summaryrefslogtreecommitdiff
path: root/Source/WebCore/platform/graphics/cairo/ImageBufferCairo.cpp
blob: 041373a0168a05a984ee0936e4f0cae827a798d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/*
 * Copyright (C) 2006 Nikolas Zimmermann <zimmermann@kde.org>
 * Copyright (C) 2007 Holger Hans Peter Freyther <zecke@selfish.org>
 * Copyright (C) 2008, 2009 Dirk Schulze <krit@webkit.org>
 * Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "ImageBuffer.h"

#if USE(CAIRO)

#include "BitmapImage.h"
#include "CairoUtilities.h"
#include "Color.h"
#include "GraphicsContext.h"
#include "MIMETypeRegistry.h"
#include "NotImplemented.h"
#include "Pattern.h"
#include "PlatformContextCairo.h"
#include "RefPtrCairo.h"
#include <cairo.h>
#include <runtime/JSCInlines.h>
#include <runtime/TypedArrayInlines.h>
#include <wtf/Vector.h>
#include <wtf/text/Base64.h>
#include <wtf/text/WTFString.h>

#if ENABLE(ACCELERATED_2D_CANVAS)
#include "GLContext.h"
#include "TextureMapperGL.h"
#include <cairo-gl.h>

#if USE(OPENGL_ES_2)
#include <GLES2/gl2.h>
#else
#include "OpenGLShims.h"
#endif

#if USE(COORDINATED_GRAPHICS_THREADED)
#include "TextureMapperPlatformLayerBuffer.h"
#include "TextureMapperPlatformLayerProxy.h"
#endif
#endif

using namespace std;

namespace WebCore {

ImageBufferData::ImageBufferData(const IntSize& size, RenderingMode renderingMode)
    : m_platformContext(0)
    , m_size(size)
    , m_renderingMode(renderingMode)
#if ENABLE(ACCELERATED_2D_CANVAS)
#if USE(COORDINATED_GRAPHICS_THREADED)
    , m_compositorTexture(0)
#endif
    , m_texture(0)
#endif
{
#if ENABLE(ACCELERATED_2D_CANVAS) && USE(COORDINATED_GRAPHICS_THREADED)
    if (m_renderingMode == RenderingMode::Accelerated)
        m_platformLayerProxy = adoptRef(new TextureMapperPlatformLayerProxy);
#endif
}

ImageBufferData::~ImageBufferData()
{
    if (m_renderingMode != Accelerated)
        return;

#if ENABLE(ACCELERATED_2D_CANVAS)
    GLContext* previousActiveContext = GLContext::current();
    PlatformDisplay::sharedDisplayForCompositing().sharingGLContext()->makeContextCurrent();

    if (m_texture)
        glDeleteTextures(1, &m_texture);

#if USE(COORDINATED_GRAPHICS_THREADED)
    if (m_compositorTexture)
        glDeleteTextures(1, &m_compositorTexture);
#endif

    if (previousActiveContext)
        previousActiveContext->makeContextCurrent();
#endif
}

#if ENABLE(ACCELERATED_2D_CANVAS)
#if USE(COORDINATED_GRAPHICS_THREADED)
void ImageBufferData::createCompositorBuffer()
{
    auto* context = PlatformDisplay::sharedDisplayForCompositing().sharingGLContext();
    context->makeContextCurrent();

    glGenTextures(1, &m_compositorTexture);
    glBindTexture(GL_TEXTURE_2D, m_compositorTexture);
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
    glTexImage2D(GL_TEXTURE_2D, 0 , GL_RGBA, m_size.width(), m_size.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);

    m_compositorSurface = adoptRef(cairo_gl_surface_create_for_texture(context->cairoDevice(), CAIRO_CONTENT_COLOR_ALPHA, m_compositorTexture, m_size.width(), m_size.height()));
    m_compositorCr = adoptRef(cairo_create(m_compositorSurface.get()));
    cairo_set_antialias(m_compositorCr.get(), CAIRO_ANTIALIAS_NONE);
}

void ImageBufferData::swapBuffersIfNeeded()
{
    GLContext* previousActiveContext = GLContext::current();

    if (!m_compositorTexture) {
        createCompositorBuffer();
        LockHolder holder(m_platformLayerProxy->lock());
        m_platformLayerProxy->pushNextBuffer(std::make_unique<TextureMapperPlatformLayerBuffer>(m_compositorTexture, m_size, TextureMapperGL::ShouldBlend));
    }

