summaryrefslogtreecommitdiff
path: root/Source/WebCore/rendering/mathml/RenderMathMLToken.cpp
blob: a5c4c1c0d0c5d9ae60fe112084f684a6719af899 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/*
 * Copyright (C) 2014 Frédéric Wang (fred.wang@free.fr). All rights reserved.
 * Copyright (C) 2016 Igalia S.L.
 * Copyright (C) 2016 Apple Inc.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "RenderMathMLToken.h"

#if ENABLE(MATHML)

#include "MathMLElement.h"
#include "MathMLNames.h"
#include "MathMLTokenElement.h"
#include "PaintInfo.h"
#include "RenderElement.h"
#include "RenderIterator.h"

namespace WebCore {

using namespace MathMLNames;

RenderMathMLToken::RenderMathMLToken(MathMLTokenElement& element, RenderStyle&& style)
    : RenderMathMLBlock(element, WTFMove(style))
{
}

RenderMathMLToken::RenderMathMLToken(Document& document, RenderStyle&& style)
    : RenderMathMLBlock(document, WTFMove(style))
{
}

MathMLTokenElement& RenderMathMLToken::element()
{
    return static_cast<MathMLTokenElement&>(nodeForNonAnonymous());
}

void RenderMathMLToken::updateTokenContent()
{
    RenderMathMLBlock::updateFromElement();
    setMathVariantGlyphDirty();
}

// Entries for the mathvariant lookup tables.
// 'key' represents the Unicode character to be transformed and is used for searching the tables.
// 'replacement' represents the mapped mathvariant Unicode character.
struct MathVariantMapping {
    uint32_t key;
    uint32_t replacement;
};
static inline UChar32 ExtractKey(const MathVariantMapping* entry) { return entry->key; }
static UChar32 MathVariantMappingSearch(uint32_t key, const MathVariantMapping* table, size_t tableLength)
{
    if (const auto* entry = tryBinarySearch<const MathVariantMapping, UChar32>(table, tableLength, key, ExtractKey))
        return entry->replacement;

    return 0;
}

// Lookup tables for use with mathvariant mappings to transform a unicode character point to another unicode character that indicates the proper output.
// key represents one of two concepts.
// 1. In the Latin table it represents a hole in the mathematical alphanumeric block, where the character that should occupy that position is located elsewhere.
// 2. It represents an Arabic letter.
//  As a replacement, 0 is reserved to indicate no mapping was found.
static const MathVariantMapping arabicInitialMapTable[] = {
    { 0x628, 0x1EE21 },
    { 0x62A, 0x1EE35 },
    { 0x62B, 0x1EE36 },
    { 0x62C, 0x1EE22 },
    { 0x62D, 0x1EE27 },
    { 0x62E, 0x1EE37 },
    { 0x633, 0x1EE2E },
    { 0x634, 0x1EE34 },
    { 0x635, 0x1EE31 },
    { 0x636, 0x1EE39 },
    { 0x639, 0x1EE2F },
    { 0x63A, 0x1EE3B },
    { 0x641, 0x1EE30 },
    { 0x642, 0x1EE32 },
    { 0x643, 0x1EE2A },
    { 0x644, 0x1EE2B },
    { 0x645, 0x1EE2C },
    { 0x646, 0x1EE2D },
    { 0x647, 0x1EE24 },
    { 0x64A, 0x1EE29 }
};

static const MathVariantMapping arabicTailedMapTable[] = {
    { 0x62C, 0x1EE42 },
    { 0x62D, 0x1EE47 },
    { 0x62E, 0x1EE57 },
    { 0x633, 0x1EE4E },
    { 0x634, 0x1EE54 },
    { 0x635, 0x1EE51 },
    { 0x636, 0x1EE59 },
    { 0x639, 0x1EE4F },
    { 0x63A, 0x1EE5B },
    { 0x642, 0x1EE52 },
    { 0x644, 0x1EE4B },
    { 0x646, 0x1EE4D },
    { 0x64A, 0x1EE49 },
    { 0x66F, 0x1EE5F },
    { 0x6BA, 0x1EE5D }
};

