summaryrefslogtreecommitdiff
path: root/gdb/irix5-nat.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/irix5-nat.c')
-rw-r--r--gdb/irix5-nat.c1349
1 files changed, 1349 insertions, 0 deletions
diff --git a/gdb/irix5-nat.c b/gdb/irix5-nat.c
new file mode 100644
index 00000000000..b3373a99168
--- /dev/null
+++ b/gdb/irix5-nat.c
@@ -0,0 +1,1349 @@
+/* Native support for the SGI Iris running IRIX version 5, for GDB.
+ Copyright 1988, 89, 90, 91, 92, 93, 94, 95, 96, 98, 1999
+ Free Software Foundation, Inc.
+ Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
+ and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
+ Implemented for Irix 4.x by Garrett A. Wollman.
+ Modified for Irix 5.x by Ian Lance Taylor.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "inferior.h"
+#include "gdbcore.h"
+#include "target.h"
+
+#include "gdb_string.h"
+#include <sys/time.h>
+#include <sys/procfs.h>
+#include <setjmp.h> /* For JB_XXX. */
+
+static void
+fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
+
+/* Size of elements in jmpbuf */
+
+#define JB_ELEMENT_SIZE 4
+
+/*
+ * See the comment in m68k-tdep.c regarding the utility of these functions.
+ *
+ * These definitions are from the MIPS SVR4 ABI, so they may work for
+ * any MIPS SVR4 target.
+ */
+
+void
+supply_gregset (gregsetp)
+ gregset_t *gregsetp;
+{
+ register int regi;
+ register greg_t *regp = &(*gregsetp)[0];
+ int gregoff = sizeof (greg_t) - MIPS_REGSIZE;
+ static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
+
+ for(regi = 0; regi <= CTX_RA; regi++)
+ supply_register (regi, (char *)(regp + regi) + gregoff);
+
+ supply_register (PC_REGNUM, (char *)(regp + CTX_EPC) + gregoff);
+ supply_register (HI_REGNUM, (char *)(regp + CTX_MDHI) + gregoff);
+ supply_register (LO_REGNUM, (char *)(regp + CTX_MDLO) + gregoff);
+ supply_register (CAUSE_REGNUM, (char *)(regp + CTX_CAUSE) + gregoff);
+
+ /* Fill inaccessible registers with zero. */
+ supply_register (BADVADDR_REGNUM, zerobuf);
+}
+
+void
+fill_gregset (gregsetp, regno)
+ gregset_t *gregsetp;
+ int regno;
+{
+ int regi;
+ register greg_t *regp = &(*gregsetp)[0];
+
+ /* Under Irix6, if GDB is built with N32 ABI and is debugging an O32
+ executable, we have to sign extend the registers to 64 bits before
+ filling in the gregset structure. */
+
+ for (regi = 0; regi <= CTX_RA; regi++)
+ if ((regno == -1) || (regno == regi))
+ *(regp + regi) =
+ extract_signed_integer (&registers[REGISTER_BYTE (regi)],
+ REGISTER_RAW_SIZE (regi));
+
+ if ((regno == -1) || (regno == PC_REGNUM))
+ *(regp + CTX_EPC) =
+ extract_signed_integer (&registers[REGISTER_BYTE (PC_REGNUM)],
+ REGISTER_RAW_SIZE (PC_REGNUM));
+
+ if ((regno == -1) || (regno == CAUSE_REGNUM))
+ *(regp + CTX_CAUSE) =
+ extract_signed_integer (&registers[REGISTER_BYTE (CAUSE_REGNUM)],
+ REGISTER_RAW_SIZE (CAUSE_REGNUM));
+
+ if ((regno == -1) || (regno == HI_REGNUM))
+ *(regp + CTX_MDHI) =
+ extract_signed_integer (&registers[REGISTER_BYTE (HI_REGNUM)],
+ REGISTER_RAW_SIZE (HI_REGNUM));
+
+ if ((regno == -1) || (regno == LO_REGNUM))
+ *(regp + CTX_MDLO) =
+ extract_signed_integer (&registers[REGISTER_BYTE (LO_REGNUM)],
+ REGISTER_RAW_SIZE (LO_REGNUM));
+}
+
+/*
+ * Now we do the same thing for floating-point registers.
+ * We don't bother to condition on FP0_REGNUM since any
+ * reasonable MIPS configuration has an R3010 in it.
+ *
+ * Again, see the comments in m68k-tdep.c.
+ */
+
+void
+supply_fpregset (fpregsetp)
+ fpregset_t *fpregsetp;
+{
+ register int regi;
+ static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
+
+ /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
+
+ for (regi = 0; regi < 32; regi++)
+ supply_register (FP0_REGNUM + regi,
+ (char *)&fpregsetp->fp_r.fp_regs[regi]);
+
+ supply_register (FCRCS_REGNUM, (char *)&fpregsetp->fp_csr);
+
+ /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
+ supply_register (FCRIR_REGNUM, zerobuf);
+}
+
+void
+fill_fpregset (fpregsetp, regno)
+ fpregset_t *fpregsetp;
+ int regno;
+{
+ int regi;
+ char *from, *to;
+
+ /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
+
+ for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
+ {
+ if ((regno == -1) || (regno == regi))
+ {
+ from = (char *) &registers[REGISTER_BYTE (regi)];
+ to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
+ memcpy(to, from, REGISTER_RAW_SIZE (regi));
+ }
+ }
+
+ if ((regno == -1) || (regno == FCRCS_REGNUM))
+ fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE(FCRCS_REGNUM)];
+}
+
+
+/* Figure out where the longjmp will land.
