summaryrefslogtreecommitdiff
path: root/sim/v850/simops.c
diff options
context:
space:
mode:
Diffstat (limited to 'sim/v850/simops.c')
-rw-r--r--sim/v850/simops.c2733
1 files changed, 2733 insertions, 0 deletions
diff --git a/sim/v850/simops.c b/sim/v850/simops.c
new file mode 100644
index 00000000000..f6f43ee2368
--- /dev/null
+++ b/sim/v850/simops.c
@@ -0,0 +1,2733 @@
+#include "sim-main.h"
+#include "v850_sim.h"
+#include "simops.h"
+
+#ifdef HAVE_UTIME_H
+#include <utime.h>
+#endif
+
+#ifdef HAVE_TIME_H
+#include <time.h>
+#endif
+
+#ifdef HAVE_UNISTD_H
+#include <unistd.h>
+#endif
+
+#ifdef HAVE_STRING_H
+#include <string.h>
+#else
+#ifdef HAVE_STRINGS_H
+#include <strings.h>
+#endif
+#endif
+
+#include "targ-vals.h"
+
+#include "libiberty.h"
+
+#include <errno.h>
+#if !defined(__GO32__) && !defined(_WIN32)
+#include <sys/stat.h>
+#include <sys/times.h>
+#include <sys/time.h>
+#endif
+
+/* This is an array of the bit positions of registers r20 .. r31 in
+ that order in a prepare/dispose instruction. */
+int type1_regs[12] = { 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 0, 21 };
+/* This is an array of the bit positions of registers r16 .. r31 in
+ that order in a push/pop instruction. */
+int type2_regs[16] = { 3, 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
+/* This is an array of the bit positions of registers r1 .. r15 in
+ that order in a push/pop instruction. */
+int type3_regs[15] = { 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
+
+#ifdef DEBUG
+#ifndef SIZE_INSTRUCTION
+#define SIZE_INSTRUCTION 18
+#endif
+
+#ifndef SIZE_VALUES
+#define SIZE_VALUES 11
+#endif
+
+
+unsigned32 trace_values[3];
+int trace_num_values;
+unsigned32 trace_pc;
+const char *trace_name;
+int trace_module;
+
+
+void
+trace_input (name, type, size)
+ char *name;
+ enum op_types type;
+ int size;
+{
+
+ if (!TRACE_ALU_P (STATE_CPU (simulator, 0)))
+ return;
+
+ trace_pc = PC;
+ trace_name = name;
+ trace_module = TRACE_ALU_IDX;
+
+ switch (type)
+ {
+ default:
+ case OP_UNKNOWN:
+ case OP_NONE:
+ case OP_TRAP:
+ trace_num_values = 0;
+ break;
+
+ case OP_REG:
+ case OP_REG_REG_MOVE:
+ trace_values[0] = State.regs[OP[0]];
+ trace_num_values = 1;
+ break;
+
+ case OP_BIT_CHANGE:
+ case OP_REG_REG:
+ case OP_REG_REG_CMP:
+ trace_values[0] = State.regs[OP[1]];
+ trace_values[1] = State.regs[OP[0]];
+ trace_num_values = 2;
+ break;
+
+ case OP_IMM_REG:
+ case OP_IMM_REG_CMP:
+ trace_values[0] = SEXT5 (OP[0]);
+ trace_values[1] = OP[1];
+ trace_num_values = 2;
+ break;
+
+ case OP_IMM_REG_MOVE:
+ trace_values[0] = SEXT5 (OP[0]);
+ trace_num_values = 1;
+ break;
+
+ case OP_COND_BR:
+ trace_values[0] = State.pc;
+ trace_values[1] = SEXT9 (OP[0]);
+ trace_values[2] = PSW;
+ trace_num_values = 3;
+ break;
+
+ case OP_LOAD16:
+ trace_values[0] = OP[1] * size;
+ trace_values[1] = State.regs[30];
+ trace_num_values = 2;
+ break;
+
+ case OP_STORE16:
+ trace_values[0] = State.regs[OP[0]];
+ trace_values[1] = OP[1] * size;
+ trace_values[2] = State.regs[30];
+ trace_num_values = 3;
+ break;
+
+ case OP_LOAD32:
+ trace_values[0] = EXTEND16 (OP[2]);
+ trace_values[1] = State.regs[OP[0]];
+ trace_num_values = 2;
+ break;
+
+ case OP_STORE32:
+ trace_values[0] = State.regs[OP[1]];
+ trace_values[1] = EXTEND16 (OP[2]);
+ trace_values[2] = State.regs[OP[0]];
+ trace_num_values = 3;
+ break;
+
+ case OP_JUMP:
+ trace_values[0] = SEXT22 (OP[0]);
+ trace_values[1] = State.pc;
+ trace_num_values = 2;
+ break;
+
+ case OP_IMM_REG_REG:
+ trace_values[0] = EXTEND16 (OP[0]) << size;
+ trace_values[1] = State.regs[OP[1]];
+ trace_num_values = 2;
+ break;
+
+ case OP_IMM16_REG_REG:
+ trace_values[0] = EXTEND16 (OP[2]) << size;
+ trace_values[1] = State.regs[OP[1]];
+ trace_num_values = 2;
+ break;
+
+ case OP_UIMM_REG_REG:
+ trace_values[0] = (OP[0] & 0xffff) << size;
+ trace_values[1] = State.regs[OP[1]];
+ trace_num_values = 2;
+ break;
+
+ case OP_UIMM16_REG_REG:
+ trace_values[0] = (OP[2]) << size;
+ trace_values[1] = State.regs[OP[1]];
+ trace_num_values = 2;
+ break;
+
+ case OP_BIT:
+ trace_num_values = 0;
+ break;
+
+ case OP_EX1:
+ trace_values[0] = PSW;
+ trace_num_values = 1;
+ break;
+
+ case OP_EX2:
+ trace_num_values = 0;
+ break;
+
+ case OP_LDSR:
+ trace_values[0] = State.regs[OP[0]];
+ trace_num_values = 1;
+ break;
+
+ case OP_STSR:
+ trace_values[0] = State.sregs[OP[1]];
+ trace_num_values = 1;
+ }
+
+}
+
+void
+trace_result (int has_result, unsigned32 result)
+{
+ char buf[1000];
+ char *chp;
+
+ buf[0] = '\0';
+ chp = buf;
+
+ /* write out the values saved during the trace_input call */
+ {
+ int i;
+ for (i = 0; i < trace_num_values; i++)
+ {
+ sprintf (chp, "%*s0x%.8lx", SIZE_VALUES - 10, "", trace_values[i]);
+ chp = strchr (chp, '\0');
+ }
+ while (i++ < 3)
+ {
+ sprintf (chp, "%*s", SIZE_VALUES, "");
+ chp = strchr (chp, '\0');
+ }
+ }
+
+ /* append any result to the end of the buffer */
+ if (has_result)
+ sprintf (chp, " :: 0x%.8lx", (unsigned long)result);
+
+ trace_generic (simulator, STATE_CPU (simulator, 0), trace_module, buf);
+}
+
+void
+trace_output (result)
+ enum op_types result;
+{
+ if (!TRACE_ALU_P (STATE_CPU (simulator, 0)))
+ return;
+
+ switch (result)
+ {
+ default:
+ case OP_UNKNOWN:
+ case OP_NONE:
+ case OP_TRAP:
+ case OP_REG:
+ case OP_REG_REG_CMP:
+ case OP_IMM_REG_CMP:
+ case OP_COND_BR:
+ case OP_STORE16:
+ case OP_STORE32:
+ case OP_BIT:
+ case OP_EX2:
+ trace_result (0, 0);
+ break;
+
+ case OP_LOAD16:
+ case OP_STSR:
+ trace_result (1, State.regs[OP[0]]);
+ break;
+
+ case OP_REG_REG:
+ case OP_REG_REG_MOVE:
+ case OP_IMM_REG:
+ case OP_IMM_REG_MOVE:
+ case OP_LOAD32:
+ case OP_EX1:
+ trace_result (1, State.regs[OP[1]]);
+ break;
+
+ case OP_IMM_REG_REG:
+ case OP_UIMM_REG_REG:
+ case OP_IMM16_REG_REG:
+ case OP_UIMM16_REG_REG:
+ trace_result (1, State.regs[OP[1]]);
+ break;
+
+ case OP_JUMP:
+ if (OP[1] != 0)
+ trace_result (1, State.regs[OP[1]]);
+ else
+ trace_result (0, 0);
+ break;
+
+ case OP_LDSR:
+ trace_result (1, State.sregs[OP[1]]);
+ break;
+ }
+}
+#endif
+
+
+/* Returns 1 if the specific condition is met, returns 0 otherwise. */
+int
+condition_met (unsigned code)
+{
+ unsigned int psw = PSW;
+
+ switch (code & 0xf)
+ {
+ case 0x0: return ((psw & PSW_OV) != 0);
+ case 0x1: return ((psw & PSW_CY) != 0);
+ case 0x2: return ((psw & PSW_Z) != 0);
+ case 0x3: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) != 0);
+ case 0x4: return ((psw & PSW_S) != 0);
