_type (arr)) - 1;
      bit_size = 0;
      while (mod > 0)
	{
	  bit_size += 1;
	  mod >>= 1;
	}
      bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
      arr = ada_value_primitive_packed_val (arr, NULL,
					    bit_pos / HOST_CHAR_BIT,
					    bit_pos % HOST_CHAR_BIT,
					    bit_size,
					    type);
    }

  return coerce_unspec_val_to_type (arr, type);
}


/* The value of the element of packed array ARR at the ARITY indices
   given in IND.   ARR must be a simple array.  */

static struct value *
value_subscript_packed (struct value *arr, int arity, struct value **ind)
{
  int i;
  int bits, elt_off, bit_off;
  long elt_total_bit_offset;
  struct type *elt_type;
  struct value *v;

  bits = 0;
  elt_total_bit_offset = 0;
  elt_type = ada_check_typedef (value_type (arr));
  for (i = 0; i < arity; i += 1)
    {
      if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
          || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
        error
          (_("attempt to do packed indexing of something other than a packed array"));
      else
        {
          struct type *range_type = TYPE_INDEX_TYPE (elt_type);
          LONGEST lowerbound, upperbound;
          LONGEST idx;

          if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
            {
              lim_warning (_("don't know bounds of array"));
              lowerbound = upperbound = 0;
            }

          idx = value_as_long (value_pos_atr (ind[i]));
          if (idx < lowerbound || idx > upperbound)
            lim_warning (_("packed array index %ld out of bounds"), (long) idx);
          bits = TYPE_FIELD_BITSIZE (elt_type, 0);
          elt_total_bit_offset += (idx - lowerbound) * bits;
          elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
        }
    }
  elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
  bit_off = elt_total_bit_offset % HOST_CHAR_BIT;

  v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
                                      bits, elt_type);
  if (VALUE_LVAL (arr) == lval_internalvar)
    VALUE_LVAL (v) = lval_internalvar_component;
  else
    VALUE_LVAL (v) = VALUE_LVAL (arr);
  return v;
}

/* Non-zero iff TYPE includes negative integer values.  */

static int
has_negatives (struct type *type)
{
  switch (TYPE_CODE (type))
    {
    default:
      return 0;
    case TYPE_CODE_INT:
      return !TYPE_UNSIGNED (type);
    case TYPE_CODE_RANGE:
      return TYPE_LOW_BOUND (type) < 0;
    }
}


/* Create a new value of type TYPE from the contents of OBJ starting
   at byte OFFSET, and bit offset BIT_OFFSET within that byte,
   proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
   assigning through the result will set the field fetched from.  
   VALADDR is ignored unless OBJ is NULL, in which case,
   VALADDR+OFFSET must address the start of storage containing the 
   packed value.  The value returned  in this case is never an lval.
   Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT.  */

struct value *
ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
				long offset, int bit_offset, int bit_size,
                                struct type *type)
{
  struct value *v;
  int src,                      /* Index into the source area */
    targ,                       /* Index into the target area */
    srcBitsLeft,                /* Number of source bits left to move */
    nsrc, ntarg,                /* Number of source and target bytes */
    unusedLS,                   /* Number of bits in next significant
                                   byte of source that are unused */
    accumSize;                  /* Number of meaningful bits in accum */
  unsigned char *bytes;         /* First byte containing data to unpack */
  unsigned char *unpacked;
  unsigned long accum;          /* Staging area for bits being transferred */
  unsigned char sign;
  int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
  /* Transmit bytes from least to most significant; delta is the direction
     the indices move.  */
  int delta = BITS_BIG_ENDIAN ? -1 : 1;

  type = ada_check_typedef (type);

  if (obj == NULL)
    {
      v = allocate_value (type);
      bytes = (unsigned char *) (valaddr + offset);
    }
  else if (value_lazy (obj))
    {
      v = value_at (type,
                    VALUE_ADDRESS (obj) + value_offset (obj) + offset);
      bytes = (unsigned char *) alloca (len);
      read_memory (VALUE_ADDRESS (v), bytes, len);
    }
  else
    {
      v = allocate_value (type);
      bytes = (unsigned char *) value_contents (obj) + offset;
    }

  if (obj != NULL)
    {
      VALUE_LVAL (v) = VALUE_LVAL (obj);
      if (VALUE_LVAL (obj) == lval_internalvar)
        VALUE_LVAL (v) = lval_internalvar_component;
      VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
      set_value_bitpos (v, bit_offset + value_bitpos (obj));
      set_value_bitsize (v, bit_size);
      if (value_bitpos (v) >= HOST_CHAR_BIT)
        {
          VALUE_ADDRESS (v) += 1;
          set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
        }
    }
  else
    set_value_bitsize (v, bit_size);
  unpacked = (unsigned char *) value_contents (v);

  srcBitsLeft = bit_size;
  nsrc = len;
  ntarg = TYPE_LENGTH (type);
  sign = 0;
  if (bit_size == 0)
    {
      memset (unpacked, 0, TYPE_LENGTH (type));
      return v;
    }
  else if (BITS_BIG_ENDIAN)
    {
      src = len - 1;
      if (has_negatives (type)
          && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
        sign = ~0;

      unusedLS =
        (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
        % HOST_CHAR_BIT;

      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_ARRAY:
        case TYPE_CODE_UNION:
        case TYPE_CODE_STRUCT:
          /* Non-scalar values must be aligned at a byte boundary...  */
          accumSize =
            (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
          /* ... And are placed at the beginning (most-significant) bytes
             of the target.  */
          targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
          break;
        default:
          accumSize = 0;
          targ = TYPE_LENGTH (type) - 1;
          break;
        }
    }
  else
    {
      int sign_bit_offset = (bit_size + bit_offset - 1) % 8;

      src = targ = 0;
      unusedLS = bit_offset;
      accumSize = 0;

      if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
        sign = ~0;
    }

  accum = 0;
  while (nsrc > 0)
    {
      /* Mask for removing bits of the next source byte that are not
         part of the value.  */
      unsigned int unusedMSMask =
        (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
        1;
      /* Sign-extend bits for this byte.  */
      unsigned int signMask = sign & ~unusedMSMask;
      accum |=
        (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
      accumSize += HOST_CHAR_BIT - unusedLS;
      if (accumSize >= HOST_CHAR_BIT)
        {
          unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
          accumSize -= HOST_CHAR_BIT;
          accum >>= HOST_CHAR_BIT;
          ntarg -= 1;
          targ += delta;
        }
      srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
      unusedLS = 0;
      nsrc -= 1;
      src += delta;
    }
  while (ntarg > 0)
    {
      accum |= sign << accumSize;
      unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
      accumSize -= HOST_CHAR_BIT;
      accum >>= HOST_CHAR_BIT;
      ntarg -= 1;
      targ += delta;
    }

  return v;
}

/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
   TARGET, starting at bit offset TARG_OFFSET.  SOURCE and TARGET must
   not overlap.  */
static void
move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
	   int src_offset, int n)
{
  unsigned int accum, mask;
  int accum_bits, chunk_size;

  target += targ_offset / HOST_CHAR_BIT;
  targ_offset %= HOST_CHAR_BIT;
  source += src_offset / HOST_CHAR_BIT;
  src_offset %= HOST_CHAR_BIT;
  if (BITS_BIG_ENDIAN)
    {
      accum = (unsigned char) *source;
      source += 1;
      accum_bits = HOST_CHAR_BIT - src_offset;

      while (n > 0)
        {
          int unused_right;
          accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
          accum_bits += HOST_CHAR_BIT;
          source += 1;
          chunk_size = HOST_CHAR_BIT - targ_offset;
          if (chunk_size > n)
            chunk_size = n;
          unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
          mask = ((1 << chunk_size) - 1) << unused_right;
          *target =
            (*target & ~mask)
            | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
          n -= chunk_size;
          accum_bits -= chunk_size;
          target += 1;
          targ_offset = 0;
        }
    }
  else
    {
      accum = (unsigned char) *source >> src_offset;
      source += 1;
      accum_bits = HOST_CHAR_BIT - src_offset;

      while (n > 0)
        {
          accum = accum + ((unsigned char) *source << accum_bits);
          accum_bits += HOST_CHAR_BIT;
          source += 1;
          chunk_size = HOST_CHAR_BIT - targ_offset;
          if (chunk_size > n)
            chunk_size = n;
          mask = ((1 << chunk_size) - 1) << targ_offset;
          *target = (*target & ~mask) | ((accum << targ_offset) & mask);
          n -= chunk_size;
          accum_bits -= chunk_size;
          accum >>= chunk_size;
          target += 1;
          targ_offset = 0;
        }
    }
}

/* Store the contents of FROMVAL into the location of TOVAL.
   Return a new value with the location of TOVAL and contents of
   FROMVAL.   Handles assignment into packed fields that have
   floating-point or non-scalar types.  */

static struct value *
ada_value_assign (struct value *toval, struct value *fromval)
{
  struct type *type = value_type (toval);
  int bits = value_bitsize (toval);

  toval = ada_coerce_ref (toval);
  fromval = ada_coerce_ref (fromval);

  if (ada_is_direct_array_type (value_type (toval)))
    toval = ada_coerce_to_simple_array (toval);
  if (ada_is_direct_array_type (value_type (fromval)))
    fromval = ada_coerce_to_simple_array (fromval);

  if (!deprecated_value_modifiable (toval))
    error (_("Left operand of assignment is not a modifiable lvalue."));

  if (VALUE_LVAL (toval) == lval_memory
      && bits > 0
      && (TYPE_CODE (type) == TYPE_CODE_FLT
          || TYPE_CODE (type) == TYPE_CODE_STRUCT))
    {
      int len = (value_bitpos (toval)
		 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
      char *buffer = (char *) alloca (len);
      struct value *val;
      CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);

      if (TYPE_CODE (type) == TYPE_CODE_FLT)
        fromval = value_cast (type, fromval);

      read_memory (to_addr, buffer, len);
      if (BITS_BIG_ENDIAN)
        move_bits (buffer, value_bitpos (toval),
                   value_contents (fromval),
                   TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
                   bits, bits);
      else
        move_bits (buffer, value_bitpos (toval), value_contents (fromval),
                   0, bits);
      write_memory (to_addr, buffer, len);
      if (deprecated_memory_changed_hook)
	deprecated_memory_changed_hook (to_addr, len);
      
      val = value_copy (toval);
      memcpy (value_contents_raw (val), value_contents (fromval),
              TYPE_LENGTH (type));
      deprecated_set_value_type (val, type);

      return val;
    }

  return value_assign (toval, fromval);
}


/* Given that COMPONENT is a memory lvalue that is part of the lvalue 
 * CONTAINER, assign the contents of VAL to COMPONENTS's place in 
 * CONTAINER.  Modifies the VALUE_CONTENTS of CONTAINER only, not 
 * COMPONENT, and not the inferior's memory.  The current contents 
 * of COMPONENT are ignored.  */
static void
value_assign_to_component (struct value *container, struct value *component,
			   struct value *val)
{
  LONGEST offset_in_container =
    (LONGEST)  (VALUE_ADDRESS (component) + value_offset (component)
		- VALUE_ADDRESS (container) - value_offset (container));
  int bit_offset_in_container = 
    value_bitpos (component) - value_bitpos (container);
  int bits;
  
  val = value_cast (value_type (component), val);

  if (value_bitsize (component) == 0)
    bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
  else
    bits = value_bitsize (component);

  if (BITS_BIG_ENDIAN)
    move_bits (value_contents_writeable (container) + offset_in_container, 
	       value_bitpos (container) + bit_offset_in_container,
	       value_contents (val),
	       TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
	       bits);
  else
    move_bits (value_contents_writeable (container) + offset_in_container, 
	       value_bitpos (container) + bit_offset_in_container,
	       value_contents (val), 0, bits);
}	       
			
/* The value of the element of array ARR at the ARITY indices given in IND.
   ARR may be either a simple array, GNAT array descriptor, or pointer
   thereto.  */

struct value *
ada_value_subscript (struct value *arr, int arity, struct value **ind)
{
  int k;
  struct value *elt;
  struct type *elt_type;

  elt = ada_coerce_to_simple_array (arr);

  elt_type = ada_check_typedef (value_type (elt));
  if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
      && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
    return value_subscript_packed (elt, arity, ind);

  for (k = 0; k < arity; k += 1)
    {
      if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
        error (_("too many subscripts (%d expected)"), k);
      elt = value_subscript (elt, value_pos_atr (ind[k]));
    }
  return elt;
}

/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
   value of the element of *ARR at the ARITY indices given in
   IND.  Does not read the entire array into memory.  */

struct value *
ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
                         struct value **ind)
{
  int k;

  for (k = 0; k < arity; k += 1)
    {
      LONGEST lwb, upb;
      struct value *idx;

      if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
        error (_("too many subscripts (%d expected)"), k);
      arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
                        value_copy (arr));
      get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
      idx = value_pos_atr (ind[k]);
      if (lwb != 0)
        idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
      arr = value_add (arr, idx);
      type = TYPE_TARGET_TYPE (type);
    }

  return value_ind (arr);
}

/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
   actual type of ARRAY_PTR is ignored), returns a reference to
   the Ada slice of HIGH-LOW+1 elements starting at index LOW.  The lower
   bound of this array is LOW, as per Ada rules. */
static struct value *
ada_value_slice_ptr (struct value *array_ptr, struct type *type,
                     int low, int high)
{
  CORE_ADDR base = value_as_address (array_ptr)
    + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
       * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
  struct type *index_type =
    create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
                       low, high);
  struct type *slice_type =
    create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
  return value_from_pointer (lookup_reference_type (slice_type), base);
}


static struct value *
ada_value_slice (struct value *array, int low, int high)
{
  struct type *type = value_type (array);
  struct type *index_type =
    create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
  struct type *slice_type =
    create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
  return value_cast (slice_type, value_slice (array, low, high - low + 1));
}

/* If type is a record type in the form of a standard GNAT array
   descriptor, returns the number of dimensions for type.  If arr is a
   simple array, returns the number of "array of"s that prefix its
   type designation.  Otherwise, returns 0.  */

int
ada_array_arity (struct type *type)
{
  int arity;

  if (type == NULL)
    return 0;

  type = desc_base_type (type);

  arity = 0;
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    return desc_arity (desc_bounds_type (type));
  else
    while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
      {
        arity += 1;
        type = ada_check_typedef (TYPE_TARGET_TYPE (type));
      }

  return arity;
}

/* If TYPE is a record type in the form of a standard GNAT array
   descriptor or a simple array type, returns the element type for
   TYPE after indexing by NINDICES indices, or by all indices if
   NINDICES is -1.  Otherwise, returns NULL.  */

struct type *
ada_array_element_type (struct type *type, int nindices)
{
  type = desc_base_type (type);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    {
      int k;
      struct type *p_array_type;

      p_array_type = desc_data_type (type);

      k = ada_array_arity (type);
      if (k == 0)
        return NULL;

      /* Initially p_array_type = elt_type(*)[]...(k times)...[].  */
      if (nindices >= 0 && k > nindices)
        k = nindices;
      p_array_type = TYPE_TARGET_TYPE (p_array_type);
      while (k > 0 && p_array_type != NULL)
        {
          p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
          k -= 1;
        }
      return p_array_type;
    }
  else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
        {
          type = TYPE_TARGET_TYPE (type);
          nindices -= 1;
        }
      return type;
    }

  return NULL;
}

/* The type of nth index in arrays of given type (n numbering from 1).
   Does not examine memory.  */

struct type *
ada_index_type (struct type *type, int n)
{
  struct type *result_type;

  type = desc_base_type (type);

  if (n > ada_array_arity (type))
    return NULL;

  if (ada_is_simple_array_type (type))
    {
      int i;

      for (i = 1; i < n; i += 1)
        type = TYPE_TARGET_TYPE (type);
      result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
      /* FIXME: The stabs type r(0,0);bound;bound in an array type
         has a target type of TYPE_CODE_UNDEF.  We compensate here, but
         perhaps stabsread.c would make more sense.  */
      if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
        result_type = builtin_type_int;

      return result_type;
    }
  else
    return desc_index_type (desc_bounds_type (type), n);
}

/* Given that arr is an array type, returns the lower bound of the
   Nth index (numbering from 1) if WHICH is 0, and the upper bound if
   WHICH is 1.  This returns bounds 0 .. -1 if ARR_TYPE is an
   array-descriptor type.  If TYPEP is non-null, *TYPEP is set to the
   bounds type.  It works for other arrays with bounds supplied by
   run-time quantities other than discriminants.  */

LONGEST
ada_array_bound_from_type (struct type * arr_type, int n, int which,
                           struct type ** typep)
{
  struct type *type;
  struct type *index_type_desc;

  if (ada_is_packed_array_type (arr_type))
    arr_type = decode_packed_array_type (arr_type);

  if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
    {
      if (typep != NULL)
        *typep = builtin_type_int;
      return (LONGEST) - which;
    }

  if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
    type = TYPE_TARGET_TYPE (arr_type);
  else
    type = arr_type;

  index_type_desc = ada_find_parallel_type (type, "___XA");
  if (index_type_desc == NULL)
    {
      struct type *range_type;
      struct type *index_type;

      while (n > 1)
        {
          type = TYPE_TARGET_TYPE (type);
          n -= 1;
        }

      range_type = TYPE_INDEX_TYPE (type);
      index_type = TYPE_TARGET_TYPE (range_type);
      if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
        index_type = builtin_type_long;
      if (typep != NULL)
        *typep = index_type;
      return
        (LONGEST) (which == 0
                   ? TYPE_LOW_BOUND (range_type)
                   : TYPE_HIGH_BOUND (range_type));
    }
  else
    {
      struct type *index_type =
        to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
                             NULL, TYPE_OBJFILE (arr_type));
      if (typep != NULL)
        *typep = TYPE_TARGET_TYPE (index_type);
      return
        (LONGEST) (which == 0
                   ? TYPE_LOW_BOUND (index_type)
                   : TYPE_HIGH_BOUND (index_type));
    }
}

/* Given that arr is an array value, returns the lower bound of the
   nth index (numbering from 1) if which is 0, and the upper bound if
   which is 1.  This routine will also work for arrays with bounds
   supplied by run-time quantities other than discriminants.  */

struct value *
ada_array_bound (struct value *arr, int n, int which)
{
  struct type *arr_type = value_type (arr);

  if (ada_is_packed_array_type (arr_type))
    return ada_array_bound (decode_packed_array (arr), n, which);
  else if (ada_is_simple_array_type (arr_type))
    {
      struct type *type;
      LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
      return value_from_longest (type, v);
    }
  else
    return desc_one_bound (desc_bounds (arr), n, which);
}

/* Given that arr is an array value, returns the length of the
   nth index.  This routine will also work for arrays with bounds
   supplied by run-time quantities other than discriminants.
   Does not work for arrays indexed by enumeration types with representation
   clauses at the moment.  */

struct value *
ada_array_length (struct value *arr, int n)
{
  struct type *arr_type = ada_check_typedef (value_type (arr));

  if (ada_is_packed_array_type (arr_type))
    return ada_array_length (decode_packed_array (arr), n);

  if (ada_is_simple_array_type (arr_type))
    {
      struct type *type;
      LONGEST v =
        ada_array_bound_from_type (arr_type, n, 1, &type) -
        ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
      return value_from_longest (type, v);
    }
  else
    return
      value_from_longest (builtin_type_int,
                          value_as_long (desc_one_bound (desc_bounds (arr),
                                                         n, 1))
                          - value_as_long (desc_one_bound (desc_bounds (arr),
                                                           n, 0)) + 1);
}

/* An empty array whose type is that of ARR_TYPE (an array type),
   with bounds LOW to LOW-1.  */

static struct value *
empty_array (struct type *arr_type, int low)
{
  struct type *index_type =
    create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
                       low, low - 1);
  struct type *elt_type = ada_array_element_type (arr_type, 1);
  return allocate_value (create_array_type (NULL, elt_type, index_type));
}


                                /* Name resolution */

/* The "decoded" name for the user-definable Ada operator corresponding
   to OP.  */

static const char *
ada_decoded_op_name (enum exp_opcode op)
{
  int i;

  for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
    {
      if (ada_opname_table[i].op == op)
        return ada_opname_table[i].decoded;
    }
  error (_("Could not find operator name for opcode"));
}


/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
   references (marked by OP_VAR_VALUE nodes in which the symbol has an
   undefined namespace) and converts operators that are
   user-defined into appropriate function calls.  If CONTEXT_TYPE is
   non-null, it provides a preferred result type [at the moment, only
   type void has any effect---causing procedures to be preferred over
   functions in calls].  A null CONTEXT_TYPE indicates that a non-void
   return type is preferred.  May change (expand) *EXP.  */

static void
resolve (struct expression **expp, int void_context_p)
{
  int pc;
  pc = 0;
  resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
}

/* Resolve the operator of the subexpression beginning at
   position *POS of *EXPP.  "Resolving" consists of replacing
   the symbols that have undefined namespaces in OP_VAR_VALUE nodes
   with their resolutions, replacing built-in operators with
   function calls to user-defined operators, where appropriate, and,
   when DEPROCEDURE_P is non-zero, converting function-valued variables
   into parameterless calls.  May expand *EXPP.  The CONTEXT_TYPE functions
   are as in ada_resolve, above.  */

static struct value *
resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
                struct type *context_type)
{
  int pc = *pos;
  int i;
  struct expression *exp;       /* Convenience: == *expp.  */
  enum exp_opcode op = (*expp)->elts[pc].opcode;
  struct value **argvec;        /* Vector of operand types (alloca'ed).  */
  int nargs;                    /* Number of operands.  */
  int oplen;

  argvec = NULL;
  nargs = 0;
  exp = *expp;

  /* Pass one: resolve operands, saving their types and updating *pos,
     if needed.  */
  switch (op)
    {
    case OP_FUNCALL:
      if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
          && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
        *pos += 7;
      else
        {
          *pos += 3;
          resolve_subexp (expp, pos, 0, NULL);
        }
      nargs = longest_to_int (exp->elts[pc + 1].longconst);
      break;

    case UNOP_ADDR:
      *pos += 1;
      resolve_subexp (expp, pos, 0, NULL);
      break;

    case UNOP_QUAL:
      *pos += 3;
      resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
      break;

    case OP_ATR_MODULUS:
    case OP_ATR_SIZE:
    case OP_ATR_TAG:
    case OP_ATR_FIRST:
    case OP_ATR_LAST:
    case OP_ATR_LENGTH:
    case OP_ATR_POS:
    case OP_ATR_VAL:
    case OP_ATR_MIN:
    case OP_ATR_MAX:
    case TERNOP_IN_RANGE:
    case BINOP_IN_BOUNDS:
    case UNOP_IN_RANGE:
    case OP_AGGREGATE:
    case OP_OTHERS:
    case OP_CHOICES:
    case OP_POSITIONAL:
    case OP_DISCRETE_RANGE:
    case OP_NAME:
      ada_forward_operator_length (exp, pc, &oplen, &nargs);
      *pos += oplen;
      break;

    case BINOP_ASSIGN:
      {
        struct value *arg1;

        *pos += 1;
        arg1 = resolve_subexp (expp, pos, 0, NULL);
        if (arg1 == NULL)
          resolve_subexp (expp, pos, 1, NULL);
        else
          resolve_subexp (expp, pos, 1, value_type (arg1));
        break;
      }

    case UNOP_CAST:
      *pos += 3;
      nargs = 1;
      break;

    case BINOP_ADD:
    case BINOP_SUB:
    case BINOP_MUL:
    case BINOP_DIV:
    case BINOP_REM:
    case BINOP_MOD:
    case BINOP_EXP:
    case BINOP_CONCAT:
    case BINOP_LOGICAL_AND:
    case BINOP_LOGICAL_OR:
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:

    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
    case BINOP_LESS:
    case BINOP_GTR:
    case BINOP_LEQ:
    case BINOP_GEQ:

    case BINOP_REPEAT:
    case BINOP_SUBSCRIPT:
    case BINOP_COMMA:

    case UNOP_NEG:
    case UNOP_PLUS:
    case UNOP_LOGICAL_NOT:
    case UNOP_ABS:
    case UNOP_IND:
      *pos += 1;
      nargs = 1;
      break;

    case OP_LONG:
    case OP_DOUBLE:
    case OP_VAR_VALUE:
      *pos += 4;
      break;

    case OP_TYPE:
    case OP_BOOL:
    case OP_LAST:
    case OP_REGISTER:
    case OP_INTERNALVAR:
      *pos += 3;
      break;

    case UNOP_MEMVAL:
      *pos += 3;
      nargs = 1;
      break;

    case STRUCTOP_STRUCT:
      *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
      nargs = 1;
      break;

    case TERNOP_SLICE:
      *pos += 1;
      nargs = 3;
      break;

    case OP_STRING:
      break;

    default:
      error (_("Unexpected operator during name resolution"));
    }

  argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
  for (i = 0; i < nargs; i += 1)
    argvec[i] = resolve_subexp (expp, pos, 1, NULL);
  argvec[i] = NULL;
  exp = *expp;