+ We expect the first arg to be a pointer to the jmp_buf structure from which
+ we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
+ This routine returns true on success. */
+
+int
+get_longjmp_target (pc)
+ CORE_ADDR *pc;
+{
+ char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
+ CORE_ADDR jb_addr;
+
+ jb_addr = read_register (A0_REGNUM);
+
+ if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
+ TARGET_PTR_BIT / TARGET_CHAR_BIT))
+ return 0;
+
+ *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
+
+ return 1;
+}
+
+static void
+fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
+ char *core_reg_sect;
+ unsigned core_reg_size;
+ int which; /* Unused */
+ CORE_ADDR reg_addr; /* Unused */
+{
+ if (core_reg_size == REGISTER_BYTES)
+ {
+ memcpy ((char *)registers, core_reg_sect, core_reg_size);
+ }
+ else if (MIPS_REGSIZE == 4 &&
+ core_reg_size == (2 * MIPS_REGSIZE) * NUM_REGS)
+ {
+ /* This is a core file from a N32 executable, 64 bits are saved
+ for all registers. */
+ char *srcp = core_reg_sect;
+ char *dstp = registers;
+ int regno;
+
+ for (regno = 0; regno < NUM_REGS; regno++)
+ {
+ if (regno >= FP0_REGNUM && regno < (FP0_REGNUM + 32))
+ {
+ /* FIXME, this is wrong, N32 has 64 bit FP regs, but GDB
+ currently assumes that they are 32 bit. */
+ *dstp++ = *srcp++;
+ *dstp++ = *srcp++;
+ *dstp++ = *srcp++;
+ *dstp++ = *srcp++;
+ if (REGISTER_RAW_SIZE(regno) == 4)
+ {
+ /* copying 4 bytes from eight bytes?
+ I don't see how this can be right... */
+ srcp += 4;
+ }
+ else
+ {
+ /* copy all 8 bytes (sizeof(double)) */
+ *dstp++ = *srcp++;
+ *dstp++ = *srcp++;
+ *dstp++ = *srcp++;
+ *dstp++ = *srcp++;
+ }
+ }
+ else
+ {
+ srcp += 4;
+ *dstp++ = *srcp++;
+ *dstp++ = *srcp++;
+ *dstp++ = *srcp++;
+ *dstp++ = *srcp++;
+ }
+ }
+ }
+ else
+ {
+ warning ("wrong size gregset struct in core file");
+ return;
+ }
+
+ registers_fetched ();
+}
+
+/* Irix 5 uses what appears to be a unique form of shared library
+ support. This is a copy of solib.c modified for Irix 5. */
+/* FIXME: Most of this code could be merged with osfsolib.c and solib.c
+ by using next_link_map_member and xfer_link_map_member in solib.c. */
+
+#include <sys/types.h>
+#include <signal.h>
+#include <sys/param.h>
+#include <fcntl.h>
+
+/* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
+ with our versions of those files included by tm-mips.h. Prevent
+ <obj.h> from including them with some appropriate defines. */
+#define __SYM_H__
+#define __SYMCONST_H__
+#include <obj.h>
+#ifdef HAVE_OBJLIST_H
+#include <objlist.h>
+#endif
+
+#ifdef NEW_OBJ_INFO_MAGIC
+#define HANDLE_NEW_OBJ_LIST
+#endif
+
+#include "symtab.h"
+#include "bfd.h"
+#include "symfile.h"
+#include "objfiles.h"
+#include "command.h"
+#include "frame.h"
+#include "gnu-regex.h"
+#include "inferior.h"
+#include "language.h"
+#include "gdbcmd.h"
+
+/* The symbol which starts off the list of shared libraries. */
+#define DEBUG_BASE "__rld_obj_head"
+
+/* Irix 6.x introduces a new variant of object lists.
+ To be able to debug O32 executables under Irix 6, we have to handle both
+ variants. */
+
+typedef enum
+{
+ OBJ_LIST_OLD, /* Pre Irix 6.x object list. */
+ OBJ_LIST_32, /* 32 Bit Elf32_Obj_Info. */
+ OBJ_LIST_64 /* 64 Bit Elf64_Obj_Info, FIXME not yet implemented. */
+} obj_list_variant;
+
+/* Define our own link_map structure.
+ This will help to share code with osfsolib.c and solib.c. */
+
+struct link_map {
+ obj_list_variant l_variant; /* which variant of object list */
+ CORE_ADDR l_lladdr; /* addr in inferior list was read from */
+ CORE_ADDR l_next; /* address of next object list entry */
+};
+
+/* Irix 5 shared objects are pre-linked to particular addresses
+ although the dynamic linker may have to relocate them if the
+ address ranges of the libraries used by the main program clash.