+ /*case 0x5: return 1;*/
+ case 0x6: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) != 0);
+ case 0x7: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) != 0);
+ case 0x8: return ((psw & PSW_OV) == 0);
+ case 0x9: return ((psw & PSW_CY) == 0);
+ case 0xa: return ((psw & PSW_Z) == 0);
+ case 0xb: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) == 0);
+ case 0xc: return ((psw & PSW_S) == 0);
+ case 0xd: return ((psw & PSW_SAT) != 0);
+ case 0xe: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) == 0);
+ case 0xf: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) == 0);
+ }
+
+ return 1;
+}
+
+static unsigned long
+Add32 (unsigned long a1, unsigned long a2, int * carry)
+{
+ unsigned long result = (a1 + a2);
+
+ * carry = (result < a1);
+
+ return result;
+}
+
+static void
+Multiply64 (boolean sign, unsigned long op0)
+{
+ unsigned long op1;
+ unsigned long lo;
+ unsigned long mid1;
+ unsigned long mid2;
+ unsigned long hi;
+ unsigned long RdLo;
+ unsigned long RdHi;
+ int carry;
+
+ op1 = State.regs[ OP[1] ];
+
+ if (sign)
+ {
+ /* Compute sign of result and adjust operands if necessary. */
+
+ sign = (op0 ^ op1) & 0x80000000;
+
+ if (((signed long) op0) < 0)
+ op0 = - op0;
+
+ if (((signed long) op1) < 0)
+ op1 = - op1;
+ }
+
+ /* We can split the 32x32 into four 16x16 operations. This ensures
+ that we do not lose precision on 32bit only hosts: */
+ lo = ( (op0 & 0xFFFF) * (op1 & 0xFFFF));
+ mid1 = ( (op0 & 0xFFFF) * ((op1 >> 16) & 0xFFFF));
+ mid2 = (((op0 >> 16) & 0xFFFF) * (op1 & 0xFFFF));
+ hi = (((op0 >> 16) & 0xFFFF) * ((op1 >> 16) & 0xFFFF));
+
+ /* We now need to add all of these results together, taking care
+ to propogate the carries from the additions: */
+ RdLo = Add32 (lo, (mid1 << 16), & carry);
+ RdHi = carry;
+ RdLo = Add32 (RdLo, (mid2 << 16), & carry);
+ RdHi += (carry + ((mid1 >> 16) & 0xFFFF) + ((mid2 >> 16) & 0xFFFF) + hi);
+
+ if (sign)
+ {
+ /* Negate result if necessary. */
+
+ RdLo = ~ RdLo;
+ RdHi = ~ RdHi;
+ if (RdLo == 0xFFFFFFFF)
+ {
+ RdLo = 0;
+ RdHi += 1;
+ }
+ else
+ RdLo += 1;
+ }
+
+ /* Don't store into register 0. */
+ if (OP[1])
+ State.regs[ OP[1] ] = RdLo;
+ if (OP[2] >> 11)
+ State.regs[ OP[2] >> 11 ] = RdHi;
+
+ return;
+}
+
+
+/* Read a null terminated string from memory, return in a buffer */
+static char *
+fetch_str (sd, addr)
+ SIM_DESC sd;
+ address_word addr;
+{
+ char *buf;
+ int nr = 0;
+ while (sim_core_read_1 (STATE_CPU (sd, 0),
+ PC, read_map, addr + nr) != 0)
+ nr++;
+ buf = NZALLOC (char, nr + 1);
+ sim_read (simulator, addr, buf, nr);
+ return buf;
+}
+
+/* Read a null terminated argument vector from memory, return in a
+ buffer */
+static char **
+fetch_argv (sd, addr)
+ SIM_DESC sd;
+ address_word addr;
+{
+ int max_nr = 64;
+ int nr = 0;
+ char **buf = xmalloc (max_nr * sizeof (char*));
+ while (1)
+ {
+ unsigned32 a = sim_core_read_4 (STATE_CPU (sd, 0),
+ PC, read_map, addr + nr * 4);
+ if (a == 0) break;
+ buf[nr] = fetch_str (sd, a);
+ nr ++;
+ if (nr == max_nr - 1)
+ {
+ max_nr += 50;
+ buf = xrealloc (buf, max_nr * sizeof (char*));
+ }
+ }
+ buf[nr] = 0;
+ return buf;
+}
+
+
+/* sst.b */
+int
+OP_380 ()
+{
+ trace_input ("sst.b", OP_STORE16, 1);
+
+ store_mem (State.regs[30] + (OP[3] & 0x7f), 1, State.regs[ OP[1] ]);
+
+ trace_output (OP_STORE16);
+
+ return 2;
+}
+
+/* sst.h */
+int
+OP_480 ()
+{
+ trace_input ("sst.h", OP_STORE16, 2);
+
+ store_mem (State.regs[30] + ((OP[3] & 0x7f) << 1), 2, State.regs[ OP[1] ]);
+
+ trace_output (OP_STORE16);
+
+ return 2;
+}
+
+/* sst.w */
+int
+OP_501 ()
+{
+ trace_input ("sst.w", OP_STORE16, 4);
+
+ store_mem (State.regs[30] + ((OP[3] & 0x7e) << 1), 4, State.regs[ OP[1] ]);
+
+ trace_output (OP_STORE16);
+
+ return 2;
+}
+
+/* ld.b */
+int
+OP_700 ()
+{
+ int adr;
+
+ trace_input ("ld.b", OP_LOAD32, 1);
+
+ adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
+
+ State.regs[ OP[1] ] = EXTEND8 (load_mem (adr, 1));
+
+ trace_output (OP_LOAD32);
+
+ return 4;
+}
+
+/* ld.h */
+int
+OP_720 ()
+{
+ int adr;
+
+ trace_input ("ld.h", OP_LOAD32, 2);
+
+ adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
+ adr &= ~0x1;
+
+ State.regs[ OP[1] ] = EXTEND16 (load_mem (adr, 2));
+
+ trace_output (OP_LOAD32);
+
+ return 4;
+}
+
+/* ld.w */
+int
+OP_10720 ()
+{
+ int adr;
+
+ trace_input ("ld.w", OP_LOAD32, 4);
+
+ adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
+ adr &= ~0x3;
+
+ State.regs[ OP[1] ] = load_mem (adr, 4);
+
+ trace_output (OP_LOAD32);
+
+ return 4;
+}
+
+/* st.b */
+int
+OP_740 ()
+{
+ trace_input ("st.b", OP_STORE32, 1);
+
+ store_mem (State.regs[ OP[0] ] + EXTEND16 (OP[2]), 1, State.regs[ OP[1] ]);
+
+ trace_output (OP_STORE32);
+
+ return 4;
+}
+
+/* st.h */
+int
+OP_760 ()
+{
+ int adr;
+
+ trace_input ("st.h", OP_STORE32, 2);
+
+ adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
+ adr &= ~1;
+
+ store_mem (adr, 2, State.regs[ OP[1] ]);
+
+ trace_output (OP_STORE32);
+
+ return 4;
+}
+
+/* st.w */
+int
+OP_10760 ()
+{
+ int adr;
+
+ trace_input ("st.w", OP_STORE32, 4);
+
+ adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
+ adr &= ~3;
+
+ store_mem (adr, 4, State.regs[ OP[1] ]);
+
+ trace_output (OP_STORE32);
+
+ return 4;
+}
+
+/* add reg, reg */
+int
+OP_1C0 ()
+{
+ unsigned int op0, op1, result, z, s, cy, ov;
+
+ trace_input ("add", OP_REG_REG, 0);
+
+ /* Compute the result. */
+
+ op0 = State.regs[ OP[0] ];
+ op1 = State.regs[ OP[1] ];
+
+ result = op0 + op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (result < op0 || result < op1);
+ ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
+ && (op0 & 0x80000000) != (result & 0x80000000));
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
+ trace_output (OP_REG_REG);
+
+ return 2;
+}
+
+/* add sign_extend(imm5), reg */
+int
+OP_240 ()
+{
+ unsigned int op0, op1, result, z, s, cy, ov;
+ int temp;
+
+ trace_input ("add", OP_IMM_REG, 0);
+
+ /* Compute the result. */
+ temp = SEXT5 (OP[0]);
+ op0 = temp;
+ op1 = State.regs[OP[1]];
+ result = op0 + op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (result < op0 || result < op1);
+ ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
+ && (op0 & 0x80000000) != (result & 0x80000000));
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
+ trace_output (OP_IMM_REG);
+
+ return 2;
+}
+
+/* addi sign_extend(imm16), reg, reg */
+int
+OP_600 ()
+{
+ unsigned int op0, op1, result, z, s, cy, ov;
+
+ trace_input ("addi", OP_IMM16_REG_REG, 0);
+