    // It would be great if we could just swap the buffers here as we do with webgl, but that breaks the cases
    // where one frame uses the content already rendered in the previous frame. So we just copy the content
    // into the compositor buffer.
    cairo_set_source_surface(m_compositorCr.get(), m_surface.get(), 0, 0);
    cairo_set_operator(m_compositorCr.get(), CAIRO_OPERATOR_SOURCE);
    cairo_paint(m_compositorCr.get());

    if (previousActiveContext)
        previousActiveContext->makeContextCurrent();
}
#endif

void clearSurface(cairo_surface_t* surface)
{
    if (cairo_surface_status(surface) != CAIRO_STATUS_SUCCESS)
        return;

    RefPtr<cairo_t> cr = adoptRef(cairo_create(surface));
    cairo_set_operator(cr.get(), CAIRO_OPERATOR_CLEAR);
    cairo_paint(cr.get());
}

void ImageBufferData::createCairoGLSurface()
{
    auto* context = PlatformDisplay::sharedDisplayForCompositing().sharingGLContext();
    context->makeContextCurrent();

    // We must generate the texture ourselves, because there is no Cairo API for extracting it
    // from a pre-existing surface.
    glGenTextures(1, &m_texture);
    glBindTexture(GL_TEXTURE_2D, m_texture);
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

    glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

    glTexImage2D(GL_TEXTURE_2D, 0 /* level */, GL_RGBA, m_size.width(), m_size.height(), 0 /* border */, GL_RGBA, GL_UNSIGNED_BYTE, 0);

    cairo_device_t* device = context->cairoDevice();

    // Thread-awareness is a huge performance hit on non-Intel drivers.
    cairo_gl_device_set_thread_aware(device, FALSE);

    m_surface = adoptRef(cairo_gl_surface_create_for_texture(device, CAIRO_CONTENT_COLOR_ALPHA, m_texture, m_size.width(), m_size.height()));
    clearSurface(m_surface.get());
}
#endif

ImageBuffer::ImageBuffer(const FloatSize& size, float resolutionScale, ColorSpace, RenderingMode renderingMode, bool& success)
    : m_data(IntSize(size), renderingMode)
    , m_logicalSize(size)
    , m_resolutionScale(resolutionScale)
{
    success = false;  // Make early return mean error.

    float scaledWidth = ceilf(m_resolutionScale * size.width());
    float scaledHeight = ceilf(m_resolutionScale * size.height());

    // FIXME: Should we automatically use a lower resolution?
    if (!FloatSize(scaledWidth, scaledHeight).isExpressibleAsIntSize())
        return;

    m_size = IntSize(scaledWidth, scaledHeight);
    m_data.m_size = m_size;

    if (m_size.isEmpty())
        return;

#if ENABLE(ACCELERATED_2D_CANVAS)
    if (m_data.m_renderingMode == Accelerated) {
        m_data.createCairoGLSurface();
        if (!m_data.m_surface || cairo_surface_status(m_data.m_surface.get()) != CAIRO_STATUS_SUCCESS)
            m_data.m_renderingMode = Unaccelerated; // If allocation fails, fall back to non-accelerated path.
    }
    if (m_data.m_renderingMode == Unaccelerated)
#else
    ASSERT(m_data.m_renderingMode != Accelerated);
#endif
    {
        static cairo_user_data_key_t s_surfaceDataKey;

        int stride = cairo_format_stride_for_width(CAIRO_FORMAT_ARGB32, m_size.width());
        auto* surfaceData = fastZeroedMalloc(m_size.height() * stride);

        m_data.m_surface = adoptRef(cairo_image_surface_create_for_data(static_cast<unsigned char*>(surfaceData), CAIRO_FORMAT_ARGB32, m_size.width(), m_size.height(), stride));
        cairo_surface_set_user_data(m_data.m_surface.get(), &s_surfaceDataKey, surfaceData, [](void* data) { fastFree(data); });
    }

    if (cairo_surface_status(m_data.m_surface.get()) != CAIRO_STATUS_SUCCESS)
        return;  // create will notice we didn't set m_initialized and fail.