  /* Pass two: perform any resolution on principal operator.  */
  switch (op)
    {
    default:
      break;

    case OP_VAR_VALUE:
      if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
        {
          struct ada_symbol_info *candidates;
          int n_candidates;

          n_candidates =
            ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
                                    (exp->elts[pc + 2].symbol),
                                    exp->elts[pc + 1].block, VAR_DOMAIN,
                                    &candidates);

          if (n_candidates > 1)
            {
              /* Types tend to get re-introduced locally, so if there
                 are any local symbols that are not types, first filter
                 out all types.  */
              int j;
              for (j = 0; j < n_candidates; j += 1)
                switch (SYMBOL_CLASS (candidates[j].sym))
                  {
                  case LOC_REGISTER:
                  case LOC_ARG:
                  case LOC_REF_ARG:
                  case LOC_REGPARM:
                  case LOC_REGPARM_ADDR:
                  case LOC_LOCAL:
                  case LOC_LOCAL_ARG:
                  case LOC_BASEREG:
                  case LOC_BASEREG_ARG:
                  case LOC_COMPUTED:
                  case LOC_COMPUTED_ARG:
                    goto FoundNonType;
                  default:
                    break;
                  }
            FoundNonType:
              if (j < n_candidates)
                {
                  j = 0;
                  while (j < n_candidates)
                    {
                      if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
                        {
                          candidates[j] = candidates[n_candidates - 1];
                          n_candidates -= 1;
                        }
                      else
                        j += 1;
                    }
                }
            }

          if (n_candidates == 0)
            error (_("No definition found for %s"),
                   SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
          else if (n_candidates == 1)
            i = 0;
          else if (deprocedure_p
                   && !is_nonfunction (candidates, n_candidates))
            {
              i = ada_resolve_function
                (candidates, n_candidates, NULL, 0,
                 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
                 context_type);
              if (i < 0)
                error (_("Could not find a match for %s"),
                       SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
            }
          else
            {
              printf_filtered (_("Multiple matches for %s\n"),
                               SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
              user_select_syms (candidates, n_candidates, 1);
              i = 0;
            }

          exp->elts[pc + 1].block = candidates[i].block;
          exp->elts[pc + 2].symbol = candidates[i].sym;
          if (innermost_block == NULL
              || contained_in (candidates[i].block, innermost_block))
            innermost_block = candidates[i].block;
        }

      if (deprocedure_p
          && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
              == TYPE_CODE_FUNC))
        {
          replace_operator_with_call (expp, pc, 0, 0,
                                      exp->elts[pc + 2].symbol,
                                      exp->elts[pc + 1].block);
          exp = *expp;
        }
      break;

    case OP_FUNCALL:
      {
        if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
            && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
          {
            struct ada_symbol_info *candidates;
            int n_candidates;

            n_candidates =
              ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
                                      (exp->elts[pc + 5].symbol),
                                      exp->elts[pc + 4].block, VAR_DOMAIN,
                                      &candidates);
            if (n_candidates == 1)
              i = 0;
            else
              {
                i = ada_resolve_function
                  (candidates, n_candidates,
                   argvec, nargs,
                   SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
                   context_type);
                if (i < 0)
                  error (_("Could not find a match for %s"),
                         SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
              }

            exp->elts[pc + 4].block = candidates[i].block;
            exp->elts[pc + 5].symbol = candidates[i].sym;
            if (innermost_block == NULL
                || contained_in (candidates[i].block, innermost_block))
              innermost_block = candidates[i].block;
          }
      }
      break;
    case BINOP_ADD:
    case BINOP_SUB:
    case BINOP_MUL:
    case BINOP_DIV:
    case BINOP_REM:
    case BINOP_MOD:
    case BINOP_CONCAT:
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:
    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
    case BINOP_LESS:
    case BINOP_GTR:
    case BINOP_LEQ:
    case BINOP_GEQ:
    case BINOP_EXP:
    case UNOP_NEG:
    case UNOP_PLUS:
    case UNOP_LOGICAL_NOT:
    case UNOP_ABS:
      if (possible_user_operator_p (op, argvec))
        {
          struct ada_symbol_info *candidates;
          int n_candidates;

          n_candidates =
            ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
                                    (struct block *) NULL, VAR_DOMAIN,
                                    &candidates);
          i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
                                    ada_decoded_op_name (op), NULL);
          if (i < 0)
            break;

          replace_operator_with_call (expp, pc, nargs, 1,
                                      candidates[i].sym, candidates[i].block);
          exp = *expp;
        }
      break;

    case OP_TYPE:
      return NULL;
    }

  *pos = pc;
  return evaluate_subexp_type (exp, pos);
}

/* Return non-zero if formal type FTYPE matches actual type ATYPE.  If
   MAY_DEREF is non-zero, the formal may be a pointer and the actual
   a non-pointer.   A type of 'void' (which is never a valid expression type)
   by convention matches anything. */
/* The term "match" here is rather loose.  The match is heuristic and
   liberal.  FIXME: TOO liberal, in fact.  */

static int
ada_type_match (struct type *ftype, struct type *atype, int may_deref)
{
  ftype = ada_check_typedef (ftype);
  atype = ada_check_typedef (atype);

  if (TYPE_CODE (ftype) == TYPE_CODE_REF)
    ftype = TYPE_TARGET_TYPE (ftype);
  if (TYPE_CODE (atype) == TYPE_CODE_REF)
    atype = TYPE_TARGET_TYPE (atype);

  if (TYPE_CODE (ftype) == TYPE_CODE_VOID
      || TYPE_CODE (atype) == TYPE_CODE_VOID)
    return 1;

  switch (TYPE_CODE (ftype))
    {
    default:
      return 1;
    case TYPE_CODE_PTR:
      if (TYPE_CODE (atype) == TYPE_CODE_PTR)
        return ada_type_match (TYPE_TARGET_TYPE (ftype),
                               TYPE_TARGET_TYPE (atype), 0);
      else
        return (may_deref
                && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
    case TYPE_CODE_INT:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_RANGE:
      switch (TYPE_CODE (atype))
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_RANGE:
          return 1;
        default:
          return 0;
        }

    case TYPE_CODE_ARRAY:
      return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
              || ada_is_array_descriptor_type (atype));

    case TYPE_CODE_STRUCT:
      if (ada_is_array_descriptor_type (ftype))
        return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
                || ada_is_array_descriptor_type (atype));
      else
        return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
                && !ada_is_array_descriptor_type (atype));

    case TYPE_CODE_UNION:
    case TYPE_CODE_FLT:
      return (TYPE_CODE (atype) == TYPE_CODE (ftype));
    }
}

/* Return non-zero if the formals of FUNC "sufficiently match" the
   vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
   may also be an enumeral, in which case it is treated as a 0-
   argument function.  */

static int
ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
{
  int i;
  struct type *func_type = SYMBOL_TYPE (func);

  if (SYMBOL_CLASS (func) == LOC_CONST
      && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
    return (n_actuals == 0);
  else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
    return 0;

  if (TYPE_NFIELDS (func_type) != n_actuals)
    return 0;

  for (i = 0; i < n_actuals; i += 1)
    {
      if (actuals[i] == NULL)
        return 0;
      else
        {
          struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
          struct type *atype = ada_check_typedef (value_type (actuals[i]));

          if (!ada_type_match (ftype, atype, 1))
            return 0;
        }
    }
  return 1;
}

/* False iff function type FUNC_TYPE definitely does not produce a value
   compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
   FUNC_TYPE is not a valid function type with a non-null return type
   or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */

static int
return_match (struct type *func_type, struct type *context_type)
{
  struct type *return_type;

  if (func_type == NULL)
    return 1;

  if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
    return_type = base_type (TYPE_TARGET_TYPE (func_type));
  else
    return_type = base_type (func_type);
  if (return_type == NULL)
    return 1;

  context_type = base_type (context_type);

  if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
    return context_type == NULL || return_type == context_type;
  else if (context_type == NULL)
    return TYPE_CODE (return_type) != TYPE_CODE_VOID;
  else
    return TYPE_CODE (return_type) == TYPE_CODE (context_type);
}


/* Returns the index in SYMS[0..NSYMS-1] that contains  the symbol for the
   function (if any) that matches the types of the NARGS arguments in
   ARGS.  If CONTEXT_TYPE is non-null and there is at least one match
   that returns that type, then eliminate matches that don't.  If
   CONTEXT_TYPE is void and there is at least one match that does not
   return void, eliminate all matches that do.

   Asks the user if there is more than one match remaining.  Returns -1
   if there is no such symbol or none is selected.  NAME is used
   solely for messages.  May re-arrange and modify SYMS in
   the process; the index returned is for the modified vector.  */

static int
ada_resolve_function (struct ada_symbol_info syms[],
                      int nsyms, struct value **args, int nargs,
                      const char *name, struct type *context_type)
{
  int k;
  int m;                        /* Number of hits */
  struct type *fallback;
  struct type *return_type;

  return_type = context_type;
  if (context_type == NULL)
    fallback = builtin_type_void;
  else
    fallback = NULL;

  m = 0;
  while (1)
    {
      for (k = 0; k < nsyms; k += 1)
        {
          struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));

          if (ada_args_match (syms[k].sym, args, nargs)
              && return_match (type, return_type))
            {
              syms[m] = syms[k];
              m += 1;
            }
        }
      if (m > 0 || return_type == fallback)
        break;
      else
        return_type = fallback;
    }

  if (m == 0)
    return -1;
  else if (m > 1)
    {
      printf_filtered (_("Multiple matches for %s\n"), name);
      user_select_syms (syms, m, 1);
      return 0;
    }
  return 0;
}

/* Returns true (non-zero) iff decoded name N0 should appear before N1
   in a listing of choices during disambiguation (see sort_choices, below).
   The idea is that overloadings of a subprogram name from the
   same package should sort in their source order.  We settle for ordering
   such symbols by their trailing number (__N  or $N).  */

static int
encoded_ordered_before (char *N0, char *N1)
{
  if (N1 == NULL)
    return 0;
  else if (N0 == NULL)
    return 1;
  else
    {
      int k0, k1;
      for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
        ;
      for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
        ;
      if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
          && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
        {
          int n0, n1;
          n0 = k0;
          while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
            n0 -= 1;
          n1 = k1;
          while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
            n1 -= 1;
          if (n0 == n1 && strncmp (N0, N1, n0) == 0)
            return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
        }
      return (strcmp (N0, N1) < 0);
    }
}

/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
   encoded names.  */

static void
sort_choices (struct ada_symbol_info syms[], int nsyms)
{
  int i;
  for (i = 1; i < nsyms; i += 1)
    {
      struct ada_symbol_info sym = syms[i];
      int j;

      for (j = i - 1; j >= 0; j -= 1)
        {
          if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
                                      SYMBOL_LINKAGE_NAME (sym.sym)))
            break;
          syms[j + 1] = syms[j];
        }
      syms[j + 1] = sym;
    }
}

/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 
   by asking the user (if necessary), returning the number selected, 
   and setting the first elements of SYMS items.  Error if no symbols
   selected.  */

/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
   to be re-integrated one of these days.  */

int
user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
{
  int i;
  int *chosen = (int *) alloca (sizeof (int) * nsyms);
  int n_chosen;
  int first_choice = (max_results == 1) ? 1 : 2;

  if (max_results < 1)
    error (_("Request to select 0 symbols!"));
  if (nsyms <= 1)
    return nsyms;

  printf_unfiltered (_("[0] cancel\n"));
  if (max_results > 1)
    printf_unfiltered (_("[1] all\n"));

  sort_choices (syms, nsyms);

  for (i = 0; i < nsyms; i += 1)
    {
      if (syms[i].sym == NULL)
        continue;

      if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
        {
          struct symtab_and_line sal =
            find_function_start_sal (syms[i].sym, 1);
	  if (sal.symtab == NULL)
	    printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
			       i + first_choice,
			       SYMBOL_PRINT_NAME (syms[i].sym),
			       sal.line);
	  else
	    printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
			       SYMBOL_PRINT_NAME (syms[i].sym),
			       sal.symtab->filename, sal.line);
          continue;
        }
      else
        {
          int is_enumeral =
            (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
             && SYMBOL_TYPE (syms[i].sym) != NULL
             && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
          struct symtab *symtab = symtab_for_sym (syms[i].sym);

          if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
            printf_unfiltered (_("[%d] %s at %s:%d\n"),
                               i + first_choice,
                               SYMBOL_PRINT_NAME (syms[i].sym),
                               symtab->filename, SYMBOL_LINE (syms[i].sym));
          else if (is_enumeral
                   && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
            {
              printf_unfiltered (("[%d] "), i + first_choice);
              ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
                              gdb_stdout, -1, 0);
              printf_unfiltered (_("'(%s) (enumeral)\n"),
                                 SYMBOL_PRINT_NAME (syms[i].sym));
            }
          else if (symtab != NULL)
            printf_unfiltered (is_enumeral
                               ? _("[%d] %s in %s (enumeral)\n")
                               : _("[%d] %s at %s:?\n"),
                               i + first_choice,
                               SYMBOL_PRINT_NAME (syms[i].sym),
                               symtab->filename);
          else
            printf_unfiltered (is_enumeral
                               ? _("[%d] %s (enumeral)\n")
                               : _("[%d] %s at ?\n"),
                               i + first_choice,
                               SYMBOL_PRINT_NAME (syms[i].sym));
        }
    }

  n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
                             "overload-choice");

  for (i = 0; i < n_chosen; i += 1)
    syms[i] = syms[chosen[i]];

  return n_chosen;
}

/* Read and validate a set of numeric choices from the user in the
   range 0 .. N_CHOICES-1.  Place the results in increasing
   order in CHOICES[0 .. N-1], and return N.

   The user types choices as a sequence of numbers on one line
   separated by blanks, encoding them as follows:

     + A choice of 0 means to cancel the selection, throwing an error.
     + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
     + The user chooses k by typing k+IS_ALL_CHOICE+1.

   The user is not allowed to choose more than MAX_RESULTS values.

   ANNOTATION_SUFFIX, if present, is used to annotate the input
   prompts (for use with the -f switch).  */

int
get_selections (int *choices, int n_choices, int max_results,
                int is_all_choice, char *annotation_suffix)
{
  char *args;
  const char *prompt;
  int n_chosen;
  int first_choice = is_all_choice ? 2 : 1;

  prompt = getenv ("PS2");
  if (prompt == NULL)
    prompt = ">";

  printf_unfiltered (("%s "), prompt);
  gdb_flush (gdb_stdout);

  args = command_line_input ((char *) NULL, 0, annotation_suffix);

  if (args == NULL)
    error_no_arg (_("one or more choice numbers"));

  n_chosen = 0;

  /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
     order, as given in args.  Choices are validated.  */
  while (1)
    {
      char *args2;
      int choice, j;

      while (isspace (*args))
        args += 1;
      if (*args == '\0' && n_chosen == 0)
        error_no_arg (_("one or more choice numbers"));
      else if (*args == '\0')
        break;

      choice = strtol (args, &args2, 10);
      if (args == args2 || choice < 0
          || choice > n_choices + first_choice - 1)
        error (_("Argument must be choice number"));
      args = args2;

      if (choice == 0)
        error (_("cancelled"));

      if (choice < first_choice)
        {
          n_chosen = n_choices;
          for (j = 0; j < n_choices; j += 1)
            choices[j] = j;
          break;
        }
      choice -= first_choice;

      for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
        {
        }

      if (j < 0 || choice != choices[j])
        {
          int k;
          for (k = n_chosen - 1; k > j; k -= 1)
            choices[k + 1] = choices[k];
          choices[j + 1] = choice;
          n_chosen += 1;
        }
    }

  if (n_chosen > max_results)
    error (_("Select no more than %d of the above"), max_results);

  return n_chosen;
}

/* Replace the operator of length OPLEN at position PC in *EXPP with a call
   on the function identified by SYM and BLOCK, and taking NARGS
   arguments.  Update *EXPP as needed to hold more space.  */

static void
replace_operator_with_call (struct expression **expp, int pc, int nargs,
                            int oplen, struct symbol *sym,
                            struct block *block)
{
  /* A new expression, with 6 more elements (3 for funcall, 4 for function
     symbol, -oplen for operator being replaced).  */
  struct expression *newexp = (struct expression *)
    xmalloc (sizeof (struct expression)
             + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
  struct expression *exp = *expp;

  newexp->nelts = exp->nelts + 7 - oplen;
  newexp->language_defn = exp->language_defn;
  memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
  memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
          EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));

  newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
  newexp->elts[pc + 1].longconst = (LONGEST) nargs;

  newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
  newexp->elts[pc + 4].block = block;
  newexp->elts[pc + 5].symbol = sym;

  *expp = newexp;
  xfree (exp);
}

/* Type-class predicates */

/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
   or FLOAT).  */

static int
numeric_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_FLT:
          return 1;
        case TYPE_CODE_RANGE:
          return (type == TYPE_TARGET_TYPE (type)
                  || numeric_type_p (TYPE_TARGET_TYPE (type)));
        default:
          return 0;
        }
    }
}

/* True iff TYPE is integral (an INT or RANGE of INTs).  */

static int
integer_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_INT:
          return 1;
        case TYPE_CODE_RANGE:
          return (type == TYPE_TARGET_TYPE (type)
                  || integer_type_p (TYPE_TARGET_TYPE (type)));
        default:
          return 0;
        }
    }
}

/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM).  */

static int
scalar_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_FLT:
          return 1;
        default:
          return 0;
        }
    }
}

/* True iff TYPE is discrete (INT, RANGE, ENUM).  */

static int
discrete_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_ENUM:
          return 1;
        default:
          return 0;
        }
    }
}

/* Returns non-zero if OP with operands in the vector ARGS could be
   a user-defined function.  Errs on the side of pre-defined operators
   (i.e., result 0).  */

static int
possible_user_operator_p (enum exp_opcode op, struct value *args[])
{
  struct type *type0 =
    (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
  struct type *type1 =
    (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));

  if (type0 == NULL)
    return 0;

  switch (op)
    {
    default:
      return 0;

    case BINOP_ADD:
    case BINOP_SUB:
    case BINOP_MUL:
    case BINOP_DIV:
      return (!(numeric_type_p (type0) && numeric_type_p (type1)));

    case BINOP_REM:
    case BINOP_MOD:
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:
      return (!(integer_type_p (type0) && integer_type_p (type1)));

    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
    case BINOP_LESS:
    case BINOP_GTR:
    case BINOP_LEQ:
    case BINOP_GEQ:
      return (!(scalar_type_p (type0) && scalar_type_p (type1)));

    case BINOP_CONCAT:
      return
        ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
          && (TYPE_CODE (type0) != TYPE_CODE_PTR
              || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
         || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
             && (TYPE_CODE (type1) != TYPE_CODE_PTR
                 || (TYPE_CODE (TYPE_TARGET_TYPE (type1)) 
		     != TYPE_CODE_ARRAY))));

    case BINOP_EXP:
      return (!(numeric_type_p (type0) && integer_type_p (type1)));

    case UNOP_NEG:
    case UNOP_PLUS:
    case UNOP_LOGICAL_NOT:
    case UNOP_ABS:
      return (!numeric_type_p (type0));

    }
}

                                /* Renaming */

/* NOTE: In the following, we assume that a renaming type's name may
   have an ___XD suffix.  It would be nice if this went away at some
   point.  */

/* If TYPE encodes a renaming, returns the renaming suffix, which
   is XR for an object renaming, XRP for a procedure renaming, XRE for
   an exception renaming, and XRS for a subprogram renaming.  Returns
   NULL if NAME encodes none of these.  */

const char *
ada_renaming_type (struct type *type)
{
  if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
    {
      const char *name = type_name_no_tag (type);
      const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
      if (suffix == NULL
          || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
        return NULL;
      else
        return suffix + 3;
    }
  else
    return NULL;
}

/* Return non-zero iff SYM encodes an object renaming.  */

int
ada_is_object_renaming (struct symbol *sym)
{
  const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
  return renaming_type != NULL
    && (renaming_type[2] == '\0' || renaming_type[2] == '_');
}

/* Assuming that SYM encodes a non-object renaming, returns the original
   name of the renamed entity.  The name is good until the end of
   parsing.  */

char *
ada_simple_renamed_entity (struct symbol *sym)
{
  struct type *type;
  const char *raw_name;
  int len;
  char *result;

  type = SYMBOL_TYPE (sym);
  if (type == NULL || TYPE_NFIELDS (type) < 1)
    error (_("Improperly encoded renaming."));

  raw_name = TYPE_FIELD_NAME (type, 0);
  len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
  if (len <= 0)
    error (_("Improperly encoded renaming."));

  result = xmalloc (len + 1);
  strncpy (result, raw_name, len);
  result[len] = '\000';
  return result;
}



                                /* Evaluation: Function Calls */

/* Return an lvalue containing the value VAL.  This is the identity on
   lvalues, and otherwise has the side-effect of pushing a copy of VAL 
   on the stack, using and updating *SP as the stack pointer, and 
   returning an lvalue whose VALUE_ADDRESS points to the copy.  */

static struct value *
ensure_lval (struct value *val, CORE_ADDR *sp)
{
  if (! VALUE_LVAL (val))
    {
      int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));

      /* The following is taken from the structure-return code in
	 call_function_by_hand. FIXME: Therefore, some refactoring seems 
	 indicated. */
      if (INNER_THAN (1, 2))
	{
	  /* Stack grows downward.  Align SP and VALUE_ADDRESS (val) after
	     reserving sufficient space. */
	  *sp -= len;
	  if (gdbarch_frame_align_p (current_gdbarch))
	    *sp = gdbarch_frame_align (current_gdbarch, *sp);
	  VALUE_ADDRESS (val) = *sp;
	}
      else
	{
	  /* Stack grows upward.  Align the frame, allocate space, and
	     then again, re-align the frame. */
	  if (gdbarch_frame_align_p (current_gdbarch))
	    *sp = gdbarch_frame_align (current_gdbarch, *sp);
	  VALUE_ADDRESS (val) = *sp;
	  *sp += len;
	  if (gdbarch_frame_align_p (current_gdbarch))
	    *sp = gdbarch_frame_align (current_gdbarch, *sp);
	}

      write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
    }

  return val;
}

/* Return the value ACTUAL, converted to be an appropriate value for a
   formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
   allocating any necessary descriptors (fat pointers), or copies of
   values not residing in memory, updating it as needed.  */

static struct value *
convert_actual (struct value *actual, struct type *formal_type0,
                CORE_ADDR *sp)
{
  struct type *actual_type = ada_check_typedef (value_type (actual));
  struct type *formal_type = ada_check_typedef (formal_type0);
  struct type *formal_target =
    TYPE_CODE (formal_type) == TYPE_CODE_PTR
    ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
  struct type *actual_target =
    TYPE_CODE (actual_type) == TYPE_CODE_PTR
    ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;

  if (ada_is_array_descriptor_type (formal_target)
      && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
    return make_array_descriptor (formal_type, actual, sp);
  else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
    {
      if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
          && ada_is_array_descriptor_type (actual_target))
        return desc_data (actual);
      else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
        {
          if (VALUE_LVAL (actual) != lval_memory)
            {
              struct value *val;
              actual_type = ada_check_typedef (value_type (actual));
              val = allocate_value (actual_type);
              memcpy ((char *) value_contents_raw (val),
                      (char *) value_contents (actual),
                      TYPE_LENGTH (actual_type));
              actual = ensure_lval (val, sp);
            }
          return value_addr (actual);
        }
    }
  else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
    return ada_value_ind (actual);

  return actual;
}


/* Push a descriptor of type TYPE for array value ARR on the stack at
   *SP, updating *SP to reflect the new descriptor.  Return either
   an lvalue representing the new descriptor, or (if TYPE is a pointer-
   to-descriptor type rather than a descriptor type), a struct value *
   representing a pointer to this descriptor.  */

static struct value *
make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
{
  struct type *bounds_type = desc_bounds_type (type);
  struct type *desc_type = desc_base_type (type);
  struct value *descriptor = allocate_value (desc_type);
  struct value *bounds = allocate_value (bounds_type);
  int i;

  for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
    {
      modify_general_field (value_contents_writeable (bounds),
                            value_as_long (ada_array_bound (arr, i, 0)),
                            desc_bound_bitpos (bounds_type, i, 0),
                            desc_bound_bitsize (bounds_type, i, 0));
      modify_general_field (value_contents_writeable (bounds),
                            value_as_long (ada_array_bound (arr, i, 1)),
                            desc_bound_bitpos (bounds_type, i, 1),
                            desc_bound_bitsize (bounds_type, i, 1));
    }

  bounds = ensure_lval (bounds, sp);

  modify_general_field (value_contents_writeable (descriptor),
                        VALUE_ADDRESS (ensure_lval (arr, sp)),
                        fat_pntr_data_bitpos (desc_type),
                        fat_pntr_data_bitsize (desc_type));

  modify_general_field (value_contents_writeable (descriptor),
                        VALUE_ADDRESS (bounds),
                        fat_pntr_bounds_bitpos (desc_type),
                        fat_pntr_bounds_bitsize (desc_type));

  descriptor = ensure_lval (descriptor, sp);

  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    return value_addr (descriptor);
  else
    return descriptor;
}


/* Assuming a dummy frame has been established on the target, perform any
   conversions needed for calling function FUNC on the NARGS actual
   parameters in ARGS, other than standard C conversions.  Does
   nothing if FUNC does not have Ada-style prototype data, or if NARGS
   does not match the number of arguments expected.  Use *SP as a
   stack pointer for additional data that must be pushed, updating its
   value as needed.  */

void
ada_convert_actuals (struct value *func, int nargs, struct value *args[],
                     CORE_ADDR *sp)
{
  int i;

  if (TYPE_NFIELDS (value_type (func)) == 0
      || nargs != TYPE_NFIELDS (value_type (func)))
    return;

  for (i = 0; i < nargs; i += 1)
    args[i] =
      convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
}