+ The offset is the difference between the address where the object
+ is mapped and the binding address of the shared library. */
+#define LM_OFFSET(so) ((so) -> offset)
+/* Loaded address of shared library. */
+#define LM_ADDR(so) ((so) -> lmstart)
+
+char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
+
+struct so_list {
+ struct so_list *next; /* next structure in linked list */
+ struct link_map lm;
+ CORE_ADDR offset; /* prelink to load address offset */
+ char *so_name; /* shared object lib name */
+ CORE_ADDR lmstart; /* lower addr bound of mapped object */
+ CORE_ADDR lmend; /* upper addr bound of mapped object */
+ char symbols_loaded; /* flag: symbols read in yet? */
+ char from_tty; /* flag: print msgs? */
+ struct objfile *objfile; /* objfile for loaded lib */
+ struct section_table *sections;
+ struct section_table *sections_end;
+ struct section_table *textsection;
+ bfd *abfd;
+};
+
+static struct so_list *so_list_head; /* List of known shared objects */
+static CORE_ADDR debug_base; /* Base of dynamic linker structures */
+static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
+
+/* Local function prototypes */
+
+static void
+sharedlibrary_command PARAMS ((char *, int));
+
+static int
+enable_break PARAMS ((void));
+
+static int
+disable_break PARAMS ((void));
+
+static void
+info_sharedlibrary_command PARAMS ((char *, int));
+
+static int
+symbol_add_stub PARAMS ((char *));
+
+static struct so_list *
+find_solib PARAMS ((struct so_list *));
+
+static struct link_map *
+first_link_map_member PARAMS ((void));
+
+static struct link_map *
+next_link_map_member PARAMS ((struct so_list *));
+
+static void
+xfer_link_map_member PARAMS ((struct so_list *, struct link_map *));
+
+static CORE_ADDR
+locate_base PARAMS ((void));
+
+static int
+solib_map_sections PARAMS ((char *));
+
+/*
+
+LOCAL FUNCTION
+
+ solib_map_sections -- open bfd and build sections for shared lib
+
+SYNOPSIS
+
+ static int solib_map_sections (struct so_list *so)
+
+DESCRIPTION
+
+ Given a pointer to one of the shared objects in our list
+ of mapped objects, use the recorded name to open a bfd
+ descriptor for the object, build a section table, and then
+ relocate all the section addresses by the base address at
+ which the shared object was mapped.
+
+FIXMES
+
+ In most (all?) cases the shared object file name recorded in the
+ dynamic linkage tables will be a fully qualified pathname. For
+ cases where it isn't, do we really mimic the systems search
+ mechanism correctly in the below code (particularly the tilde
+ expansion stuff?).
+ */
+
+static int
+solib_map_sections (arg)
+ char *arg;
+{
+ struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
+ char *filename;
+ char *scratch_pathname;
+ int scratch_chan;
+ struct section_table *p;
+ struct cleanup *old_chain;
+ bfd *abfd;
+
+ filename = tilde_expand (so -> so_name);
+ old_chain = make_cleanup (free, filename);
+
+ scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
+ &scratch_pathname);
+ if (scratch_chan < 0)
+ {
+ scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
+ O_RDONLY, 0, &scratch_pathname);
+ }
+ if (scratch_chan < 0)
+ {
+ perror_with_name (filename);
+ }
+ /* Leave scratch_pathname allocated. abfd->name will point to it. */
+
+ abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
+ if (!abfd)
+ {
+ close (scratch_chan);
+ error ("Could not open `%s' as an executable file: %s",
+ scratch_pathname, bfd_errmsg (bfd_get_error ()));
+ }
+ /* Leave bfd open, core_xfer_memory and "info files" need it. */
+ so -> abfd = abfd;
+ abfd -> cacheable = true;
+
+ if (!bfd_check_format (abfd, bfd_object))
+ {
+ error ("\"%s\": not in executable format: %s.",
+ scratch_pathname, bfd_errmsg (bfd_get_error ()));
+ }
+ if (build_section_table (abfd, &so -> sections, &so -> sections_end))
+ {
+ error ("Can't find the file sections in `%s': %s",
+ bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
+ }
+
+ for (p = so -> sections; p < so -> sections_end; p++)
+ {
+ /* Relocate the section binding addresses as recorded in the shared
+ object's file by the offset to get the address to which the
+ object was actually mapped. */
+ p -> addr += LM_OFFSET (so);
+ p -> endaddr += LM_OFFSET (so);
+ so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
+ if (STREQ (p -> the_bfd_section -> name, ".text"))
+ {
+ so -> textsection = p;
+ }
+ }
+
+ /* Free the file names, close the file now. */
+ do_cleanups (old_chain);
+
+ return (1);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ locate_base -- locate the base address of dynamic linker structs
+
+SYNOPSIS
+
+ CORE_ADDR locate_base (void)
+
+DESCRIPTION
+
+ For both the SunOS and SVR4 shared library implementations, if the
+ inferior executable has been linked dynamically, there is a single
+ address somewhere in the inferior's data space which is the key to
+ locating all of the dynamic linker's runtime structures. This
+ address is the value of the symbol defined by the macro DEBUG_BASE.