    cairoSurfaceSetDeviceScale(m_data.m_surface.get(), m_resolutionScale, m_resolutionScale);

    RefPtr<cairo_t> cr = adoptRef(cairo_create(m_data.m_surface.get()));
    m_data.m_platformContext.setCr(cr.get());
    m_data.m_context = std::make_unique<GraphicsContext>(&m_data.m_platformContext);
    success = true;
}

ImageBuffer::~ImageBuffer()
{
}

std::unique_ptr<ImageBuffer> ImageBuffer::createCompatibleBuffer(const FloatSize& size, const GraphicsContext& context)
{
    return createCompatibleBuffer(size, ColorSpaceSRGB, context);
}

GraphicsContext& ImageBuffer::context() const
{
    return *m_data.m_context;
}

RefPtr<Image> ImageBuffer::sinkIntoImage(std::unique_ptr<ImageBuffer> imageBuffer, ScaleBehavior scaleBehavior)
{
    return imageBuffer->copyImage(DontCopyBackingStore, scaleBehavior);
}

RefPtr<Image> ImageBuffer::copyImage(BackingStoreCopy copyBehavior, ScaleBehavior) const
{
    // copyCairoImageSurface inherits surface's device scale factor.
    if (copyBehavior == CopyBackingStore)
        return BitmapImage::create(copyCairoImageSurface(m_data.m_surface.get()));

    // BitmapImage will release the passed in surface on destruction
    return BitmapImage::create(RefPtr<cairo_surface_t>(m_data.m_surface));
}

BackingStoreCopy ImageBuffer::fastCopyImageMode()
{
    return DontCopyBackingStore;
}

void ImageBuffer::drawConsuming(std::unique_ptr<ImageBuffer> imageBuffer, GraphicsContext& destContext, const FloatRect& destRect, const FloatRect& srcRect, CompositeOperator op, BlendMode blendMode)
{
    imageBuffer->draw(destContext, destRect, srcRect, op, blendMode);
}

void ImageBuffer::draw(GraphicsContext& destinationContext, const FloatRect& destRect, const FloatRect& srcRect,
    CompositeOperator op, BlendMode blendMode)
{
    BackingStoreCopy copyMode = &destinationContext == &context() ? CopyBackingStore : DontCopyBackingStore;
    RefPtr<Image> image = copyImage(copyMode);
    destinationContext.drawImage(*image, destRect, srcRect, ImagePaintingOptions(op, blendMode, ImageOrientationDescription()));
}

void ImageBuffer::drawPattern(GraphicsContext& context, const FloatRect& destRect, const FloatRect& srcRect, const AffineTransform& patternTransform,
    const FloatPoint& phase, const FloatSize& spacing, CompositeOperator op, BlendMode)
{
    if (RefPtr<Image> image = copyImage(DontCopyBackingStore))
        image->drawPattern(context, destRect, srcRect, patternTransform, phase, spacing, op);
}

void ImageBuffer::platformTransformColorSpace(const Vector<int>& lookUpTable)
{
    // FIXME: Enable color space conversions on accelerated canvases.
    if (cairo_surface_get_type(m_data.m_surface.get()) != CAIRO_SURFACE_TYPE_IMAGE)
        return;