/* Dummy definitions for an experimental caching module that is not
 * used in the public sources. */

static int
lookup_cached_symbol (const char *name, domain_enum namespace,
                      struct symbol **sym, struct block **block,
                      struct symtab **symtab)
{
  return 0;
}

static void
cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
              struct block *block, struct symtab *symtab)
{
}

                                /* Symbol Lookup */

/* Return the result of a standard (literal, C-like) lookup of NAME in
   given DOMAIN, visible from lexical block BLOCK.  */

static struct symbol *
standard_lookup (const char *name, const struct block *block,
                 domain_enum domain)
{
  struct symbol *sym;
  struct symtab *symtab;

  if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
    return sym;
  sym =
    lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
  cache_symbol (name, domain, sym, block_found, symtab);
  return sym;
}


/* Non-zero iff there is at least one non-function/non-enumeral symbol
   in the symbol fields of SYMS[0..N-1].  We treat enumerals as functions, 
   since they contend in overloading in the same way.  */
static int
is_nonfunction (struct ada_symbol_info syms[], int n)
{
  int i;

  for (i = 0; i < n; i += 1)
    if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
        && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
            || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
      return 1;

  return 0;
}

/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
   struct types.  Otherwise, they may not.  */

static int
equiv_types (struct type *type0, struct type *type1)
{
  if (type0 == type1)
    return 1;
  if (type0 == NULL || type1 == NULL
      || TYPE_CODE (type0) != TYPE_CODE (type1))
    return 0;
  if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
       || TYPE_CODE (type0) == TYPE_CODE_ENUM)
      && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
      && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
    return 1;

  return 0;
}

/* True iff SYM0 represents the same entity as SYM1, or one that is
   no more defined than that of SYM1.  */

static int
lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
{
  if (sym0 == sym1)
    return 1;
  if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
      || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
    return 0;

  switch (SYMBOL_CLASS (sym0))
    {
    case LOC_UNDEF:
      return 1;
    case LOC_TYPEDEF:
      {
        struct type *type0 = SYMBOL_TYPE (sym0);
        struct type *type1 = SYMBOL_TYPE (sym1);
        char *name0 = SYMBOL_LINKAGE_NAME (sym0);
        char *name1 = SYMBOL_LINKAGE_NAME (sym1);
        int len0 = strlen (name0);
        return
          TYPE_CODE (type0) == TYPE_CODE (type1)
          && (equiv_types (type0, type1)
              || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
                  && strncmp (name1 + len0, "___XV", 5) == 0));
      }
    case LOC_CONST:
      return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
        && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
    default:
      return 0;
    }
}

/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
   records in OBSTACKP.  Do nothing if SYM is a duplicate.  */

static void
add_defn_to_vec (struct obstack *obstackp,
                 struct symbol *sym,
                 struct block *block, struct symtab *symtab)
{
  int i;
  size_t tmp;
  struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);

  /* Do not try to complete stub types, as the debugger is probably
     already scanning all symbols matching a certain name at the
     time when this function is called.  Trying to replace the stub
     type by its associated full type will cause us to restart a scan
     which may lead to an infinite recursion.  Instead, the client
     collecting the matching symbols will end up collecting several
     matches, with at least one of them complete.  It can then filter
     out the stub ones if needed.  */

  for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
    {
      if (lesseq_defined_than (sym, prevDefns[i].sym))
        return;
      else if (lesseq_defined_than (prevDefns[i].sym, sym))
        {
          prevDefns[i].sym = sym;
          prevDefns[i].block = block;
          prevDefns[i].symtab = symtab;
          return;
        }
    }

  {
    struct ada_symbol_info info;

    info.sym = sym;
    info.block = block;
    info.symtab = symtab;
    obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
  }
}

/* Number of ada_symbol_info structures currently collected in 
   current vector in *OBSTACKP.  */

static int
num_defns_collected (struct obstack *obstackp)
{
  return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
}

/* Vector of ada_symbol_info structures currently collected in current 
   vector in *OBSTACKP.  If FINISH, close off the vector and return
   its final address.  */

static struct ada_symbol_info *
defns_collected (struct obstack *obstackp, int finish)
{
  if (finish)
    return obstack_finish (obstackp);
  else
    return (struct ada_symbol_info *) obstack_base (obstackp);
}

/* Look, in partial_symtab PST, for symbol NAME in given namespace.
   Check the global symbols if GLOBAL, the static symbols if not.
   Do wild-card match if WILD.  */

static struct partial_symbol *
ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
                           int global, domain_enum namespace, int wild)
{
  struct partial_symbol **start;
  int name_len = strlen (name);
  int length = (global ? pst->n_global_syms : pst->n_static_syms);
  int i;

  if (length == 0)
    {
      return (NULL);
    }

  start = (global ?
           pst->objfile->global_psymbols.list + pst->globals_offset :
           pst->objfile->static_psymbols.list + pst->statics_offset);

  if (wild)
    {
      for (i = 0; i < length; i += 1)
        {
          struct partial_symbol *psym = start[i];

          if (SYMBOL_DOMAIN (psym) == namespace
              && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
            return psym;
        }
      return NULL;
    }
  else
    {
      if (global)
        {
          int U;
          i = 0;
          U = length - 1;
          while (U - i > 4)
            {
              int M = (U + i) >> 1;
              struct partial_symbol *psym = start[M];
              if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
                i = M + 1;
              else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
                U = M - 1;
              else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
                i = M + 1;
              else
                U = M;
            }
        }
      else
        i = 0;

      while (i < length)
        {
          struct partial_symbol *psym = start[i];

          if (SYMBOL_DOMAIN (psym) == namespace)
            {
              int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);

              if (cmp < 0)
                {
                  if (global)
                    break;
                }
              else if (cmp == 0
                       && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
                                          + name_len))
                return psym;
            }
          i += 1;
        }

      if (global)
        {
          int U;
          i = 0;
          U = length - 1;
          while (U - i > 4)
            {
              int M = (U + i) >> 1;
              struct partial_symbol *psym = start[M];
              if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
                i = M + 1;
              else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
                U = M - 1;
              else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
                i = M + 1;
              else
                U = M;
            }
        }
      else
        i = 0;

      while (i < length)
        {
          struct partial_symbol *psym = start[i];

          if (SYMBOL_DOMAIN (psym) == namespace)
            {
              int cmp;

              cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
              if (cmp == 0)
                {
                  cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
                  if (cmp == 0)
                    cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
                                   name_len);
                }

              if (cmp < 0)
                {
                  if (global)
                    break;
                }
              else if (cmp == 0
                       && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
                                          + name_len + 5))
                return psym;
            }
          i += 1;
        }
    }
  return NULL;
}

/* Find a symbol table containing symbol SYM or NULL if none.  */

static struct symtab *
symtab_for_sym (struct symbol *sym)
{
  struct symtab *s;
  struct objfile *objfile;
  struct block *b;
  struct symbol *tmp_sym;
  struct dict_iterator iter;
  int j;

  ALL_SYMTABS (objfile, s)
  {
    switch (SYMBOL_CLASS (sym))
      {
      case LOC_CONST:
      case LOC_STATIC:
      case LOC_TYPEDEF:
      case LOC_REGISTER:
      case LOC_LABEL:
      case LOC_BLOCK:
      case LOC_CONST_BYTES:
        b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
        ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
          return s;
        b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
        ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
          return s;
        break;
      default:
        break;
      }
    switch (SYMBOL_CLASS (sym))
      {
      case LOC_REGISTER:
      case LOC_ARG:
      case LOC_REF_ARG:
      case LOC_REGPARM:
      case LOC_REGPARM_ADDR:
      case LOC_LOCAL:
      case LOC_TYPEDEF:
      case LOC_LOCAL_ARG:
      case LOC_BASEREG:
      case LOC_BASEREG_ARG:
      case LOC_COMPUTED:
      case LOC_COMPUTED_ARG:
        for (j = FIRST_LOCAL_BLOCK;
             j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
          {
            b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
            ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
              return s;
          }
        break;
      default:
        break;
      }
  }
  return NULL;
}

/* Return a minimal symbol matching NAME according to Ada decoding
   rules.  Returns NULL if there is no such minimal symbol.  Names 
   prefixed with "standard__" are handled specially: "standard__" is 
   first stripped off, and only static and global symbols are searched.  */

struct minimal_symbol *
ada_lookup_simple_minsym (const char *name)
{
  struct objfile *objfile;
  struct minimal_symbol *msymbol;
  int wild_match;

  if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
    {
      name += sizeof ("standard__") - 1;
      wild_match = 0;
    }
  else
    wild_match = (strstr (name, "__") == NULL);

  ALL_MSYMBOLS (objfile, msymbol)
  {
    if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
        && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
      return msymbol;
  }

  return NULL;
}

/* For all subprograms that statically enclose the subprogram of the
   selected frame, add symbols matching identifier NAME in DOMAIN
   and their blocks to the list of data in OBSTACKP, as for
   ada_add_block_symbols (q.v.).   If WILD, treat as NAME with a
   wildcard prefix.  */

static void
add_symbols_from_enclosing_procs (struct obstack *obstackp,
                                  const char *name, domain_enum namespace,
                                  int wild_match)
{
}

/* FIXME: The next two routines belong in symtab.c */

static void
restore_language (void *lang)
{
  set_language ((enum language) lang);
}

/* As for lookup_symbol, but performed as if the current language 
   were LANG. */

struct symbol *
lookup_symbol_in_language (const char *name, const struct block *block,
                           domain_enum domain, enum language lang,
                           int *is_a_field_of_this, struct symtab **symtab)
{
  struct cleanup *old_chain
    = make_cleanup (restore_language, (void *) current_language->la_language);
  struct symbol *result;
  set_language (lang);
  result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
  do_cleanups (old_chain);
  return result;
}

/* True if TYPE is definitely an artificial type supplied to a symbol
   for which no debugging information was given in the symbol file.  */

static int
is_nondebugging_type (struct type *type)
{
  char *name = ada_type_name (type);
  return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
}

/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
   duplicate other symbols in the list (The only case I know of where
   this happens is when object files containing stabs-in-ecoff are
   linked with files containing ordinary ecoff debugging symbols (or no
   debugging symbols)).  Modifies SYMS to squeeze out deleted entries.
   Returns the number of items in the modified list.  */

static int
remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
{
  int i, j;

  i = 0;
  while (i < nsyms)
    {
      if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
          && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
          && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
        {
          for (j = 0; j < nsyms; j += 1)
            {
              if (i != j
                  && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
                  && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
                             SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
                  && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
                  && SYMBOL_VALUE_ADDRESS (syms[i].sym)
                  == SYMBOL_VALUE_ADDRESS (syms[j].sym))
                {
                  int k;
                  for (k = i + 1; k < nsyms; k += 1)
                    syms[k - 1] = syms[k];
                  nsyms -= 1;
                  goto NextSymbol;
                }
            }
        }
      i += 1;
    NextSymbol:
      ;
    }
  return nsyms;
}

/* Given a type that corresponds to a renaming entity, use the type name
   to extract the scope (package name or function name, fully qualified,
   and following the GNAT encoding convention) where this renaming has been
   defined.  The string returned needs to be deallocated after use.  */

static char *
xget_renaming_scope (struct type *renaming_type)
{
  /* The renaming types adhere to the following convention:
     <scope>__<rename>___<XR extension>. 
     So, to extract the scope, we search for the "___XR" extension,
     and then backtrack until we find the first "__".  */

  const char *name = type_name_no_tag (renaming_type);
  char *suffix = strstr (name, "___XR");
  char *last;
  int scope_len;
  char *scope;

  /* Now, backtrack a bit until we find the first "__".  Start looking
     at suffix - 3, as the <rename> part is at least one character long.  */

  for (last = suffix - 3; last > name; last--)
    if (last[0] == '_' && last[1] == '_')
      break;

  /* Make a copy of scope and return it.  */

  scope_len = last - name;
  scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));

  strncpy (scope, name, scope_len);
  scope[scope_len] = '\0';

  return scope;
}

/* Return nonzero if NAME corresponds to a package name.  */

static int
is_package_name (const char *name)
{
  /* Here, We take advantage of the fact that no symbols are generated
     for packages, while symbols are generated for each function.
     So the condition for NAME represent a package becomes equivalent
     to NAME not existing in our list of symbols.  There is only one
     small complication with library-level functions (see below).  */

  char *fun_name;

  /* If it is a function that has not been defined at library level,
     then we should be able to look it up in the symbols.  */
  if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
    return 0;

  /* Library-level function names start with "_ada_".  See if function
     "_ada_" followed by NAME can be found.  */

  /* Do a quick check that NAME does not contain "__", since library-level
     functions names cannot contain "__" in them.  */
  if (strstr (name, "__") != NULL)
    return 0;

  fun_name = xstrprintf ("_ada_%s", name);

  return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
}

/* Return nonzero if SYM corresponds to a renaming entity that is
   visible from FUNCTION_NAME.  */

static int
renaming_is_visible (const struct symbol *sym, char *function_name)
{
  char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));

  make_cleanup (xfree, scope);

  /* If the rename has been defined in a package, then it is visible.  */
  if (is_package_name (scope))
    return 1;

  /* Check that the rename is in the current function scope by checking
     that its name starts with SCOPE.  */

  /* If the function name starts with "_ada_", it means that it is
     a library-level function.  Strip this prefix before doing the
     comparison, as the encoding for the renaming does not contain
     this prefix.  */
  if (strncmp (function_name, "_ada_", 5) == 0)
    function_name += 5;

  return (strncmp (function_name, scope, strlen (scope)) == 0);
}

/* Iterates over the SYMS list and remove any entry that corresponds to
   a renaming entity that is not visible from the function associated
   with CURRENT_BLOCK. 
   
   Rationale:
   GNAT emits a type following a specified encoding for each renaming
   entity.  Unfortunately, STABS currently does not support the definition
   of types that are local to a given lexical block, so all renamings types
   are emitted at library level.  As a consequence, if an application
   contains two renaming entities using the same name, and a user tries to
   print the value of one of these entities, the result of the ada symbol
   lookup will also contain the wrong renaming type.

   This function partially covers for this limitation by attempting to
   remove from the SYMS list renaming symbols that should be visible
   from CURRENT_BLOCK.  However, there does not seem be a 100% reliable
   method with the current information available.  The implementation
   below has a couple of limitations (FIXME: brobecker-2003-05-12):  
   
      - When the user tries to print a rename in a function while there
        is another rename entity defined in a package:  Normally, the
        rename in the function has precedence over the rename in the
        package, so the latter should be removed from the list.  This is
        currently not the case.
        
      - This function will incorrectly remove valid renames if
        the CURRENT_BLOCK corresponds to a function which symbol name
        has been changed by an "Export" pragma.  As a consequence,
        the user will be unable to print such rename entities.  */

static int
remove_out_of_scope_renamings (struct ada_symbol_info *syms,
                               int nsyms, struct block *current_block)
{
  struct symbol *current_function;
  char *current_function_name;
  int i;

  /* Extract the function name associated to CURRENT_BLOCK.
     Abort if unable to do so.  */

  if (current_block == NULL)
    return nsyms;

  current_function = block_function (current_block);
  if (current_function == NULL)
    return nsyms;

  current_function_name = SYMBOL_LINKAGE_NAME (current_function);
  if (current_function_name == NULL)
    return nsyms;

  /* Check each of the symbols, and remove it from the list if it is
     a type corresponding to a renaming that is out of the scope of
     the current block.  */

  i = 0;
  while (i < nsyms)
    {
      if (ada_is_object_renaming (syms[i].sym)
          && !renaming_is_visible (syms[i].sym, current_function_name))
        {
          int j;
          for (j = i + 1; j < nsyms; j++)
            syms[j - 1] = syms[j];
          nsyms -= 1;
        }
      else
        i += 1;
    }

  return nsyms;
}

/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
   scope and in global scopes, returning the number of matches.  Sets
   *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
   indicating the symbols found and the blocks and symbol tables (if
   any) in which they were found.  This vector are transient---good only to 
   the next call of ada_lookup_symbol_list.  Any non-function/non-enumeral 
   symbol match within the nest of blocks whose innermost member is BLOCK0,
   is the one match returned (no other matches in that or
     enclosing blocks is returned).  If there are any matches in or
   surrounding BLOCK0, then these alone are returned.  Otherwise, the
   search extends to global and file-scope (static) symbol tables.
   Names prefixed with "standard__" are handled specially: "standard__" 
   is first stripped off, and only static and global symbols are searched.  */

int
ada_lookup_symbol_list (const char *name0, const struct block *block0,
                        domain_enum namespace,
                        struct ada_symbol_info **results)
{
  struct symbol *sym;
  struct symtab *s;
  struct partial_symtab *ps;
  struct blockvector *bv;
  struct objfile *objfile;
  struct block *block;
  const char *name;
  struct minimal_symbol *msymbol;
  int wild_match;
  int cacheIfUnique;
  int block_depth;
  int ndefns;

  obstack_free (&symbol_list_obstack, NULL);
  obstack_init (&symbol_list_obstack);

  cacheIfUnique = 0;

  /* Search specified block and its superiors.  */

  wild_match = (strstr (name0, "__") == NULL);
  name = name0;
  block = (struct block *) block0;      /* FIXME: No cast ought to be
                                           needed, but adding const will
                                           have a cascade effect.  */
  if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
    {
      wild_match = 0;
      block = NULL;
      name = name0 + sizeof ("standard__") - 1;
    }

  block_depth = 0;
  while (block != NULL)
    {
      block_depth += 1;
      ada_add_block_symbols (&symbol_list_obstack, block, name,
                             namespace, NULL, NULL, wild_match);

      /* If we found a non-function match, assume that's the one.  */
      if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
                          num_defns_collected (&symbol_list_obstack)))
        goto done;

      block = BLOCK_SUPERBLOCK (block);
    }

  /* If no luck so far, try to find NAME as a local symbol in some lexically
     enclosing subprogram.  */
  if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
    add_symbols_from_enclosing_procs (&symbol_list_obstack,
                                      name, namespace, wild_match);

  /* If we found ANY matches among non-global symbols, we're done.  */

  if (num_defns_collected (&symbol_list_obstack) > 0)
    goto done;

  cacheIfUnique = 1;
  if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
    {
      if (sym != NULL)
        add_defn_to_vec (&symbol_list_obstack, sym, block, s);
      goto done;
    }

  /* Now add symbols from all global blocks: symbol tables, minimal symbol
     tables, and psymtab's.  */

  ALL_SYMTABS (objfile, s)
  {
    QUIT;
    if (!s->primary)
      continue;
    bv = BLOCKVECTOR (s);
    block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
    ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
                           objfile, s, wild_match);
  }

  if (namespace == VAR_DOMAIN)
    {
      ALL_MSYMBOLS (objfile, msymbol)
      {
        if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
          {
            switch (MSYMBOL_TYPE (msymbol))
              {
              case mst_solib_trampoline:
                break;
              default:
                s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
                if (s != NULL)
                  {
                    int ndefns0 = num_defns_collected (&symbol_list_obstack);
                    QUIT;
                    bv = BLOCKVECTOR (s);
                    block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
                    ada_add_block_symbols (&symbol_list_obstack, block,
                                           SYMBOL_LINKAGE_NAME (msymbol),
                                           namespace, objfile, s, wild_match);

                    if (num_defns_collected (&symbol_list_obstack) == ndefns0)
                      {
                        block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
                        ada_add_block_symbols (&symbol_list_obstack, block,
                                               SYMBOL_LINKAGE_NAME (msymbol),
                                               namespace, objfile, s,
                                               wild_match);
                      }
                  }
              }
          }
      }
    }

  ALL_PSYMTABS (objfile, ps)
  {
    QUIT;
    if (!ps->readin
        && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
      {
        s = PSYMTAB_TO_SYMTAB (ps);
        if (!s->primary)
          continue;
        bv = BLOCKVECTOR (s);
        block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
        ada_add_block_symbols (&symbol_list_obstack, block, name,
                               namespace, objfile, s, wild_match);
      }
  }

  /* Now add symbols from all per-file blocks if we've gotten no hits
     (Not strictly correct, but perhaps better than an error).
     Do the symtabs first, then check the psymtabs.  */

  if (num_defns_collected (&symbol_list_obstack) == 0)
    {

      ALL_SYMTABS (objfile, s)
      {
        QUIT;
        if (!s->primary)
          continue;
        bv = BLOCKVECTOR (s);
        block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
        ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
                               objfile, s, wild_match);
      }

      ALL_PSYMTABS (objfile, ps)
      {
        QUIT;
        if (!ps->readin
            && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
          {
            s = PSYMTAB_TO_SYMTAB (ps);
            bv = BLOCKVECTOR (s);
            if (!s->primary)
              continue;
            block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
            ada_add_block_symbols (&symbol_list_obstack, block, name,
                                   namespace, objfile, s, wild_match);
          }
      }
    }

done:
  ndefns = num_defns_collected (&symbol_list_obstack);
  *results = defns_collected (&symbol_list_obstack, 1);

  ndefns = remove_extra_symbols (*results, ndefns);

  if (ndefns == 0)
    cache_symbol (name0, namespace, NULL, NULL, NULL);

  if (ndefns == 1 && cacheIfUnique)
    cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
                  (*results)[0].symtab);

  ndefns = remove_out_of_scope_renamings (*results, ndefns,
                                          (struct block *) block0);

  return ndefns;
}

/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
   scope and in global scopes, or NULL if none.  NAME is folded and
   encoded first.  Otherwise, the result is as for ada_lookup_symbol_list,
   choosing the first symbol if there are multiple choices.  
   *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
   table in which the symbol was found (in both cases, these
   assignments occur only if the pointers are non-null).  */

struct symbol *
ada_lookup_symbol (const char *name, const struct block *block0,
                   domain_enum namespace, int *is_a_field_of_this,
                   struct symtab **symtab)
{
  struct ada_symbol_info *candidates;
  int n_candidates;

  n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
                                         block0, namespace, &candidates);

  if (n_candidates == 0)
    return NULL;

  if (is_a_field_of_this != NULL)
    *is_a_field_of_this = 0;

  if (symtab != NULL)
    {
      *symtab = candidates[0].symtab;
      if (*symtab == NULL && candidates[0].block != NULL)
        {
          struct objfile *objfile;
          struct symtab *s;
          struct block *b;
          struct blockvector *bv;

          /* Search the list of symtabs for one which contains the
             address of the start of this block.  */
          ALL_SYMTABS (objfile, s)
          {
            bv = BLOCKVECTOR (s);
            b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
            if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
                && BLOCK_END (b) > BLOCK_START (candidates[0].block))
              {
                *symtab = s;
                return fixup_symbol_section (candidates[0].sym, objfile);
              }
          }
          /* FIXME: brobecker/2004-11-12: I think that we should never
             reach this point.  I don't see a reason why we would not
             find a symtab for a given block, so I suggest raising an
             internal_error exception here.  Otherwise, we end up
             returning a symbol but no symtab, which certain parts of
             the code that rely (indirectly) on this function do not
             expect, eventually causing a SEGV.  */
          return fixup_symbol_section (candidates[0].sym, NULL);
        }
    }
  return candidates[0].sym;
}

static struct symbol *
ada_lookup_symbol_nonlocal (const char *name,
                            const char *linkage_name,
                            const struct block *block,
                            const domain_enum domain, struct symtab **symtab)
{
  if (linkage_name == NULL)
    linkage_name = name;
  return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
                            NULL, symtab);
}


/* True iff STR is a possible encoded suffix of a normal Ada name
   that is to be ignored for matching purposes.  Suffixes of parallel
   names (e.g., XVE) are not included here.  Currently, the possible suffixes
   are given by either of the regular expression:

   (__[0-9]+)?[.$][0-9]+  [nested subprogram suffix, on platforms such 
                           as GNU/Linux]
   ___[0-9]+            [nested subprogram suffix, on platforms such as HP/UX]
   _E[0-9]+[bs]$          [protected object entry suffixes]
   (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
 */

static int
is_name_suffix (const char *str)
{
  int k;
  const char *matching;
  const int len = strlen (str);

  /* (__[0-9]+)?\.[0-9]+ */
  matching = str;
  if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
    {
      matching += 3;
      while (isdigit (matching[0]))
        matching += 1;
      if (matching[0] == '\0')
        return 1;
    }

  if (matching[0] == '.' || matching[0] == '$')
    {
      matching += 1;
      while (isdigit (matching[0]))
        matching += 1;
      if (matching[0] == '\0')
        return 1;
    }

  /* ___[0-9]+ */
  if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
    {
      matching = str + 3;
      while (isdigit (matching[0]))
        matching += 1;
      if (matching[0] == '\0')
        return 1;
    }

#if 0
  /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
     with a N at the end. Unfortunately, the compiler uses the same
     convention for other internal types it creates. So treating
     all entity names that end with an "N" as a name suffix causes
     some regressions. For instance, consider the case of an enumerated
     type. To support the 'Image attribute, it creates an array whose
     name ends with N.
     Having a single character like this as a suffix carrying some
     information is a bit risky. Perhaps we should change the encoding
     to be something like "_N" instead.  In the meantime, do not do
     the following check.  */
  /* Protected Object Subprograms */
  if (len == 1 && str [0] == 'N')
    return 1;
#endif

  /* _E[0-9]+[bs]$ */
  if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
    {
      matching = str + 3;
      while (isdigit (matching[0]))
        matching += 1;
      if ((matching[0] == 'b' || matching[0] == 's')
          && matching [1] == '\0')
        return 1;
    }

  /* ??? We should not modify STR directly, as we are doing below.  This
     is fine in this case, but may become problematic later if we find
     that this alternative did not work, and want to try matching
     another one from the begining of STR.  Since we modified it, we
     won't be able to find the begining of the string anymore!  */
  if (str[0] == 'X')
    {
      str += 1;
      while (str[0] != '_' && str[0] != '\0')
        {
          if (str[0] != 'n' && str[0] != 'b')
            return 0;
          str += 1;
        }
    }
  if (str[0] == '\000')
    return 1;
  if (str[0] == '_')
    {
      if (str[1] != '_' || str[2] == '\000')
        return 0;
      if (str[2] == '_')
        {
          if (strcmp (str + 3, "JM") == 0)
            return 1;
          /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
             the LJM suffix in favor of the JM one.  But we will
             still accept LJM as a valid suffix for a reasonable
             amount of time, just to allow ourselves to debug programs
             compiled using an older version of GNAT.  */
          if (strcmp (str + 3, "LJM") == 0)
            return 1;
          if (str[3] != 'X')
            return 0;
          if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
              || str[4] == 'U' || str[4] == 'P')
            return 1;
          if (str[4] == 'R' && str[5] != 'T')
            return 1;
          return 0;
        }
      if (!isdigit (str[2]))
        return 0;
      for (k = 3; str[k] != '\0'; k += 1)
        if (!isdigit (str[k]) && str[k] != '_')
          return 0;
      return 1;
    }
  if (str[0] == '$' && isdigit (str[1]))
    {
      for (k = 2; str[k] != '\0'; k += 1)
        if (!isdigit (str[k]) && str[k] != '_')
          return 0;
      return 1;
    }
  return 0;
}

/* Return nonzero if the given string starts with a dot ('.')
   followed by zero or more digits.  
   