static const MathVariantMapping arabicStretchedMapTable[] = {
    { 0x628, 0x1EE61 },
    { 0x62A, 0x1EE75 },
    { 0x62B, 0x1EE76 },
    { 0x62C, 0x1EE62 },
    { 0x62D, 0x1EE67 },
    { 0x62E, 0x1EE77 },
    { 0x633, 0x1EE6E },
    { 0x634, 0x1EE74 },
    { 0x635, 0x1EE71 },
    { 0x636, 0x1EE79 },
    { 0x637, 0x1EE68 },
    { 0x638, 0x1EE7A },
    { 0x639, 0x1EE6F },
    { 0x63A, 0x1EE7B },
    { 0x641, 0x1EE70 },
    { 0x642, 0x1EE72 },
    { 0x643, 0x1EE6A },
    { 0x645, 0x1EE6C },
    { 0x646, 0x1EE6D },
    { 0x647, 0x1EE64 },
    { 0x64A, 0x1EE69 },
    { 0x66E, 0x1EE7C },
    { 0x6A1, 0x1EE7E }
};

static const MathVariantMapping arabicLoopedMapTable[] = {
    { 0x627, 0x1EE80 },
    { 0x628, 0x1EE81 },
    { 0x62A, 0x1EE95 },
    { 0x62B, 0x1EE96 },
    { 0x62C, 0x1EE82 },
    { 0x62D, 0x1EE87 },
    { 0x62E, 0x1EE97 },
    { 0x62F, 0x1EE83 },
    { 0x630, 0x1EE98 },
    { 0x631, 0x1EE93 },
    { 0x632, 0x1EE86 },
    { 0x633, 0x1EE8E },
    { 0x634, 0x1EE94 },
    { 0x635, 0x1EE91 },
    { 0x636, 0x1EE99 },
    { 0x637, 0x1EE88 },
    { 0x638, 0x1EE9A },
    { 0x639, 0x1EE8F },
    { 0x63A, 0x1EE9B },
    { 0x641, 0x1EE90 },
    { 0x642, 0x1EE92 },
    { 0x644, 0x1EE8B },
    { 0x645, 0x1EE8C },
    { 0x646, 0x1EE8D },
    { 0x647, 0x1EE84 },
    { 0x648, 0x1EE85 },
    { 0x64A, 0x1EE89 }
};

static const MathVariantMapping arabicDoubleMapTable[] = {
    { 0x628, 0x1EEA1 },
    { 0x62A, 0x1EEB5 },
    { 0x62B, 0x1EEB6 },
    { 0x62C, 0x1EEA2 },
    { 0x62D, 0x1EEA7 },
    { 0x62E, 0x1EEB7 },
    { 0x62F, 0x1EEA3 },
    { 0x630, 0x1EEB8 },
    { 0x631, 0x1EEB3 },
    { 0x632, 0x1EEA6 },
    { 0x633, 0x1EEAE },
    { 0x634, 0x1EEB4 },
    { 0x635, 0x1EEB1 },
    { 0x636, 0x1EEB9 },
    { 0x637, 0x1EEA8 },
    { 0x638, 0x1EEBA },
    { 0x639, 0x1EEAF },
    { 0x63A, 0x1EEBB },
    { 0x641, 0x1EEB0 },
    { 0x642, 0x1EEB2 },
    { 0x644, 0x1EEAB },
    { 0x645, 0x1EEAC },
    { 0x646, 0x1EEAD },
    { 0x648, 0x1EEA5 },
    { 0x64A, 0x1EEA9 }
};

static const MathVariantMapping latinExceptionMapTable[] = {
    { 0x1D455, 0x210E },
    { 0x1D49D, 0x212C },
    { 0x1D4A0, 0x2130 },
    { 0x1D4A1, 0x2131 },
    { 0x1D4A3, 0x210B },
    { 0x1D4A4, 0x2110 },
    { 0x1D4A7, 0x2112 },
    { 0x1D4A8, 0x2133 },
    { 0x1D4AD, 0x211B },
    { 0x1D4BA, 0x212F },
    { 0x1D4BC, 0x210A },
    { 0x1D4C4, 0x2134 },
    { 0x1D506, 0x212D },
    { 0x1D50B, 0x210C },
    { 0x1D50C, 0x2111 },
    { 0x1D515, 0x211C },
    { 0x1D51D, 0x2128 },
    { 0x1D53A, 0x2102 },
    { 0x1D53F, 0x210D },
    { 0x1D545, 0x2115 },
    { 0x1D547, 0x2119 },
    { 0x1D548, 0x211A },
    { 0x1D549, 0x211D },
    { 0x1D551, 0x2124 }
};

