summaryrefslogtreecommitdiff
path: root/Source/JavaScriptCore/heap/HeapUtil.h
blob: 44d14baff47f17c3d31365693c9c64a6a7108a42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*
 * Copyright (C) 2016 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#pragma once

namespace JSC {

// Are you tired of waiting for all of WebKit to build because you changed the implementation of a
// function in HeapInlines.h?  Does it bother you that you're waiting on rebuilding the JS DOM
// bindings even though your change is in a function called from only 2 .cpp files?  Then HeapUtil.h
// is for you!  Everything in this class should be a static method that takes a Heap& if needed.
// This is a friend of Heap, so you can access all of Heap's privates.
//
// This ends up being an issue because Heap exposes a lot of methods that ought to be inline for
// performance or that must be inline because they are templates.  This class ought to contain
// methods that are used for the implementation of the collector, or for unusual clients that need
// to reach deep into the collector for some reason.  Don't put things in here that would cause you
// to have to include it from more than a handful of places, since that would defeat the purpose.
// This class isn't here to look pretty.  It's to let us hack the GC more easily!

class HeapUtil {
public:
    // This function must be run after stopAllocation() is called and 
    // before liveness data is cleared to be accurate.
    template<typename Func>
    static void findGCObjectPointersForMarking(
        Heap& heap, HeapVersion markingVersion, TinyBloomFilter filter, void* passedPointer,
        const Func& func)
    {
        const HashSet<MarkedBlock*>& set = heap.objectSpace().blocks().set();
        
        ASSERT(heap.objectSpace().isMarking());
        static const bool isMarking = true;
        
        char* pointer = static_cast<char*>(passedPointer);
        
        // It could point to a large allocation.
        if (heap.objectSpace().largeAllocationsForThisCollectionSize()) {
            if (heap.objectSpace().largeAllocationsForThisCollectionBegin()[0]->aboveLowerBound(pointer)
                && heap.objectSpace().largeAllocationsForThisCollectionEnd()[-1]->belowUpperBound(pointer)) {
                LargeAllocation** result = approximateBinarySearch<LargeAllocation*>(
                    heap.objectSpace().largeAllocationsForThisCollectionBegin(),
                    heap.objectSpace().largeAllocationsForThisCollectionSize(),
                    LargeAllocation::fromCell(pointer),
                    [] (LargeAllocation** ptr) -> LargeAllocation* { return *ptr; });
                if (result) {
                    if (result > heap.objectSpace().largeAllocationsForThisCollectionBegin()
                        && result[-1]->contains(pointer))
                        func(result[-1]->cell());
                    if (result[0]->contains(pointer))
                        func(result[0]->cell());
                    if (result + 1 < heap.objectSpace().largeAllocationsForThisCollectionEnd()
                        && result[1]->contains(pointer))
                        func(result[1]->cell());
                }
            }
        }
    
        MarkedBlock* candidate = MarkedBlock::blockFor(pointer);
        // It's possible for a butterfly pointer to point past the end of a butterfly. Check this now.
        if (pointer <= bitwise_cast<char*>(candidate) + sizeof(IndexingHeader)) {
            // We may be interested in the last cell of the previous MarkedBlock.
            char* previousPointer = pointer - sizeof(IndexingHeader) - 1;
            MarkedBlock* previousCandidate = MarkedBlock::blockFor(previousPointer);
            if (!filter.ruleOut(bitwise_cast<Bits>(previousCandidate))
                && set.contains(previousCandidate)
                && previousCandidate->handle().cellKind() == HeapCell::Auxiliary) {
                previousPointer = static_cast<char*>(previousCandidate->handle().cellAlign(previousPointer));
                if (previousCandidate->handle().isLiveCell(markingVersion, isMarking, previousPointer))
                    func(previousPointer);
            }
        }
    
        if (filter.ruleOut(bitwise_cast<Bits>(candidate))) {
            ASSERT(!candidate || !set.contains(candidate));
            return;
        }
    
        if (!set.contains(candidate))
            return;
        
        auto tryPointer = [&] (void* pointer) {
            if (candidate->handle().isLiveCell(markingVersion, isMarking, pointer))
                func(pointer);
        };
    
        if (candidate->handle().cellKind() == HeapCell::JSCell) {
            if (!MarkedBlock::isAtomAligned(pointer))
                return;
        
            tryPointer(pointer);
            return;
        }
    
        // A butterfly could point into the middle of an object.
        char* alignedPointer = static_cast<char*>(candidate->handle().cellAlign(pointer));
        tryPointer(alignedPointer);
    
        // Also, a butterfly could point at the end of an object plus sizeof(IndexingHeader). In that
        // case, this is pointing to the object to the right of the one we should be marking.
        if (candidate->atomNumber(alignedPointer) > MarkedBlock::firstAtom()
            && pointer <= alignedPointer + sizeof(IndexingHeader))
            tryPointer(alignedPointer - candidate->cellSize());
    }
    
    static bool isPointerGCObjectJSCell(
        Heap& heap, TinyBloomFilter filter, const void* pointer)
    {
        // It could point to a large allocation.
        const Vector<LargeAllocation*>& largeAllocations = heap.objectSpace().largeAllocations();
        if (!largeAllocations.isEmpty()) {
            if (largeAllocations[0]->aboveLowerBound(pointer)
                && largeAllocations.last()->belowUpperBound(pointer)) {
                LargeAllocation*const* result = approximateBinarySearch<LargeAllocation*const>(
                    largeAllocations.begin(), largeAllocations.size(),
                    LargeAllocation::fromCell(pointer),
                    [] (LargeAllocation*const* ptr) -> LargeAllocation* { return *ptr; });
                if (result) {
                    if (result > largeAllocations.begin()
                        && result[-1]->cell() == pointer
                        && result[-1]->attributes().cellKind == HeapCell::JSCell)
                        return true;
                    if (result[0]->cell() == pointer
                        && result[0]->attributes().cellKind == HeapCell::JSCell)
                        return true;
                    if (result + 1 < largeAllocations.end()
                        && result[1]->cell() == pointer
                        && result[1]->attributes().cellKind == HeapCell::JSCell)
                        return true;
                }
            }
        }
    
        const HashSet<MarkedBlock*>& set = heap.objectSpace().blocks().set();
        
        MarkedBlock* candidate = MarkedBlock::blockFor(pointer);
        if (filter.ruleOut(bitwise_cast<Bits>(candidate))) {
            ASSERT(!candidate || !set.contains(candidate));
            return false;
        }
        
        if (!MarkedBlock::isAtomAligned(pointer))
            return false;
        
        if (!set.contains(candidate))
            return false;
        
        if (candidate->handle().cellKind() != HeapCell::JSCell)
            return false;
        
        if (!candidate->handle().isLiveCell(pointer))
            return false;
        
        return true;
    }
    
    static bool isValueGCObject(
        Heap& heap, TinyBloomFilter filter, JSValue value)
    {
        if (!value.isCell())
            return false;
        return isPointerGCObjectJSCell(heap, filter, static_cast<void*>(value.asCell()));
    }
};

} // namespace JSC