+ The job of this function is to find and return that address, or to
+ return 0 if there is no such address (the executable is statically
+ linked for example).
+
+ For SunOS, the job is almost trivial, since the dynamic linker and
+ all of it's structures are statically linked to the executable at
+ link time. Thus the symbol for the address we are looking for has
+ already been added to the minimal symbol table for the executable's
+ objfile at the time the symbol file's symbols were read, and all we
+ have to do is look it up there. Note that we explicitly do NOT want
+ to find the copies in the shared library.
+
+ The SVR4 version is much more complicated because the dynamic linker
+ and it's structures are located in the shared C library, which gets
+ run as the executable's "interpreter" by the kernel. We have to go
+ to a lot more work to discover the address of DEBUG_BASE. Because
+ of this complexity, we cache the value we find and return that value
+ on subsequent invocations. Note there is no copy in the executable
+ symbol tables.
+
+ Irix 5 is basically like SunOS.
+
+ Note that we can assume nothing about the process state at the time
+ we need to find this address. We may be stopped on the first instruc-
+ tion of the interpreter (C shared library), the first instruction of
+ the executable itself, or somewhere else entirely (if we attached
+ to the process for example).
+
+ */
+
+static CORE_ADDR
+locate_base ()
+{
+ struct minimal_symbol *msymbol;
+ CORE_ADDR address = 0;
+
+ msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
+ if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
+ {
+ address = SYMBOL_VALUE_ADDRESS (msymbol);
+ }
+ return (address);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ first_link_map_member -- locate first member in dynamic linker's map
+
+SYNOPSIS
+
+ static struct link_map *first_link_map_member (void)
+
+DESCRIPTION
+
+ Read in a copy of the first member in the inferior's dynamic
+ link map from the inferior's dynamic linker structures, and return
+ a pointer to the link map descriptor.
+*/
+
+static struct link_map *
+first_link_map_member ()
+{
+ struct obj_list *listp;
+ struct obj_list list_old;
+ struct link_map *lm;
+ static struct link_map first_lm;
+ CORE_ADDR lladdr;
+ CORE_ADDR next_lladdr;
+
+ /* We have not already read in the dynamic linking structures
+ from the inferior, lookup the address of the base structure. */
+ debug_base = locate_base ();
+ if (debug_base == 0)
+ return NULL;
+
+ /* Get address of first list entry. */
+ read_memory (debug_base, (char *) &listp, sizeof (struct obj_list *));
+
+ if (listp == NULL)
+ return NULL;
+
+ /* Get first list entry. */
+ lladdr = (CORE_ADDR) listp;
+ read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
+
+ /* The first entry in the list is the object file we are debugging,
+ so skip it. */
+ next_lladdr = (CORE_ADDR) list_old.next;
+
+#ifdef HANDLE_NEW_OBJ_LIST
+ if (list_old.data == NEW_OBJ_INFO_MAGIC)
+ {
+ Elf32_Obj_Info list_32;
+
+ read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
+ if (list_32.oi_size != sizeof (Elf32_Obj_Info))
+ return NULL;
+ next_lladdr = (CORE_ADDR) list_32.oi_next;
+ }
+#endif
+
+ if (next_lladdr == 0)
+ return NULL;
+
+ first_lm.l_lladdr = next_lladdr;
+ lm = &first_lm;
+ return lm;
+}
+
+/*
+
+LOCAL FUNCTION
+
+ next_link_map_member -- locate next member in dynamic linker's map
+
+SYNOPSIS
+
+ static struct link_map *next_link_map_member (so_list_ptr)
+
+DESCRIPTION
+
+ Read in a copy of the next member in the inferior's dynamic
+ link map from the inferior's dynamic linker structures, and return
+ a pointer to the link map descriptor.
+*/
+
+static struct link_map *
+next_link_map_member (so_list_ptr)
+ struct so_list *so_list_ptr;
+{
+ struct link_map *lm = &so_list_ptr -> lm;
+ CORE_ADDR next_lladdr = lm -> l_next;
+ static struct link_map next_lm;
+
+ if (next_lladdr == 0)
+ {
+ /* We have hit the end of the list, so check to see if any were
+ added, but be quiet if we can't read from the target any more. */
+ int status = 0;
+
+ if (lm -> l_variant == OBJ_LIST_OLD)
+ {
+ struct obj_list list_old;
+
+ status = target_read_memory (lm -> l_lladdr,
+ (char *) &list_old,
+ sizeof (struct obj_list));
+ next_lladdr = (CORE_ADDR) list_old.next;
+ }
+#ifdef HANDLE_NEW_OBJ_LIST
+ else if (lm -> l_variant == OBJ_LIST_32)
+ {
+ Elf32_Obj_Info list_32;
+ status = target_read_memory (lm -> l_lladdr,
+ (char *) &list_32,
+ sizeof (Elf32_Obj_Info));
+ next_lladdr = (CORE_ADDR) list_32.oi_next;
+ }
+#endif
+
+ if (status != 0 || next_lladdr == 0)
+ return NULL;
+ }
+
+ next_lm.l_lladdr = next_lladdr;
+ lm = &next_lm;
+ return lm;
+}
+
+/*
+
+LOCAL FUNCTION
+
+ xfer_link_map_member -- set local variables from dynamic linker's map
+
+SYNOPSIS
+
+ static void xfer_link_map_member (so_list_ptr, lm)
+
+DESCRIPTION
+
+ Read in a copy of the requested member in the inferior's dynamic
+ link map from the inferior's dynamic linker structures, and fill
+ in the necessary so_list_ptr elements.