+ /* Compute the result. */
+
+ op0 = EXTEND16 (OP[2]);
+ op1 = State.regs[ OP[0] ];
+ result = op0 + op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (result < op0 || result < op1);
+ ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
+ && (op0 & 0x80000000) != (result & 0x80000000));
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
+ trace_output (OP_IMM16_REG_REG);
+
+ return 4;
+}
+
+/* sub reg1, reg2 */
+int
+OP_1A0 ()
+{
+ unsigned int op0, op1, result, z, s, cy, ov;
+
+ trace_input ("sub", OP_REG_REG, 0);
+ /* Compute the result. */
+ op0 = State.regs[ OP[0] ];
+ op1 = State.regs[ OP[1] ];
+ result = op1 - op0;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (op1 < op0);
+ ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
+ && (op1 & 0x80000000) != (result & 0x80000000));
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
+ trace_output (OP_REG_REG);
+
+ return 2;
+}
+
+/* subr reg1, reg2 */
+int
+OP_180 ()
+{
+ unsigned int op0, op1, result, z, s, cy, ov;
+
+ trace_input ("subr", OP_REG_REG, 0);
+ /* Compute the result. */
+ op0 = State.regs[ OP[0] ];
+ op1 = State.regs[ OP[1] ];
+ result = op0 - op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (op0 < op1);
+ ov = ((op0 & 0x80000000) != (op1 & 0x80000000)
+ && (op0 & 0x80000000) != (result & 0x80000000));
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
+ trace_output (OP_REG_REG);
+
+ return 2;
+}
+
+/* sxh reg1 */
+int
+OP_E0 ()
+{
+ trace_input ("mulh", OP_REG_REG, 0);
+
+ State.regs[ OP[1] ] = (EXTEND16 (State.regs[ OP[1] ]) * EXTEND16 (State.regs[ OP[0] ]));
+
+ trace_output (OP_REG_REG);
+
+ return 2;
+}
+
+/* mulh sign_extend(imm5), reg2 */
+int
+OP_2E0 ()
+{
+ trace_input ("mulh", OP_IMM_REG, 0);
+
+ State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[1] ]) * SEXT5 (OP[0]);
+
+ trace_output (OP_IMM_REG);
+
+ return 2;
+}
+
+/* mulhi imm16, reg1, reg2 */
+int
+OP_6E0 ()
+{
+ trace_input ("mulhi", OP_IMM16_REG_REG, 0);
+
+ State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[0] ]) * EXTEND16 (OP[2]);
+
+ trace_output (OP_IMM16_REG_REG);
+
+ return 4;
+}
+
+/* divh reg1, reg2 */
+int
+OP_40 ()
+{
+ unsigned int op0, op1, result, ov, s, z;
+ int temp;
+
+ trace_input ("divh", OP_REG_REG, 0);
+
+ /* Compute the result. */
+ temp = EXTEND16 (State.regs[ OP[0] ]);
+ op0 = temp;
+ op1 = State.regs[OP[1]];
+
+ if (op0 == 0xffffffff && op1 == 0x80000000)
+ {
+ result = 0x80000000;
+ ov = 1;
+ }
+ else if (op0 != 0)
+ {
+ result = op1 / op0;
+ ov = 0;
+ }
+ else
+ {
+ result = 0x0;
+ ov = 1;
+ }
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (ov ? PSW_OV : 0));
+ trace_output (OP_REG_REG);
+
+ return 2;
+}
+
+/* cmp reg, reg */
+int
+OP_1E0 ()
+{
+ unsigned int op0, op1, result, z, s, cy, ov;
+
+ trace_input ("cmp", OP_REG_REG_CMP, 0);
+ /* Compute the result. */
+ op0 = State.regs[ OP[0] ];
+ op1 = State.regs[ OP[1] ];
+ result = op1 - op0;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (op1 < op0);
+ ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
+ && (op1 & 0x80000000) != (result & 0x80000000));
+
+ /* Set condition codes. */
+ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
+ trace_output (OP_REG_REG_CMP);
+
+ return 2;
+}
+
+/* cmp sign_extend(imm5), reg */
+int
+OP_260 ()
+{
+ unsigned int op0, op1, result, z, s, cy, ov;
+ int temp;
+
+ /* Compute the result. */
+ trace_input ("cmp", OP_IMM_REG_CMP, 0);
+ temp = SEXT5 (OP[0]);
+ op0 = temp;
+ op1 = State.regs[OP[1]];
+ result = op1 - op0;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (op1 < op0);
+ ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
+ && (op1 & 0x80000000) != (result & 0x80000000));
+
+ /* Set condition codes. */
+ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
+ trace_output (OP_IMM_REG_CMP);
+
+ return 2;
+}
+
+/* setf cccc,reg2 */
+int
+OP_7E0 ()
+{
+ trace_input ("setf", OP_EX1, 0);
+
+ State.regs[ OP[1] ] = condition_met (OP[0]);
+
+ trace_output (OP_EX1);
+
+ return 4;
+}
+
+/* satadd reg,reg */
+int
+OP_C0 ()
+{
+ unsigned int op0, op1, result, z, s, cy, ov, sat;
+
+ trace_input ("satadd", OP_REG_REG, 0);
+ /* Compute the result. */
+ op0 = State.regs[ OP[0] ];
+ op1 = State.regs[ OP[1] ];
+ result = op0 + op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (result < op0 || result < op1);
+ ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
+ && (op0 & 0x80000000) != (result & 0x80000000));
+ sat = ov;
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
+ | (sat ? PSW_SAT : 0));
+
+ /* Handle saturated results. */
+ if (sat && s)
+ State.regs[OP[1]] = 0x80000000;
+ else if (sat)
+ State.regs[OP[1]] = 0x7fffffff;
+ trace_output (OP_REG_REG);
+
+ return 2;
+}
+
+/* satadd sign_extend(imm5), reg */
+int
+OP_220 ()
+{
+ unsigned int op0, op1, result, z, s, cy, ov, sat;
+
+ int temp;
+
+ trace_input ("satadd", OP_IMM_REG, 0);
+
+ /* Compute the result. */
+ temp = SEXT5 (OP[0]);
+ op0 = temp;
+ op1 = State.regs[OP[1]];
+ result = op0 + op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (result < op0 || result < op1);
+ ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
+ && (op0 & 0x80000000) != (result & 0x80000000));
+ sat = ov;
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
+ | (sat ? PSW_SAT : 0));
+
+ /* Handle saturated results. */
+ if (sat && s)
+ State.regs[OP[1]] = 0x80000000;
+ else if (sat)
+ State.regs[OP[1]] = 0x7fffffff;
+ trace_output (OP_IMM_REG);
+
+ return 2;
+}
+
+/* satsub reg1, reg2 */
+int
+OP_A0 ()
+{
+ unsigned int op0, op1, result, z, s, cy, ov, sat;
+
+ trace_input ("satsub", OP_REG_REG, 0);
+
+ /* Compute the result. */
+ op0 = State.regs[ OP[0] ];
+ op1 = State.regs[ OP[1] ];
+ result = op1 - op0;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (op1 < op0);
+ ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
+ && (op1 & 0x80000000) != (result & 0x80000000));
+ sat = ov;
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
+ | (sat ? PSW_SAT : 0));
+
+ /* Handle saturated results. */
+ if (sat && s)
+ State.regs[OP[1]] = 0x80000000;
+ else if (sat)
+ State.regs[OP[1]] = 0x7fffffff;
+ trace_output (OP_REG_REG);
+ return 2;
+}
+
+/* satsubi sign_extend(imm16), reg */
+int
+OP_660 ()
+{
+ unsigned int op0, op1, result, z, s, cy, ov, sat;
+ int temp;
+
+ trace_input ("satsubi", OP_IMM_REG, 0);
+
+ /* Compute the result. */
+ temp = EXTEND16 (OP[2]);
+ op0 = temp;
+ op1 = State.regs[ OP[0] ];
+ result = op1 - op0;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (op1 < op0);
+ ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
+ && (op1 & 0x80000000) != (result & 0x80000000));
+ sat = ov;
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
+ | (sat ? PSW_SAT : 0));
+
+ /* Handle saturated results. */
+ if (sat && s)
+ State.regs[OP[1]] = 0x80000000;
+ else if (sat)
+ State.regs[OP[1]] = 0x7fffffff;
+ trace_output (OP_IMM_REG);
+
+ return 4;
+}
+
+/* satsubr reg,reg */
+int
+OP_80 ()
+{
+ unsigned int op0, op1, result, z, s, cy, ov, sat;
+
+ trace_input ("satsubr", OP_REG_REG, 0);
+
+ /* Compute the result. */
+ op0 = State.regs[ OP[0] ];
+ op1 = State.regs[ OP[1] ];
+ result = op0 - op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (result < op0);
+ ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
+ && (op1 & 0x80000000) != (result & 0x80000000));
+ sat = ov;
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
+ | (sat ? PSW_SAT : 0));
+
+ /* Handle saturated results. */
+ if (sat && s)
+ State.regs[OP[1]] = 0x80000000;
+ else if (sat)
+ State.regs[OP[1]] = 0x7fffffff;
+ trace_output (OP_REG_REG);
+
+ return 2;
+}
+
+/* tst reg,reg */
+int
+OP_160 ()
+{
+ unsigned int op0, op1, result, z, s;
+
+ trace_input ("tst", OP_REG_REG_CMP, 0);
+
+ /* Compute the result. */
+ op0 = State.regs[ OP[0] ];
+ op1 = State.regs[ OP[1] ];
+ result = op0 & op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+
+ /* Store the condition codes. */
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
+ trace_output (OP_REG_REG_CMP);
+
+ return 2;
+}
+
+/* mov sign_extend(imm5), reg */
+int
+OP_200 ()
+{
+ int value = SEXT5 (OP[0]);
+
+ trace_input ("mov", OP_IMM_REG_MOVE, 0);
+
+ State.regs[ OP[1] ] = value;
+
+ trace_output (OP_IMM_REG_MOVE);
+
+ return 2;
+}
+
+/* movhi imm16, reg, reg */
+int
+OP_640 ()
+{
+ trace_input ("movhi", OP_UIMM16_REG_REG, 16);
+
+ State.regs[ OP[1] ] = State.regs[ OP[0] ] + (OP[2] << 16);
+
+ trace_output (OP_UIMM16_REG_REG);
+
+ return 4;
+}
+
+/* sar zero_extend(imm5),reg1 */
+int
+OP_2A0 ()
+{
+ unsigned int op0, op1, result, z, s, cy;
+
+ trace_input ("sar", OP_IMM_REG, 0);
+ op0 = OP[0];
+ op1 = State.regs[ OP[1] ];
+ result = (signed)op1 >> op0;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (op1 & (1 << (op0 - 1)));
+
+ /* Store the result and condition codes. */
+ State.regs[ OP[1] ] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0));
+ trace_output (OP_IMM_REG);
+
+ return 2;
+}
+
+/* sar reg1, reg2 */
+int
+OP_A007E0 ()
+{
+ unsigned int op0, op1, result, z, s, cy;
+
+ trace_input ("sar", OP_REG_REG, 0);
+
+ op0 = State.regs[ OP[0] ] & 0x1f;
+ op1 = State.regs[ OP[1] ];
+ result = (signed)op1 >> op0;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (op1 & (1 << (op0 - 1)));
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0));
+ trace_output (OP_REG_REG);
+
+ return 4;
+}
+
+/* shl zero_extend(imm5),reg1 */
+int
+OP_2C0 ()
+{
+ unsigned int op0, op1, result, z, s, cy;
+
+ trace_input ("shl", OP_IMM_REG, 0);
+ op0 = OP[0];
+ op1 = State.regs[ OP[1] ];
+ result = op1 << op0;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (op1 & (1 << (32 - op0)));
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0));
+ trace_output (OP_IMM_REG);
+
+ return 2;
+}
+
+/* shl reg1, reg2 */
+int
+OP_C007E0 ()
+{
+ unsigned int op0, op1, result, z, s, cy;
+
+ trace_input ("shl", OP_REG_REG, 0);
+ op0 = State.regs[ OP[0] ] & 0x1f;
+ op1 = State.regs[ OP[1] ];
+ result = op1 << op0;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (op1 & (1 << (32 - op0)));
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0));
+ trace_output (OP_REG_REG);
+
+ return 4;
+}
+
+/* shr zero_extend(imm5),reg1 */
+int
+OP_280 ()
+{
+ unsigned int op0, op1, result, z, s, cy;
+
+ trace_input ("shr", OP_IMM_REG, 0);
+ op0 = OP[0];
+ op1 = State.regs[ OP[1] ];
+ result = op1 >> op0;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (op1 & (1 << (op0 - 1)));
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0));
+ trace_output (OP_IMM_REG);
+
+ return 2;
+}
+
+/* shr reg1, reg2 */
+int
+OP_8007E0 ()
+{
+ unsigned int op0, op1, result, z, s, cy;
+
+ trace_input ("shr", OP_REG_REG, 0);
+ op0 = State.regs[ OP[0] ] & 0x1f;
+ op1 = State.regs[ OP[1] ];
+ result = op1 >> op0;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+ cy = (op1 & (1 << (op0 - 1)));
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
+ | (cy ? PSW_CY : 0));
+ trace_output (OP_REG_REG);
+
+ return 4;
+}
+
+/* or reg, reg */
+int
+OP_100 ()
+{
+ unsigned int op0, op1, result, z, s;
+
+ trace_input ("or", OP_REG_REG, 0);
+
+ /* Compute the result. */
+ op0 = State.regs[ OP[0] ];
+ op1 = State.regs[ OP[1] ];
+ result = op0 | op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
+ trace_output (OP_REG_REG);
+
+ return 2;
+}
+
+/* ori zero_extend(imm16), reg, reg */
+int
+OP_680 ()
+{
+ unsigned int op0, op1, result, z, s;
+
+ trace_input ("ori", OP_UIMM16_REG_REG, 0);
+ op0 = OP[2];
+ op1 = State.regs[ OP[0] ];
+ result = op0 | op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
+ trace_output (OP_UIMM16_REG_REG);
+
+ return 4;
+}
+
+/* and reg, reg */
+int
+OP_140 ()
+{
+ unsigned int op0, op1, result, z, s;
+
+ trace_input ("and", OP_REG_REG, 0);
+
+ /* Compute the result. */
+ op0 = State.regs[ OP[0] ];
+ op1 = State.regs[ OP[1] ];
+ result = op0 & op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
+ trace_output (OP_REG_REG);
+
+ return 2;
+}
+
+/* andi zero_extend(imm16), reg, reg */
+int
+OP_6C0 ()
+{
+ unsigned int result, z;
+
+ trace_input ("andi", OP_UIMM16_REG_REG, 0);
+
+ result = OP[2] & State.regs[ OP[0] ];
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+
+ /* Store the result and condition codes. */
+ State.regs[ OP[1] ] = result;
+
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+ PSW |= (z ? PSW_Z : 0);
+
+ trace_output (OP_UIMM16_REG_REG);
+
+ return 4;
+}
+
+/* xor reg, reg */
+int
+OP_120 ()
+{
+ unsigned int op0, op1, result, z, s;
+
+ trace_input ("xor", OP_REG_REG, 0);
+
+ /* Compute the result. */
+ op0 = State.regs[ OP[0] ];
+ op1 = State.regs[ OP[1] ];
+ result = op0 ^ op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
+ trace_output (OP_REG_REG);
+
+ return 2;
+}
+
+/* xori zero_extend(imm16), reg, reg */
+int
+OP_6A0 ()
+{
+ unsigned int op0, op1, result, z, s;
+
+ trace_input ("xori", OP_UIMM16_REG_REG, 0);
+ op0 = OP[2];
+ op1 = State.regs[ OP[0] ];
+ result = op0 ^ op1;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
