1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
/*
* Copyright (C) 2012 Adobe Systems Incorporated. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "Shape.h"
#include "BasicShapeFunctions.h"
#include "BasicShapes.h"
#include "BoxShape.h"
#include "GraphicsContext.h"
#include "ImageBuffer.h"
#include "LengthFunctions.h"
#include "PolygonShape.h"
#include "RasterShape.h"
#include "RectangleShape.h"
#include "WindRule.h"
namespace WebCore {
static std::unique_ptr<Shape> createInsetShape(const FloatRoundedRect& bounds)
{
ASSERT(bounds.rect().width() >= 0 && bounds.rect().height() >= 0);
return std::make_unique<BoxShape>(bounds);
}
static std::unique_ptr<Shape> createCircleShape(const FloatPoint& center, float radius)
{
ASSERT(radius >= 0);
return std::make_unique<RectangleShape>(FloatRect(center.x() - radius, center.y() - radius, radius*2, radius*2), FloatSize(radius, radius));
}
static std::unique_ptr<Shape> createEllipseShape(const FloatPoint& center, const FloatSize& radii)
{
ASSERT(radii.width() >= 0 && radii.height() >= 0);
return std::make_unique<RectangleShape>(FloatRect(center.x() - radii.width(), center.y() - radii.height(), radii.width()*2, radii.height()*2), radii);
}
static std::unique_ptr<Shape> createPolygonShape(std::unique_ptr<Vector<FloatPoint>> vertices, WindRule fillRule)
{
return std::make_unique<PolygonShape>(WTFMove(vertices), fillRule);
}
static inline FloatRect physicalRectToLogical(const FloatRect& rect, float logicalBoxHeight, WritingMode writingMode)
{
if (isHorizontalWritingMode(writingMode))
return rect;
if (isFlippedWritingMode(writingMode))
return FloatRect(rect.y(), logicalBoxHeight - rect.maxX(), rect.height(), rect.width());
return rect.transposedRect();
}
static inline FloatPoint physicalPointToLogical(const FloatPoint& point, float logicalBoxHeight, WritingMode writingMode)
{
if (isHorizontalWritingMode(writingMode))
return point;
if (isFlippedWritingMode(writingMode))
return FloatPoint(point.y(), logicalBoxHeight - point.x());
return point.transposedPoint();
}
static inline FloatSize physicalSizeToLogical(const FloatSize& size, WritingMode writingMode)
{
if (isHorizontalWritingMode(writingMode))
return size;
return size.transposedSize();
}
std::unique_ptr<Shape> Shape::createShape(const BasicShape& basicShape, const LayoutSize& logicalBoxSize, WritingMode writingMode, float margin)
{
bool horizontalWritingMode = isHorizontalWritingMode(writingMode);
float boxWidth = horizontalWritingMode ? logicalBoxSize.width() : logicalBoxSize.height();
float boxHeight = horizontalWritingMode ? logicalBoxSize.height() : logicalBoxSize.width();
std::unique_ptr<Shape> shape;
switch (basicShape.type()) {
case BasicShape::BasicShapeCircleType: {
const auto& circle = downcast<BasicShapeCircle>(basicShape);
float centerX = floatValueForCenterCoordinate(circle.centerX(), boxWidth);
float centerY = floatValueForCenterCoordinate(circle.centerY(), boxHeight);
float radius = circle.floatValueForRadiusInBox(boxWidth, boxHeight);
FloatPoint logicalCenter = physicalPointToLogical(FloatPoint(centerX, centerY), logicalBoxSize.height(), writingMode);
shape = createCircleShape(logicalCenter, radius);
break;
}
case BasicShape::BasicShapeEllipseType: {
const auto& ellipse = downcast<BasicShapeEllipse>(basicShape);
float centerX = floatValueForCenterCoordinate(ellipse.centerX(), boxWidth);
float centerY = floatValueForCenterCoordinate(ellipse.centerY(), boxHeight);
float radiusX = ellipse.floatValueForRadiusInBox(ellipse.radiusX(), centerX, boxWidth);
float radiusY = ellipse.floatValueForRadiusInBox(ellipse.radiusY(), centerY, boxHeight);
FloatPoint logicalCenter = physicalPointToLogical(FloatPoint(centerX, centerY), logicalBoxSize.height(), writingMode);
shape = createEllipseShape(logicalCenter, FloatSize(radiusX, radiusY));
break;
}
case BasicShape::BasicShapePolygonType: {
const auto& polygon = downcast<BasicShapePolygon>(basicShape);
const Vector<Length>& values = polygon.values();
size_t valuesSize = values.size();
ASSERT(!(valuesSize % 2));
std::unique_ptr<Vector<FloatPoint>> vertices = std::make_unique<Vector<FloatPoint>>(valuesSize / 2);
for (unsigned i = 0; i < valuesSize; i += 2) {
FloatPoint vertex(
floatValueForLength(values.at(i), boxWidth),