   Note: brobecker/2003-11-10: A forward declaration has not been
   added at the begining of this file yet, because this function
   is only used to work around a problem found during wild matching
   when trying to match minimal symbol names against symbol names
   obtained from dwarf-2 data.  This function is therefore currently
   only used in wild_match() and is likely to be deleted when the
   problem in dwarf-2 is fixed.  */

static int
is_dot_digits_suffix (const char *str)
{
  if (str[0] != '.')
    return 0;

  str++;
  while (isdigit (str[0]))
    str++;
  return (str[0] == '\0');
}

/* Return non-zero if NAME0 is a valid match when doing wild matching.
   Certain symbols appear at first to match, except that they turn out
   not to follow the Ada encoding and hence should not be used as a wild
   match of a given pattern.  */

static int
is_valid_name_for_wild_match (const char *name0)
{
  const char *decoded_name = ada_decode (name0);
  int i;

  for (i=0; decoded_name[i] != '\0'; i++)
    if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
      return 0;

  return 1;
}

/* True if NAME represents a name of the form A1.A2....An, n>=1 and
   PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1.  Ignores
   informational suffixes of NAME (i.e., for which is_name_suffix is
   true).  */

static int
wild_match (const char *patn0, int patn_len, const char *name0)
{
  int name_len;
  char *name;
  char *patn;

  /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
     stored in the symbol table for nested function names is sometimes
     different from the name of the associated entity stored in
     the dwarf-2 data: This is the case for nested subprograms, where
     the minimal symbol name contains a trailing ".[:digit:]+" suffix,
     while the symbol name from the dwarf-2 data does not.

     Although the DWARF-2 standard documents that entity names stored
     in the dwarf-2 data should be identical to the name as seen in
     the source code, GNAT takes a different approach as we already use
     a special encoding mechanism to convey the information so that
     a C debugger can still use the information generated to debug
     Ada programs.  A corollary is that the symbol names in the dwarf-2
     data should match the names found in the symbol table.  I therefore
     consider this issue as a compiler defect.

     Until the compiler is properly fixed, we work-around the problem
     by ignoring such suffixes during the match.  We do so by making
     a copy of PATN0 and NAME0, and then by stripping such a suffix
     if present.  We then perform the match on the resulting strings.  */
  {
    char *dot;
    name_len = strlen (name0);

    name = (char *) alloca ((name_len + 1) * sizeof (char));
    strcpy (name, name0);
    dot = strrchr (name, '.');
    if (dot != NULL && is_dot_digits_suffix (dot))
      *dot = '\0';

    patn = (char *) alloca ((patn_len + 1) * sizeof (char));
    strncpy (patn, patn0, patn_len);
    patn[patn_len] = '\0';
    dot = strrchr (patn, '.');
    if (dot != NULL && is_dot_digits_suffix (dot))
      {
        *dot = '\0';
        patn_len = dot - patn;
      }
  }

  /* Now perform the wild match.  */

  name_len = strlen (name);
  if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
      && strncmp (patn, name + 5, patn_len) == 0
      && is_name_suffix (name + patn_len + 5))
    return 1;

  while (name_len >= patn_len)
    {
      if (strncmp (patn, name, patn_len) == 0
          && is_name_suffix (name + patn_len))
        return (is_valid_name_for_wild_match (name0));
      do
        {
          name += 1;
          name_len -= 1;
        }
      while (name_len > 0
             && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
      if (name_len <= 0)
        return 0;
      if (name[0] == '_')
        {
          if (!islower (name[2]))
            return 0;
          name += 2;
          name_len -= 2;
        }
      else
        {
          if (!islower (name[1]))
            return 0;
          name += 1;
          name_len -= 1;
        }
    }

  return 0;
}


/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
   vector *defn_symbols, updating the list of symbols in OBSTACKP 
   (if necessary).  If WILD, treat as NAME with a wildcard prefix. 
   OBJFILE is the section containing BLOCK.
   SYMTAB is recorded with each symbol added.  */

static void
ada_add_block_symbols (struct obstack *obstackp,
                       struct block *block, const char *name,
                       domain_enum domain, struct objfile *objfile,
                       struct symtab *symtab, int wild)
{
  struct dict_iterator iter;
  int name_len = strlen (name);
  /* A matching argument symbol, if any.  */
  struct symbol *arg_sym;
  /* Set true when we find a matching non-argument symbol.  */
  int found_sym;
  struct symbol *sym;

  arg_sym = NULL;
  found_sym = 0;
  if (wild)
    {
      struct symbol *sym;
      ALL_BLOCK_SYMBOLS (block, iter, sym)
      {
        if (SYMBOL_DOMAIN (sym) == domain
            && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
          {
            switch (SYMBOL_CLASS (sym))
              {
              case LOC_ARG:
              case LOC_LOCAL_ARG:
              case LOC_REF_ARG:
              case LOC_REGPARM:
              case LOC_REGPARM_ADDR:
              case LOC_BASEREG_ARG:
              case LOC_COMPUTED_ARG:
                arg_sym = sym;
                break;
              case LOC_UNRESOLVED:
                continue;
              default:
                found_sym = 1;
                add_defn_to_vec (obstackp,
                                 fixup_symbol_section (sym, objfile),
                                 block, symtab);
                break;
              }
          }
      }
    }
  else
    {
      ALL_BLOCK_SYMBOLS (block, iter, sym)
      {
        if (SYMBOL_DOMAIN (sym) == domain)
          {
            int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
            if (cmp == 0
                && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
              {
                switch (SYMBOL_CLASS (sym))
                  {
                  case LOC_ARG:
                  case LOC_LOCAL_ARG:
                  case LOC_REF_ARG:
                  case LOC_REGPARM:
                  case LOC_REGPARM_ADDR:
                  case LOC_BASEREG_ARG:
                  case LOC_COMPUTED_ARG:
                    arg_sym = sym;
                    break;
                  case LOC_UNRESOLVED:
                    break;
                  default:
                    found_sym = 1;
                    add_defn_to_vec (obstackp,
                                     fixup_symbol_section (sym, objfile),
                                     block, symtab);
                    break;
                  }
              }
          }
      }
    }

  if (!found_sym && arg_sym != NULL)
    {
      add_defn_to_vec (obstackp,
                       fixup_symbol_section (arg_sym, objfile),
                       block, symtab);
    }

  if (!wild)
    {
      arg_sym = NULL;
      found_sym = 0;

      ALL_BLOCK_SYMBOLS (block, iter, sym)
      {
        if (SYMBOL_DOMAIN (sym) == domain)
          {
            int cmp;

            cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
            if (cmp == 0)
              {
                cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
                if (cmp == 0)
                  cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
                                 name_len);
              }

            if (cmp == 0
                && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
              {
                switch (SYMBOL_CLASS (sym))
                  {
                  case LOC_ARG:
                  case LOC_LOCAL_ARG:
                  case LOC_REF_ARG:
                  case LOC_REGPARM:
                  case LOC_REGPARM_ADDR:
                  case LOC_BASEREG_ARG:
                  case LOC_COMPUTED_ARG:
                    arg_sym = sym;
                    break;
                  case LOC_UNRESOLVED:
                    break;
                  default:
                    found_sym = 1;
                    add_defn_to_vec (obstackp,
                                     fixup_symbol_section (sym, objfile),
                                     block, symtab);
                    break;
                  }
              }
          }
      }

      /* NOTE: This really shouldn't be needed for _ada_ symbols.
         They aren't parameters, right?  */
      if (!found_sym && arg_sym != NULL)
        {
          add_defn_to_vec (obstackp,
                           fixup_symbol_section (arg_sym, objfile),
                           block, symtab);
        }
    }
}

                                /* Field Access */

/* True if field number FIELD_NUM in struct or union type TYPE is supposed
   to be invisible to users.  */

int
ada_is_ignored_field (struct type *type, int field_num)
{
  if (field_num < 0 || field_num > TYPE_NFIELDS (type))
    return 1;
  else
    {
      const char *name = TYPE_FIELD_NAME (type, field_num);
      return (name == NULL
              || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
    }
}

/* True iff TYPE has a tag field.  If REFOK, then TYPE may also be a
   pointer or reference type whose ultimate target has a tag field. */

int
ada_is_tagged_type (struct type *type, int refok)
{
  return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
}

/* True iff TYPE represents the type of X'Tag */

int
ada_is_tag_type (struct type *type)
{
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
    return 0;
  else
    {
      const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
      return (name != NULL
              && strcmp (name, "ada__tags__dispatch_table") == 0);
    }
}

/* The type of the tag on VAL.  */

struct type *
ada_tag_type (struct value *val)
{
  return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
}

/* The value of the tag on VAL.  */

struct value *
ada_value_tag (struct value *val)
{
  return ada_value_struct_elt (val, "_tag", "record");
}

/* The value of the tag on the object of type TYPE whose contents are
   saved at VALADDR, if it is non-null, or is at memory address
   ADDRESS. */

static struct value *
value_tag_from_contents_and_address (struct type *type,
				     const gdb_byte *valaddr,
                                     CORE_ADDR address)
{
  int tag_byte_offset, dummy1, dummy2;
  struct type *tag_type;
  if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
                         NULL, NULL, NULL))
    {
      const gdb_byte *valaddr1 = ((valaddr == NULL)
				  ? NULL
				  : valaddr + tag_byte_offset);
      CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;

      return value_from_contents_and_address (tag_type, valaddr1, address1);
    }
  return NULL;
}

static struct type *
type_from_tag (struct value *tag)
{
  const char *type_name = ada_tag_name (tag);
  if (type_name != NULL)
    return ada_find_any_type (ada_encode (type_name));
  return NULL;
}

struct tag_args
{
  struct value *tag;
  char *name;
};


static int ada_tag_name_1 (void *);
static int ada_tag_name_2 (struct tag_args *);

/* Wrapper function used by ada_tag_name.  Given a struct tag_args*
   value ARGS, sets ARGS->name to the tag name of ARGS->tag.  
   The value stored in ARGS->name is valid until the next call to 
   ada_tag_name_1.  */

static int
ada_tag_name_1 (void *args0)
{
  struct tag_args *args = (struct tag_args *) args0;
  static char name[1024];
  char *p;
  struct value *val;
  args->name = NULL;
  val = ada_value_struct_elt (args->tag, "tsd", NULL);
  if (val == NULL)
    return ada_tag_name_2 (args);
  val = ada_value_struct_elt (val, "expanded_name", NULL);
  if (val == NULL)
    return 0;
  read_memory_string (value_as_address (val), name, sizeof (name) - 1);
  for (p = name; *p != '\0'; p += 1)
    if (isalpha (*p))
      *p = tolower (*p);
  args->name = name;
  return 0;
}

/* Utility function for ada_tag_name_1 that tries the second
   representation for the dispatch table (in which there is no
   explicit 'tsd' field in the referent of the tag pointer, and instead
   the tsd pointer is stored just before the dispatch table. */
   
static int
ada_tag_name_2 (struct tag_args *args)
{
  struct type *info_type;
  static char name[1024];
  char *p;
  struct value *val, *valp;

  args->name = NULL;
  info_type = ada_find_any_type ("ada__tags__type_specific_data");
  if (info_type == NULL)
    return 0;
  info_type = lookup_pointer_type (lookup_pointer_type (info_type));
  valp = value_cast (info_type, args->tag);
  if (valp == NULL)
    return 0;
  val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
  if (val == NULL)
    return 0;
  val = ada_value_struct_elt (val, "expanded_name", NULL);
  if (val == NULL)
    return 0;
  read_memory_string (value_as_address (val), name, sizeof (name) - 1);
  for (p = name; *p != '\0'; p += 1)
    if (isalpha (*p))
      *p = tolower (*p);
  args->name = name;
  return 0;
}

/* The type name of the dynamic type denoted by the 'tag value TAG, as
 * a C string.  */

const char *
ada_tag_name (struct value *tag)
{
  struct tag_args args;
  if (!ada_is_tag_type (value_type (tag)))
    return NULL;
  args.tag = tag;
  args.name = NULL;
  catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
  return args.name;
}

/* The parent type of TYPE, or NULL if none.  */

struct type *
ada_parent_type (struct type *type)
{
  int i;

  type = ada_check_typedef (type);

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
    return NULL;

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    if (ada_is_parent_field (type, i))
      return ada_check_typedef (TYPE_FIELD_TYPE (type, i));

  return NULL;
}

/* True iff field number FIELD_NUM of structure type TYPE contains the
   parent-type (inherited) fields of a derived type.  Assumes TYPE is
   a structure type with at least FIELD_NUM+1 fields.  */

int
ada_is_parent_field (struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
  return (name != NULL
          && (strncmp (name, "PARENT", 6) == 0
              || strncmp (name, "_parent", 7) == 0));
}

/* True iff field number FIELD_NUM of structure type TYPE is a
   transparent wrapper field (which should be silently traversed when doing
   field selection and flattened when printing).  Assumes TYPE is a
   structure type with at least FIELD_NUM+1 fields.  Such fields are always
   structures.  */

int
ada_is_wrapper_field (struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (type, field_num);
  return (name != NULL
          && (strncmp (name, "PARENT", 6) == 0
              || strcmp (name, "REP") == 0
              || strncmp (name, "_parent", 7) == 0
              || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
}

/* True iff field number FIELD_NUM of structure or union type TYPE
   is a variant wrapper.  Assumes TYPE is a structure type with at least
   FIELD_NUM+1 fields.  */

int
ada_is_variant_part (struct type *type, int field_num)
{
  struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
  return (TYPE_CODE (field_type) == TYPE_CODE_UNION
          || (is_dynamic_field (type, field_num)
              && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) 
		  == TYPE_CODE_UNION)));
}

/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
   whose discriminants are contained in the record type OUTER_TYPE,
   returns the type of the controlling discriminant for the variant.  */

struct type *
ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
{
  char *name = ada_variant_discrim_name (var_type);
  struct type *type =
    ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
  if (type == NULL)
    return builtin_type_int;
  else
    return type;
}

/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
   valid field number within it, returns 1 iff field FIELD_NUM of TYPE
   represents a 'when others' clause; otherwise 0.  */

int
ada_is_others_clause (struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (type, field_num);
  return (name != NULL && name[0] == 'O');
}

/* Assuming that TYPE0 is the type of the variant part of a record,
   returns the name of the discriminant controlling the variant.
   The value is valid until the next call to ada_variant_discrim_name.  */

char *
ada_variant_discrim_name (struct type *type0)
{
  static char *result = NULL;
  static size_t result_len = 0;
  struct type *type;
  const char *name;
  const char *discrim_end;
  const char *discrim_start;

  if (TYPE_CODE (type0) == TYPE_CODE_PTR)
    type = TYPE_TARGET_TYPE (type0);
  else
    type = type0;

  name = ada_type_name (type);

  if (name == NULL || name[0] == '\000')
    return "";

  for (discrim_end = name + strlen (name) - 6; discrim_end != name;
       discrim_end -= 1)
    {
      if (strncmp (discrim_end, "___XVN", 6) == 0)
        break;
    }
  if (discrim_end == name)
    return "";

  for (discrim_start = discrim_end; discrim_start != name + 3;
       discrim_start -= 1)
    {
      if (discrim_start == name + 1)
        return "";
      if ((discrim_start > name + 3
           && strncmp (discrim_start - 3, "___", 3) == 0)
          || discrim_start[-1] == '.')
        break;
    }

  GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
  strncpy (result, discrim_start, discrim_end - discrim_start);
  result[discrim_end - discrim_start] = '\0';
  return result;
}

/* Scan STR for a subtype-encoded number, beginning at position K.
   Put the position of the character just past the number scanned in
   *NEW_K, if NEW_K!=NULL.  Put the scanned number in *R, if R!=NULL.
   Return 1 if there was a valid number at the given position, and 0
   otherwise.  A "subtype-encoded" number consists of the absolute value
   in decimal, followed by the letter 'm' to indicate a negative number.
   Assumes 0m does not occur.  */

int
ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
{
  ULONGEST RU;

  if (!isdigit (str[k]))
    return 0;

  /* Do it the hard way so as not to make any assumption about
     the relationship of unsigned long (%lu scan format code) and
     LONGEST.  */
  RU = 0;
  while (isdigit (str[k]))
    {
      RU = RU * 10 + (str[k] - '0');
      k += 1;
    }

  if (str[k] == 'm')
    {
      if (R != NULL)
        *R = (-(LONGEST) (RU - 1)) - 1;
      k += 1;
    }
  else if (R != NULL)
    *R = (LONGEST) RU;

  /* NOTE on the above: Technically, C does not say what the results of
     - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
     number representable as a LONGEST (although either would probably work
     in most implementations).  When RU>0, the locution in the then branch
     above is always equivalent to the negative of RU.  */

  if (new_k != NULL)
    *new_k = k;
  return 1;
}

/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
   and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
   in the range encoded by field FIELD_NUM of TYPE; otherwise 0.  */

int
ada_in_variant (LONGEST val, struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (type, field_num);
  int p;

  p = 0;
  while (1)
    {
      switch (name[p])
        {
        case '\0':
          return 0;
        case 'S':
          {
            LONGEST W;
            if (!ada_scan_number (name, p + 1, &W, &p))
              return 0;
            if (val == W)
              return 1;
            break;
          }
        case 'R':
          {
            LONGEST L, U;
            if (!ada_scan_number (name, p + 1, &L, &p)
                || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
              return 0;
            if (val >= L && val <= U)
              return 1;
            break;
          }
        case 'O':
          return 1;
        default:
          return 0;
        }
    }
}

/* FIXME: Lots of redundancy below.  Try to consolidate. */

/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
   ARG_TYPE, extract and return the value of one of its (non-static)
   fields.  FIELDNO says which field.   Differs from value_primitive_field
   only in that it can handle packed values of arbitrary type.  */

static struct value *
ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
                           struct type *arg_type)
{
  struct type *type;

  arg_type = ada_check_typedef (arg_type);
  type = TYPE_FIELD_TYPE (arg_type, fieldno);

  /* Handle packed fields.  */

  if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
    {
      int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
      int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);

      return ada_value_primitive_packed_val (arg1, value_contents (arg1),
                                             offset + bit_pos / 8,
                                             bit_pos % 8, bit_size, type);
    }
  else
    return value_primitive_field (arg1, offset, fieldno, arg_type);
}

/* Find field with name NAME in object of type TYPE.  If found, 
   set the following for each argument that is non-null:
    - *FIELD_TYPE_P to the field's type; 
    - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within 
      an object of that type;
    - *BIT_OFFSET_P to the bit offset modulo byte size of the field; 
    - *BIT_SIZE_P to its size in bits if the field is packed, and 
      0 otherwise;
   If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
   fields up to but not including the desired field, or by the total
   number of fields if not found.   A NULL value of NAME never
   matches; the function just counts visible fields in this case.
   
   Returns 1 if found, 0 otherwise. */

static int
find_struct_field (char *name, struct type *type, int offset,
                   struct type **field_type_p,
                   int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
		   int *index_p)
{
  int i;

  type = ada_check_typedef (type);

  if (field_type_p != NULL)
    *field_type_p = NULL;
  if (byte_offset_p != NULL)
    *byte_offset_p;
  if (bit_offset_p != NULL)
    *bit_offset_p = 0;
  if (bit_size_p != NULL)
    *bit_size_p = 0;

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      int bit_pos = TYPE_FIELD_BITPOS (type, i);
      int fld_offset = offset + bit_pos / 8;
      char *t_field_name = TYPE_FIELD_NAME (type, i);

      if (t_field_name == NULL)
        continue;

      else if (name != NULL && field_name_match (t_field_name, name))
        {
          int bit_size = TYPE_FIELD_BITSIZE (type, i);
	  if (field_type_p != NULL)
	    *field_type_p = TYPE_FIELD_TYPE (type, i);
	  if (byte_offset_p != NULL)
	    *byte_offset_p = fld_offset;
	  if (bit_offset_p != NULL)
	    *bit_offset_p = bit_pos % 8;
	  if (bit_size_p != NULL)
	    *bit_size_p = bit_size;
          return 1;
        }
      else if (ada_is_wrapper_field (type, i))
        {
	  if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
				 field_type_p, byte_offset_p, bit_offset_p,
				 bit_size_p, index_p))
            return 1;
        }
      else if (ada_is_variant_part (type, i))
        {
	  /* PNH: Wait.  Do we ever execute this section, or is ARG always of 
	     fixed type?? */
          int j;
          struct type *field_type
	    = ada_check_typedef (TYPE_FIELD_TYPE (type, i));

          for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
            {
              if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
                                     fld_offset
                                     + TYPE_FIELD_BITPOS (field_type, j) / 8,
                                     field_type_p, byte_offset_p,
                                     bit_offset_p, bit_size_p, index_p))
                return 1;
            }
        }
      else if (index_p != NULL)
	*index_p += 1;
    }
  return 0;
}

/* Number of user-visible fields in record type TYPE. */

static int
num_visible_fields (struct type *type)
{
  int n;
  n = 0;
  find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
  return n;
}

/* Look for a field NAME in ARG.  Adjust the address of ARG by OFFSET bytes,
   and search in it assuming it has (class) type TYPE.
   If found, return value, else return NULL.

   Searches recursively through wrapper fields (e.g., '_parent').  */

static struct value *
ada_search_struct_field (char *name, struct value *arg, int offset,
                         struct type *type)
{
  int i;
  type = ada_check_typedef (type);

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      char *t_field_name = TYPE_FIELD_NAME (type, i);

      if (t_field_name == NULL)
        continue;

      else if (field_name_match (t_field_name, name))
        return ada_value_primitive_field (arg, offset, i, type);

      else if (ada_is_wrapper_field (type, i))
        {
          struct value *v =     /* Do not let indent join lines here. */
            ada_search_struct_field (name, arg,
                                     offset + TYPE_FIELD_BITPOS (type, i) / 8,
                                     TYPE_FIELD_TYPE (type, i));
          if (v != NULL)
            return v;
        }

      else if (ada_is_variant_part (type, i))
        {
	  /* PNH: Do we ever get here?  See find_struct_field. */
          int j;
          struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
          int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;

          for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
            {
              struct value *v = ada_search_struct_field /* Force line break.  */
                (name, arg,
                 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
                 TYPE_FIELD_TYPE (field_type, j));
              if (v != NULL)
                return v;
            }
        }
    }
  return NULL;
}

static struct value *ada_index_struct_field_1 (int *, struct value *,
					       int, struct type *);


/* Return field #INDEX in ARG, where the index is that returned by
 * find_struct_field through its INDEX_P argument.  Adjust the address
 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
 * If found, return value, else return NULL. */

static struct value *
ada_index_struct_field (int index, struct value *arg, int offset,
			struct type *type)
{
  return ada_index_struct_field_1 (&index, arg, offset, type);
}


/* Auxiliary function for ada_index_struct_field.  Like
 * ada_index_struct_field, but takes index from *INDEX_P and modifies
 * *INDEX_P. */

static struct value *
ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
			  struct type *type)
{
  int i;
  type = ada_check_typedef (type);

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      if (TYPE_FIELD_NAME (type, i) == NULL)
        continue;
      else if (ada_is_wrapper_field (type, i))
        {
          struct value *v =     /* Do not let indent join lines here. */
            ada_index_struct_field_1 (index_p, arg,
				      offset + TYPE_FIELD_BITPOS (type, i) / 8,
				      TYPE_FIELD_TYPE (type, i));
          if (v != NULL)
            return v;
        }

      else if (ada_is_variant_part (type, i))
        {
	  /* PNH: Do we ever get here?  See ada_search_struct_field,
	     find_struct_field. */
	  error (_("Cannot assign this kind of variant record"));
        }
      else if (*index_p == 0)
        return ada_value_primitive_field (arg, offset, i, type);
      else
	*index_p -= 1;
    }
  return NULL;
}

/* Given ARG, a value of type (pointer or reference to a)*
   structure/union, extract the component named NAME from the ultimate
   target structure/union and return it as a value with its
   appropriate type.  If ARG is a pointer or reference and the field
   is not packed, returns a reference to the field, otherwise the
   value of the field (an lvalue if ARG is an lvalue).     