+ trace_output (OP_UIMM16_REG_REG);
+
+ return 4;
+}
+
+/* not reg1, reg2 */
+int
+OP_20 ()
+{
+ unsigned int op0, result, z, s;
+
+ trace_input ("not", OP_REG_REG_MOVE, 0);
+ /* Compute the result. */
+ op0 = State.regs[ OP[0] ];
+ result = ~op0;
+
+ /* Compute the condition codes. */
+ z = (result == 0);
+ s = (result & 0x80000000);
+
+ /* Store the result and condition codes. */
+ State.regs[OP[1]] = result;
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+ PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
+ trace_output (OP_REG_REG_MOVE);
+
+ return 2;
+}
+
+/* set1 */
+int
+OP_7C0 ()
+{
+ unsigned int op0, op1, op2;
+ int temp;
+
+ trace_input ("set1", OP_BIT, 0);
+ op0 = State.regs[ OP[0] ];
+ op1 = OP[1] & 0x7;
+ temp = EXTEND16 (OP[2]);
+ op2 = temp;
+ temp = load_mem (op0 + op2, 1);
+ PSW &= ~PSW_Z;
+ if ((temp & (1 << op1)) == 0)
+ PSW |= PSW_Z;
+ temp |= (1 << op1);
+ store_mem (op0 + op2, 1, temp);
+ trace_output (OP_BIT);
+
+ return 4;
+}
+
+/* not1 */
+int
+OP_47C0 ()
+{
+ unsigned int op0, op1, op2;
+ int temp;
+
+ trace_input ("not1", OP_BIT, 0);
+ op0 = State.regs[ OP[0] ];
+ op1 = OP[1] & 0x7;
+ temp = EXTEND16 (OP[2]);
+ op2 = temp;
+ temp = load_mem (op0 + op2, 1);
+ PSW &= ~PSW_Z;
+ if ((temp & (1 << op1)) == 0)
+ PSW |= PSW_Z;
+ temp ^= (1 << op1);
+ store_mem (op0 + op2, 1, temp);
+ trace_output (OP_BIT);
+
+ return 4;
+}
+
+/* clr1 */
+int
+OP_87C0 ()
+{
+ unsigned int op0, op1, op2;
+ int temp;
+
+ trace_input ("clr1", OP_BIT, 0);
+ op0 = State.regs[ OP[0] ];
+ op1 = OP[1] & 0x7;
+ temp = EXTEND16 (OP[2]);
+ op2 = temp;
+ temp = load_mem (op0 + op2, 1);
+ PSW &= ~PSW_Z;
+ if ((temp & (1 << op1)) == 0)
+ PSW |= PSW_Z;
+ temp &= ~(1 << op1);
+ store_mem (op0 + op2, 1, temp);
+ trace_output (OP_BIT);
+
+ return 4;
+}
+
+/* tst1 */
+int
+OP_C7C0 ()
+{
+ unsigned int op0, op1, op2;
+ int temp;
+
+ trace_input ("tst1", OP_BIT, 0);
+ op0 = State.regs[ OP[0] ];
+ op1 = OP[1] & 0x7;
+ temp = EXTEND16 (OP[2]);
+ op2 = temp;
+ temp = load_mem (op0 + op2, 1);
+ PSW &= ~PSW_Z;
+ if ((temp & (1 << op1)) == 0)
+ PSW |= PSW_Z;
+ trace_output (OP_BIT);
+
+ return 4;
+}
+
+/* di */
+int
+OP_16007E0 ()
+{
+ trace_input ("di", OP_NONE, 0);
+ PSW |= PSW_ID;
+ trace_output (OP_NONE);
+
+ return 4;
+}
+
+/* ei */
+int
+OP_16087E0 ()
+{
+ trace_input ("ei", OP_NONE, 0);
+ PSW &= ~PSW_ID;
+ trace_output (OP_NONE);
+
+ return 4;
+}
+
+/* halt */
+int
+OP_12007E0 ()
+{
+ trace_input ("halt", OP_NONE, 0);
+ /* FIXME this should put processor into a mode where NMI still handled */
+ trace_output (OP_NONE);
+ sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
+ sim_stopped, SIM_SIGTRAP);
+ return 0;
+}
+
+/* trap */
+int
+OP_10007E0 ()
+{
+ trace_input ("trap", OP_TRAP, 0);
+ trace_output (OP_TRAP);
+
+ /* Trap 31 is used for simulating OS I/O functions */
+
+ if (OP[0] == 31)
+ {
+ int save_errno = errno;
+ errno = 0;
+
+/* Registers passed to trap 0 */
+
+#define FUNC State.regs[6] /* function number, return value */
+#define PARM1 State.regs[7] /* optional parm 1 */
+#define PARM2 State.regs[8] /* optional parm 2 */
+#define PARM3 State.regs[9] /* optional parm 3 */
+
+/* Registers set by trap 0 */
+
+#define RETVAL State.regs[10] /* return value */
+#define RETERR State.regs[11] /* return error code */
+
+/* Turn a pointer in a register into a pointer into real memory. */
+
+#define MEMPTR(x) (map (x))
+
+ switch (FUNC)
+ {
+
+#ifdef HAVE_FORK
+#ifdef TARGET_SYS_fork
+ case TARGET_SYS_fork:
+ RETVAL = fork ();
+ break;
+#endif
+#endif
+
+#ifdef HAVE_EXECVE
+#ifdef TARGET_SYS_execv
+ case TARGET_SYS_execve:
+ {
+ char *path = fetch_str (simulator, PARM1);
+ char **argv = fetch_argv (simulator, PARM2);
+ char **envp = fetch_argv (simulator, PARM3);
+ RETVAL = execve (path, argv, envp);
+ zfree (path);
+ freeargv (argv);
+ freeargv (envp);
+ break;
+ }
+#endif
+#endif
+
+#if HAVE_EXECV
+#ifdef TARGET_SYS_execv
+ case TARGET_SYS_execv:
+ {
+ char *path = fetch_str (simulator, PARM1);
+ char **argv = fetch_argv (simulator, PARM2);
+ RETVAL = execv (path, argv);
+ zfree (path);
+ freeargv (argv);
+ break;
+ }
+#endif
+#endif
+
+#if 0
+#ifdef TARGET_SYS_pipe
+ case TARGET_SYS_pipe:
+ {
+ reg_t buf;
+ int host_fd[2];
+
+ buf = PARM1;
+ RETVAL = pipe (host_fd);
+ SW (buf, host_fd[0]);
+ buf += sizeof(uint16);
+ SW (buf, host_fd[1]);
+ }
+ break;
+#endif
+#endif
+
+#if 0
+#ifdef TARGET_SYS_wait
+ case TARGET_SYS_wait:
+ {
+ int status;
+
+ RETVAL = wait (&status);
+ SW (PARM1, status);
+ }
+ break;
+#endif
+#endif
+
+#ifdef TARGET_SYS_read
+ case TARGET_SYS_read:
+ {
+ char *buf = zalloc (PARM3);
+ RETVAL = sim_io_read (simulator, PARM1, buf, PARM3);
+ sim_write (simulator, PARM2, buf, PARM3);
+ zfree (buf);
+ break;
+ }
+#endif
+
+#ifdef TARGET_SYS_write
+ case TARGET_SYS_write:
+ {
+ char *buf = zalloc (PARM3);
+ sim_read (simulator, PARM2, buf, PARM3);
+ if (PARM1 == 1)
+ RETVAL = sim_io_write_stdout (simulator, buf, PARM3);
+ else
+ RETVAL = sim_io_write (simulator, PARM1, buf, PARM3);
+ zfree (buf);
+ break;
+ }
+#endif
+
+#ifdef TARGET_SYS_lseek
+ case TARGET_SYS_lseek:
+ RETVAL = sim_io_lseek (simulator, PARM1, PARM2, PARM3);
+ break;
+#endif
+
+#ifdef TARGET_SYS_close
+ case TARGET_SYS_close:
+ RETVAL = sim_io_close (simulator, PARM1);
+ break;
+#endif
+
+#ifdef TARGET_SYS_open
+ case TARGET_SYS_open:
+ {
+ char *buf = fetch_str (simulator, PARM1);
+ RETVAL = sim_io_open (simulator, buf, PARM2);
+ zfree (buf);
+ break;
+ }
+#endif
+
+#ifdef TARGET_SYS_exit
+ case TARGET_SYS_exit:
+ if ((PARM1 & 0xffff0000) == 0xdead0000 && (PARM1 & 0xffff) != 0)
+ /* get signal encoded by kill */
+ sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
+ sim_signalled, PARM1 & 0xffff);
+ else if (PARM1 == 0xdead)
+ /* old libraries */
+ sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
+ sim_stopped, SIM_SIGABRT);
+ else
+ /* PARM1 has exit status */
+ sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
+ sim_exited, PARM1);
+ break;
+#endif
+
+#if !defined(__GO32__) && !defined(_WIN32)
+#ifdef TARGET_SYS_stat
+ case TARGET_SYS_stat: /* added at hmsi */
+ /* stat system call */
+ {
+ struct stat host_stat;
+ reg_t buf;
+ char *path = fetch_str (simulator, PARM1);
+
+ RETVAL = stat (path, &host_stat);
+
+ zfree (path);
+ buf = PARM2;
+
+ /* Just wild-assed guesses. */
+ store_mem (buf, 2, host_stat.st_dev);
+ store_mem (buf + 2, 2, host_stat.st_ino);
+ store_mem (buf + 4, 4, host_stat.st_mode);