+*/
+
+static void
+xfer_link_map_member (so_list_ptr, lm)
+ struct so_list *so_list_ptr;
+ struct link_map *lm;
+{
+ struct obj_list list_old;
+ CORE_ADDR lladdr = lm -> l_lladdr;
+ struct link_map *new_lm = &so_list_ptr -> lm;
+ int errcode;
+
+ read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
+
+ new_lm -> l_variant = OBJ_LIST_OLD;
+ new_lm -> l_lladdr = lladdr;
+ new_lm -> l_next = (CORE_ADDR) list_old.next;
+
+#ifdef HANDLE_NEW_OBJ_LIST
+ if (list_old.data == NEW_OBJ_INFO_MAGIC)
+ {
+ Elf32_Obj_Info list_32;
+
+ read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
+ if (list_32.oi_size != sizeof (Elf32_Obj_Info))
+ return;
+ new_lm -> l_variant = OBJ_LIST_32;
+ new_lm -> l_next = (CORE_ADDR) list_32.oi_next;
+
+ target_read_string ((CORE_ADDR) list_32.oi_pathname,
+ &so_list_ptr -> so_name,
+ list_32.oi_pathname_len + 1, &errcode);
+ if (errcode != 0)
+ memory_error (errcode, (CORE_ADDR) list_32.oi_pathname);
+
+ LM_ADDR (so_list_ptr) = (CORE_ADDR) list_32.oi_ehdr;
+ LM_OFFSET (so_list_ptr) =
+ (CORE_ADDR) list_32.oi_ehdr - (CORE_ADDR) list_32.oi_orig_ehdr;
+ }
+ else
+#endif
+ {
+#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
+ /* If we are compiling GDB under N32 ABI, the alignments in
+ the obj struct are different from the O32 ABI and we will get
+ wrong values when accessing the struct.
+ As a workaround we use fixed values which are good for
+ Irix 6.2. */
+ char buf[432];
+
+ read_memory ((CORE_ADDR) list_old.data, buf, sizeof (buf));
+
+ target_read_string (extract_address (&buf[236], 4),
+ &so_list_ptr -> so_name,
+ INT_MAX, &errcode);
+ if (errcode != 0)
+ memory_error (errcode, extract_address (&buf[236], 4));
+
+ LM_ADDR (so_list_ptr) = extract_address (&buf[196], 4);
+ LM_OFFSET (so_list_ptr) =
+ extract_address (&buf[196], 4) - extract_address (&buf[248], 4);
+#else
+ struct obj obj_old;
+
+ read_memory ((CORE_ADDR) list_old.data, (char *) &obj_old,
+ sizeof (struct obj));
+
+ target_read_string ((CORE_ADDR) obj_old.o_path,
+ &so_list_ptr -> so_name,
+ INT_MAX, &errcode);
+ if (errcode != 0)
+ memory_error (errcode, (CORE_ADDR) obj_old.o_path);
+
+ LM_ADDR (so_list_ptr) = (CORE_ADDR) obj_old.o_praw;
+ LM_OFFSET (so_list_ptr) =
+ (CORE_ADDR) obj_old.o_praw - obj_old.o_base_address;
+#endif
+ }
+
+ catch_errors (solib_map_sections, (char *) so_list_ptr,
+ "Error while mapping shared library sections:\n",
+ RETURN_MASK_ALL);
+}
+
+
+/*
+
+LOCAL FUNCTION
+
+ find_solib -- step through list of shared objects
+
+SYNOPSIS
+
+ struct so_list *find_solib (struct so_list *so_list_ptr)
+
+DESCRIPTION
+
+ This module contains the routine which finds the names of any
+ loaded "images" in the current process. The argument in must be
+ NULL on the first call, and then the returned value must be passed
+ in on subsequent calls. This provides the capability to "step" down
+ the list of loaded objects. On the last object, a NULL value is
+ returned.