   The routine searches for NAME among all members of the structure itself
   and (recursively) among all members of any wrapper members
   (e.g., '_parent').

   ERR is a name (for use in error messages) that identifies the class
   of entity that ARG is supposed to be.  ERR may be null, indicating
   that on error, the function simply returns NULL, and does not
   throw an error.  (FIXME: True only if ARG is a pointer or reference
   at the moment). */

struct value *
ada_value_struct_elt (struct value *arg, char *name, char *err)
{
  struct type *t, *t1;
  struct value *v;

  v = NULL;
  t1 = t = ada_check_typedef (value_type (arg));
  if (TYPE_CODE (t) == TYPE_CODE_REF)
    {
      t1 = TYPE_TARGET_TYPE (t);
      if (t1 == NULL)
        {
          if (err == NULL)
            return NULL;
          else
            error (_("Bad value type in a %s."), err);
        }
      t1 = ada_check_typedef (t1);
      if (TYPE_CODE (t1) == TYPE_CODE_PTR)
        {
          arg = coerce_ref (arg);
          t = t1;
        }
    }

  while (TYPE_CODE (t) == TYPE_CODE_PTR)
    {
      t1 = TYPE_TARGET_TYPE (t);
      if (t1 == NULL)
        {
          if (err == NULL)
            return NULL;
          else
            error (_("Bad value type in a %s."), err);
        }
      t1 = ada_check_typedef (t1);
      if (TYPE_CODE (t1) == TYPE_CODE_PTR)
        {
          arg = value_ind (arg);
          t = t1;
        }
      else
        break;
    }

  if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
    {
      if (err == NULL)
        return NULL;
      else
        error (_("Attempt to extract a component of a value that is not a %s."),
               err);
    }

  if (t1 == t)
    v = ada_search_struct_field (name, arg, 0, t);
  else
    {
      int bit_offset, bit_size, byte_offset;
      struct type *field_type;
      CORE_ADDR address;

      if (TYPE_CODE (t) == TYPE_CODE_PTR)
        address = value_as_address (arg);
      else
        address = unpack_pointer (t, value_contents (arg));

      t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
      if (find_struct_field (name, t1, 0,
                             &field_type, &byte_offset, &bit_offset,
                             &bit_size, NULL))
        {
          if (bit_size != 0)
            {
              if (TYPE_CODE (t) == TYPE_CODE_REF)
                arg = ada_coerce_ref (arg);
              else
                arg = ada_value_ind (arg);
              v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
                                                  bit_offset, bit_size,
                                                  field_type);
            }
          else
            v = value_from_pointer (lookup_reference_type (field_type),
                                    address + byte_offset);
        }
    }

  if (v == NULL && err != NULL)
    error (_("There is no member named %s."), name);

  return v;
}

/* Given a type TYPE, look up the type of the component of type named NAME.
   If DISPP is non-null, add its byte displacement from the beginning of a
   structure (pointed to by a value) of type TYPE to *DISPP (does not
   work for packed fields).

   Matches any field whose name has NAME as a prefix, possibly
   followed by "___".

   TYPE can be either a struct or union. If REFOK, TYPE may also 
   be a (pointer or reference)+ to a struct or union, and the
   ultimate target type will be searched.

   Looks recursively into variant clauses and parent types.

   If NOERR is nonzero, return NULL if NAME is not suitably defined or
   TYPE is not a type of the right kind.  */

static struct type *
ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
                            int noerr, int *dispp)
{
  int i;

  if (name == NULL)
    goto BadName;

  if (refok && type != NULL)
    while (1)
      {
        type = ada_check_typedef (type);
        if (TYPE_CODE (type) != TYPE_CODE_PTR
            && TYPE_CODE (type) != TYPE_CODE_REF)
          break;
        type = TYPE_TARGET_TYPE (type);
      }

  if (type == NULL
      || (TYPE_CODE (type) != TYPE_CODE_STRUCT
          && TYPE_CODE (type) != TYPE_CODE_UNION))
    {
      if (noerr)
        return NULL;
      else
        {
          target_terminal_ours ();
          gdb_flush (gdb_stdout);
	  if (type == NULL)
	    error (_("Type (null) is not a structure or union type"));
	  else
	    {
	      /* XXX: type_sprint */
	      fprintf_unfiltered (gdb_stderr, _("Type "));
	      type_print (type, "", gdb_stderr, -1);
	      error (_(" is not a structure or union type"));
	    }
        }
    }

  type = to_static_fixed_type (type);

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      char *t_field_name = TYPE_FIELD_NAME (type, i);
      struct type *t;
      int disp;

      if (t_field_name == NULL)
        continue;

      else if (field_name_match (t_field_name, name))
        {
          if (dispp != NULL)
            *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
          return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
        }

      else if (ada_is_wrapper_field (type, i))
        {
          disp = 0;
          t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
                                          0, 1, &disp);
          if (t != NULL)
            {
              if (dispp != NULL)
                *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
              return t;
            }
        }

      else if (ada_is_variant_part (type, i))
        {
          int j;
          struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));

          for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
            {
              disp = 0;
              t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
                                              name, 0, 1, &disp);
              if (t != NULL)
                {
                  if (dispp != NULL)
                    *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
                  return t;
                }
            }
        }

    }

BadName:
  if (!noerr)
    {
      target_terminal_ours ();
      gdb_flush (gdb_stdout);
      if (name == NULL)
        {
	  /* XXX: type_sprint */
	  fprintf_unfiltered (gdb_stderr, _("Type "));
	  type_print (type, "", gdb_stderr, -1);
	  error (_(" has no component named <null>"));
	}
      else
	{
	  /* XXX: type_sprint */
	  fprintf_unfiltered (gdb_stderr, _("Type "));
	  type_print (type, "", gdb_stderr, -1);
	  error (_(" has no component named %s"), name);
	}
    }

  return NULL;
}

/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
   within a value of type OUTER_TYPE that is stored in GDB at
   OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
   numbering from 0) is applicable.  Returns -1 if none are.  */

int
ada_which_variant_applies (struct type *var_type, struct type *outer_type,
                           const gdb_byte *outer_valaddr)
{
  int others_clause;
  int i;
  int disp;
  struct type *discrim_type;
  char *discrim_name = ada_variant_discrim_name (var_type);
  LONGEST discrim_val;

  disp = 0;
  discrim_type =
    ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
  if (discrim_type == NULL)
    return -1;
  discrim_val = unpack_long (discrim_type, outer_valaddr + disp);

  others_clause = -1;
  for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
    {
      if (ada_is_others_clause (var_type, i))
        others_clause = i;
      else if (ada_in_variant (discrim_val, var_type, i))
        return i;
    }

  return others_clause;
}



                                /* Dynamic-Sized Records */

/* Strategy: The type ostensibly attached to a value with dynamic size
   (i.e., a size that is not statically recorded in the debugging
   data) does not accurately reflect the size or layout of the value.
   Our strategy is to convert these values to values with accurate,
   conventional types that are constructed on the fly.  */

/* There is a subtle and tricky problem here.  In general, we cannot
   determine the size of dynamic records without its data.  However,
   the 'struct value' data structure, which GDB uses to represent
   quantities in the inferior process (the target), requires the size
   of the type at the time of its allocation in order to reserve space
   for GDB's internal copy of the data.  That's why the
   'to_fixed_xxx_type' routines take (target) addresses as parameters,
   rather than struct value*s.

   However, GDB's internal history variables ($1, $2, etc.) are
   struct value*s containing internal copies of the data that are not, in
   general, the same as the data at their corresponding addresses in
   the target.  Fortunately, the types we give to these values are all
   conventional, fixed-size types (as per the strategy described
   above), so that we don't usually have to perform the
   'to_fixed_xxx_type' conversions to look at their values.
   Unfortunately, there is one exception: if one of the internal
   history variables is an array whose elements are unconstrained
   records, then we will need to create distinct fixed types for each
   element selected.  */

/* The upshot of all of this is that many routines take a (type, host
   address, target address) triple as arguments to represent a value.
   The host address, if non-null, is supposed to contain an internal
   copy of the relevant data; otherwise, the program is to consult the
   target at the target address.  */

/* Assuming that VAL0 represents a pointer value, the result of
   dereferencing it.  Differs from value_ind in its treatment of
   dynamic-sized types.  */

struct value *
ada_value_ind (struct value *val0)
{
  struct value *val = unwrap_value (value_ind (val0));
  return ada_to_fixed_value (val);
}

/* The value resulting from dereferencing any "reference to"
   qualifiers on VAL0.  */

static struct value *
ada_coerce_ref (struct value *val0)
{
  if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
    {
      struct value *val = val0;
      val = coerce_ref (val);
      val = unwrap_value (val);
      return ada_to_fixed_value (val);
    }
  else
    return val0;
}

/* Return OFF rounded upward if necessary to a multiple of
   ALIGNMENT (a power of 2).  */

static unsigned int
align_value (unsigned int off, unsigned int alignment)
{
  return (off + alignment - 1) & ~(alignment - 1);
}

/* Return the bit alignment required for field #F of template type TYPE.  */

static unsigned int
field_alignment (struct type *type, int f)
{
  const char *name = TYPE_FIELD_NAME (type, f);
  int len = (name == NULL) ? 0 : strlen (name);
  int align_offset;

  if (!isdigit (name[len - 1]))
    return 1;

  if (isdigit (name[len - 2]))
    align_offset = len - 2;
  else
    align_offset = len - 1;

  if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
    return TARGET_CHAR_BIT;

  return atoi (name + align_offset) * TARGET_CHAR_BIT;
}

/* Find a symbol named NAME.  Ignores ambiguity.  */

struct symbol *
ada_find_any_symbol (const char *name)
{
  struct symbol *sym;

  sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
  if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
    return sym;

  sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
  return sym;
}

/* Find a type named NAME.  Ignores ambiguity.  */

struct type *
ada_find_any_type (const char *name)
{
  struct symbol *sym = ada_find_any_symbol (name);

  if (sym != NULL)
    return SYMBOL_TYPE (sym);

  return NULL;
}

/* Given a symbol NAME and its associated BLOCK, search all symbols
   for its ___XR counterpart, which is the ``renaming'' symbol
   associated to NAME.  Return this symbol if found, return
   NULL otherwise.  */

struct symbol *
ada_find_renaming_symbol (const char *name, struct block *block)
{
  const struct symbol *function_sym = block_function (block);
  char *rename;

  if (function_sym != NULL)
    {
      /* If the symbol is defined inside a function, NAME is not fully
         qualified.  This means we need to prepend the function name
         as well as adding the ``___XR'' suffix to build the name of
         the associated renaming symbol.  */
      char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
      /* Function names sometimes contain suffixes used
         for instance to qualify nested subprograms.  When building
         the XR type name, we need to make sure that this suffix is
         not included.  So do not include any suffix in the function
         name length below.  */
      const int function_name_len = ada_name_prefix_len (function_name);
      const int rename_len = function_name_len + 2      /*  "__" */
        + strlen (name) + 6 /* "___XR\0" */ ;

      /* Strip the suffix if necessary.  */
      function_name[function_name_len] = '\0';

      /* Library-level functions are a special case, as GNAT adds
         a ``_ada_'' prefix to the function name to avoid namespace
         pollution.  However, the renaming symbol themselves do not
         have this prefix, so we need to skip this prefix if present.  */
      if (function_name_len > 5 /* "_ada_" */
          && strstr (function_name, "_ada_") == function_name)
        function_name = function_name + 5;

      rename = (char *) alloca (rename_len * sizeof (char));
      sprintf (rename, "%s__%s___XR", function_name, name);
    }
  else
    {
      const int rename_len = strlen (name) + 6;
      rename = (char *) alloca (rename_len * sizeof (char));
      sprintf (rename, "%s___XR", name);
    }

  return ada_find_any_symbol (rename);
}

/* Because of GNAT encoding conventions, several GDB symbols may match a
   given type name.  If the type denoted by TYPE0 is to be preferred to
   that of TYPE1 for purposes of type printing, return non-zero;
   otherwise return 0.  */

int
ada_prefer_type (struct type *type0, struct type *type1)
{
  if (type1 == NULL)
    return 1;
  else if (type0 == NULL)
    return 0;
  else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
    return 1;
  else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
    return 0;
  else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
    return 1;
  else if (ada_is_packed_array_type (type0))
    return 1;
  else if (ada_is_array_descriptor_type (type0)
           && !ada_is_array_descriptor_type (type1))
    return 1;
  else if (ada_renaming_type (type0) != NULL
           && ada_renaming_type (type1) == NULL)
    return 1;
  return 0;
}

/* The name of TYPE, which is either its TYPE_NAME, or, if that is
   null, its TYPE_TAG_NAME.  Null if TYPE is null.  */

char *
ada_type_name (struct type *type)
{
  if (type == NULL)
    return NULL;
  else if (TYPE_NAME (type) != NULL)
    return TYPE_NAME (type);
  else
    return TYPE_TAG_NAME (type);
}

/* Find a parallel type to TYPE whose name is formed by appending
   SUFFIX to the name of TYPE.  */

struct type *
ada_find_parallel_type (struct type *type, const char *suffix)
{
  static char *name;
  static size_t name_len = 0;
  int len;
  char *typename = ada_type_name (type);

  if (typename == NULL)
    return NULL;

  len = strlen (typename);

  GROW_VECT (name, name_len, len + strlen (suffix) + 1);

  strcpy (name, typename);
  strcpy (name + len, suffix);

  return ada_find_any_type (name);
}


/* If TYPE is a variable-size record type, return the corresponding template
   type describing its fields.  Otherwise, return NULL.  */

static struct type *
dynamic_template_type (struct type *type)
{
  type = ada_check_typedef (type);

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
      || ada_type_name (type) == NULL)
    return NULL;
  else
    {
      int len = strlen (ada_type_name (type));
      if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
        return type;
      else
        return ada_find_parallel_type (type, "___XVE");
    }
}

/* Assuming that TEMPL_TYPE is a union or struct type, returns
   non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size.  */

static int
is_dynamic_field (struct type *templ_type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (templ_type, field_num);
  return name != NULL
    && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
    && strstr (name, "___XVL") != NULL;
}

/* The index of the variant field of TYPE, or -1 if TYPE does not
   represent a variant record type.  */

static int
variant_field_index (struct type *type)
{
  int f;

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
    return -1;

  for (f = 0; f < TYPE_NFIELDS (type); f += 1)
    {
      if (ada_is_variant_part (type, f))
        return f;
    }
  return -1;
}

/* A record type with no fields.  */

static struct type *
empty_record (struct objfile *objfile)
{
  struct type *type = alloc_type (objfile);
  TYPE_CODE (type) = TYPE_CODE_STRUCT;
  TYPE_NFIELDS (type) = 0;
  TYPE_FIELDS (type) = NULL;
  TYPE_NAME (type) = "<empty>";
  TYPE_TAG_NAME (type) = NULL;
  TYPE_FLAGS (type) = 0;
  TYPE_LENGTH (type) = 0;
  return type;
}

/* An ordinary record type (with fixed-length fields) that describes
   the value of type TYPE at VALADDR or ADDRESS (see comments at
   the beginning of this section) VAL according to GNAT conventions.
   DVAL0 should describe the (portion of a) record that contains any
   necessary discriminants.  It should be NULL if value_type (VAL) is
   an outer-level type (i.e., as opposed to a branch of a variant.)  A
   variant field (unless unchecked) is replaced by a particular branch
   of the variant.

   If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
   length are not statically known are discarded.  As a consequence,
   VALADDR, ADDRESS and DVAL0 are ignored.

   NOTE: Limitations: For now, we assume that dynamic fields and
   variants occupy whole numbers of bytes.  However, they need not be
   byte-aligned.  */

struct type *
ada_template_to_fixed_record_type_1 (struct type *type,
				     const gdb_byte *valaddr,
                                     CORE_ADDR address, struct value *dval0,
                                     int keep_dynamic_fields)
{
  struct value *mark = value_mark ();
  struct value *dval;
  struct type *rtype;
  int nfields, bit_len;
  int variant_field;
  long off;
  int fld_bit_len, bit_incr;
  int f;

  /* Compute the number of fields in this record type that are going
     to be processed: unless keep_dynamic_fields, this includes only
     fields whose position and length are static will be processed.  */
  if (keep_dynamic_fields)
    nfields = TYPE_NFIELDS (type);
  else
    {
      nfields = 0;
      while (nfields < TYPE_NFIELDS (type)
             && !ada_is_variant_part (type, nfields)
             && !is_dynamic_field (type, nfields))
        nfields++;
    }

  rtype = alloc_type (TYPE_OBJFILE (type));
  TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
  INIT_CPLUS_SPECIFIC (rtype);
  TYPE_NFIELDS (rtype) = nfields;
  TYPE_FIELDS (rtype) = (struct field *)
    TYPE_ALLOC (rtype, nfields * sizeof (struct field));
  memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
  TYPE_NAME (rtype) = ada_type_name (type);
  TYPE_TAG_NAME (rtype) = NULL;
  TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;

  off = 0;
  bit_len = 0;
  variant_field = -1;

  for (f = 0; f < nfields; f += 1)
    {
      off = align_value (off, field_alignment (type, f))
	+ TYPE_FIELD_BITPOS (type, f);
      TYPE_FIELD_BITPOS (rtype, f) = off;
      TYPE_FIELD_BITSIZE (rtype, f) = 0;

      if (ada_is_variant_part (type, f))
        {
          variant_field = f;
          fld_bit_len = bit_incr = 0;
        }
      else if (is_dynamic_field (type, f))
        {
          if (dval0 == NULL)
            dval = value_from_contents_and_address (rtype, valaddr, address);
          else
            dval = dval0;

          TYPE_FIELD_TYPE (rtype, f) =
            ada_to_fixed_type
            (ada_get_base_type
             (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
             cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
             cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
          TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
          bit_incr = fld_bit_len =
            TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
        }
      else
        {
          TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
          TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
          if (TYPE_FIELD_BITSIZE (type, f) > 0)
            bit_incr = fld_bit_len =
              TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
          else
            bit_incr = fld_bit_len =
              TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
        }
      if (off + fld_bit_len > bit_len)
        bit_len = off + fld_bit_len;
      off += bit_incr;
      TYPE_LENGTH (rtype) =
        align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
    }

  /* We handle the variant part, if any, at the end because of certain
     odd cases in which it is re-ordered so as NOT the last field of
     the record.  This can happen in the presence of representation
     clauses.  */
  if (variant_field >= 0)
    {
      struct type *branch_type;

      off = TYPE_FIELD_BITPOS (rtype, variant_field);

      if (dval0 == NULL)
        dval = value_from_contents_and_address (rtype, valaddr, address);
      else
        dval = dval0;

      branch_type =
        to_fixed_variant_branch_type
        (TYPE_FIELD_TYPE (type, variant_field),
         cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
         cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
      if (branch_type == NULL)
        {
          for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
            TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
          TYPE_NFIELDS (rtype) -= 1;
        }
      else
        {
          TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
          TYPE_FIELD_NAME (rtype, variant_field) = "S";
          fld_bit_len =
            TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
            TARGET_CHAR_BIT;
          if (off + fld_bit_len > bit_len)
            bit_len = off + fld_bit_len;
          TYPE_LENGTH (rtype) =
            align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
        }
    }

  /* According to exp_dbug.ads, the size of TYPE for variable-size records
     should contain the alignment of that record, which should be a strictly
     positive value.  If null or negative, then something is wrong, most
     probably in the debug info.  In that case, we don't round up the size
     of the resulting type. If this record is not part of another structure,
     the current RTYPE length might be good enough for our purposes.  */
  if (TYPE_LENGTH (type) <= 0)
    {
      if (TYPE_NAME (rtype))
	warning (_("Invalid type size for `%s' detected: %d."),
		 TYPE_NAME (rtype), TYPE_LENGTH (type));
      else
	warning (_("Invalid type size for <unnamed> detected: %d."),
		 TYPE_LENGTH (type));
    }
  else
    {
      TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
                                         TYPE_LENGTH (type));
    }

  value_free_to_mark (mark);
  if (TYPE_LENGTH (rtype) > varsize_limit)
    error (_("record type with dynamic size is larger than varsize-limit"));
  return rtype;
}

/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
   of 1.  */

static struct type *
template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
                               CORE_ADDR address, struct value *dval0)
{
  return ada_template_to_fixed_record_type_1 (type, valaddr,
                                              address, dval0, 1);
}

/* An ordinary record type in which ___XVL-convention fields and
   ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
   static approximations, containing all possible fields.  Uses
   no runtime values.  Useless for use in values, but that's OK,
   since the results are used only for type determinations.   Works on both
   structs and unions.  Representation note: to save space, we memorize
   the result of this function in the TYPE_TARGET_TYPE of the
   template type.  */

static struct type *
template_to_static_fixed_type (struct type *type0)
{
  struct type *type;
  int nfields;
  int f;

  if (TYPE_TARGET_TYPE (type0) != NULL)
    return TYPE_TARGET_TYPE (type0);

  nfields = TYPE_NFIELDS (type0);
  type = type0;

  for (f = 0; f < nfields; f += 1)
    {
      struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
      struct type *new_type;

      if (is_dynamic_field (type0, f))
        new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
      else
        new_type = to_static_fixed_type (field_type);
      if (type == type0 && new_type != field_type)
        {
          TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
          TYPE_CODE (type) = TYPE_CODE (type0);
          INIT_CPLUS_SPECIFIC (type);
          TYPE_NFIELDS (type) = nfields;
          TYPE_FIELDS (type) = (struct field *)
            TYPE_ALLOC (type, nfields * sizeof (struct field));
          memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
                  sizeof (struct field) * nfields);
          TYPE_NAME (type) = ada_type_name (type0);
          TYPE_TAG_NAME (type) = NULL;
          TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
          TYPE_LENGTH (type) = 0;
        }
      TYPE_FIELD_TYPE (type, f) = new_type;
      TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
    }
  return type;
}

/* Given an object of type TYPE whose contents are at VALADDR and
   whose address in memory is ADDRESS, returns a revision of TYPE --
   a non-dynamic-sized record with a variant part -- in which
   the variant part is replaced with the appropriate branch.  Looks
   for discriminant values in DVAL0, which can be NULL if the record
   contains the necessary discriminant values.  */

static struct type *
to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
                                   CORE_ADDR address, struct value *dval0)
{
  struct value *mark = value_mark ();
  struct value *dval;
  struct type *rtype;
  struct type *branch_type;
  int nfields = TYPE_NFIELDS (type);
  int variant_field = variant_field_index (type);

  if (variant_field == -1)
    return type;

  if (dval0 == NULL)
    dval = value_from_contents_and_address (type, valaddr, address);
  else
    dval = dval0;

  rtype = alloc_type (TYPE_OBJFILE (type));
  TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
  INIT_CPLUS_SPECIFIC (rtype);
  TYPE_NFIELDS (rtype) = nfields;
  TYPE_FIELDS (rtype) =
    (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
  memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
          sizeof (struct field) * nfields);
  TYPE_NAME (rtype) = ada_type_name (type);
  TYPE_TAG_NAME (rtype) = NULL;
  TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
  TYPE_LENGTH (rtype) = TYPE_LENGTH (type);

  branch_type = to_fixed_variant_branch_type
    (TYPE_FIELD_TYPE (type, variant_field),
     cond_offset_host (valaddr,
                       TYPE_FIELD_BITPOS (type, variant_field)
                       / TARGET_CHAR_BIT),
     cond_offset_target (address,
                         TYPE_FIELD_BITPOS (type, variant_field)
                         / TARGET_CHAR_BIT), dval);
  if (branch_type == NULL)
    {
      int f;
      for (f = variant_field + 1; f < nfields; f += 1)
        TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
      TYPE_NFIELDS (rtype) -= 1;
    }
  else
    {
      TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
      TYPE_FIELD_NAME (rtype, variant_field) = "S";
      TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
      TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
    }
  TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));

  value_free_to_mark (mark);
  return rtype;
}

/* An ordinary record type (with fixed-length fields) that describes
   the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
   beginning of this section].   Any necessary discriminants' values
   should be in DVAL, a record value; it may be NULL if the object
   at ADDR itself contains any necessary discriminant values.
   Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
   values from the record are needed.  Except in the case that DVAL,
   VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
   unchecked) is replaced by a particular branch of the variant.

   NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
   is questionable and may be removed.  It can arise during the
   processing of an unconstrained-array-of-record type where all the
   variant branches have exactly the same size.  This is because in
   such cases, the compiler does not bother to use the XVS convention
   when encoding the record.  I am currently dubious of this
   shortcut and suspect the compiler should be altered.  FIXME.  */

static struct type *
to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
                      CORE_ADDR address, struct value *dval)
{
  struct type *templ_type;

  if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
    return type0;

  templ_type = dynamic_template_type (type0);

  if (templ_type != NULL)
    return template_to_fixed_record_type (templ_type, valaddr, address, dval);
  else if (variant_field_index (type0) >= 0)
    {
      if (dval == NULL && valaddr == NULL && address == 0)
        return type0;
      return to_record_with_fixed_variant_part (type0, valaddr, address,
                                                dval);
    }
  else
    {
      TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
      return type0;
    }

}

/* An ordinary record type (with fixed-length fields) that describes
   the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
   union type.  Any necessary discriminants' values should be in DVAL,
   a record value.  That is, this routine selects the appropriate
   branch of the union at ADDR according to the discriminant value
   indicated in the union's type name.  */

static struct type *
to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
                              CORE_ADDR address, struct value *dval)
{
  int which;
  struct type *templ_type;
  struct type *var_type;

  if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
    var_type = TYPE_TARGET_TYPE (var_type0);
  else
    var_type = var_type0;

  templ_type = ada_find_parallel_type (var_type, "___XVU");

  if (templ_type != NULL)
    var_type = templ_type;

  which =
    ada_which_variant_applies (var_type,
                               value_type (dval), value_contents (dval));

  if (which < 0)
    return empty_record (TYPE_OBJFILE (var_type));
  else if (is_dynamic_field (var_type, which))
    return to_fixed_record_type
      (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
       valaddr, address, dval);
  else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
    return
      to_fixed_record_type
      (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
  else
    return TYPE_FIELD_TYPE (var_type, which);
}

/* Assuming that TYPE0 is an array type describing the type of a value
   at ADDR, and that DVAL describes a record containing any
   discriminants used in TYPE0, returns a type for the value that
   contains no dynamic components (that is, no components whose sizes
   are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
   true, gives an error message if the resulting type's size is over
   varsize_limit.  */

static struct type *
to_fixed_array_type (struct type *type0, struct value *dval,
                     int ignore_too_big)
{
  struct type *index_type_desc;
  struct type *result;

  if (ada_is_packed_array_type (type0)  /* revisit? */
      || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
    return type0;

  index_type_desc = ada_find_parallel_type (type0, "___XA");
  if (index_type_desc == NULL)
    {
      struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
      /* NOTE: elt_type---the fixed version of elt_type0---should never
         depend on the contents of the array in properly constructed
         debugging data.  */
      /* Create a fixed version of the array element type.
         We're not providing the address of an element here,
         and thus the actual object value cannot be inspected to do
         the conversion.  This should not be a problem, since arrays of
         unconstrained objects are not allowed.  In particular, all
         the elements of an array of a tagged type should all be of
         the same type specified in the debugging info.  No need to
         consult the object tag.  */
      struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);

      if (elt_type0 == elt_type)
        result = type0;
      else
        result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
                                    elt_type, TYPE_INDEX_TYPE (type0));
    }
  else
    {
      int i;
      struct type *elt_type0;

      elt_type0 = type0;
      for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
        elt_type0 = TYPE_TARGET_TYPE (elt_type0);

      /* NOTE: result---the fixed version of elt_type0---should never
         depend on the contents of the array in properly constructed
         debugging data.  */
      /* Create a fixed version of the array element type.
         We're not providing the address of an element here,
         and thus the actual object value cannot be inspected to do
         the conversion.  This should not be a problem, since arrays of
         unconstrained objects are not allowed.  In particular, all
         the elements of an array of a tagged type should all be of
         the same type specified in the debugging info.  No need to
         consult the object tag.  */
      result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
      for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
        {
          struct type *range_type =
            to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
                                 dval, TYPE_OBJFILE (type0));
          result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
                                      result, range_type);
        }
      if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
        error (_("array type with dynamic size is larger than varsize-limit"));
    }

  TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
  return result;
}


/* A standard type (containing no dynamically sized components)
   corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
   DVAL describes a record containing any discriminants used in TYPE0,
   and may be NULL if there are none, or if the object of type TYPE at
   ADDRESS or in VALADDR contains these discriminants.
   
   In the case of tagged types, this function attempts to locate the object's
   tag and use it to compute the actual type.  However, when ADDRESS is null,
   we cannot use it to determine the location of the tag, and therefore
   compute the tagged type's actual type.  So we return the tagged type
   without consulting the tag.  */
   
struct type *
ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
                   CORE_ADDR address, struct value *dval)
{
  type = ada_check_typedef (type);
  switch (TYPE_CODE (type))
    {
    default:
      return type;
    case TYPE_CODE_STRUCT:
      {
        struct type *static_type = to_static_fixed_type (type);

        /* If STATIC_TYPE is a tagged type and we know the object's address,
           then we can determine its tag, and compute the object's actual
           type from there.  */

        if (address != 0 && ada_is_tagged_type (static_type, 0))
          {
            struct type *real_type =
              type_from_tag (value_tag_from_contents_and_address (static_type,
                                                                  valaddr,
                                                                  address));
            if (real_type != NULL)
              type = real_type;
          }
        return to_fixed_record_type (type, valaddr, address, NULL);
      }
    case TYPE_CODE_ARRAY:
      return to_fixed_array_type (type, dval, 1);
    case TYPE_CODE_UNION:
      if (dval == NULL)
        return type;
      else
        return to_fixed_variant_branch_type (type, valaddr, address, dval);
    }
}

/* A standard (static-sized) type corresponding as well as possible to
   TYPE0, but based on no runtime data.  */

static struct type *
to_static_fixed_type (struct type *type0)
{
  struct type *type;

  if (type0 == NULL)
    return NULL;

  if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
    return type0;

  type0 = ada_check_typedef (type0);

  switch (TYPE_CODE (type0))
    {
    default:
      return type0;
    case TYPE_CODE_STRUCT:
      type = dynamic_template_type (type0);
      if (type != NULL)
        return template_to_static_fixed_type (type);
      else
        return template_to_static_fixed_type (type0);
    case TYPE_CODE_UNION:
      type = ada_find_parallel_type (type0, "___XVU");
      if (type != NULL)
        return template_to_static_fixed_type (type);
      else
        return template_to_static_fixed_type (type0);
    }
}

/* A static approximation of TYPE with all type wrappers removed.  */

static struct type *
static_unwrap_type (struct type *type)
{
  if (ada_is_aligner_type (type))
    {
      struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
      if (ada_type_name (type1) == NULL)
        TYPE_NAME (type1) = ada_type_name (type);

      return static_unwrap_type (type1);
    }
  else
    {
      struct type *raw_real_type = ada_get_base_type (type);
      if (raw_real_type == type)
        return type;
      else
        return to_static_fixed_type (raw_real_type);
    }
}

/* In some cases, incomplete and private types require
   cross-references that are not resolved as records (for example,
      type Foo;
      type FooP is access Foo;
      V: FooP;
      type Foo is array ...;
   ).  In these cases, since there is no mechanism for producing
   cross-references to such types, we instead substitute for FooP a
   stub enumeration type that is nowhere resolved, and whose tag is
   the name of the actual type.  Call these types "non-record stubs".  */

/* A type equivalent to TYPE that is not a non-record stub, if one
   exists, otherwise TYPE.  */

struct type *
ada_check_typedef (struct type *type)
{
  CHECK_TYPEDEF (type);
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
      || !TYPE_STUB (type)
      || TYPE_TAG_NAME (type) == NULL)
    return type;
  else
    {
      char *name = TYPE_TAG_NAME (type);
      struct type *type1 = ada_find_any_type (name);
      return (type1 == NULL) ? type : type1;
    }
}

/* A value representing the data at VALADDR/ADDRESS as described by
   type TYPE0, but with a standard (static-sized) type that correctly
   describes it.  If VAL0 is not NULL and TYPE0 already is a standard
   type, then return VAL0 [this feature is simply to avoid redundant
   creation of struct values].  */

static struct value *
ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
                           struct value *val0)
{
  struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
  if (type == type0 && val0 != NULL)
    return val0;
  else
    return value_from_contents_and_address (type, 0, address);
}

/* A value representing VAL, but with a standard (static-sized) type
   that correctly describes it.  Does not necessarily create a new
   value.  */

static struct value *
ada_to_fixed_value (struct value *val)
{
  return ada_to_fixed_value_create (value_type (val),
                                    VALUE_ADDRESS (val) + value_offset (val),
                                    val);
}

/* A value representing VAL, but with a standard (static-sized) type
   chosen to approximate the real type of VAL as well as possible, but
   without consulting any runtime values.  For Ada dynamic-sized
   types, therefore, the type of the result is likely to be inaccurate.  */

struct value *
ada_to_static_fixed_value (struct value *val)
{
  struct type *type =
    to_static_fixed_type (static_unwrap_type (value_type (val)));
  if (type == value_type (val))
    return val;
  else
    return coerce_unspec_val_to_type (val, type);
}


/* Attributes */

/* Table mapping attribute numbers to names.
   NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h.  */

static const char *attribute_names[] = {
  "<?>",

  "first",
  "last",
  "length",
  "image",
  "max",
  "min",
  "modulus",
  "pos",
  "size",
  "tag",
  "val",
  0
};

const char *
ada_attribute_name (enum exp_opcode n)
{
  if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
    return attribute_names[n - OP_ATR_FIRST + 1];
  else
    return attribute_names[0];
}

/* Evaluate the 'POS attribute applied to ARG.  */

static LONGEST
pos_atr (struct value *arg)
{
  struct type *type = value_type (arg);

  if (!discrete_type_p (type))
    error (_("'POS only defined on discrete types"));

  if (TYPE_CODE (type) == TYPE_CODE_ENUM)
    {
      int i;
      LONGEST v = value_as_long (arg);

      for (i = 0; i < TYPE_NFIELDS (type); i += 1)
        {
          if (v == TYPE_FIELD_BITPOS (type, i))
            return i;
        }
      error (_("enumeration value is invalid: can't find 'POS"));
    }
  else
    return value_as_long (arg);
}

static struct value *
value_pos_atr (struct value *arg)
{
  return value_from_longest (builtin_type_int, pos_atr (arg));
}

/* Evaluate the TYPE'VAL attribute applied to ARG.  */

static struct value *
value_val_atr (struct type *type, struct value *arg)
{
  if (!discrete_type_p (type))
    error (_("'VAL only defined on discrete types"));
  if (!integer_type_p (value_type (arg)))
    error (_("'VAL requires integral argument"));

  if (TYPE_CODE (type) == TYPE_CODE_ENUM)
    {
      long pos = value_as_long (arg);
      if (pos < 0 || pos >= TYPE_NFIELDS (type))
        error (_("argument to 'VAL out of range"));
      return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
    }
  else
    return value_from_longest (type, value_as_long (arg));
}


                                /* Evaluation */

/* True if TYPE appears to be an Ada character type.
   [At the moment, this is true only for Character and Wide_Character;
   It is a heuristic test that could stand improvement].  */

int
ada_is_character_type (struct type *type)
{
  const char *name = ada_type_name (type);
  return
    name != NULL
    && (TYPE_CODE (type) == TYPE_CODE_CHAR
        || TYPE_CODE (type) == TYPE_CODE_INT
        || TYPE_CODE (type) == TYPE_CODE_RANGE)
    && (strcmp (name, "character") == 0
        || strcmp (name, "wide_character") == 0
        || strcmp (name, "unsigned char") == 0);
}

/* True if TYPE appears to be an Ada string type.  */

int
ada_is_string_type (struct type *type)
{
  type = ada_check_typedef (type);
  if (type != NULL
      && TYPE_CODE (type) != TYPE_CODE_PTR
      && (ada_is_simple_array_type (type)
          || ada_is_array_descriptor_type (type))
      && ada_array_arity (type) == 1)
    {
      struct type *elttype = ada_array_element_type (type, 1);

      return ada_is_character_type (elttype);
    }
  else
    return 0;
}


/* True if TYPE is a struct type introduced by the compiler to force the
   alignment of a value.  Such types have a single field with a
   distinctive name.  */

int
ada_is_aligner_type (struct type *type)
{
  type = ada_check_typedef (type);

  /* If we can find a parallel XVS type, then the XVS type should
     be used instead of this type.  And hence, this is not an aligner
     type.  */
  if (ada_find_parallel_type (type, "___XVS") != NULL)
    return 0;

  return (TYPE_CODE (type) == TYPE_CODE_STRUCT
          && TYPE_NFIELDS (type) == 1
          && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
}

/* If there is an ___XVS-convention type parallel to SUBTYPE, return
   the parallel type.  */

struct type *
ada_get_base_type (struct type *raw_type)
{
  struct type *real_type_namer;
  struct type *raw_real_type;

  if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
    return raw_type;

  real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
  if (real_type_namer == NULL
      || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
      || TYPE_NFIELDS (real_type_namer) != 1)
    return raw_type;

  raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
  if (raw_real_type == NULL)
    return raw_type;
  else
    return raw_real_type;
}

/* The type of value designated by TYPE, with all aligners removed.  */

struct type *
ada_aligned_type (struct type *type)
{
  if (ada_is_aligner_type (type))
    return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
  else
    return ada_get_base_type (type);
}


/* The address of the aligned value in an object at address VALADDR
   having type TYPE.  Assumes ada_is_aligner_type (TYPE).  */

const gdb_byte *
ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
{
  if (ada_is_aligner_type (type))
    return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
                                   valaddr +
                                   TYPE_FIELD_BITPOS (type,
                                                      0) / TARGET_CHAR_BIT);
  else
    return valaddr;
}



/* The printed representation of an enumeration literal with encoded
   name NAME.  The value is good to the next call of ada_enum_name.  */
const char *
ada_enum_name (const char *name)
{
  static char *result;
  static size_t result_len = 0;
  char *tmp;

  /* First, unqualify the enumeration name:
     1. Search for the last '.' character.  If we find one, then skip
     all the preceeding characters, the unqualified name starts
     right after that dot.
     2. Otherwise, we may be debugging on a target where the compiler
     translates dots into "__".  Search forward for double underscores,
     but stop searching when we hit an overloading suffix, which is
     of the form "__" followed by digits.  */

  tmp = strrchr (name, '.');
  if (tmp != NULL)
    name = tmp + 1;
  else
    {
      while ((tmp = strstr (name, "__")) != NULL)
        {
          if (isdigit (tmp[2]))
            break;
          else
            name = tmp + 2;
        }
    }

  if (name[0] == 'Q')
    {
      int v;
      if (name[1] == 'U' || name[1] == 'W')
        {
          if (sscanf (name + 2, "%x", &v) != 1)
            return name;
        }
      else
        return name;

      GROW_VECT (result, result_len, 16);
      if (isascii (v) && isprint (v))
        sprintf (result, "'%c'", v);
      else if (name[1] == 'U')
        sprintf (result, "[\"%02x\"]", v);
      else
        sprintf (result, "[\"%04x\"]", v);

      return result;
    }
  else
    {
      tmp = strstr (name, "__");
      if (tmp == NULL)
	tmp = strstr (name, "$");
      if (tmp != NULL)
        {
          GROW_VECT (result, result_len, tmp - name + 1);
          strncpy (result, name, tmp - name);
          result[tmp - name] = '\0';
          return result;
        }

      return name;
    }
}

static struct value *
evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
                 enum noside noside)
{
  return (*exp->language_defn->la_exp_desc->evaluate_exp)
    (expect_type, exp, pos, noside);
}

/* Evaluate the subexpression of EXP starting at *POS as for
   evaluate_type, updating *POS to point just past the evaluated
   expression.  */

static struct value *
evaluate_subexp_type (struct expression *exp, int *pos)
{
  return (*exp->language_defn->la_exp_desc->evaluate_exp)
    (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
}

/* If VAL is wrapped in an aligner or subtype wrapper, return the
   value it wraps.  */

static struct value *
unwrap_value (struct value *val)
{
  struct type *type = ada_check_typedef (value_type (val));
  if (ada_is_aligner_type (type))
    {
      struct value *v = value_struct_elt (&val, NULL, "F",
                                          NULL, "internal structure");
      struct type *val_type = ada_check_typedef (value_type (v));
      if (ada_type_name (val_type) == NULL)
        TYPE_NAME (val_type) = ada_type_name (type);

      return unwrap_value (v);
    }
  else
    {
      struct type *raw_real_type =
        ada_check_typedef (ada_get_base_type (type));

      if (type == raw_real_type)
        return val;

      return
        coerce_unspec_val_to_type
        (val, ada_to_fixed_type (raw_real_type, 0,
                                 VALUE_ADDRESS (val) + value_offset (val),
                                 NULL));
    }
}

static struct value *
cast_to_fixed (struct type *type, struct value *arg)
{
  LONGEST val;

  if (type == value_type (arg))
    return arg;
  else if (ada_is_fixed_point_type (value_type (arg)))
    val = ada_float_to_fixed (type,
                              ada_fixed_to_float (value_type (arg),
                                                  value_as_long (arg)));
  else
    {
      DOUBLEST argd =
        value_as_double (value_cast (builtin_type_double, value_copy (arg)));
      val = ada_float_to_fixed (type, argd);
    }

  return value_from_longest (type, val);
}

static struct value *
cast_from_fixed_to_double (struct value *arg)
{
  DOUBLEST val = ada_fixed_to_float (value_type (arg),
                                     value_as_long (arg));
  return value_from_double (builtin_type_double, val);
}

/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
   return the converted value.  */

static struct value *
coerce_for_assign (struct type *type, struct value *val)
{
  struct type *type2 = value_type (val);
  if (type == type2)
    return val;

  type2 = ada_check_typedef (type2);
  type = ada_check_typedef (type);

  if (TYPE_CODE (type2) == TYPE_CODE_PTR
      && TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      val = ada_value_ind (val);
      type2 = value_type (val);
    }

  if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
      && TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
          || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
          != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
        error (_("Incompatible types in assignment"));
      deprecated_set_value_type (val, type);
    }
  return val;
}

static struct value *
ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
{
  struct value *val;
  struct type *type1, *type2;
  LONGEST v, v1, v2;

  arg1 = coerce_ref (arg1);
  arg2 = coerce_ref (arg2);
  type1 = base_type (ada_check_typedef (value_type (arg1)));
  type2 = base_type (ada_check_typedef (value_type (arg2)));

  if (TYPE_CODE (type1) != TYPE_CODE_INT
      || TYPE_CODE (type2) != TYPE_CODE_INT)
    return value_binop (arg1, arg2, op);

  switch (op)
    {
    case BINOP_MOD:
    case BINOP_DIV:
    case BINOP_REM:
      break;
    default:
      return value_binop (arg1, arg2, op);
    }

  v2 = value_as_long (arg2);
  if (v2 == 0)
    error (_("second operand of %s must not be zero."), op_string (op));

  if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
    return value_binop (arg1, arg2, op);

  v1 = value_as_long (arg1);
  switch (op)
    {
    case BINOP_DIV:
      v = v1 / v2;
      if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
        v += v > 0 ? -1 : 1;
      break;
    case BINOP_REM:
      v = v1 % v2;
      if (v * v1 < 0)
        v -= v2;
      break;
    default:
      /* Should not reach this point.  */
      v = 0;
    }

  val = allocate_value (type1);
  store_unsigned_integer (value_contents_raw (val),
                          TYPE_LENGTH (value_type (val)), v);
  return val;
}

static int
ada_value_equal (struct value *arg1, struct value *arg2)
{
  if (ada_is_direct_array_type (value_type (arg1))
      || ada_is_direct_array_type (value_type (arg2)))
    {
      arg1 = ada_coerce_to_simple_array (arg1);
      arg2 = ada_coerce_to_simple_array (arg2);
      if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
          || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
        error (_("Attempt to compare array with non-array"));
      /* FIXME: The following works only for types whose
         representations use all bits (no padding or undefined bits)
         and do not have user-defined equality.  */
      return
        TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
        && memcmp (value_contents (arg1), value_contents (arg2),
                   TYPE_LENGTH (value_type (arg1))) == 0;
    }
  return value_equal (arg1, arg2);
}

/* Total number of component associations in the aggregate starting at
   index PC in EXP.  Assumes that index PC is the start of an
   OP_AGGREGATE. */

static int
num_component_specs (struct expression *exp, int pc)
{
  int n, m, i;
  m = exp->elts[pc + 1].longconst;
  pc += 3;
  n = 0;
  for (i = 0; i < m; i += 1)
    {
      switch (exp->elts[pc].opcode) 
	{
	default:
	  n += 1;
	  break;
	case OP_CHOICES:
	  n += exp->elts[pc + 1].longconst;
	  break;
	}
      ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
    }
  return n;
}

/* Assign the result of evaluating EXP starting at *POS to the INDEXth 
   component of LHS (a simple array or a record), updating *POS past
   the expression, assuming that LHS is contained in CONTAINER.  Does
   not modify the inferior's memory, nor does it modify LHS (unless
   LHS == CONTAINER).  */

static void
assign_component (struct value *container, struct value *lhs, LONGEST index,
		  struct expression *exp, int *pos)
{
  struct value *mark = value_mark ();
  struct value *elt;
  if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
    {
      struct value *index_val = value_from_longest (builtin_type_int, index);
      elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
    }
  else
    {
      elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
      elt = ada_to_fixed_value (unwrap_value (elt));
    }

  if (exp->elts[*pos].opcode == OP_AGGREGATE)
    assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
  else
    value_assign_to_component (container, elt, 
			       ada_evaluate_subexp (NULL, exp, pos, 
						    EVAL_NORMAL));

  value_free_to_mark (mark);
}

/* Assuming that LHS represents an lvalue having a record or array
   type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
   of that aggregate's value to LHS, advancing *POS past the
   aggregate.  NOSIDE is as for evaluate_subexp.  CONTAINER is an
   lvalue containing LHS (possibly LHS itself).  Does not modify
   the inferior's memory, nor does it modify the contents of 
   LHS (unless == CONTAINER).  Returns the modified CONTAINER. */

static struct value *
assign_aggregate (struct value *container, 
		  struct value *lhs, struct expression *exp, 
		  int *pos, enum noside noside)
{
  struct type *lhs_type;
  int n = exp->elts[*pos+1].longconst;
  LONGEST low_index, high_index;
  int num_specs;
  LONGEST *indices;
  int max_indices, num_indices;
  int is_array_aggregate;
  int i;
  struct value *mark = value_mark ();

  *pos += 3;
  if (noside != EVAL_NORMAL)
    {
      int i;
      for (i = 0; i < n; i += 1)
	ada_evaluate_subexp (NULL, exp, pos, noside);
      return container;
    }

  container = ada_coerce_ref (container);
  if (ada_is_direct_array_type (value_type (container)))
    container = ada_coerce_to_simple_array (container);
  lhs = ada_coerce_ref (lhs);
  if (!deprecated_value_modifiable (lhs))
    error (_("Left operand of assignment is not a modifiable lvalue."));

  lhs_type = value_type (lhs);
  if (ada_is_direct_array_type (lhs_type))
    {
      lhs = ada_coerce_to_simple_array (lhs);
      lhs_type = value_type (lhs);
      low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
      high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
      is_array_aggregate = 1;
    }
  else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
    {
      low_index = 0;
      high_index = num_visible_fields (lhs_type) - 1;
      is_array_aggregate = 0;
    }
  else
    error (_("Left-hand side must be array or record."));

  num_specs = num_component_specs (exp, *pos - 3);
  max_indices = 4 * num_specs + 4;
  indices = alloca (max_indices * sizeof (indices[0]));
  indices[0] = indices[1] = low_index - 1;
  indices[2] = indices[3] = high_index + 1;
  num_indices = 4;

  for (i = 0; i < n; i += 1)
    {
      switch (exp->elts[*pos].opcode)
	{
	case OP_CHOICES:
	  aggregate_assign_from_choices (container, lhs, exp, pos, indices, 
					 &num_indices, max_indices,
					 low_index, high_index);
	  break;
	case OP_POSITIONAL:
	  aggregate_assign_positional (container, lhs, exp, pos, indices,
				       &num_indices, max_indices,
				       low_index, high_index);
	  break;
	case OP_OTHERS:
	  if (i != n-1)
	    error (_("Misplaced 'others' clause"));
	  aggregate_assign_others (container, lhs, exp, pos, indices, 
				   num_indices, low_index, high_index);
	  break;
	default:
	  error (_("Internal error: bad aggregate clause"));
	}
    }

  return container;
}
	      
/* Assign into the component of LHS indexed by the OP_POSITIONAL
   construct at *POS, updating *POS past the construct, given that
   the positions are relative to lower bound LOW, where HIGH is the 
   upper bound.  Record the position in INDICES[0 .. MAX_INDICES-1]
   updating *NUM_INDICES as needed.  CONTAINER is as for
   assign_aggregate. */
static void
aggregate_assign_positional (struct value *container,
			     struct value *lhs, struct expression *exp,
			     int *pos, LONGEST *indices, int *num_indices,
			     int max_indices, LONGEST low, LONGEST high) 
{
  LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
  
  if (ind - 1 == high)
    warning (_("Extra components in aggregate ignored."));
  if (ind <= high)
    {
      add_component_interval (ind, ind, indices, num_indices, max_indices);
      *pos += 3;
      assign_component (container, lhs, ind, exp, pos);
    }
  else
    ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
}