+ store_mem (buf + 8, 2, host_stat.st_nlink);
+ store_mem (buf + 10, 2, host_stat.st_uid);
+ store_mem (buf + 12, 2, host_stat.st_gid);
+ store_mem (buf + 14, 2, host_stat.st_rdev);
+ store_mem (buf + 16, 4, host_stat.st_size);
+ store_mem (buf + 20, 4, host_stat.st_atime);
+ store_mem (buf + 28, 4, host_stat.st_mtime);
+ store_mem (buf + 36, 4, host_stat.st_ctime);
+ }
+ break;
+#endif
+#endif
+
+#ifdef HAVE_CHOWN
+#ifdef TARGET_SYS_chown
+ case TARGET_SYS_chown:
+ {
+ char *path = fetch_str (simulator, PARM1);
+ RETVAL = chown (path, PARM2, PARM3);
+ zfree (path);
+ }
+ break;
+#endif
+#endif
+
+#if HAVE_CHMOD
+#ifdef TARGET_SYS_chmod
+ case TARGET_SYS_chmod:
+ {
+ char *path = fetch_str (simulator, PARM1);
+ RETVAL = chmod (path, PARM2);
+ zfree (path);
+ }
+ break;
+#endif
+#endif
+
+#ifdef TARGET_SYS_time
+#if HAVE_TIME
+ case TARGET_SYS_time:
+ {
+ time_t now;
+ RETVAL = time (&now);
+ store_mem (PARM1, 4, now);
+ }
+ break;
+#endif
+#endif
+
+#if !defined(__GO32__) && !defined(_WIN32)
+#ifdef TARGET_SYS_times
+ case TARGET_SYS_times:
+ {
+ struct tms tms;
+ RETVAL = times (&tms);
+ store_mem (PARM1, 4, tms.tms_utime);
+ store_mem (PARM1 + 4, 4, tms.tms_stime);
+ store_mem (PARM1 + 8, 4, tms.tms_cutime);
+ store_mem (PARM1 + 12, 4, tms.tms_cstime);
+ break;
+ }
+#endif
+#endif
+
+#ifdef TARGET_SYS_gettimeofday
+#if !defined(__GO32__) && !defined(_WIN32)
+ case TARGET_SYS_gettimeofday:
+ {
+ struct timeval t;
+ struct timezone tz;
+ RETVAL = gettimeofday (&t, &tz);
+ store_mem (PARM1, 4, t.tv_sec);
+ store_mem (PARM1 + 4, 4, t.tv_usec);
+ store_mem (PARM2, 4, tz.tz_minuteswest);
+ store_mem (PARM2 + 4, 4, tz.tz_dsttime);
+ break;
+ }
+#endif
+#endif
+
+#ifdef TARGET_SYS_utime
+#if HAVE_UTIME
+ case TARGET_SYS_utime:
+ {
+ /* Cast the second argument to void *, to avoid type mismatch
+ if a prototype is present. */
+ sim_io_error (simulator, "Utime not supported");
+ /* RETVAL = utime (path, (void *) MEMPTR (PARM2)); */
+ }
+ break;
+#endif
+#endif
+
+ default:
+ abort ();
+ }
+ RETERR = errno;
+ errno = save_errno;
+
+ return 4;
+ }
+ else
+ { /* Trap 0 -> 30 */
+ EIPC = PC + 4;
+ EIPSW = PSW;
+ /* Mask out EICC */
+ ECR &= 0xffff0000;
+ ECR |= 0x40 + OP[0];
+ /* Flag that we are now doing exception processing. */
+ PSW |= PSW_EP | PSW_ID;
+ PC = ((OP[0] < 0x10) ? 0x40 : 0x50) - 4;
+
+ return 0;
+ }
+}
+
+/* tst1 reg2, [reg1] */
+int
+OP_E607E0 (void)
+{
+ int temp;
+
+ trace_input ("tst1", OP_BIT, 1);
+
+ temp = load_mem (State.regs[ OP[0] ], 1);
+
+ PSW &= ~PSW_Z;
+ if ((temp & (1 << State.regs[ OP[1] & 0x7 ])) == 0)
+ PSW |= PSW_Z;
+
+ trace_output (OP_BIT);
+
+ return 4;
+}
+
+/* mulu reg1, reg2, reg3 */
+int
+OP_22207E0 (void)
+{
+ trace_input ("mulu", OP_REG_REG_REG, 0);
+
+ Multiply64 (false, State.regs[ OP[0] ]);
+
+ trace_output (OP_REG_REG_REG);
+
+ return 4;
+}
+
+#define BIT_CHANGE_OP( name, binop ) \
+ unsigned int bit; \
+ unsigned int temp; \
+ \
+ trace_input (name, OP_BIT_CHANGE, 0); \
+ \
+ bit = 1 << State.regs[ OP[1] & 0x7 ]; \
+ temp = load_mem (State.regs[ OP[0] ], 1); \
+ \
+ PSW &= ~PSW_Z; \
+ if ((temp & bit) == 0) \
+ PSW |= PSW_Z; \
+ temp binop bit; \
+ \
+ store_mem (State.regs[ OP[0] ], 1, temp); \
+ \
+ trace_output (OP_BIT_CHANGE); \
+ \
+ return 4;
+
+/* clr1 reg2, [reg1] */
+int
+OP_E407E0 (void)
+{
+ BIT_CHANGE_OP ("clr1", &= ~ );
+}
+
+/* not1 reg2, [reg1] */
+int
+OP_E207E0 (void)
+{
+ BIT_CHANGE_OP ("not1", ^= );
+}
+
+/* set1 */
+int
+OP_E007E0 (void)
+{
+ BIT_CHANGE_OP ("set1", |= );
+}
+
+/* sasf */
+int
+OP_20007E0 (void)
+{
+ trace_input ("sasf", OP_EX1, 0);
+
+ State.regs[ OP[1] ] = (State.regs[ OP[1] ] << 1) | condition_met (OP[0]);
+
+ trace_output (OP_EX1);
+
+ return 4;
+}
+
+/* This function is courtesy of Sugimoto at NEC, via Seow Tan
+ (Soew_Tan@el.nec.com) */
+void
+divun
+(
+ unsigned int N,
+ unsigned long int als,
+ unsigned long int sfi,
+ unsigned32 /*unsigned long int*/ * quotient_ptr,
+ unsigned32 /*unsigned long int*/ * remainder_ptr,
+ boolean * overflow_ptr
+)
+{
+ unsigned long ald = sfi >> (N - 1);
+ unsigned long alo = als;
+ unsigned int Q = 1;
+ unsigned int C;
+ unsigned int S = 0;
+ unsigned int i;
+ unsigned int R1 = 1;
+ unsigned int DBZ = (als == 0) ? 1 : 0;
+ unsigned long alt = Q ? ~als : als;
+
+ /* 1st Loop */
+ alo = ald + alt + Q;
+ C = (((alt >> 31) & (ald >> 31))
+ | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
+ C = C ^ Q;
+ Q = ~(C ^ S) & 1;
+ R1 = (alo == 0) ? 0 : (R1 & Q);
+ if ((S ^ (alo>>31)) && !C)
+ {
+ DBZ = 1;
+ }
+ S = alo >> 31;
+ sfi = (sfi << (32-N+1)) | Q;
+ ald = (alo << 1) | (sfi >> 31);
+
+ /* 2nd - N-1th Loop */
+ for (i = 2; i < N; i++)
+ {
+ alt = Q ? ~als : als;
+ alo = ald + alt + Q;
+ C = (((alt >> 31) & (ald >> 31))
+ | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
+ C = C ^ Q;
+ Q = ~(C ^ S) & 1;
+ R1 = (alo == 0) ? 0 : (R1 & Q);
+ if ((S ^ (alo>>31)) && !C && !DBZ)
+ {
+ DBZ = 1;
+ }
+ S = alo >> 31;
+ sfi = (sfi << 1) | Q;
+ ald = (alo << 1) | (sfi >> 31);
+ }
+
+ /* Nth Loop */
+ alt = Q ? ~als : als;
+ alo = ald + alt + Q;
+ C = (((alt >> 31) & (ald >> 31))
+ | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
+ C = C ^ Q;
+ Q = ~(C ^ S) & 1;
+ R1 = (alo == 0) ? 0 : (R1 & Q);
+ if ((S ^ (alo>>31)) && !C)
+ {
+ DBZ = 1;
+ }
+
+ * quotient_ptr = (sfi << 1) | Q;
+ * remainder_ptr = Q ? alo : (alo + als);
+ * overflow_ptr = DBZ | R1;
+}
+
+/* This function is courtesy of Sugimoto at NEC, via Seow Tan (Soew_Tan@el.nec.com) */
+void
+divn
+(
+ unsigned int N,
+ unsigned long int als,
+ unsigned long int sfi,
+ signed32 /*signed long int*/ * quotient_ptr,
+ signed32 /*signed long int*/ * remainder_ptr,
+ boolean * overflow_ptr
+)
+{
+ unsigned long ald = (signed long) sfi >> (N - 1);
+ unsigned long alo = als;
+ unsigned int SS = als >> 31;
+ unsigned int SD = sfi >> 31;
+ unsigned int R1 = 1;
+ unsigned int OV;
+ unsigned int DBZ = als == 0 ? 1 : 0;
+ unsigned int Q = ~(SS ^ SD) & 1;
+ unsigned int C;
+ unsigned int S;
+ unsigned int i;
+ unsigned long alt = Q ? ~als : als;
+
+
+ /* 1st Loop */
+
+ alo = ald + alt + Q;
+ C = (((alt >> 31) & (ald >> 31))
+ | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
+ Q = C ^ SS;
+ R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
+ S = alo >> 31;
+ sfi = (sfi << (32-N+1)) | Q;
+ ald = (alo << 1) | (sfi >> 31);
+ if ((alo >> 31) ^ (ald >> 31))
+ {
+ DBZ = 1;
+ }
+
+ /* 2nd - N-1th Loop */
+
+ for (i = 2; i < N; i++)