+ */
+
+static struct so_list *
+find_solib (so_list_ptr)
+ struct so_list *so_list_ptr; /* Last lm or NULL for first one */
+{
+ struct so_list *so_list_next = NULL;
+ struct link_map *lm = NULL;
+ struct so_list *new;
+
+ if (so_list_ptr == NULL)
+ {
+ /* We are setting up for a new scan through the loaded images. */
+ if ((so_list_next = so_list_head) == NULL)
+ {
+ /* Find the first link map list member. */
+ lm = first_link_map_member ();
+ }
+ }
+ else
+ {
+ /* We have been called before, and are in the process of walking
+ the shared library list. Advance to the next shared object. */
+ lm = next_link_map_member (so_list_ptr);
+ so_list_next = so_list_ptr -> next;
+ }
+ if ((so_list_next == NULL) && (lm != NULL))
+ {
+ new = (struct so_list *) xmalloc (sizeof (struct so_list));
+ memset ((char *) new, 0, sizeof (struct so_list));
+ /* Add the new node as the next node in the list, or as the root
+ node if this is the first one. */
+ if (so_list_ptr != NULL)
+ {
+ so_list_ptr -> next = new;
+ }
+ else
+ {
+ so_list_head = new;
+ }
+ so_list_next = new;
+ xfer_link_map_member (new, lm);
+ }
+ return (so_list_next);
+}
+
+/* A small stub to get us past the arg-passing pinhole of catch_errors. */
+
+static int
+symbol_add_stub (arg)
+ char *arg;
+{
+ register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
+ CORE_ADDR text_addr = 0;
+
+ if (so -> textsection)
+ text_addr = so -> textsection -> addr;
+ else if (so -> abfd != NULL)
+ {
+ asection *lowest_sect;
+
+ /* If we didn't find a mapped non zero sized .text section, set up
+ text_addr so that the relocation in symbol_file_add does no harm. */
+
+ lowest_sect = bfd_get_section_by_name (so -> abfd, ".text");
+ if (lowest_sect == NULL)
+ bfd_map_over_sections (so -> abfd, find_lowest_section,
+ (PTR) &lowest_sect);
+ if (lowest_sect)
+ text_addr = bfd_section_vma (so -> abfd, lowest_sect) + LM_OFFSET (so);
+ }
+
+ so -> objfile = symbol_file_add (so -> so_name, so -> from_tty,
+ text_addr,
+ 0, 0, 0, 0, 0);
+ return (1);
+}
+
+/*
+
+GLOBAL FUNCTION
+
+ solib_add -- add a shared library file to the symtab and section list
+
+SYNOPSIS
+
+ void solib_add (char *arg_string, int from_tty,
+ struct target_ops *target)
+
+DESCRIPTION
+
+*/
+
+void
+solib_add (arg_string, from_tty, target)
+ char *arg_string;
+ int from_tty;
+ struct target_ops *target;
+{
+ register struct so_list *so = NULL; /* link map state variable */
+
+ /* Last shared library that we read. */
+ struct so_list *so_last = NULL;
+
+ char *re_err;
+ int count;
+ int old;
+
+ if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
+ {
+ error ("Invalid regexp: %s", re_err);
+ }
+
+ /* Add the shared library sections to the section table of the
+ specified target, if any. */
+ if (target)
+ {
+ /* Count how many new section_table entries there are. */
+ so = NULL;
+ count = 0;
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> so_name[0])
+ {
+ count += so -> sections_end - so -> sections;
+ }
+ }
+
+ if (count)
+ {
+ int update_coreops;
+
+ /* We must update the to_sections field in the core_ops structure
+ here, otherwise we dereference a potential dangling pointer
+ for each call to target_read/write_memory within this routine. */
+ update_coreops = core_ops.to_sections == target->to_sections;
+
+ /* Reallocate the target's section table including the new size. */
+ if (target -> to_sections)
+ {
+ old = target -> to_sections_end - target -> to_sections;
+ target -> to_sections = (struct section_table *)
+ xrealloc ((char *)target -> to_sections,
+ (sizeof (struct section_table)) * (count + old));
+ }
+ else
+ {
+ old = 0;
+ target -> to_sections = (struct section_table *)
+ xmalloc ((sizeof (struct section_table)) * count);
+ }
+ target -> to_sections_end = target -> to_sections + (count + old);
+
+ /* Update the to_sections field in the core_ops structure
+ if needed. */
+ if (update_coreops)
+ {
+ core_ops.to_sections = target->to_sections;
+ core_ops.to_sections_end = target->to_sections_end;
+ }
+
+ /* Add these section table entries to the target's table. */
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> so_name[0])
+ {
+ count = so -> sections_end - so -> sections;
+ memcpy ((char *) (target -> to_sections + old),
+ so -> sections,
+ (sizeof (struct section_table)) * count);
+ old += count;
+ }
+ }
+ }
+ }
+
+ /* Now add the symbol files. */
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> so_name[0] && re_exec (so -> so_name))
+ {
+ so -> from_tty = from_tty;
+ if (so -> symbols_loaded)
+ {
+ if (from_tty)
+ {
+ printf_unfiltered ("Symbols already loaded for %s\n", so -> so_name);
+ }
+ }
+ else if (catch_errors
+ (symbol_add_stub, (char *) so,
+ "Error while reading shared library symbols:\n",
+ RETURN_MASK_ALL))
+ {
+ so_last = so;
+ so -> symbols_loaded = 1;
+ }
+ }
+ }
+
+ /* Getting new symbols may change our opinion about what is
+ frameless. */
+ if (so_last)
+ reinit_frame_cache ();
+}
+
+/*
+
+LOCAL FUNCTION
+
+ info_sharedlibrary_command -- code for "info sharedlibrary"
+
+SYNOPSIS
+
+ static void info_sharedlibrary_command ()
+
+DESCRIPTION
+
+ Walk through the shared library list and print information
+ about each attached library.