/* Assign into the components of LHS indexed by the OP_CHOICES
   construct at *POS, updating *POS past the construct, given that
   the allowable indices are LOW..HIGH.  Record the indices assigned
   to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
   needed.  CONTAINER is as for assign_aggregate. */
static void
aggregate_assign_from_choices (struct value *container,
			       struct value *lhs, struct expression *exp,
			       int *pos, LONGEST *indices, int *num_indices,
			       int max_indices, LONGEST low, LONGEST high) 
{
  int j;
  int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
  int choice_pos, expr_pc;
  int is_array = ada_is_direct_array_type (value_type (lhs));

  choice_pos = *pos += 3;

  for (j = 0; j < n_choices; j += 1)
    ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
  expr_pc = *pos;
  ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
  
  for (j = 0; j < n_choices; j += 1)
    {
      LONGEST lower, upper;
      enum exp_opcode op = exp->elts[choice_pos].opcode;
      if (op == OP_DISCRETE_RANGE)
	{
	  choice_pos += 1;
	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
						      EVAL_NORMAL));
	  upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, 
						      EVAL_NORMAL));
	}
      else if (is_array)
	{
	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, 
						      EVAL_NORMAL));
	  upper = lower;
	}
      else
	{
	  int ind;
	  char *name;
	  switch (op)
	    {
	    case OP_NAME:
	      name = &exp->elts[choice_pos + 2].string;
	      break;
	    case OP_VAR_VALUE:
	      name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
	      break;
	    default:
	      error (_("Invalid record component association."));
	    }
	  ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
	  ind = 0;
	  if (! find_struct_field (name, value_type (lhs), 0, 
				   NULL, NULL, NULL, NULL, &ind))
	    error (_("Unknown component name: %s."), name);
	  lower = upper = ind;
	}

      if (lower <= upper && (lower < low || upper > high))
	error (_("Index in component association out of bounds."));

      add_component_interval (lower, upper, indices, num_indices,
			      max_indices);
      while (lower <= upper)
	{
	  int pos1;
	  pos1 = expr_pc;
	  assign_component (container, lhs, lower, exp, &pos1);
	  lower += 1;
	}
    }
}

/* Assign the value of the expression in the OP_OTHERS construct in
   EXP at *POS into the components of LHS indexed from LOW .. HIGH that
   have not been previously assigned.  The index intervals already assigned
   are in INDICES[0 .. NUM_INDICES-1].  Updates *POS to after the 
   OP_OTHERS clause.  CONTAINER is as for assign_aggregate*/
static void
aggregate_assign_others (struct value *container,
			 struct value *lhs, struct expression *exp,
			 int *pos, LONGEST *indices, int num_indices,
			 LONGEST low, LONGEST high) 
{
  int i;
  int expr_pc = *pos+1;
  
  for (i = 0; i < num_indices - 2; i += 2)
    {
      LONGEST ind;
      for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
	{
	  int pos;
	  pos = expr_pc;
	  assign_component (container, lhs, ind, exp, &pos);
	}
    }
  ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
}

/* Add the interval [LOW .. HIGH] to the sorted set of intervals 
   [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
   modifying *SIZE as needed.  It is an error if *SIZE exceeds
   MAX_SIZE.  The resulting intervals do not overlap.  */
static void
add_component_interval (LONGEST low, LONGEST high, 
			LONGEST* indices, int *size, int max_size)
{
  int i, j;
  for (i = 0; i < *size; i += 2) {
    if (high >= indices[i] && low <= indices[i + 1])
      {
	int kh;
	for (kh = i + 2; kh < *size; kh += 2)
	  if (high < indices[kh])
	    break;
	if (low < indices[i])
	  indices[i] = low;
	indices[i + 1] = indices[kh - 1];
	if (high > indices[i + 1])
	  indices[i + 1] = high;
	memcpy (indices + i + 2, indices + kh, *size - kh);
	*size -= kh - i - 2;
	return;
      }
    else if (high < indices[i])
      break;
  }
	
  if (*size == max_size)
    error (_("Internal error: miscounted aggregate components."));
  *size += 2;
  for (j = *size-1; j >= i+2; j -= 1)
    indices[j] = indices[j - 2];
  indices[i] = low;
  indices[i + 1] = high;
}

static struct value *
ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
                     int *pos, enum noside noside)
{
  enum exp_opcode op;
  int tem, tem2, tem3;
  int pc;
  struct value *arg1 = NULL, *arg2 = NULL, *arg3;
  struct type *type;
  int nargs, oplen;
  struct value **argvec;

  pc = *pos;
  *pos += 1;
  op = exp->elts[pc].opcode;

  switch (op)
    {
    default:
      *pos -= 1;
      return
        unwrap_value (evaluate_subexp_standard
                      (expect_type, exp, pos, noside));

    case OP_STRING:
      {
        struct value *result;
        *pos -= 1;
        result = evaluate_subexp_standard (expect_type, exp, pos, noside);
        /* The result type will have code OP_STRING, bashed there from 
           OP_ARRAY.  Bash it back.  */
        if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
          TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
        return result;
      }

    case UNOP_CAST:
      (*pos) += 2;
      type = exp->elts[pc + 1].type;
      arg1 = evaluate_subexp (type, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if (type != ada_check_typedef (value_type (arg1)))
        {
          if (ada_is_fixed_point_type (type))
            arg1 = cast_to_fixed (type, arg1);
          else if (ada_is_fixed_point_type (value_type (arg1)))
            arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
          else if (VALUE_LVAL (arg1) == lval_memory)
            {
              /* This is in case of the really obscure (and undocumented,
                 but apparently expected) case of (Foo) Bar.all, where Bar
                 is an integer constant and Foo is a dynamic-sized type.
                 If we don't do this, ARG1 will simply be relabeled with
                 TYPE.  */
              if (noside == EVAL_AVOID_SIDE_EFFECTS)
                return value_zero (to_static_fixed_type (type), not_lval);
              arg1 =
                ada_to_fixed_value_create
                (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
            }
          else
            arg1 = value_cast (type, arg1);
        }
      return arg1;

    case UNOP_QUAL:
      (*pos) += 2;
      type = exp->elts[pc + 1].type;
      return ada_evaluate_subexp (type, exp, pos, noside);

    case BINOP_ASSIGN:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (exp->elts[*pos].opcode == OP_AGGREGATE)
	{
	  arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
	  if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
	    return arg1;
	  return ada_value_assign (arg1, arg1);
	}
      arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
      if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
        return arg1;
      if (ada_is_fixed_point_type (value_type (arg1)))
        arg2 = cast_to_fixed (value_type (arg1), arg2);
      else if (ada_is_fixed_point_type (value_type (arg2)))
        error
          (_("Fixed-point values must be assigned to fixed-point variables"));
      else
        arg2 = coerce_for_assign (value_type (arg1), arg2);
      return ada_value_assign (arg1, arg2);

    case BINOP_ADD:
      arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if ((ada_is_fixed_point_type (value_type (arg1))
           || ada_is_fixed_point_type (value_type (arg2)))
          && value_type (arg1) != value_type (arg2))
        error (_("Operands of fixed-point addition must have the same type"));
      return value_cast (value_type (arg1), value_add (arg1, arg2));

    case BINOP_SUB:
      arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if ((ada_is_fixed_point_type (value_type (arg1))
           || ada_is_fixed_point_type (value_type (arg2)))
          && value_type (arg1) != value_type (arg2))
        error (_("Operands of fixed-point subtraction must have the same type"));
      return value_cast (value_type (arg1), value_sub (arg1, arg2));

    case BINOP_MUL:
    case BINOP_DIV:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS
               && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
        return value_zero (value_type (arg1), not_lval);
      else
        {
          if (ada_is_fixed_point_type (value_type (arg1)))
            arg1 = cast_from_fixed_to_double (arg1);
          if (ada_is_fixed_point_type (value_type (arg2)))
            arg2 = cast_from_fixed_to_double (arg2);
          return ada_value_binop (arg1, arg2, op);
        }

    case BINOP_REM:
    case BINOP_MOD:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS
               && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
        return value_zero (value_type (arg1), not_lval);
      else
        return ada_value_binop (arg1, arg2, op);

    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        tem = 0;
      else
        tem = ada_value_equal (arg1, arg2);
      if (op == BINOP_NOTEQUAL)
        tem = !tem;
      return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);

    case UNOP_NEG:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (ada_is_fixed_point_type (value_type (arg1)))
        return value_cast (value_type (arg1), value_neg (arg1));
      else
        return value_neg (arg1);

    case OP_VAR_VALUE:
      *pos -= 1;
      if (noside == EVAL_SKIP)
        {
          *pos += 4;
          goto nosideret;
        }
      else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
        /* Only encountered when an unresolved symbol occurs in a
           context other than a function call, in which case, it is
           invalid.  */
        error (_("Unexpected unresolved symbol, %s, during evaluation"),
               SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
          *pos += 4;
          return value_zero
            (to_static_fixed_type
             (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
             not_lval);
        }
      else
        {
          arg1 =
            unwrap_value (evaluate_subexp_standard
                          (expect_type, exp, pos, noside));
          return ada_to_fixed_value (arg1);
        }

    case OP_FUNCALL:
      (*pos) += 2;

      /* Allocate arg vector, including space for the function to be
         called in argvec[0] and a terminating NULL.  */
      nargs = longest_to_int (exp->elts[pc + 1].longconst);
      argvec =
        (struct value **) alloca (sizeof (struct value *) * (nargs + 2));

      if (exp->elts[*pos].opcode == OP_VAR_VALUE
          && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
        error (_("Unexpected unresolved symbol, %s, during evaluation"),
               SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
      else
        {
          for (tem = 0; tem <= nargs; tem += 1)
            argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
          argvec[tem] = 0;

          if (noside == EVAL_SKIP)
            goto nosideret;
        }

      if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
        argvec[0] = ada_coerce_to_simple_array (argvec[0]);
      else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
               || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
                   && VALUE_LVAL (argvec[0]) == lval_memory))
        argvec[0] = value_addr (argvec[0]);

      type = ada_check_typedef (value_type (argvec[0]));
      if (TYPE_CODE (type) == TYPE_CODE_PTR)
        {
          switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
            {
            case TYPE_CODE_FUNC:
              type = ada_check_typedef (TYPE_TARGET_TYPE (type));
              break;
            case TYPE_CODE_ARRAY:
              break;
            case TYPE_CODE_STRUCT:
              if (noside != EVAL_AVOID_SIDE_EFFECTS)
                argvec[0] = ada_value_ind (argvec[0]);
              type = ada_check_typedef (TYPE_TARGET_TYPE (type));
              break;
            default:
              error (_("cannot subscript or call something of type `%s'"),
                     ada_type_name (value_type (argvec[0])));
              break;
            }
        }

      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_FUNC:
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
            return allocate_value (TYPE_TARGET_TYPE (type));
          return call_function_by_hand (argvec[0], nargs, argvec + 1);
        case TYPE_CODE_STRUCT:
          {
            int arity;

            arity = ada_array_arity (type);
            type = ada_array_element_type (type, nargs);
            if (type == NULL)
              error (_("cannot subscript or call a record"));
            if (arity != nargs)
              error (_("wrong number of subscripts; expecting %d"), arity);
            if (noside == EVAL_AVOID_SIDE_EFFECTS)
              return allocate_value (ada_aligned_type (type));
            return
              unwrap_value (ada_value_subscript
                            (argvec[0], nargs, argvec + 1));
          }
        case TYPE_CODE_ARRAY:
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
            {
              type = ada_array_element_type (type, nargs);
              if (type == NULL)
                error (_("element type of array unknown"));
              else
                return allocate_value (ada_aligned_type (type));
            }
          return
            unwrap_value (ada_value_subscript
                          (ada_coerce_to_simple_array (argvec[0]),
                           nargs, argvec + 1));
        case TYPE_CODE_PTR:     /* Pointer to array */
          type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
            {
              type = ada_array_element_type (type, nargs);
              if (type == NULL)
                error (_("element type of array unknown"));
              else
                return allocate_value (ada_aligned_type (type));
            }
          return
            unwrap_value (ada_value_ptr_subscript (argvec[0], type,
                                                   nargs, argvec + 1));

        default:
          error (_("Attempt to index or call something other than an "
		   "array or function"));
        }

    case TERNOP_SLICE:
      {
        struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
        struct value *low_bound_val =
          evaluate_subexp (NULL_TYPE, exp, pos, noside);
        struct value *high_bound_val =
          evaluate_subexp (NULL_TYPE, exp, pos, noside);
        LONGEST low_bound;
        LONGEST high_bound;
        low_bound_val = coerce_ref (low_bound_val);
        high_bound_val = coerce_ref (high_bound_val);
        low_bound = pos_atr (low_bound_val);
        high_bound = pos_atr (high_bound_val);

        if (noside == EVAL_SKIP)
          goto nosideret;

        /* If this is a reference to an aligner type, then remove all
           the aligners.  */
        if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
            && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
          TYPE_TARGET_TYPE (value_type (array)) =
            ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));

        if (ada_is_packed_array_type (value_type (array)))
          error (_("cannot slice a packed array"));

        /* If this is a reference to an array or an array lvalue,
           convert to a pointer.  */
        if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
            || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
                && VALUE_LVAL (array) == lval_memory))
          array = value_addr (array);

        if (noside == EVAL_AVOID_SIDE_EFFECTS
            && ada_is_array_descriptor_type (ada_check_typedef
                                             (value_type (array))))
          return empty_array (ada_type_of_array (array, 0), low_bound);

        array = ada_coerce_to_simple_array_ptr (array);

        /* If we have more than one level of pointer indirection,
           dereference the value until we get only one level.  */
        while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
               && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
                     == TYPE_CODE_PTR))
          array = value_ind (array);

        /* Make sure we really do have an array type before going further,
           to avoid a SEGV when trying to get the index type or the target
           type later down the road if the debug info generated by
           the compiler is incorrect or incomplete.  */
        if (!ada_is_simple_array_type (value_type (array)))
          error (_("cannot take slice of non-array"));

        if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
          {
            if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
              return empty_array (TYPE_TARGET_TYPE (value_type (array)),
                                  low_bound);
            else
              {
                struct type *arr_type0 =
                  to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
                                       NULL, 1);
                return ada_value_slice_ptr (array, arr_type0,
                                            longest_to_int (low_bound),
					    longest_to_int (high_bound));
              }
          }
        else if (noside == EVAL_AVOID_SIDE_EFFECTS)
          return array;
        else if (high_bound < low_bound)
          return empty_array (value_type (array), low_bound);
        else
          return ada_value_slice (array, longest_to_int (low_bound),
				  longest_to_int (high_bound));
      }

    case UNOP_IN_RANGE:
      (*pos) += 2;
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      type = exp->elts[pc + 1].type;

      if (noside == EVAL_SKIP)
        goto nosideret;

      switch (TYPE_CODE (type))
        {
        default:
          lim_warning (_("Membership test incompletely implemented; "
			 "always returns true"));
          return value_from_longest (builtin_type_int, (LONGEST) 1);

        case TYPE_CODE_RANGE:
          arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
          arg3 = value_from_longest (builtin_type_int,
                                     TYPE_HIGH_BOUND (type));
          return
            value_from_longest (builtin_type_int,
                                (value_less (arg1, arg3)
                                 || value_equal (arg1, arg3))
                                && (value_less (arg2, arg1)
                                    || value_equal (arg2, arg1)));
        }

    case BINOP_IN_BOUNDS:
      (*pos) += 2;
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);

      if (noside == EVAL_SKIP)
        goto nosideret;

      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (builtin_type_int, not_lval);

      tem = longest_to_int (exp->elts[pc + 1].longconst);

      if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
        error (_("invalid dimension number to 'range"));

      arg3 = ada_array_bound (arg2, tem, 1);
      arg2 = ada_array_bound (arg2, tem, 0);

      return
        value_from_longest (builtin_type_int,
                            (value_less (arg1, arg3)
                             || value_equal (arg1, arg3))
                            && (value_less (arg2, arg1)
                                || value_equal (arg2, arg1)));

    case TERNOP_IN_RANGE:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);

      if (noside == EVAL_SKIP)
        goto nosideret;

      return
        value_from_longest (builtin_type_int,
                            (value_less (arg1, arg3)
                             || value_equal (arg1, arg3))
                            && (value_less (arg2, arg1)
                                || value_equal (arg2, arg1)));

    case OP_ATR_FIRST:
    case OP_ATR_LAST:
    case OP_ATR_LENGTH:
      {
        struct type *type_arg;
        if (exp->elts[*pos].opcode == OP_TYPE)
          {
            evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
            arg1 = NULL;
            type_arg = exp->elts[pc + 2].type;
          }
        else
          {
            arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
            type_arg = NULL;
          }

        if (exp->elts[*pos].opcode != OP_LONG)
          error (_("Invalid operand to '%s"), ada_attribute_name (op));
        tem = longest_to_int (exp->elts[*pos + 2].longconst);
        *pos += 4;

        if (noside == EVAL_SKIP)
          goto nosideret;

        if (type_arg == NULL)
          {
            arg1 = ada_coerce_ref (arg1);

            if (ada_is_packed_array_type (value_type (arg1)))
              arg1 = ada_coerce_to_simple_array (arg1);

            if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
              error (_("invalid dimension number to '%s"),
                     ada_attribute_name (op));

            if (noside == EVAL_AVOID_SIDE_EFFECTS)
              {
                type = ada_index_type (value_type (arg1), tem);
                if (type == NULL)
                  error
                    (_("attempt to take bound of something that is not an array"));
                return allocate_value (type);
              }

            switch (op)
              {
              default:          /* Should never happen.  */
                error (_("unexpected attribute encountered"));
              case OP_ATR_FIRST:
                return ada_array_bound (arg1, tem, 0);
              case OP_ATR_LAST:
                return ada_array_bound (arg1, tem, 1);
              case OP_ATR_LENGTH:
                return ada_array_length (arg1, tem);
              }
          }
        else if (discrete_type_p (type_arg))
          {
            struct type *range_type;
            char *name = ada_type_name (type_arg);
            range_type = NULL;
            if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
              range_type =
                to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
            if (range_type == NULL)
              range_type = type_arg;
            switch (op)
              {
              default:
                error (_("unexpected attribute encountered"));
              case OP_ATR_FIRST:
                return discrete_type_low_bound (range_type);
              case OP_ATR_LAST:
                return discrete_type_high_bound (range_type);
              case OP_ATR_LENGTH:
                error (_("the 'length attribute applies only to array types"));
              }
          }
        else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
          error (_("unimplemented type attribute"));
        else
          {
            LONGEST low, high;

            if (ada_is_packed_array_type (type_arg))
              type_arg = decode_packed_array_type (type_arg);

            if (tem < 1 || tem > ada_array_arity (type_arg))
              error (_("invalid dimension number to '%s"),
                     ada_attribute_name (op));

            type = ada_index_type (type_arg, tem);
            if (type == NULL)
              error
                (_("attempt to take bound of something that is not an array"));
            if (noside == EVAL_AVOID_SIDE_EFFECTS)
              return allocate_value (type);

            switch (op)
              {
              default:
                error (_("unexpected attribute encountered"));
              case OP_ATR_FIRST:
                low = ada_array_bound_from_type (type_arg, tem, 0, &type);
                return value_from_longest (type, low);
              case OP_ATR_LAST:
                high = ada_array_bound_from_type (type_arg, tem, 1, &type);
                return value_from_longest (type, high);
              case OP_ATR_LENGTH:
                low = ada_array_bound_from_type (type_arg, tem, 0, &type);
                high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
                return value_from_longest (type, high - low + 1);
              }
          }
      }

    case OP_ATR_TAG:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;

      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (ada_tag_type (arg1), not_lval);

      return ada_value_tag (arg1);

    case OP_ATR_MIN:
    case OP_ATR_MAX:
      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (value_type (arg1), not_lval);
      else
        return value_binop (arg1, arg2,
                            op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);

    case OP_ATR_MODULUS:
      {
        struct type *type_arg = exp->elts[pc + 2].type;
        evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);

        if (noside == EVAL_SKIP)
          goto nosideret;

        if (!ada_is_modular_type (type_arg))
          error (_("'modulus must be applied to modular type"));

        return value_from_longest (TYPE_TARGET_TYPE (type_arg),
                                   ada_modulus (type_arg));
      }


    case OP_ATR_POS:
      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (builtin_type_int, not_lval);
      else
        return value_pos_atr (arg1);

    case OP_ATR_SIZE:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (builtin_type_int, not_lval);
      else
        return value_from_longest (builtin_type_int,
                                   TARGET_CHAR_BIT
                                   * TYPE_LENGTH (value_type (arg1)));

    case OP_ATR_VAL:
      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      type = exp->elts[pc + 2].type;
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (type, not_lval);
      else
        return value_val_atr (type, arg1);

    case BINOP_EXP:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (value_type (arg1), not_lval);
      else
        return value_binop (arg1, arg2, op);

    case UNOP_PLUS:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else
        return arg1;

    case UNOP_ABS:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
        return value_neg (arg1);
      else
        return arg1;

    case UNOP_IND:
      if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
        expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
      arg1 = evaluate_subexp (expect_type, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      type = ada_check_typedef (value_type (arg1));
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
          if (ada_is_array_descriptor_type (type))
            /* GDB allows dereferencing GNAT array descriptors.  */
            {
              struct type *arrType = ada_type_of_array (arg1, 0);
              if (arrType == NULL)
                error (_("Attempt to dereference null array pointer."));
              return value_at_lazy (arrType, 0);
            }
          else if (TYPE_CODE (type) == TYPE_CODE_PTR
                   || TYPE_CODE (type) == TYPE_CODE_REF
                   /* In C you can dereference an array to get the 1st elt.  */
                   || TYPE_CODE (type) == TYPE_CODE_ARRAY)
            {
              type = to_static_fixed_type
                (ada_aligned_type
                 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
              check_size (type);
              return value_zero (type, lval_memory);
            }
          else if (TYPE_CODE (type) == TYPE_CODE_INT)
            /* GDB allows dereferencing an int.  */
            return value_zero (builtin_type_int, lval_memory);
          else
            error (_("Attempt to take contents of a non-pointer value."));
        }
      arg1 = ada_coerce_ref (arg1);     /* FIXME: What is this for?? */
      type = ada_check_typedef (value_type (arg1));

      if (ada_is_array_descriptor_type (type))
        /* GDB allows dereferencing GNAT array descriptors.  */
        return ada_coerce_to_simple_array (arg1);
      else
        return ada_value_ind (arg1);

    case STRUCTOP_STRUCT:
      tem = longest_to_int (exp->elts[pc + 1].longconst);
      (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
          struct type *type1 = value_type (arg1);
          if (ada_is_tagged_type (type1, 1))
            {
              type = ada_lookup_struct_elt_type (type1,
                                                 &exp->elts[pc + 2].string,
                                                 1, 1, NULL);
              if (type == NULL)
                /* In this case, we assume that the field COULD exist
                   in some extension of the type.  Return an object of 
                   "type" void, which will match any formal 
                   (see ada_type_match). */
                return value_zero (builtin_type_void, lval_memory);
            }
          else
            type =
              ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
                                          0, NULL);

          return value_zero (ada_aligned_type (type), lval_memory);
        }
      else
        return
          ada_to_fixed_value (unwrap_value
                              (ada_value_struct_elt
                               (arg1, &exp->elts[pc + 2].string, _("record"))));
    case OP_TYPE:
      /* The value is not supposed to be used.  This is here to make it
         easier to accommodate expressions that contain types.  */
      (*pos) += 2;
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return allocate_value (builtin_type_void);
      else
        error (_("Attempt to use a type name as an expression"));

    case OP_AGGREGATE:
    case OP_CHOICES:
    case OP_OTHERS:
    case OP_DISCRETE_RANGE:
    case OP_POSITIONAL:
    case OP_NAME:
      if (noside == EVAL_NORMAL)
	switch (op) 
	  {
	  case OP_NAME:
	    error (_("Undefined name, ambiguous name, or renaming used in "
		     "component association: %s."), &exp->elts[pc+2].string);
	  case OP_AGGREGATE:
	    error (_("Aggregates only allowed on the right of an assignment"));
	  default:
	    internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
	  }

      ada_forward_operator_length (exp, pc, &oplen, &nargs);
      *pos += oplen - 1;
      for (tem = 0; tem < nargs; tem += 1) 
	ada_evaluate_subexp (NULL, exp, pos, noside);
      goto nosideret;
    }

nosideret:
  return value_from_longest (builtin_type_long, (LONGEST) 1);
}


                                /* Fixed point */

/* If TYPE encodes an Ada fixed-point type, return the suffix of the
   type name that encodes the 'small and 'delta information.
   Otherwise, return NULL.  */

static const char *
fixed_type_info (struct type *type)
{
  const char *name = ada_type_name (type);
  enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);

  if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
    {
      const char *tail = strstr (name, "___XF_");
      if (tail == NULL)
        return NULL;
      else
        return tail + 5;
    }
  else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
    return fixed_type_info (TYPE_TARGET_TYPE (type));
  else
    return NULL;
}

/* Returns non-zero iff TYPE represents an Ada fixed-point type.  */

int
ada_is_fixed_point_type (struct type *type)
{
  return fixed_type_info (type) != NULL;
}

/* Return non-zero iff TYPE represents a System.Address type.  */

int
ada_is_system_address_type (struct type *type)
{
  return (TYPE_NAME (type)
          && strcmp (TYPE_NAME (type), "system__address") == 0);
}

/* Assuming that TYPE is the representation of an Ada fixed-point
   type, return its delta, or -1 if the type is malformed and the
   delta cannot be determined.  */

DOUBLEST
ada_delta (struct type *type)
{
  const char *encoding = fixed_type_info (type);
  long num, den;

  if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
    return -1.0;
  else
    return (DOUBLEST) num / (DOUBLEST) den;
}

/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
   factor ('SMALL value) associated with the type.  */

static DOUBLEST
scaling_factor (struct type *type)
{
  const char *encoding = fixed_type_info (type);
  unsigned long num0, den0, num1, den1;
  int n;

  n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);

  if (n < 2)
    return 1.0;
  else if (n == 4)
    return (DOUBLEST) num1 / (DOUBLEST) den1;
  else
    return (DOUBLEST) num0 / (DOUBLEST) den0;
}