+ {
+ alt = Q ? ~als : als;
+ alo = ald + alt + Q;
+ C = (((alt >> 31) & (ald >> 31))
+ | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
+ Q = C ^ SS;
+ R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
+ S = alo >> 31;
+ sfi = (sfi << 1) | Q;
+ ald = (alo << 1) | (sfi >> 31);
+ if ((alo >> 31) ^ (ald >> 31))
+ {
+ DBZ = 1;
+ }
+ }
+
+ /* Nth Loop */
+ alt = Q ? ~als : als;
+ alo = ald + alt + Q;
+ C = (((alt >> 31) & (ald >> 31))
+ | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
+ Q = C ^ SS;
+ R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
+ sfi = (sfi << (32-N+1));
+ ald = alo;
+
+ /* End */
+ if (alo != 0)
+ {
+ alt = Q ? ~als : als;
+ alo = ald + alt + Q;
+ }
+ R1 = R1 & ((~alo >> 31) ^ SD);
+ if ((alo != 0) && ((Q ^ (SS ^ SD)) ^ R1)) alo = ald;
+ if (N != 32)
+ ald = sfi = (long) ((sfi >> 1) | (SS ^ SD) << 31) >> (32-N-1) | Q;
+ else
+ ald = sfi = sfi | Q;
+
+ OV = DBZ | ((alo == 0) ? 0 : R1);
+
+ * remainder_ptr = alo;
+
+ /* Adj */
+ if (((alo != 0) && ((SS ^ SD) ^ R1))
+ || ((alo == 0) && (SS ^ R1)))
+ alo = ald + 1;
+ else
+ alo = ald;
+
+ OV = (DBZ | R1) ? OV : ((alo >> 31) & (~ald >> 31));
+
+ * quotient_ptr = alo;
+ * overflow_ptr = OV;
+}
+
+/* sdivun imm5, reg1, reg2, reg3 */
+int
+OP_1C207E0 (void)
+{
+ unsigned32 /*unsigned long int*/ quotient;
+ unsigned32 /*unsigned long int*/ remainder;
+ unsigned long int divide_by;
+ unsigned long int divide_this;
+ boolean overflow = false;
+ unsigned int imm5;
+
+ trace_input ("sdivun", OP_IMM_REG_REG_REG, 0);
+
+ imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
+
+ divide_by = State.regs[ OP[0] ];
+ divide_this = State.regs[ OP[1] ] << imm5;
+
+ divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
+
+ State.regs[ OP[1] ] = quotient;
+ State.regs[ OP[2] >> 11 ] = remainder;
+
+ /* Set condition codes. */
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+
+ if (overflow) PSW |= PSW_OV;
+ if (quotient == 0) PSW |= PSW_Z;
+ if (quotient & 0x80000000) PSW |= PSW_S;
+
+ trace_output (OP_IMM_REG_REG_REG);
+
+ return 4;
+}
+
+/* sdivn imm5, reg1, reg2, reg3 */
+int
+OP_1C007E0 (void)
+{
+ signed32 /*signed long int*/ quotient;
+ signed32 /*signed long int*/ remainder;
+ signed long int divide_by;
+ signed long int divide_this;
+ boolean overflow = false;
+ unsigned int imm5;
+
+ trace_input ("sdivn", OP_IMM_REG_REG_REG, 0);
+
+ imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
+
+ divide_by = State.regs[ OP[0] ];
+ divide_this = State.regs[ OP[1] ] << imm5;
+
+ divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
+
+ State.regs[ OP[1] ] = quotient;
+ State.regs[ OP[2] >> 11 ] = remainder;
+
+ /* Set condition codes. */
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+
+ if (overflow) PSW |= PSW_OV;
+ if (quotient == 0) PSW |= PSW_Z;
+ if (quotient < 0) PSW |= PSW_S;
+
+ trace_output (OP_IMM_REG_REG_REG);
+
+ return 4;
+}
+
+/* sdivhun imm5, reg1, reg2, reg3 */
+int
+OP_18207E0 (void)
+{
+ unsigned32 /*unsigned long int*/ quotient;
+ unsigned32 /*unsigned long int*/ remainder;
+ unsigned long int divide_by;
+ unsigned long int divide_this;
+ boolean overflow = false;
+ unsigned int imm5;
+
+ trace_input ("sdivhun", OP_IMM_REG_REG_REG, 0);
+
+ imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
+
+ divide_by = State.regs[ OP[0] ] & 0xffff;
+ divide_this = State.regs[ OP[1] ] << imm5;
+
+ divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
+
+ State.regs[ OP[1] ] = quotient;
+ State.regs[ OP[2] >> 11 ] = remainder;
+
+ /* Set condition codes. */
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+
+ if (overflow) PSW |= PSW_OV;
+ if (quotient == 0) PSW |= PSW_Z;
+ if (quotient & 0x80000000) PSW |= PSW_S;
+
+ trace_output (OP_IMM_REG_REG_REG);
+
+ return 4;
+}
+
+/* sdivhn imm5, reg1, reg2, reg3 */
+int
+OP_18007E0 (void)
+{
+ signed32 /*signed long int*/ quotient;
+ signed32 /*signed long int*/ remainder;
+ signed long int divide_by;
+ signed long int divide_this;
+ boolean overflow = false;
+ unsigned int imm5;
+
+ trace_input ("sdivhn", OP_IMM_REG_REG_REG, 0);
+
+ imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
+
+ divide_by = EXTEND16 (State.regs[ OP[0] ]);
+ divide_this = State.regs[ OP[1] ] << imm5;
+
+ divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
+
+ State.regs[ OP[1] ] = quotient;
+ State.regs[ OP[2] >> 11 ] = remainder;
+
+ /* Set condition codes. */
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+
+ if (overflow) PSW |= PSW_OV;
+ if (quotient == 0) PSW |= PSW_Z;
+ if (quotient < 0) PSW |= PSW_S;
+
+ trace_output (OP_IMM_REG_REG_REG);
+
+ return 4;
+}
+
+/* divu reg1, reg2, reg3 */
+int
+OP_2C207E0 (void)
+{
+ unsigned long int quotient;
+ unsigned long int remainder;
+ unsigned long int divide_by;
+ unsigned long int divide_this;
+ boolean overflow = false;
+
+ trace_input ("divu", OP_REG_REG_REG, 0);
+
+ /* Compute the result. */
+
+ divide_by = State.regs[ OP[0] ];
+ divide_this = State.regs[ OP[1] ];
+
+ if (divide_by == 0)
+ {
+ overflow = true;
+ divide_by = 1;
+ }
+
+ State.regs[ OP[1] ] = quotient = divide_this / divide_by;
+ State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
+
+ /* Set condition codes. */
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+
+ if (overflow) PSW |= PSW_OV;
+ if (quotient == 0) PSW |= PSW_Z;
+ if (quotient & 0x80000000) PSW |= PSW_S;
+
+ trace_output (OP_REG_REG_REG);
+
+ return 4;
+}
+
+/* div reg1, reg2, reg3 */
+int
+OP_2C007E0 (void)
+{
+ signed long int quotient;
+ signed long int remainder;
+ signed long int divide_by;
+ signed long int divide_this;
+ boolean overflow = false;
+
+ trace_input ("div", OP_REG_REG_REG, 0);
+
+ /* Compute the result. */
+
+ divide_by = State.regs[ OP[0] ];
+ divide_this = State.regs[ OP[1] ];
+
+ if (divide_by == 0 || (divide_by == -1 && divide_this == (1 << 31)))
+ {
+ overflow = true;
+ divide_by = 1;
+ }
+
+ State.regs[ OP[1] ] = quotient = divide_this / divide_by;
+ State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
+
+ /* Set condition codes. */
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+
+ if (overflow) PSW |= PSW_OV;
+ if (quotient == 0) PSW |= PSW_Z;
+ if (quotient < 0) PSW |= PSW_S;
+
+ trace_output (OP_REG_REG_REG);
+
+ return 4;
+}
+
+/* divhu reg1, reg2, reg3 */
+int
+OP_28207E0 (void)
+{
+ unsigned long int quotient;
+ unsigned long int remainder;
+ unsigned long int divide_by;
+ unsigned long int divide_this;
+ boolean overflow = false;
+