+*/
+
+static void
+info_sharedlibrary_command (ignore, from_tty)
+ char *ignore;
+ int from_tty;
+{
+ register struct so_list *so = NULL; /* link map state variable */
+ int header_done = 0;
+
+ if (exec_bfd == NULL)
+ {
+ printf_unfiltered ("No exec file.\n");
+ return;
+ }
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> so_name[0])
+ {
+ if (!header_done)
+ {
+ printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
+ "Shared Object Library");
+ header_done++;
+ }
+ printf_unfiltered ("%-12s",
+ local_hex_string_custom ((unsigned long) LM_ADDR (so),
+ "08l"));
+ printf_unfiltered ("%-12s",
+ local_hex_string_custom ((unsigned long) so -> lmend,
+ "08l"));
+ printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
+ printf_unfiltered ("%s\n", so -> so_name);
+ }
+ }
+ if (so_list_head == NULL)
+ {
+ printf_unfiltered ("No shared libraries loaded at this time.\n");
+ }
+}
+
+/*
+
+GLOBAL FUNCTION
+
+ solib_address -- check to see if an address is in a shared lib
+
+SYNOPSIS
+
+ char *solib_address (CORE_ADDR address)
+
+DESCRIPTION
+
+ Provides a hook for other gdb routines to discover whether or
+ not a particular address is within the mapped address space of
+ a shared library. Any address between the base mapping address
+ and the first address beyond the end of the last mapping, is
+ considered to be within the shared library address space, for
+ our purposes.
+
+ For example, this routine is called at one point to disable
+ breakpoints which are in shared libraries that are not currently
+ mapped in.
+ */
+
+char *
+solib_address (address)
+ CORE_ADDR address;
+{
+ register struct so_list *so = 0; /* link map state variable */
+
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> so_name[0])
+ {
+ if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
+ (address < (CORE_ADDR) so -> lmend))
+ return (so->so_name);
+ }
+ }
+ return (0);
+}
+
+/* Called by free_all_symtabs */
+
+void
+clear_solib()
+{
+ struct so_list *next;
+ char *bfd_filename;
+
+ disable_breakpoints_in_shlibs (1);
+
+ while (so_list_head)
+ {
+ if (so_list_head -> sections)
+ {
+ free ((PTR)so_list_head -> sections);
+ }
+ if (so_list_head -> abfd)
+ {
+ bfd_filename = bfd_get_filename (so_list_head -> abfd);
+ if (!bfd_close (so_list_head -> abfd))
+ warning ("cannot close \"%s\": %s",
+ bfd_filename, bfd_errmsg (bfd_get_error ()));
+ }
+ else
+ /* This happens for the executable on SVR4. */
+ bfd_filename = NULL;
+
+ next = so_list_head -> next;
+ if (bfd_filename)
+ free ((PTR)bfd_filename);
+ free (so_list_head->so_name);
+ free ((PTR)so_list_head);
+ so_list_head = next;
+ }
+ debug_base = 0;
+}
+
+/*
+
+LOCAL FUNCTION
+
+ disable_break -- remove the "mapping changed" breakpoint
+
+SYNOPSIS
+
+ static int disable_break ()
+
+DESCRIPTION
+
+ Removes the breakpoint that gets hit when the dynamic linker
+ completes a mapping change.
+
+*/
+
+static int
+disable_break ()
+{
+ int status = 1;
+
+
+ /* Note that breakpoint address and original contents are in our address
+ space, so we just need to write the original contents back. */
+
+ if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
+ {
+ status = 0;
+ }
+
+ /* For the SVR4 version, we always know the breakpoint address. For the
+ SunOS version we don't know it until the above code is executed.
+ Grumble if we are stopped anywhere besides the breakpoint address. */
+
+ if (stop_pc != breakpoint_addr)
+ {
+ warning ("stopped at unknown breakpoint while handling shared libraries");
+ }
+
+ return (status);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ enable_break -- arrange for dynamic linker to hit breakpoint
+
+SYNOPSIS
+
+ int enable_break (void)
+
+DESCRIPTION
+
+ This functions inserts a breakpoint at the entry point of the
+ main executable, where all shared libraries are mapped in.
+*/
+
+static int
+enable_break ()
+{
+ if (symfile_objfile != NULL
+ && target_insert_breakpoint (symfile_objfile->ei.entry_point,
+ shadow_contents) == 0)
+ {
+ breakpoint_addr = symfile_objfile->ei.entry_point;
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+
+GLOBAL FUNCTION
+
+ solib_create_inferior_hook -- shared library startup support
+
+SYNOPSIS
+
+ void solib_create_inferior_hook()
+
+DESCRIPTION
+
+ When gdb starts up the inferior, it nurses it along (through the
+ shell) until it is ready to execute it's first instruction. At this
+ point, this function gets called via expansion of the macro
+ SOLIB_CREATE_INFERIOR_HOOK.