    unsigned char* dataSrc = cairo_image_surface_get_data(m_data.m_surface.get());
    int stride = cairo_image_surface_get_stride(m_data.m_surface.get());
    for (int y = 0; y < m_size.height(); ++y) {
        unsigned* row = reinterpret_cast_ptr<unsigned*>(dataSrc + stride * y);
        for (int x = 0; x < m_size.width(); x++) {
            unsigned* pixel = row + x;
            Color pixelColor = colorFromPremultipliedARGB(*pixel);
            pixelColor = Color(lookUpTable[pixelColor.red()],
                               lookUpTable[pixelColor.green()],
                               lookUpTable[pixelColor.blue()],
                               pixelColor.alpha());
            *pixel = premultipliedARGBFromColor(pixelColor);
        }
    }
    cairo_surface_mark_dirty_rectangle(m_data.m_surface.get(), 0, 0, m_logicalSize.width(), m_logicalSize.height());
}

RefPtr<cairo_surface_t> copySurfaceToImageAndAdjustRect(cairo_surface_t* surface, IntRect& rect)
{
    cairo_surface_type_t surfaceType = cairo_surface_get_type(surface);

    // If we already have an image, we write directly to the underlying data;
    // otherwise we create a temporary surface image
    if (surfaceType == CAIRO_SURFACE_TYPE_IMAGE)
        return surface;
    
    rect.setX(0);
    rect.setY(0);
    return adoptRef(cairo_image_surface_create(CAIRO_FORMAT_ARGB32, rect.width(), rect.height()));
}

template <Multiply multiplied>
RefPtr<Uint8ClampedArray> getImageData(const IntRect& rect, const IntRect& logicalRect, const ImageBufferData& data, const IntSize& size, const IntSize& logicalSize, float resolutionScale)
{
    RefPtr<Uint8ClampedArray> result = Uint8ClampedArray::createUninitialized(rect.width() * rect.height() * 4);
    if (!result)
        return nullptr;

    if (rect.x() < 0 || rect.y() < 0 || (rect.x() + rect.width()) > size.width() || (rect.y() + rect.height()) > size.height())
        result->zeroFill();

    int originx = rect.x();
    int destx = 0;
    if (originx < 0) {
        destx = -originx;
        originx = 0;
    }
    int endx = rect.maxX();
    if (endx > size.width())
        endx = size.width();
    int numColumns = endx - originx;

    int originy = rect.y();
    int desty = 0;
    if (originy < 0) {
        desty = -originy;
        originy = 0;
    }
    int endy = rect.maxY();
    if (endy > size.height())
        endy = size.height();
    int numRows = endy - originy;

    // The size of the derived surface is in BackingStoreCoordinateSystem.
    // We need to set the device scale for the derived surface from this ImageBuffer.
    IntRect imageRect(originx, originy, numColumns, numRows);
    RefPtr<cairo_surface_t> imageSurface = copySurfaceToImageAndAdjustRect(data.m_surface.get(), imageRect);
    cairoSurfaceSetDeviceScale(imageSurface.get(), resolutionScale, resolutionScale);
    originx = imageRect.x();
    originy = imageRect.y();
    if (imageSurface != data.m_surface.get()) {
        // This cairo surface operation is done in LogicalCoordinateSystem.
        IntRect logicalArea = intersection(logicalRect, IntRect(0, 0, logicalSize.width(), logicalSize.height()));
        copyRectFromOneSurfaceToAnother(data.m_surface.get(), imageSurface.get(), IntSize(-logicalArea.x(), -logicalArea.y()), IntRect(IntPoint(), logicalArea.size()), IntSize(), CAIRO_OPERATOR_SOURCE);
    }

    unsigned char* dataSrc = cairo_image_surface_get_data(imageSurface.get());
    unsigned char* dataDst = result->data();
    int stride = cairo_image_surface_get_stride(imageSurface.get());
    unsigned destBytesPerRow = 4 * rect.width();

    unsigned char* destRows = dataDst + desty * destBytesPerRow + destx * 4;
    for (int y = 0; y < numRows; ++y) {
        unsigned* row = reinterpret_cast_ptr<unsigned*>(dataSrc + stride * (y + originy));
        for (int x = 0; x < numColumns; x++) {
            int basex = x * 4;
            unsigned* pixel = row + x + originx;