+ trace_input ("divhu", OP_REG_REG_REG, 0);
+
+ /* Compute the result. */
+
+ divide_by = State.regs[ OP[0] ] & 0xffff;
+ divide_this = State.regs[ OP[1] ];
+
+ if (divide_by == 0)
+ {
+ overflow = true;
+ divide_by = 1;
+ }
+
+ State.regs[ OP[1] ] = quotient = divide_this / divide_by;
+ State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
+
+ /* Set condition codes. */
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+
+ if (overflow) PSW |= PSW_OV;
+ if (quotient == 0) PSW |= PSW_Z;
+ if (quotient & 0x80000000) PSW |= PSW_S;
+
+ trace_output (OP_REG_REG_REG);
+
+ return 4;
+}
+
+/* divh reg1, reg2, reg3 */
+int
+OP_28007E0 (void)
+{
+ signed long int quotient;
+ signed long int remainder;
+ signed long int divide_by;
+ signed long int divide_this;
+ boolean overflow = false;
+
+ trace_input ("divh", OP_REG_REG_REG, 0);
+
+ /* Compute the result. */
+
+ divide_by = State.regs[ OP[0] ];
+ divide_this = EXTEND16 (State.regs[ OP[1] ]);
+
+ if (divide_by == 0 || (divide_by == -1 && divide_this == (1 << 31)))
+ {
+ overflow = true;
+ divide_by = 1;
+ }
+
+ State.regs[ OP[1] ] = quotient = divide_this / divide_by;
+ State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
+
+ /* Set condition codes. */
+ PSW &= ~(PSW_Z | PSW_S | PSW_OV);
+
+ if (overflow) PSW |= PSW_OV;
+ if (quotient == 0) PSW |= PSW_Z;
+ if (quotient < 0) PSW |= PSW_S;
+
+ trace_output (OP_REG_REG_REG);
+
+ return 4;
+}
+
+/* mulu imm9, reg2, reg3 */
+int
+OP_24207E0 (void)
+{
+ trace_input ("mulu", OP_IMM_REG_REG, 0);
+
+ Multiply64 (false, (OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0));
+
+ trace_output (OP_IMM_REG_REG);
+
+ return 4;
+}
+
+/* mul imm9, reg2, reg3 */
+int
+OP_24007E0 (void)
+{
+ trace_input ("mul", OP_IMM_REG_REG, 0);
+
+ Multiply64 (true, (OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0));
+
+ trace_output (OP_IMM_REG_REG);
+
+ return 4;
+}
+
+/* ld.hu */
+int
+OP_107E0 (void)
+{
+ int adr;
+
+ trace_input ("ld.hu", OP_LOAD32, 2);
+
+ adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
+ adr &= ~0x1;
+
+ State.regs[ OP[1] ] = load_mem (adr, 2);
+
+ trace_output (OP_LOAD32);
+
+ return 4;
+}
+
+
+/* ld.bu */
+int
+OP_10780 (void)
+{
+ int adr;
+
+ trace_input ("ld.bu", OP_LOAD32, 1);
+
+ adr = (State.regs[ OP[0] ]
+ + (EXTEND16 (OP[2] & ~1) | ((OP[3] >> 5) & 1)));
+
+ State.regs[ OP[1] ] = load_mem (adr, 1);
+
+ trace_output (OP_LOAD32);
+
+ return 4;
+}
+
+/* prepare list12, imm5, imm32 */
+int
+OP_1B0780 (void)
+{
+ int i;
+
+ trace_input ("prepare", OP_PUSHPOP1, 0);
+
+ /* Store the registers with lower number registers being placed at higher addresses. */
+ for (i = 0; i < 12; i++)
+ if ((OP[3] & (1 << type1_regs[ i ])))
+ {
+ SP -= 4;
+ store_mem (SP, 4, State.regs[ 20 + i ]);
+ }
+
+ SP -= (OP[3] & 0x3e) << 1;
+
+ EP = load_mem (PC + 4, 4);
+
+ trace_output (OP_PUSHPOP1);
+
+ return 8;
+}
+
+/* prepare list12, imm5, imm16-32 */
+int
+OP_130780 (void)
+{
+ int i;
+
+ trace_input ("prepare", OP_PUSHPOP1, 0);
+
+ /* Store the registers with lower number registers being placed at higher addresses. */
+ for (i = 0; i < 12; i++)
+ if ((OP[3] & (1 << type1_regs[ i ])))
+ {
+ SP -= 4;
+ store_mem (SP, 4, State.regs[ 20 + i ]);
+ }
+
+ SP -= (OP[3] & 0x3e) << 1;
+
+ EP = load_mem (PC + 4, 2) << 16;
+
+ trace_output (OP_PUSHPOP1);
+
+ return 6;
+}
+
+/* prepare list12, imm5, imm16 */
+int
+OP_B0780 (void)
+{
+ int i;
+
+ trace_input ("prepare", OP_PUSHPOP1, 0);
+
+ /* Store the registers with lower number registers being placed at higher addresses. */
+ for (i = 0; i < 12; i++)
+ if ((OP[3] & (1 << type1_regs[ i ])))
+ {
+ SP -= 4;
+ store_mem (SP, 4, State.regs[ 20 + i ]);
+ }
+
+ SP -= (OP[3] & 0x3e) << 1;
+
+ EP = EXTEND16 (load_mem (PC + 4, 2));
+
+ trace_output (OP_PUSHPOP1);
+
+ return 6;
+}
+
+/* prepare list12, imm5, sp */
+int
+OP_30780 (void)
+{
+ int i;
+
+ trace_input ("prepare", OP_PUSHPOP1, 0);
+
+ /* Store the registers with lower number registers being placed at higher addresses. */
+ for (i = 0; i < 12; i++)
+ if ((OP[3] & (1 << type1_regs[ i ])))
+ {
+ SP -= 4;
+ store_mem (SP, 4, State.regs[ 20 + i ]);
+ }
+
+ SP -= (OP[3] & 0x3e) << 1;
+
+ EP = SP;
+
+ trace_output (OP_PUSHPOP1);
+
+ return 4;
+}
+
+/* mul reg1, reg2, reg3 */
+int
+OP_22007E0 (void)
+{
+ trace_input ("mul", OP_REG_REG_REG, 0);
+
+ Multiply64 (true, State.regs[ OP[0] ]);
+
+ trace_output (OP_REG_REG_REG);
+
+ return 4;
+}
+
+/* popmh list18 */
+int
+OP_307F0 (void)
+{
+ int i;
+
+ trace_input ("popmh", OP_PUSHPOP2, 0);
+
+ if (OP[3] & (1 << 19))
+ {
+ if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
+ {
+ FEPSW = load_mem ( SP & ~ 3, 4);
+ FEPC = load_mem ((SP + 4) & ~ 3, 4);
+ }
+ else
+ {
+ EIPSW = load_mem ( SP & ~ 3, 4);
+ EIPC = load_mem ((SP + 4) & ~ 3, 4);
+ }
+
+ SP += 8;
+ }
+
+ /* Load the registers with lower number registers being retrieved from higher addresses. */
+ for (i = 16; i--;)
+ if ((OP[3] & (1 << type2_regs[ i ])))
+ {
+ State.regs[ i + 16 ] = load_mem (SP & ~ 3, 4);
+ SP += 4;
+ }
+
+ trace_output (OP_PUSHPOP2);
+
+ return 4;
+}
+
+/* popml lsit18 */
+int
+OP_107F0 (void)
+{
+ int i;
+
+ trace_input ("popml", OP_PUSHPOP3, 0);
+
+ if (OP[3] & (1 << 19))
+ {
+ if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
+ {
+ FEPSW = load_mem ( SP & ~ 3, 4);
+ FEPC = load_mem ((SP + 4) & ~ 3, 4);
+ }
+ else
+ {
+ EIPSW = load_mem ( SP & ~ 3, 4);
+ EIPC = load_mem ((SP + 4) & ~ 3, 4);
+ }
+
+ SP += 8;
+ }
+
+ if (OP[3] & (1 << 3))
+ {
+ PSW = load_mem (SP & ~ 3, 4);
+ SP += 4;
+ }
+
+ /* Load the registers with lower number registers being retrieved from higher addresses. */
+ for (i = 15; i--;)
+ if ((OP[3] & (1 << type3_regs[ i ])))
+ {
+ State.regs[ i + 1 ] = load_mem (SP & ~ 3, 4);
+ SP += 4;
+ }
+
+ trace_output (OP_PUSHPOP2);
+
+ return 4;
+}
+
+/* pushmh list18 */
+int
+OP_307E0 (void)
+{
+ int i;
+
+ trace_input ("pushmh", OP_PUSHPOP2, 0);
+
+ /* Store the registers with lower number registers being placed at higher addresses. */
+ for (i = 0; i < 16; i++)
+ if ((OP[3] & (1 << type2_regs[ i ])))
+ {
+ SP -= 4;
+ store_mem (SP & ~ 3, 4, State.regs[ i + 16 ]);
+ }
+
+ if (OP[3] & (1 << 19))
+ {
+ SP -= 8;
+
+ if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
+ {
+ store_mem ((SP + 4) & ~ 3, 4, FEPC);
+ store_mem ( SP & ~ 3, 4, FEPSW);
+ }
+ else
+ {
+ store_mem ((SP + 4) & ~ 3, 4, EIPC);
+ store_mem ( SP & ~ 3, 4, EIPSW);
+ }
+ }
+
+ trace_output (OP_PUSHPOP2);
+
+ return 4;
+}
+