+
+ For SunOS executables, this first instruction is typically the
+ one at "_start", or a similar text label, regardless of whether
+ the executable is statically or dynamically linked. The runtime
+ startup code takes care of dynamically linking in any shared
+ libraries, once gdb allows the inferior to continue.
+
+ For SVR4 executables, this first instruction is either the first
+ instruction in the dynamic linker (for dynamically linked
+ executables) or the instruction at "start" for statically linked
+ executables. For dynamically linked executables, the system
+ first exec's /lib/libc.so.N, which contains the dynamic linker,
+ and starts it running. The dynamic linker maps in any needed
+ shared libraries, maps in the actual user executable, and then
+ jumps to "start" in the user executable.
+
+ For both SunOS shared libraries, and SVR4 shared libraries, we
+ can arrange to cooperate with the dynamic linker to discover the
+ names of shared libraries that are dynamically linked, and the
+ base addresses to which they are linked.
+
+ This function is responsible for discovering those names and
+ addresses, and saving sufficient information about them to allow
+ their symbols to be read at a later time.
+
+FIXME
+
+ Between enable_break() and disable_break(), this code does not
+ properly handle hitting breakpoints which the user might have
+ set in the startup code or in the dynamic linker itself. Proper
+ handling will probably have to wait until the implementation is
+ changed to use the "breakpoint handler function" method.
+
+ Also, what if child has exit()ed? Must exit loop somehow.
+ */
+
+void
+solib_create_inferior_hook()
+{
+ if (!enable_break ())
+ {
+ warning ("shared library handler failed to enable breakpoint");
+ return;
+ }
+
+ /* Now run the target. It will eventually hit the breakpoint, at
+ which point all of the libraries will have been mapped in and we
+ can go groveling around in the dynamic linker structures to find
+ out what we need to know about them. */
+
+ clear_proceed_status ();
+ stop_soon_quietly = 1;
+ stop_signal = TARGET_SIGNAL_0;
+ do
+ {
+ target_resume (-1, 0, stop_signal);
+ wait_for_inferior ();
+ }
+ while (stop_signal != TARGET_SIGNAL_TRAP);
+
+ /* We are now either at the "mapping complete" breakpoint (or somewhere
+ else, a condition we aren't prepared to deal with anyway), so adjust
+ the PC as necessary after a breakpoint, disable the breakpoint, and
+ add any shared libraries that were mapped in. */
+
+ if (DECR_PC_AFTER_BREAK)
+ {
+ stop_pc -= DECR_PC_AFTER_BREAK;
+ write_register (PC_REGNUM, stop_pc);
+ }
+
+ if (!disable_break ())
+ {
+ warning ("shared library handler failed to disable breakpoint");
+ }
+
+ /* solib_add will call reinit_frame_cache.
+ But we are stopped in the startup code and we might not have symbols
+ for the startup code, so heuristic_proc_start could be called
+ and will put out an annoying warning.
+ Delaying the resetting of stop_soon_quietly until after symbol loading
+ suppresses the warning. */
+ if (auto_solib_add)
+ solib_add ((char *) 0, 0, (struct target_ops *) 0);
+ stop_soon_quietly = 0;
+}
+
+/*
+
+LOCAL FUNCTION
+
+ sharedlibrary_command -- handle command to explicitly add library
+
+SYNOPSIS
+
+ static void sharedlibrary_command (char *args, int from_tty)
+
+DESCRIPTION
+
+*/
+
+static void
+sharedlibrary_command (args, from_tty)
+char *args;
+int from_tty;
+{
+ dont_repeat ();
+ solib_add (args, from_tty, (struct target_ops *) 0);
+}
+
+void
+_initialize_solib()
+{
+ add_com ("sharedlibrary", class_files, sharedlibrary_command,
+ "Load shared object library symbols for files matching REGEXP.");
+ add_info ("sharedlibrary", info_sharedlibrary_command,
+ "Status of loaded shared object libraries.");
+
+ add_show_from_set
+ (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
+ (char *) &auto_solib_add,
+ "Set autoloading of shared library symbols.\n\
+If nonzero, symbols from all shared object libraries will be loaded\n\
+automatically when the inferior begins execution or when the dynamic linker\n\
+informs gdb that a new library has been loaded. Otherwise, symbols\n\
+must be loaded manually, using `sharedlibrary'.",
+ &setlist),
+ &showlist);
+}
+
+
+/* Register that we are able to handle irix5 core file formats.
+ This really is bfd_target_unknown_flavour */
+
+static struct core_fns irix5_core_fns =
+{
+ bfd_target_unknown_flavour,
+ fetch_core_registers,
+ NULL
+};
+
+void
+_initialize_core_irix5 ()
+{
+ add_core_fns (&irix5_core_fns);
+}