            // Avoid calling Color::colorFromPremultipliedARGB() because one
            // function call per pixel is too expensive.
            unsigned alpha = (*pixel & 0xFF000000) >> 24;
            unsigned red = (*pixel & 0x00FF0000) >> 16;
            unsigned green = (*pixel & 0x0000FF00) >> 8;
            unsigned blue = (*pixel & 0x000000FF);

            if (multiplied == Unmultiplied) {
                if (alpha && alpha != 255) {
                    red = red * 255 / alpha;
                    green = green * 255 / alpha;
                    blue = blue * 255 / alpha;
                }
            }

            destRows[basex]     = red;
            destRows[basex + 1] = green;
            destRows[basex + 2] = blue;
            destRows[basex + 3] = alpha;
        }
        destRows += destBytesPerRow;
    }

    return result.release();
}

template<typename Unit>
inline Unit logicalUnit(const Unit& value, ImageBuffer::CoordinateSystem coordinateSystemOfValue, float resolutionScale)
{
    if (coordinateSystemOfValue == ImageBuffer::LogicalCoordinateSystem || resolutionScale == 1.0)
        return value;
    Unit result(value);
    result.scale(1.0 / resolutionScale);
    return result;
}

template<typename Unit>
inline Unit backingStoreUnit(const Unit& value, ImageBuffer::CoordinateSystem coordinateSystemOfValue, float resolutionScale)
{
    if (coordinateSystemOfValue == ImageBuffer::BackingStoreCoordinateSystem || resolutionScale == 1.0)
        return value;
    Unit result(value);
    result.scale(resolutionScale);
    return result;
}

RefPtr<Uint8ClampedArray> ImageBuffer::getUnmultipliedImageData(const IntRect& rect, CoordinateSystem coordinateSystem) const
{
    IntRect logicalRect = logicalUnit(rect, coordinateSystem, m_resolutionScale);
    IntRect backingStoreRect = backingStoreUnit(rect, coordinateSystem, m_resolutionScale);
    return getImageData<Unmultiplied>(backingStoreRect, logicalRect, m_data, m_size, m_logicalSize, m_resolutionScale);
}

RefPtr<Uint8ClampedArray> ImageBuffer::getPremultipliedImageData(const IntRect& rect, CoordinateSystem coordinateSystem) const
{
    IntRect logicalRect = logicalUnit(rect, coordinateSystem, m_resolutionScale);
    IntRect backingStoreRect = backingStoreUnit(rect, coordinateSystem, m_resolutionScale);
    return getImageData<Premultiplied>(backingStoreRect, logicalRect, m_data, m_size, m_logicalSize, m_resolutionScale);
}

void ImageBuffer::putByteArray(Multiply multiplied, Uint8ClampedArray* source, const IntSize& sourceSize, const IntRect& sourceRect, const IntPoint& destPoint, CoordinateSystem coordinateSystem)
{
    IntRect scaledSourceRect = backingStoreUnit(sourceRect, coordinateSystem, m_resolutionScale);
    IntSize scaledSourceSize = backingStoreUnit(sourceSize, coordinateSystem, m_resolutionScale);
    IntPoint scaledDestPoint = backingStoreUnit(destPoint, coordinateSystem, m_resolutionScale);
    IntRect logicalSourceRect = logicalUnit(sourceRect, coordinateSystem, m_resolutionScale);
    IntPoint logicalDestPoint = logicalUnit(destPoint, coordinateSystem, m_resolutionScale);