const UChar32 greekUpperTheta = 0x03F4;
const UChar32 holeGreekUpperTheta = 0x03A2;
const UChar32 nabla = 0x2207;
const UChar32 partialDifferential = 0x2202;
const UChar32 greekUpperAlpha = 0x0391;
const UChar32 greekUpperOmega = 0x03A9;
const UChar32 greekLowerAlpha = 0x03B1;
const UChar32 greekLowerOmega = 0x03C9;
const UChar32 greekLunateEpsilonSymbol = 0x03F5;
const UChar32 greekThetaSymbol = 0x03D1;
const UChar32 greekKappaSymbol = 0x03F0;
const UChar32 greekPhiSymbol = 0x03D5;
const UChar32 greekRhoSymbol = 0x03F1;
const UChar32 greekPiSymbol = 0x03D6;
const UChar32 greekLetterDigamma = 0x03DC;
const UChar32 greekSmallLetterDigamma = 0x03DD;
const UChar32 mathBoldCapitalDigamma = 0x1D7CA;
const UChar32 mathBoldSmallDigamma = 0x1D7CB;

const UChar32 latinSmallLetterDotlessI = 0x0131;
const UChar32 latinSmallLetterDotlessJ = 0x0237;

const UChar32 mathItalicSmallDotlessI = 0x1D6A4;
const UChar32 mathItalicSmallDotlessJ = 0x1D6A5;

const UChar32 mathBoldUpperA = 0x1D400;
const UChar32 mathItalicUpperA = 0x1D434;
const UChar32 mathBoldSmallA = 0x1D41A;
const UChar32 mathBoldUpperAlpha = 0x1D6A8;
const UChar32 mathBoldSmallAlpha = 0x1D6C2;
const UChar32 mathItalicUpperAlpha = 0x1D6E2;
const UChar32 mathBoldDigitZero = 0x1D7CE;
const UChar32 mathDoubleStruckZero = 0x1D7D8;

const UChar32 mathBoldUpperTheta = 0x1D6B9;
const UChar32 mathBoldNabla = 0x1D6C1;
const UChar32 mathBoldPartialDifferential = 0x1D6DB;
const UChar32 mathBoldEpsilonSymbol = 0x1D6DC;
const UChar32 mathBoldThetaSymbol = 0x1D6DD;
const UChar32 mathBoldKappaSymbol = 0x1D6DE;
const UChar32 mathBoldPhiSymbol = 0x1D6DF;
const UChar32 mathBoldRhoSymbol = 0x1D6E0;
const UChar32 mathBoldPiSymbol = 0x1D6E1;

// Performs the character mapping needed to implement MathML's mathvariant attribute.
// It takes a unicode character and maps it to its appropriate mathvariant counterpart specified by mathvariant.
// The mapped character is typically located within Unicode's mathematical blocks (0x1D***, 0x1EE**) but there are exceptions which this function accounts for.
// Characters without a valid mapping or valid aMathvar value are returned
// unaltered.
// Characters already in the mathematical blocks (or are one of the exceptions) are never transformed.
// Acceptable values for mathvariant are specified in MathMLElement.h
// The transformable characters can be found at:
// http://lists.w3.org/Archives/Public/www-math/2013Sep/0012.html and
// https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols
static UChar32 mathVariant(UChar32 codePoint, MathMLElement::MathVariant mathvariant)
{
    ASSERT(mathvariant >= MathMLElement::MathVariant::Normal && mathvariant <= MathMLElement::MathVariant::Stretched);

    if (mathvariant == MathMLElement::MathVariant::Normal)
        return codePoint; // Nothing to do here.

    // Exceptional characters with at most one possible transformation.
    if (codePoint == holeGreekUpperTheta)
        return codePoint; // Nothing at this code point is transformed
    if (codePoint == greekLetterDigamma) {
        if (mathvariant == MathMLElement::MathVariant::Bold)
            return mathBoldCapitalDigamma;
        return codePoint;
    }
    if (codePoint == greekSmallLetterDigamma) {
        if (mathvariant == MathMLElement::MathVariant::Bold)
            return mathBoldSmallDigamma;
        return codePoint;
    }
    if (codePoint == latinSmallLetterDotlessI) {
        if (mathvariant == MathMLElement::MathVariant::Italic)
            return mathItalicSmallDotlessI;
        return codePoint;
    }
    if (codePoint == latinSmallLetterDotlessJ) {
        if (mathvariant == MathMLElement::MathVariant::Italic)
            return mathItalicSmallDotlessJ;
        return codePoint;
    }