floatValueForLength(values.at(i + 1), boxHeight));
(*vertices)[i / 2] = physicalPointToLogical(vertex, logicalBoxSize.height(), writingMode);
}
shape = createPolygonShape(WTFMove(vertices), polygon.windRule());
break;
}
case BasicShape::BasicShapeInsetType: {
const auto& inset = downcast<BasicShapeInset>(basicShape);
float left = floatValueForLength(inset.left(), boxWidth);
float top = floatValueForLength(inset.top(), boxHeight);
FloatRect rect(left,
top,
std::max<float>(boxWidth - left - floatValueForLength(inset.right(), boxWidth), 0),
std::max<float>(boxHeight - top - floatValueForLength(inset.bottom(), boxHeight), 0));
FloatRect logicalRect = physicalRectToLogical(rect, logicalBoxSize.height(), writingMode);
FloatSize boxSize(boxWidth, boxHeight);
FloatSize topLeftRadius = physicalSizeToLogical(floatSizeForLengthSize(inset.topLeftRadius(), boxSize), writingMode);
FloatSize topRightRadius = physicalSizeToLogical(floatSizeForLengthSize(inset.topRightRadius(), boxSize), writingMode);
FloatSize bottomLeftRadius = physicalSizeToLogical(floatSizeForLengthSize(inset.bottomLeftRadius(), boxSize), writingMode);
FloatSize bottomRightRadius = physicalSizeToLogical(floatSizeForLengthSize(inset.bottomRightRadius(), boxSize), writingMode);
FloatRoundedRect::Radii cornerRadii(topLeftRadius, topRightRadius, bottomLeftRadius, bottomRightRadius);
cornerRadii.scale(calcBorderRadiiConstraintScaleFor(logicalRect, cornerRadii));
shape = createInsetShape(FloatRoundedRect(logicalRect, cornerRadii));
break;
}
default:
ASSERT_NOT_REACHED();
}
shape->m_writingMode = writingMode;
shape->m_margin = margin;
return shape;
}
std::unique_ptr<Shape> Shape::createRasterShape(Image* image, float threshold, const LayoutRect& imageR, const LayoutRect& marginR, WritingMode writingMode, float margin)
{
ASSERT(marginR.height() >= 0);
IntRect imageRect = snappedIntRect(imageR);
IntRect marginRect = snappedIntRect(marginR);
auto intervals = std::make_unique<RasterShapeIntervals>(marginRect.height(), -marginRect.y());
// FIXME (149420): This buffer should not be unconditionally unaccelerated.
std::unique_ptr<ImageBuffer> imageBuffer = ImageBuffer::create(imageRect.size(), Unaccelerated);
if (imageBuffer) {
GraphicsContext& graphicsContext = imageBuffer->context();
if (image)
graphicsContext.drawImage(*image, IntRect(IntPoint(), imageRect.size()));
RefPtr<Uint8ClampedArray> pixelArray = imageBuffer->getUnmultipliedImageData(IntRect(IntPoint(), imageRect.size()));
unsigned pixelArrayLength = pixelArray->length();
unsigned pixelArrayOffset = 3; // Each pixel is four bytes: RGBA.
uint8_t alphaPixelThreshold = threshold * 255;
int minBufferY = std::max(0, marginRect.y() - imageRect.y());
int maxBufferY = std::min(imageRect.height(), marginRect.maxY() - imageRect.y());
if ((imageRect.area() * 4).unsafeGet() == pixelArrayLength) {
for (int y = minBufferY; y < maxBufferY; ++y) {
int startX = -1;
for (int x = 0; x < imageRect.width(); ++x, pixelArrayOffset += 4) {
uint8_t alpha = pixelArray->item(pixelArrayOffset);
bool alphaAboveThreshold = alpha > alphaPixelThreshold;
if (startX == -1 && alphaAboveThreshold) {
startX = x;
} else if (startX != -1 && (!alphaAboveThreshold || x == imageRect.width() - 1)) {
// We're creating "end-point exclusive" intervals here. The value of an interval's x1 is
// the first index of an above-threshold pixel for y, and the value of x2 is 1+ the index
// of the last above-threshold pixel.
int endX = alphaAboveThreshold ? x + 1 : x;
intervals->intervalAt(y + imageRect.y()).unite(IntShapeInterval(startX + imageRect.x(), endX + imageRect.x()));
startX = -1;
}
}
}
}
}
auto rasterShape = std::make_unique<RasterShape>(WTFMove(intervals), marginRect.size());
rasterShape->m_writingMode = writingMode;
rasterShape->m_margin = margin;
return WTFMove(rasterShape);
}
std::unique_ptr<Shape> Shape::createBoxShape(const RoundedRect& roundedRect, WritingMode writingMode, float margin)
{
ASSERT(roundedRect.rect().width() >= 0 && roundedRect.rect().height() >= 0);
FloatRect rect(0, 0, roundedRect.rect().width(), roundedRect.rect().height());
FloatRoundedRect bounds(rect, roundedRect.radii());
auto shape = std::make_unique<BoxShape>(bounds);
shape->m_writingMode = writingMode;
shape->m_margin = margin;
return WTFMove(shape);
}
} // namespace WebCore
|