summaryrefslogtreecommitdiff
path: root/Source/ThirdParty/ANGLE/util/Vector.cpp
blob: 4a2101a20c15ba2c9fe31ee27b1bbc0927b0106d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
//
// Copyright (c) 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Vector:
//   Vector class for linear math.
//

#include "Vector.h"

#include <math.h>

Vector2::Vector2() : x(0.0), y(0.0)
{
}

Vector2::Vector2(float x, float y) : x(x), y(y)
{
}

bool Vector2::operator==(const Vector2 &vec) const
{
    return x == vec.x && y == vec.y;
}

bool Vector2::operator!=(const Vector2 &vec) const
{
    return !(*this == vec);
}

std::ostream &operator<<(std::ostream &stream, const Vector2 &vec)
{
    stream << "(" << vec.x << "," << vec.y << ")";
    return stream;
}

float Vector2::length(const Vector2 &vec)
{
    float lenSquared = lengthSquared(vec);
    return (lenSquared != 0.0f) ? sqrtf(lenSquared) : 0.0f;
}

float Vector2::lengthSquared(const Vector2 &vec)
{
    return vec.x * vec.x + vec.y * vec.y;
}

Vector2 Vector2::normalize(const Vector2 &vec)
{
    Vector2 ret(0.0f, 0.0f);
    float len = length(vec);
    if (len != 0.0f)
    {
        float invLen = 1.0f / len;
        ret.x        = vec.x * invLen;
        ret.y        = vec.y * invLen;
    }
    return ret;
}

Vector3::Vector3() : x(0.0), y(0.0), z(0.0)
{
}

Vector3::Vector3(float x, float y, float z) : x(x), y(y), z(z)
{
}

float Vector3::length(const Vector3 &vec)
{
    float lenSquared = lengthSquared(vec);
    return (lenSquared != 0.0f) ? sqrtf(lenSquared) : 0.0f;
}

float Vector3::lengthSquared(const Vector3 &vec)
{
    return vec.x * vec.x + vec.y * vec.y + vec.z * vec.z;
}

Vector3 Vector3::normalize(const Vector3 &vec)
{
    Vector3 ret(0.0f, 0.0f, 0.0f);
    float len = length(vec);
    if (len != 0.0f)
    {
        float invLen = 1.0f / len;
        ret.x        = vec.x * invLen;
        ret.y        = vec.y * invLen;
        ret.z        = vec.z * invLen;
    }
    return ret;
}

float Vector3::dot(const Vector3 &a, const Vector3 &b)
{
    return a.x * b.x + a.y * b.y + a.z * b.z;
}

Vector3 Vector3::cross(const Vector3 &a, const Vector3 &b)
{
    return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}

Vector3 operator*(const Vector3 &a, const Vector3 &b)
{
    return Vector3(a.x * b.x, a.y * b.y, a.z * b.z);
}

Vector3 operator*(const Vector3 &a, const float &b)
{
    return Vector3(a.x * b, a.y * b, a.z * b);
}

Vector3 operator/(const Vector3 &a, const Vector3 &b)
{
    return Vector3(a.x / b.x, a.y / b.y, a.z / b.z);
}

Vector3 operator/(const Vector3 &a, const float &b)
{
    return Vector3(a.x / b, a.y / b, a.z / b);
}

Vector3 operator+(const Vector3 &a, const Vector3 &b)
{
    return Vector3(a.x + b.x, a.y + b.y, a.z + b.z);
}

Vector3 operator-(const Vector3 &a, const Vector3 &b)
{
    return Vector3(a.x - b.x, a.y - b.y, a.z - b.z);
}

bool operator==(const Vector3 &a, const Vector3 &b)
{
    return (a.x == b.x && a.y == b.y && a.z == b.z);
}

bool operator!=(const Vector3 &a, const Vector3 &b)
{
    return !(a == b);
}

Vector4::Vector4() : x(0.0f), y(0.0f), z(0.0f), w(0.0f)
{
}

Vector4::Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w)
{
}

float Vector4::length(const Vector4 &vec)
{
    float lenSquared = lengthSquared(vec);
    return (lenSquared != 0.0f) ? sqrtf(lenSquared) : 0.0f;
}

float Vector4::lengthSquared(const Vector4 &vec)
{
    return vec.x * vec.x + vec.y * vec.y + vec.z * vec.z + vec.w * vec.w;
}

Vector4 Vector4::normalize(const Vector4 &vec)
{
    Vector4 ret(0.0f, 0.0f, 0.0f, 1.0f);
    if (vec.w != 0.0f)
    {
        float invLen = 1.0f / vec.w;
        ret.x        = vec.x * invLen;
        ret.y        = vec.y * invLen;
        ret.z        = vec.z * invLen;
    }
    return ret;
}

float Vector4::dot(const Vector4 &a, const Vector4 &b)
{
    return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
}