    // The Unicode mathematical blocks are divided into four segments: Latin, Greek, numbers and Arabic.
    // In the case of the first three baseChar represents the relative order in which the characters are encoded in the Unicode mathematical block, normalised to the first character of that sequence.
    UChar32 baseChar = 0;
    enum CharacterType {
        Latin,
        Greekish,
        Number,
        Arabic
    };
    CharacterType varType;
    if (isASCIIUpper(codePoint)) {
        baseChar = codePoint - 'A';
        varType = Latin;
    } else if (isASCIILower(codePoint)) {
        // Lowercase characters are placed immediately after the uppercase characters in the Unicode mathematical block.
        // The constant subtraction represents the number of characters between the start of the sequence (capital A) and the first lowercase letter.
        baseChar = mathBoldSmallA - mathBoldUpperA + codePoint - 'a';
        varType = Latin;
    } else if (isASCIIDigit(codePoint)) {
        baseChar = codePoint - '0';
        varType = Number;
    } else if (greekUpperAlpha <= codePoint && codePoint <= greekUpperOmega) {
        baseChar = codePoint - greekUpperAlpha;
        varType = Greekish;
    } else if (greekLowerAlpha <= codePoint && codePoint <= greekLowerOmega) {
        // Lowercase Greek comes after uppercase Greek.
        // Note in this instance the presence of an additional character (Nabla) between the end of the uppercase Greek characters and the lowercase ones.
        baseChar = mathBoldSmallAlpha - mathBoldUpperAlpha + codePoint - greekLowerAlpha;
        varType = Greekish;
    } else if (0x0600 <= codePoint && codePoint <= 0x06FF) {
        // Arabic characters are defined within this range
        varType = Arabic;
    } else {
        switch (codePoint) {
        case greekUpperTheta:
            baseChar = mathBoldUpperTheta - mathBoldUpperAlpha;
            break;
        case nabla:
            baseChar = mathBoldNabla - mathBoldUpperAlpha;
            break;
        case partialDifferential:
            baseChar = mathBoldPartialDifferential - mathBoldUpperAlpha;
            break;
        case greekLunateEpsilonSymbol:
            baseChar = mathBoldEpsilonSymbol - mathBoldUpperAlpha;
            break;
        case greekThetaSymbol:
            baseChar = mathBoldThetaSymbol - mathBoldUpperAlpha;
            break;
        case greekKappaSymbol:
            baseChar = mathBoldKappaSymbol - mathBoldUpperAlpha;
            break;
        case greekPhiSymbol:
            baseChar = mathBoldPhiSymbol - mathBoldUpperAlpha;
            break;
        case greekRhoSymbol:
            baseChar = mathBoldRhoSymbol - mathBoldUpperAlpha;
            break;
        case greekPiSymbol:
            baseChar = mathBoldPiSymbol - mathBoldUpperAlpha;
            break;
        default:
            return codePoint;
        }
        varType = Greekish;
    }

    int8_t multiplier;
    if (varType == Number) {
        // Each possible number mathvariant is encoded in a single, contiguous block.
        // For example the beginning of the double struck number range follows immediately after the end of the bold number range.
        // multiplier represents the order of the sequences relative to the first one.
        switch (mathvariant) {
        case MathMLElement::MathVariant::Bold:
            multiplier = 0;
            break;
        case MathMLElement::MathVariant::DoubleStruck:
            multiplier = 1;
            break;
        case MathMLElement::MathVariant::SansSerif:
            multiplier = 2;
            break;
        case MathMLElement::MathVariant::BoldSansSerif:
            multiplier = 3;
            break;
        case MathMLElement::MathVariant::Monospace:
            multiplier = 4;
            break;
        default:
            // This mathvariant isn't defined for numbers or is otherwise normal.
            return codePoint;
        }
        // As the ranges are contiguous, to find the desired mathvariant range it is sufficient to
        // multiply the position within the sequence order (multiplier) with the period of the sequence (which is constant for all number sequences)
        // and to add the character point of the first character within the number mathvariant range.
        // To this the baseChar calculated earlier is added to obtain the final code point.
        return baseChar + multiplier * (mathDoubleStruckZero - mathBoldDigitZero) + mathBoldDigitZero;
    }
    if (varType == Greekish) {
        switch (mathvariant) {
        case MathMLElement::MathVariant::Bold:
            multiplier = 0;
            break;
        case MathMLElement::MathVariant::Italic:
            multiplier = 1;
            break;
        case MathMLElement::MathVariant::BoldItalic:
            multiplier = 2;
            break;
        case MathMLElement::MathVariant::BoldSansSerif:
            multiplier = 3;
            break;
        case MathMLElement::MathVariant::SansSerifBoldItalic:
            multiplier = 4;
            break;
        default:
            // This mathvariant isn't defined for Greek or is otherwise normal.
            return codePoint;
        }
        // See the Number case for an explanation of the following calculation.
        return baseChar + mathBoldUpperAlpha + multiplier * (mathItalicUpperAlpha - mathBoldUpperAlpha);
    }