/* Assuming that X is the representation of a value of fixed-point
   type TYPE, return its floating-point equivalent.  */

DOUBLEST
ada_fixed_to_float (struct type *type, LONGEST x)
{
  return (DOUBLEST) x *scaling_factor (type);
}

/* The representation of a fixed-point value of type TYPE
   corresponding to the value X.  */

LONGEST
ada_float_to_fixed (struct type *type, DOUBLEST x)
{
  return (LONGEST) (x / scaling_factor (type) + 0.5);
}


                                /* VAX floating formats */

/* Non-zero iff TYPE represents one of the special VAX floating-point
   types.  */

int
ada_is_vax_floating_type (struct type *type)
{
  int name_len =
    (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
  return
    name_len > 6
    && (TYPE_CODE (type) == TYPE_CODE_INT
        || TYPE_CODE (type) == TYPE_CODE_RANGE)
    && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
}

/* The type of special VAX floating-point type this is, assuming
   ada_is_vax_floating_point.  */

int
ada_vax_float_type_suffix (struct type *type)
{
  return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
}

/* A value representing the special debugging function that outputs
   VAX floating-point values of the type represented by TYPE.  Assumes
   ada_is_vax_floating_type (TYPE).  */

struct value *
ada_vax_float_print_function (struct type *type)
{
  switch (ada_vax_float_type_suffix (type))
    {
    case 'F':
      return get_var_value ("DEBUG_STRING_F", 0);
    case 'D':
      return get_var_value ("DEBUG_STRING_D", 0);
    case 'G':
      return get_var_value ("DEBUG_STRING_G", 0);
    default:
      error (_("invalid VAX floating-point type"));
    }
}


                                /* Range types */

/* Scan STR beginning at position K for a discriminant name, and
   return the value of that discriminant field of DVAL in *PX.  If
   PNEW_K is not null, put the position of the character beyond the
   name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
   not alter *PX and *PNEW_K if unsuccessful.  */

static int
scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
                    int *pnew_k)
{
  static char *bound_buffer = NULL;
  static size_t bound_buffer_len = 0;
  char *bound;
  char *pend;
  struct value *bound_val;

  if (dval == NULL || str == NULL || str[k] == '\0')
    return 0;

  pend = strstr (str + k, "__");
  if (pend == NULL)
    {
      bound = str + k;
      k += strlen (bound);
    }
  else
    {
      GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
      bound = bound_buffer;
      strncpy (bound_buffer, str + k, pend - (str + k));
      bound[pend - (str + k)] = '\0';
      k = pend - str;
    }

  bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
  if (bound_val == NULL)
    return 0;

  *px = value_as_long (bound_val);
  if (pnew_k != NULL)
    *pnew_k = k;
  return 1;
}

/* Value of variable named NAME in the current environment.  If
   no such variable found, then if ERR_MSG is null, returns 0, and
   otherwise causes an error with message ERR_MSG.  */

static struct value *
get_var_value (char *name, char *err_msg)
{
  struct ada_symbol_info *syms;
  int nsyms;

  nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
                                  &syms);

  if (nsyms != 1)
    {
      if (err_msg == NULL)
        return 0;
      else
        error (("%s"), err_msg);
    }

  return value_of_variable (syms[0].sym, syms[0].block);
}

/* Value of integer variable named NAME in the current environment.  If
   no such variable found, returns 0, and sets *FLAG to 0.  If
   successful, sets *FLAG to 1.  */

LONGEST
get_int_var_value (char *name, int *flag)
{
  struct value *var_val = get_var_value (name, 0);

  if (var_val == 0)
    {
      if (flag != NULL)
        *flag = 0;
      return 0;
    }
  else
    {
      if (flag != NULL)
        *flag = 1;
      return value_as_long (var_val);
    }
}


/* Return a range type whose base type is that of the range type named
   NAME in the current environment, and whose bounds are calculated
   from NAME according to the GNAT range encoding conventions.
   Extract discriminant values, if needed, from DVAL.  If a new type
   must be created, allocate in OBJFILE's space.  The bounds
   information, in general, is encoded in NAME, the base type given in
   the named range type.  */

static struct type *
to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
{
  struct type *raw_type = ada_find_any_type (name);
  struct type *base_type;
  char *subtype_info;

  if (raw_type == NULL)
    base_type = builtin_type_int;
  else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
    base_type = TYPE_TARGET_TYPE (raw_type);
  else
    base_type = raw_type;

  subtype_info = strstr (name, "___XD");
  if (subtype_info == NULL)
    return raw_type;
  else
    {
      static char *name_buf = NULL;
      static size_t name_len = 0;
      int prefix_len = subtype_info - name;
      LONGEST L, U;
      struct type *type;
      char *bounds_str;
      int n;

      GROW_VECT (name_buf, name_len, prefix_len + 5);
      strncpy (name_buf, name, prefix_len);
      name_buf[prefix_len] = '\0';

      subtype_info += 5;
      bounds_str = strchr (subtype_info, '_');
      n = 1;

      if (*subtype_info == 'L')
        {
          if (!ada_scan_number (bounds_str, n, &L, &n)
              && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
            return raw_type;
          if (bounds_str[n] == '_')
            n += 2;
          else if (bounds_str[n] == '.')        /* FIXME? SGI Workshop kludge.  */
            n += 1;
          subtype_info += 1;
        }
      else
        {
          int ok;
          strcpy (name_buf + prefix_len, "___L");
          L = get_int_var_value (name_buf, &ok);
          if (!ok)
            {
              lim_warning (_("Unknown lower bound, using 1."));
              L = 1;
            }
        }

      if (*subtype_info == 'U')
        {
          if (!ada_scan_number (bounds_str, n, &U, &n)
              && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
            return raw_type;
        }
      else
        {
          int ok;
          strcpy (name_buf + prefix_len, "___U");
          U = get_int_var_value (name_buf, &ok);
          if (!ok)
            {
              lim_warning (_("Unknown upper bound, using %ld."), (long) L);
              U = L;
            }
        }

      if (objfile == NULL)
        objfile = TYPE_OBJFILE (base_type);
      type = create_range_type (alloc_type (objfile), base_type, L, U);
      TYPE_NAME (type) = name;
      return type;
    }
}

/* True iff NAME is the name of a range type.  */

int
ada_is_range_type_name (const char *name)
{
  return (name != NULL && strstr (name, "___XD"));
}


                                /* Modular types */

/* True iff TYPE is an Ada modular type.  */

int
ada_is_modular_type (struct type *type)
{
  struct type *subranged_type = base_type (type);

  return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
          && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
          && TYPE_UNSIGNED (subranged_type));
}

/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE.  */

ULONGEST
ada_modulus (struct type * type)
{
  return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
}

                                /* Operators */
/* Information about operators given special treatment in functions
   below.  */
/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>).  */

#define ADA_OPERATORS \
    OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
    OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
    OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
    OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
    OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
    OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
    OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
    OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
    OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
    OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
    OP_DEFN (OP_ATR_POS, 1, 2, 0) \
    OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
    OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
    OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
    OP_DEFN (UNOP_QUAL, 3, 1, 0) \
    OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
    OP_DEFN (OP_OTHERS, 1, 1, 0) \
    OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
    OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)

static void
ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
{
  switch (exp->elts[pc - 1].opcode)
    {
    default:
      operator_length_standard (exp, pc, oplenp, argsp);
      break;

#define OP_DEFN(op, len, args, binop) \
    case op: *oplenp = len; *argsp = args; break;
      ADA_OPERATORS;
#undef OP_DEFN

    case OP_AGGREGATE:
      *oplenp = 3;
      *argsp = longest_to_int (exp->elts[pc - 2].longconst);
      break;

    case OP_CHOICES:
      *oplenp = 3;
      *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
      break;
    }
}

static char *
ada_op_name (enum exp_opcode opcode)
{
  switch (opcode)
    {
    default:
      return op_name_standard (opcode);

#define OP_DEFN(op, len, args, binop) case op: return #op;
      ADA_OPERATORS;
#undef OP_DEFN

    case OP_AGGREGATE:
      return "OP_AGGREGATE";
    case OP_CHOICES:
      return "OP_CHOICES";
    case OP_NAME:
      return "OP_NAME";
    }
}

/* As for operator_length, but assumes PC is pointing at the first
   element of the operator, and gives meaningful results only for the 
   Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise.  */

static void
ada_forward_operator_length (struct expression *exp, int pc,
                             int *oplenp, int *argsp)
{
  switch (exp->elts[pc].opcode)
    {
    default:
      *oplenp = *argsp = 0;
      break;

#define OP_DEFN(op, len, args, binop) \
    case op: *oplenp = len; *argsp = args; break;
      ADA_OPERATORS;
#undef OP_DEFN

    case OP_AGGREGATE:
      *oplenp = 3;
      *argsp = longest_to_int (exp->elts[pc + 1].longconst);
      break;

    case OP_CHOICES:
      *oplenp = 3;
      *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
      break;

    case OP_STRING:
    case OP_NAME:
      {
	int len = longest_to_int (exp->elts[pc + 1].longconst);
	*oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
	*argsp = 0;
	break;
      }
    }
}

static int
ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
{
  enum exp_opcode op = exp->elts[elt].opcode;
  int oplen, nargs;
  int pc = elt;
  int i;

  ada_forward_operator_length (exp, elt, &oplen, &nargs);

  switch (op)
    {
      /* Ada attributes ('Foo).  */
    case OP_ATR_FIRST:
    case OP_ATR_LAST:
    case OP_ATR_LENGTH:
    case OP_ATR_IMAGE:
    case OP_ATR_MAX:
    case OP_ATR_MIN:
    case OP_ATR_MODULUS:
    case OP_ATR_POS:
    case OP_ATR_SIZE:
    case OP_ATR_TAG:
    case OP_ATR_VAL:
      break;

    case UNOP_IN_RANGE:
    case UNOP_QUAL:
      /* XXX: gdb_sprint_host_address, type_sprint */
      fprintf_filtered (stream, _("Type @"));
      gdb_print_host_address (exp->elts[pc + 1].type, stream);
      fprintf_filtered (stream, " (");
      type_print (exp->elts[pc + 1].type, NULL, stream, 0);
      fprintf_filtered (stream, ")");
      break;
    case BINOP_IN_BOUNDS:
      fprintf_filtered (stream, " (%d)",
			longest_to_int (exp->elts[pc + 2].longconst));
      break;
    case TERNOP_IN_RANGE:
      break;

    case OP_AGGREGATE:
    case OP_OTHERS:
    case OP_DISCRETE_RANGE:
    case OP_POSITIONAL:
    case OP_CHOICES:
      break;

    case OP_NAME:
    case OP_STRING:
      {
	char *name = &exp->elts[elt + 2].string;
	int len = longest_to_int (exp->elts[elt + 1].longconst);
	fprintf_filtered (stream, "Text: `%.*s'", len, name);
	break;
      }

    default:
      return dump_subexp_body_standard (exp, stream, elt);
    }

  elt += oplen;
  for (i = 0; i < nargs; i += 1)
    elt = dump_subexp (exp, stream, elt);

  return elt;
}

/* The Ada extension of print_subexp (q.v.).  */

static void
ada_print_subexp (struct expression *exp, int *pos,
                  struct ui_file *stream, enum precedence prec)
{
  int oplen, nargs, i;
  int pc = *pos;
  enum exp_opcode op = exp->elts[pc].opcode;

  ada_forward_operator_length (exp, pc, &oplen, &nargs);

  *pos += oplen;
  switch (op)
    {
    default:
      *pos -= oplen;
      print_subexp_standard (exp, pos, stream, prec);
      return;

    case OP_VAR_VALUE:
      fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
      return;

    case BINOP_IN_BOUNDS:
      /* XXX: sprint_subexp */
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered (" in ", stream);
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered ("'range", stream);
      if (exp->elts[pc + 1].longconst > 1)
        fprintf_filtered (stream, "(%ld)",
                          (long) exp->elts[pc + 1].longconst);
      return;

    case TERNOP_IN_RANGE:
      if (prec >= PREC_EQUAL)
        fputs_filtered ("(", stream);
      /* XXX: sprint_subexp */
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered (" in ", stream);
      print_subexp (exp, pos, stream, PREC_EQUAL);
      fputs_filtered (" .. ", stream);
      print_subexp (exp, pos, stream, PREC_EQUAL);
      if (prec >= PREC_EQUAL)
        fputs_filtered (")", stream);
      return;

    case OP_ATR_FIRST:
    case OP_ATR_LAST:
    case OP_ATR_LENGTH:
    case OP_ATR_IMAGE:
    case OP_ATR_MAX:
    case OP_ATR_MIN:
    case OP_ATR_MODULUS:
    case OP_ATR_POS:
    case OP_ATR_SIZE:
    case OP_ATR_TAG:
    case OP_ATR_VAL:
      if (exp->elts[*pos].opcode == OP_TYPE)
        {
          if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
            LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
          *pos += 3;
        }
      else
        print_subexp (exp, pos, stream, PREC_SUFFIX);
      fprintf_filtered (stream, "'%s", ada_attribute_name (op));
      if (nargs > 1)
        {
          int tem;
          for (tem = 1; tem < nargs; tem += 1)
            {
              fputs_filtered ((tem == 1) ? " (" : ", ", stream);
              print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
            }
          fputs_filtered (")", stream);
        }
      return;

    case UNOP_QUAL:
      type_print (exp->elts[pc + 1].type, "", stream, 0);
      fputs_filtered ("'(", stream);
      print_subexp (exp, pos, stream, PREC_PREFIX);
      fputs_filtered (")", stream);
      return;

    case UNOP_IN_RANGE:
      /* XXX: sprint_subexp */
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered (" in ", stream);
      LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
      return;

    case OP_DISCRETE_RANGE:
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered ("..", stream);
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      return;

    case OP_OTHERS:
      fputs_filtered ("others => ", stream);
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      return;

    case OP_CHOICES:
      for (i = 0; i < nargs-1; i += 1)
	{
	  if (i > 0)
	    fputs_filtered ("|", stream);
	  print_subexp (exp, pos, stream, PREC_SUFFIX);
	}
      fputs_filtered (" => ", stream);
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      return;
      
    case OP_POSITIONAL:
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      return;

    case OP_AGGREGATE:
      fputs_filtered ("(", stream);
      for (i = 0; i < nargs; i += 1)
	{
	  if (i > 0)
	    fputs_filtered (", ", stream);
	  print_subexp (exp, pos, stream, PREC_SUFFIX);
	}
      fputs_filtered (")", stream);
      return;
    }
}

/* Table mapping opcodes into strings for printing operators
   and precedences of the operators.  */

static const struct op_print ada_op_print_tab[] = {
  {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
  {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
  {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
  {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
  {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
  {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
  {"=", BINOP_EQUAL, PREC_EQUAL, 0},
  {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
  {"<=", BINOP_LEQ, PREC_ORDER, 0},
  {">=", BINOP_GEQ, PREC_ORDER, 0},
  {">", BINOP_GTR, PREC_ORDER, 0},
  {"<", BINOP_LESS, PREC_ORDER, 0},
  {">>", BINOP_RSH, PREC_SHIFT, 0},
  {"<<", BINOP_LSH, PREC_SHIFT, 0},
  {"+", BINOP_ADD, PREC_ADD, 0},
  {"-", BINOP_SUB, PREC_ADD, 0},
  {"&", BINOP_CONCAT, PREC_ADD, 0},
  {"*", BINOP_MUL, PREC_MUL, 0},
  {"/", BINOP_DIV, PREC_MUL, 0},
  {"rem", BINOP_REM, PREC_MUL, 0},
  {"mod", BINOP_MOD, PREC_MUL, 0},
  {"**", BINOP_EXP, PREC_REPEAT, 0},
  {"@", BINOP_REPEAT, PREC_REPEAT, 0},
  {"-", UNOP_NEG, PREC_PREFIX, 0},
  {"+", UNOP_PLUS, PREC_PREFIX, 0},
  {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
  {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
  {"abs ", UNOP_ABS, PREC_PREFIX, 0},
  {".all", UNOP_IND, PREC_SUFFIX, 1},
  {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
  {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
  {NULL, 0, 0, 0}
};

				/* Fundamental Ada Types */

/* Create a fundamental Ada type using default reasonable for the current
   target machine.

   Some object/debugging file formats (DWARF version 1, COFF, etc) do not
   define fundamental types such as "int" or "double".  Others (stabs or
   DWARF version 2, etc) do define fundamental types.  For the formats which
   don't provide fundamental types, gdb can create such types using this
   function.

   FIXME:  Some compilers distinguish explicitly signed integral types
   (signed short, signed int, signed long) from "regular" integral types
   (short, int, long) in the debugging information.  There is some dis-
   agreement as to how useful this feature is.  In particular, gcc does
   not support this.  Also, only some debugging formats allow the
   distinction to be passed on to a debugger.  For now, we always just
   use "short", "int", or "long" as the type name, for both the implicit
   and explicitly signed types.  This also makes life easier for the
   gdb test suite since we don't have to account for the differences
   in output depending upon what the compiler and debugging format
   support.  We will probably have to re-examine the issue when gdb
   starts taking it's fundamental type information directly from the
   debugging information supplied by the compiler.  fnf@cygnus.com */

static struct type *
ada_create_fundamental_type (struct objfile *objfile, int typeid)
{
  struct type *type = NULL;

  switch (typeid)
    {
    default:
      /* FIXME:  For now, if we are asked to produce a type not in this
         language, create the equivalent of a C integer type with the
         name "<?type?>".  When all the dust settles from the type
         reconstruction work, this should probably become an error.  */
      type = init_type (TYPE_CODE_INT,
                        TARGET_INT_BIT / TARGET_CHAR_BIT,
                        0, "<?type?>", objfile);
      warning (_("internal error: no Ada fundamental type %d"), typeid);
      break;
    case FT_VOID:
      type = init_type (TYPE_CODE_VOID,
                        TARGET_CHAR_BIT / TARGET_CHAR_BIT,
                        0, "void", objfile);
      break;
    case FT_CHAR:
      type = init_type (TYPE_CODE_INT,
                        TARGET_CHAR_BIT / TARGET_CHAR_BIT,
                        0, "character", objfile);
      break;
    case FT_SIGNED_CHAR:
      type = init_type (TYPE_CODE_INT,
                        TARGET_CHAR_BIT / TARGET_CHAR_BIT,
                        0, "signed char", objfile);
      break;
    case FT_UNSIGNED_CHAR:
      type = init_type (TYPE_CODE_INT,
                        TARGET_CHAR_BIT / TARGET_CHAR_BIT,
                        TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
      break;
    case FT_SHORT:
      type = init_type (TYPE_CODE_INT,
                        TARGET_SHORT_BIT / TARGET_CHAR_BIT,
                        0, "short_integer", objfile);
      break;
    case FT_SIGNED_SHORT:
      type = init_type (TYPE_CODE_INT,
                        TARGET_SHORT_BIT / TARGET_CHAR_BIT,
                        0, "short_integer", objfile);
      break;
    case FT_UNSIGNED_SHORT:
      type = init_type (TYPE_CODE_INT,
                        TARGET_SHORT_BIT / TARGET_CHAR_BIT,
                        TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
      break;
    case FT_INTEGER:
      type = init_type (TYPE_CODE_INT,
                        TARGET_INT_BIT / TARGET_CHAR_BIT,
                        0, "integer", objfile);
      break;
    case FT_SIGNED_INTEGER:
      type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
			TARGET_CHAR_BIT, 
			0, "integer", objfile);        /* FIXME -fnf */
      break;
    case FT_UNSIGNED_INTEGER:
      type = init_type (TYPE_CODE_INT,
                        TARGET_INT_BIT / TARGET_CHAR_BIT,
                        TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
      break;
    case FT_LONG:
      type = init_type (TYPE_CODE_INT,
                        TARGET_LONG_BIT / TARGET_CHAR_BIT,
                        0, "long_integer", objfile);
      break;
    case FT_SIGNED_LONG:
      type = init_type (TYPE_CODE_INT,
                        TARGET_LONG_BIT / TARGET_CHAR_BIT,
                        0, "long_integer", objfile);
      break;
    case FT_UNSIGNED_LONG:
      type = init_type (TYPE_CODE_INT,
                        TARGET_LONG_BIT / TARGET_CHAR_BIT,
                        TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
      break;
    case FT_LONG_LONG:
      type = init_type (TYPE_CODE_INT,
                        TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
                        0, "long_long_integer", objfile);
      break;
    case FT_SIGNED_LONG_LONG:
      type = init_type (TYPE_CODE_INT,
                        TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
                        0, "long_long_integer", objfile);
      break;
    case FT_UNSIGNED_LONG_LONG:
      type = init_type (TYPE_CODE_INT,
                        TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
                        TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
      break;
    case FT_FLOAT:
      type = init_type (TYPE_CODE_FLT,
                        TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
                        0, "float", objfile);
      break;
    case FT_DBL_PREC_FLOAT:
      type = init_type (TYPE_CODE_FLT,
                        TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
                        0, "long_float", objfile);
      break;
    case FT_EXT_PREC_FLOAT:
      type = init_type (TYPE_CODE_FLT,
                        TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
                        0, "long_long_float", objfile);
      break;
    }
  return (type);
}

enum ada_primitive_types {
  ada_primitive_type_int,
  ada_primitive_type_long,
  ada_primitive_type_short,
  ada_primitive_type_char,
  ada_primitive_type_float,
  ada_primitive_type_double,
  ada_primitive_type_void,
  ada_primitive_type_long_long,
  ada_primitive_type_long_double,
  ada_primitive_type_natural,
  ada_primitive_type_positive,
  ada_primitive_type_system_address,
  nr_ada_primitive_types
};

static void
ada_language_arch_info (struct gdbarch *current_gdbarch,
			struct language_arch_info *lai)
{
  const struct builtin_type *builtin = builtin_type (current_gdbarch);
  lai->primitive_type_vector
    = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
			      struct type *);
  lai->primitive_type_vector [ada_primitive_type_int] =
    init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
               0, "integer", (struct objfile *) NULL);
  lai->primitive_type_vector [ada_primitive_type_long] =
    init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
               0, "long_integer", (struct objfile *) NULL);
  lai->primitive_type_vector [ada_primitive_type_short] =
    init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
               0, "short_integer", (struct objfile *) NULL);
  lai->string_char_type = 
    lai->primitive_type_vector [ada_primitive_type_char] =
    init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
               0, "character", (struct objfile *) NULL);
  lai->primitive_type_vector [ada_primitive_type_float] =
    init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
               0, "float", (struct objfile *) NULL);
  lai->primitive_type_vector [ada_primitive_type_double] =
    init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
               0, "long_float", (struct objfile *) NULL);
  lai->primitive_type_vector [ada_primitive_type_long_long] =
    init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
               0, "long_long_integer", (struct objfile *) NULL);
  lai->primitive_type_vector [ada_primitive_type_long_double] =
    init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
               0, "long_long_float", (struct objfile *) NULL);
  lai->primitive_type_vector [ada_primitive_type_natural] =
    init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
               0, "natural", (struct objfile *) NULL);
  lai->primitive_type_vector [ada_primitive_type_positive] =
    init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
               0, "positive", (struct objfile *) NULL);
  lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;

  lai->primitive_type_vector [ada_primitive_type_system_address] =
    lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
                                    (struct objfile *) NULL));
  TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
    = "system__address";
}

				/* Language vector */

/* Not really used, but needed in the ada_language_defn.  */

static void
emit_char (int c, struct ui_file *stream, int quoter)
{
  ada_emit_char (c, stream, quoter, 1);
}

static int
parse (void)
{
  warnings_issued = 0;
  return ada_parse ();
}

static const struct exp_descriptor ada_exp_descriptor = {
  ada_print_subexp,
  ada_operator_length,
  ada_op_name,
  ada_dump_subexp_body,
  ada_evaluate_subexp
};

const struct language_defn ada_language_defn = {
  "ada",                        /* Language name */
  language_ada,
  NULL,
  range_check_off,
  type_check_off,
  case_sensitive_on,            /* Yes, Ada is case-insensitive, but
                                   that's not quite what this means.  */
  array_row_major,
  &ada_exp_descriptor,
  parse,
  ada_error,
  resolve,
  ada_printchar,                /* Print a character constant */
  ada_printstr,                 /* Function to print string constant */
  emit_char,                    /* Function to print single char (not used) */
  ada_create_fundamental_type,  /* Create fundamental type in this language */
  ada_print_type,               /* Print a type using appropriate syntax */
  ada_val_print,                /* Print a value using appropriate syntax */
  ada_value_print,              /* Print a top-level value */
  NULL,                         /* Language specific skip_trampoline */
  NULL,                         /* value_of_this */
  ada_lookup_symbol_nonlocal,   /* Looking up non-local symbols.  */
  basic_lookup_transparent_type,        /* lookup_transparent_type */
  ada_la_decode,                /* Language specific symbol demangler */
  NULL,                         /* Language specific class_name_from_physname */
  ada_op_print_tab,             /* expression operators for printing */
  0,                            /* c-style arrays */
  1,                            /* String lower bound */
  NULL,
  ada_get_gdb_completer_word_break_characters,
  ada_language_arch_info,
  ada_print_array_index,
  LANG_MAGIC
};

void
_initialize_ada_language (void)
{
  add_language (&ada_language_defn);

  varsize_limit = 65536;

  obstack_init (&symbol_list_obstack);

  decoded_names_store = htab_create_alloc
    (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
     NULL, xcalloc, xfree);
}