    ASSERT(scaledSourceRect.width() > 0);
    ASSERT(scaledSourceRect.height() > 0);

    int originx = scaledSourceRect.x();
    int destx = scaledDestPoint.x() + scaledSourceRect.x();
    int logicalDestx = logicalDestPoint.x() + logicalSourceRect.x();
    ASSERT(destx >= 0);
    ASSERT(destx < m_size.width());
    ASSERT(originx >= 0);
    ASSERT(originx <= scaledSourceRect.maxX());

    int endx = scaledDestPoint.x() + scaledSourceRect.maxX();
    int logicalEndx = logicalDestPoint.x() + logicalSourceRect.maxX();
    ASSERT(endx <= m_size.width());

    int numColumns = endx - destx;
    int logicalNumColumns = logicalEndx - logicalDestx;

    int originy = scaledSourceRect.y();
    int desty = scaledDestPoint.y() + scaledSourceRect.y();
    int logicalDesty = logicalDestPoint.y() + logicalSourceRect.y();
    ASSERT(desty >= 0);
    ASSERT(desty < m_size.height());
    ASSERT(originy >= 0);
    ASSERT(originy <= scaledSourceRect.maxY());

    int endy = scaledDestPoint.y() + scaledSourceRect.maxY();
    int logicalEndy = logicalDestPoint.y() + logicalSourceRect.maxY();
    ASSERT(endy <= m_size.height());
    int numRows = endy - desty;
    int logicalNumRows = logicalEndy - logicalDesty;

    // The size of the derived surface is in BackingStoreCoordinateSystem.
    // We need to set the device scale for the derived surface from this ImageBuffer.
    IntRect imageRect(destx, desty, numColumns, numRows);
    RefPtr<cairo_surface_t> imageSurface = copySurfaceToImageAndAdjustRect(m_data.m_surface.get(), imageRect);
    cairoSurfaceSetDeviceScale(imageSurface.get(), m_resolutionScale, m_resolutionScale);
    destx = imageRect.x();
    desty = imageRect.y();

    unsigned char* pixelData = cairo_image_surface_get_data(imageSurface.get());

    unsigned srcBytesPerRow = 4 * scaledSourceSize.width();
    int stride = cairo_image_surface_get_stride(imageSurface.get());

    unsigned char* srcRows = source->data() + originy * srcBytesPerRow + originx * 4;
    for (int y = 0; y < numRows; ++y) {
        unsigned* row = reinterpret_cast_ptr<unsigned*>(pixelData + stride * (y + desty));
        for (int x = 0; x < numColumns; x++) {
            int basex = x * 4;
            unsigned* pixel = row + x + destx;

            // Avoid calling Color::premultipliedARGBFromColor() because one
            // function call per pixel is too expensive.
            unsigned red = srcRows[basex];
            unsigned green = srcRows[basex + 1];
            unsigned blue = srcRows[basex + 2];
            unsigned alpha = srcRows[basex + 3];

            if (multiplied == Unmultiplied) {
                if (alpha != 255) {
                    red = (red * alpha + 254) / 255;
                    green = (green * alpha + 254) / 255;
                    blue = (blue * alpha + 254) / 255;
                }
            }

            *pixel = (alpha << 24) | red  << 16 | green  << 8 | blue;
        }
        srcRows += srcBytesPerRow;
    }

    // This cairo surface operation is done in LogicalCoordinateSystem.
    cairo_surface_mark_dirty_rectangle(imageSurface.get(), logicalDestx, logicalDesty, logicalNumColumns, logicalNumRows);

    if (imageSurface != m_data.m_surface.get()) {
        // This cairo surface operation is done in LogicalCoordinateSystem.
        copyRectFromOneSurfaceToAnother(imageSurface.get(), m_data.m_surface.get(), IntSize(), IntRect(0, 0, logicalNumColumns, logicalNumRows), IntSize(logicalDestPoint.x() + logicalSourceRect.x(), logicalDestPoint.y() + logicalSourceRect.y()), CAIRO_OPERATOR_SOURCE);
    }
}

#if !PLATFORM(GTK)
static cairo_status_t writeFunction(void* output, const unsigned char* data, unsigned int length)
{
    if (!reinterpret_cast<Vector<unsigned char>*>(output)->tryAppend(data, length))
        return CAIRO_STATUS_WRITE_ERROR;
    return CAIRO_STATUS_SUCCESS;
}

static bool encodeImage(cairo_surface_t* image, const String& mimeType, Vector<char>* output)
{
    ASSERT_UNUSED(mimeType, mimeType == "image/png"); // Only PNG output is supported for now.