    UChar32 tempChar = 0;
    UChar32 newChar;
    if (varType == Arabic) {
        // The Arabic mathematical block is not continuous, nor does it have a monotonic mapping to the unencoded characters, requiring the use of a lookup table.
        const MathVariantMapping* mapTable;
        size_t tableLength;
        switch (mathvariant) {
        case MathMLElement::MathVariant::Initial:
            mapTable = arabicInitialMapTable;
            tableLength = WTF_ARRAY_LENGTH(arabicInitialMapTable);
            break;
        case MathMLElement::MathVariant::Tailed:
            mapTable = arabicTailedMapTable;
            tableLength = WTF_ARRAY_LENGTH(arabicTailedMapTable);
            break;
        case MathMLElement::MathVariant::Stretched:
            mapTable = arabicStretchedMapTable;
            tableLength = WTF_ARRAY_LENGTH(arabicStretchedMapTable);
            break;
        case MathMLElement::MathVariant::Looped:
            mapTable = arabicLoopedMapTable;
            tableLength = WTF_ARRAY_LENGTH(arabicLoopedMapTable);
            break;
        case MathMLElement::MathVariant::DoubleStruck:
            mapTable = arabicDoubleMapTable;
            tableLength = WTF_ARRAY_LENGTH(arabicDoubleMapTable);
            break;
        default:
            return codePoint; // No valid transformations exist.
        }
        newChar = MathVariantMappingSearch(codePoint, mapTable, tableLength);
    } else {
        // Must be Latin
        if (mathvariant > MathMLElement::MathVariant::Monospace)
            return codePoint; // Latin doesn't support the Arabic mathvariants
        multiplier = static_cast<int>(mathvariant) - 2;
        // This is possible because the values for NS_MATHML_MATHVARIANT_* are chosen to coincide with the order in which the encoded mathvariant characters are located within their unicode block (less an offset to avoid None and Normal variants)
        // See the Number case for an explanation of the following calculation
        tempChar = baseChar + mathBoldUpperA + multiplier * (mathItalicUpperA - mathBoldUpperA);
        // There are roughly twenty characters that are located outside of the mathematical block, so the spaces where they ought to be are used as keys for a lookup table containing the correct character mappings.
        newChar = MathVariantMappingSearch(tempChar, latinExceptionMapTable, WTF_ARRAY_LENGTH(latinExceptionMapTable));
    }

    if (newChar)
        return newChar;
    if (varType == Latin)
        return tempChar;
    return codePoint; // This is an Arabic character without a corresponding mapping.
}

void RenderMathMLToken::computePreferredLogicalWidths()
{
    ASSERT(preferredLogicalWidthsDirty());

    if (m_mathVariantGlyphDirty)
        updateMathVariantGlyph();

    if (m_mathVariantCodePoint) {
        auto mathVariantGlyph = style().fontCascade().glyphDataForCharacter(m_mathVariantCodePoint.value(), m_mathVariantIsMirrored);
        if (mathVariantGlyph.font) {
            m_maxPreferredLogicalWidth = m_minPreferredLogicalWidth = mathVariantGlyph.font->widthForGlyph(mathVariantGlyph.glyph);
            setPreferredLogicalWidthsDirty(false);
            return;
        }
    }

    RenderMathMLBlock::computePreferredLogicalWidths();
}

void RenderMathMLToken::updateMathVariantGlyph()
{
    ASSERT(m_mathVariantGlyphDirty);

    m_mathVariantCodePoint = std::nullopt;
    m_mathVariantGlyphDirty = false;

    // Early return if the token element contains RenderElements.
    // Note that the renderers corresponding to the children of the token element are wrapped inside an anonymous RenderBlock.
    if (const auto& block = downcast<RenderElement>(firstChild())) {
        if (childrenOfType<RenderElement>(*block).first())
            return;
    }

    const auto& tokenElement = element();
    if (auto codePoint = MathMLTokenElement::convertToSingleCodePoint(element().textContent())) {
        MathMLElement::MathVariant mathvariant = mathMLStyle().mathVariant();
        if (mathvariant == MathMLElement::MathVariant::None)
            mathvariant = tokenElement.hasTagName(MathMLNames::miTag) ? MathMLElement::MathVariant::Italic : MathMLElement::MathVariant::Normal;
        UChar32 transformedCodePoint = mathVariant(codePoint.value(), mathvariant);
        if (transformedCodePoint != codePoint.value()) {
            m_mathVariantCodePoint = mathVariant(codePoint.value(), mathvariant);
            m_mathVariantIsMirrored = !style().isLeftToRightDirection();
        }
    }
}

void RenderMathMLToken::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
    RenderMathMLBlock::styleDidChange(diff, oldStyle);
    setMathVariantGlyphDirty();
}

void RenderMathMLToken::updateFromElement()
{
    RenderMathMLBlock::updateFromElement();
    setMathVariantGlyphDirty();
}

std::optional<int> RenderMathMLToken::firstLineBaseline() const
{
    if (m_mathVariantCodePoint) {
        auto mathVariantGlyph = style().fontCascade().glyphDataForCharacter(m_mathVariantCodePoint.value(), m_mathVariantIsMirrored);
        if (mathVariantGlyph.font)
            return std::optional<int>(static_cast<int>(lroundf(-mathVariantGlyph.font->boundsForGlyph(mathVariantGlyph.glyph).y())));
    }
    return RenderMathMLBlock::firstLineBaseline();
}

void RenderMathMLToken::layoutBlock(bool relayoutChildren, LayoutUnit pageLogicalHeight)
{
    ASSERT(needsLayout());

    if (!relayoutChildren && simplifiedLayout())
        return;

    GlyphData mathVariantGlyph;
    if (m_mathVariantCodePoint)
        mathVariantGlyph = style().fontCascade().glyphDataForCharacter(m_mathVariantCodePoint.value(), m_mathVariantIsMirrored);

    if (!mathVariantGlyph.font) {
        RenderMathMLBlock::layoutBlock(relayoutChildren, pageLogicalHeight);
        return;
    }

    for (auto* child = firstChildBox(); child; child = child->nextSiblingBox())
        child->layoutIfNeeded();

    setLogicalWidth(mathVariantGlyph.font->widthForGlyph(mathVariantGlyph.glyph));
    setLogicalHeight(mathVariantGlyph.font->boundsForGlyph(mathVariantGlyph.glyph).height());

    clearNeedsLayout();
}

void RenderMathMLToken::paint(PaintInfo& info, const LayoutPoint& paintOffset)
{
    RenderMathMLBlock::paint(info, paintOffset);

    // FIXME: Instead of using DrawGlyph, we may consider using the more general TextPainter so that we can apply mathvariant to strings with an arbitrary number of characters and preserve advanced CSS effects (text-shadow, etc).
    if (info.context().paintingDisabled() || info.phase != PaintPhaseForeground || style().visibility() != VISIBLE || !m_mathVariantCodePoint)
        return;

    auto mathVariantGlyph = style().fontCascade().glyphDataForCharacter(m_mathVariantCodePoint.value(), m_mathVariantIsMirrored);
    if (!mathVariantGlyph.font)
        return;

    GraphicsContextStateSaver stateSaver(info.context());
    info.context().setFillColor(style().visitedDependentColor(CSSPropertyColor));

    GlyphBuffer buffer;
    buffer.add(mathVariantGlyph.glyph, mathVariantGlyph.font, mathVariantGlyph.font->widthForGlyph(mathVariantGlyph.glyph));
    LayoutUnit glyphAscent = static_cast<int>(lroundf(-mathVariantGlyph.font->boundsForGlyph(mathVariantGlyph.glyph).y()));
    info.context().drawGlyphs(style().fontCascade(), *mathVariantGlyph.font, buffer, 0, 1, paintOffset + location() + LayoutPoint(0, glyphAscent));
}

void RenderMathMLToken::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& paintInfoForChild, bool usePrintRect)
{
    if (m_mathVariantCodePoint) {
        auto mathVariantGlyph = style().fontCascade().glyphDataForCharacter(m_mathVariantCodePoint.value(), m_mathVariantIsMirrored);
        if (mathVariantGlyph.font)
            return;
    }

    RenderMathMLBlock::paintChildren(paintInfo, paintOffset, paintInfoForChild, usePrintRect);
}

}

#endif // ENABLE(MATHML)