    return cairo_surface_write_to_png_stream(image, writeFunction, output) == CAIRO_STATUS_SUCCESS;
}

String ImageBuffer::toDataURL(const String& mimeType, std::optional<double> quality, CoordinateSystem) const
{
    ASSERT(MIMETypeRegistry::isSupportedImageMIMETypeForEncoding(mimeType));

    cairo_surface_t* image = cairo_get_target(context().platformContext()->cr());

    Vector<char> encodedImage;
    if (!image || !encodeImage(image, mimeType, &encodedImage))
        return "data:,";

    Vector<char> base64Data;
    base64Encode(encodedImage, base64Data);

    return "data:" + mimeType + ";base64," + base64Data;
}
#endif

#if ENABLE(ACCELERATED_2D_CANVAS) && !USE(COORDINATED_GRAPHICS_THREADED)
void ImageBufferData::paintToTextureMapper(TextureMapper& textureMapper, const FloatRect& targetRect, const TransformationMatrix& matrix, float opacity)
{
    ASSERT(m_texture);

    // Cairo may change the active context, so we make sure to change it back after flushing.
    GLContext* previousActiveContext = GLContext::current();
    cairo_surface_flush(m_surface.get());
    previousActiveContext->makeContextCurrent();

    static_cast<TextureMapperGL&>(textureMapper).drawTexture(m_texture, TextureMapperGL::ShouldBlend, m_size, targetRect, matrix, opacity);
}
#endif

PlatformLayer* ImageBuffer::platformLayer() const
{
#if ENABLE(ACCELERATED_2D_CANVAS)
    if (m_data.m_texture)
        return const_cast<ImageBufferData*>(&m_data);
#endif
    return 0;
}

bool ImageBuffer::copyToPlatformTexture(GraphicsContext3D&, GC3Denum target, Platform3DObject destinationTexture, GC3Denum internalformat, bool premultiplyAlpha, bool flipY)
{
#if ENABLE(ACCELERATED_2D_CANVAS)
    ASSERT_WITH_MESSAGE(m_resolutionScale == 1.0, "Since the HiDPI Canvas feature is removed, the resolution factor here is always 1.");
    if (premultiplyAlpha || flipY)
        return false;

    if (!m_data.m_texture)
        return false;

    GC3Denum bindTextureTarget;
    switch (target) {
    case GL_TEXTURE_2D:
        bindTextureTarget = GL_TEXTURE_2D;
        break;
    case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
    case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
    case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
    case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
    case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
    case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
        bindTextureTarget = GL_TEXTURE_CUBE_MAP;
        break;
    default:
        return false;
    }

    cairo_surface_flush(m_data.m_surface.get());

    std::unique_ptr<GLContext> context = GLContext::createOffscreenContext(&PlatformDisplay::sharedDisplayForCompositing());
    context->makeContextCurrent();
    uint32_t fbo;
    glGenFramebuffers(1, &fbo);
    glBindFramebuffer(GL_FRAMEBUFFER, fbo);
    glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, m_data.m_texture, 0);
    glBindTexture(bindTextureTarget, destinationTexture);
    glCopyTexImage2D(target, 0, internalformat, 0, 0, m_size.width(), m_size.height(), 0);
    glBindTexture(bindTextureTarget, 0);
    glBindFramebuffer(GL_FRAMEBUFFER, 0);
    glFlush();
    glDeleteFramebuffers(1, &fbo);
    return true;
#else
    UNUSED_PARAM(target);
    UNUSED_PARAM(destinationTexture);
    UNUSED_PARAM(internalformat);
    UNUSED_PARAM(premultiplyAlpha);
    UNUSED_PARAM(flipY);
    return false;
#endif
}

} // namespace WebCore

#endif // USE(CAIRO)