1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
/*
* Copyright (C) 2014-2017 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(DFG_JIT)
#include "DFGClobberize.h"
#include "DFGMayExit.h"
namespace JSC { namespace DFG {
template<typename ReadFunctor, typename WriteFunctor, typename DefFunctor>
class PreciseLocalClobberizeAdaptor {
public:
PreciseLocalClobberizeAdaptor(
Graph& graph, Node* node,
const ReadFunctor& read, const WriteFunctor& write, const DefFunctor& def)
: m_graph(graph)
, m_node(node)
, m_read(read)
, m_unconditionalWrite(write)
, m_def(def)
{
}
void read(AbstractHeap heap)
{
if (heap.kind() == Stack) {
if (heap.payload().isTop()) {
readTop();
return;
}
callIfAppropriate(m_read, VirtualRegister(heap.payload().value32()));
return;
}
if (heap.overlaps(Stack)) {
readTop();
return;
}
}
void write(AbstractHeap heap)
{
// We expect stack writes to already be precisely characterized by DFG::clobberize().
if (heap.kind() == Stack) {
RELEASE_ASSERT(!heap.payload().isTop());
callIfAppropriate(m_unconditionalWrite, VirtualRegister(heap.payload().value32()));
return;
}
RELEASE_ASSERT(!heap.overlaps(Stack));
}
void def(PureValue)
{
// PureValue defs never have anything to do with locals, so ignore this.
}
void def(HeapLocation location, LazyNode node)
{
if (location.kind() != StackLoc)
return;
RELEASE_ASSERT(location.heap().kind() == Stack);
m_def(VirtualRegister(location.heap().payload().value32()), node);
}
private:
template<typename Functor>
void callIfAppropriate(const Functor& functor, VirtualRegister operand)
{
if (operand.isLocal() && static_cast<unsigned>(operand.toLocal()) >= m_graph.block(0)->variablesAtHead.numberOfLocals())
return;
if (operand.isArgument() && !operand.isHeader() && static_cast<unsigned>(operand.toArgument()) >= m_graph.block(0)->variablesAtHead.numberOfArguments())
return;
functor(operand);
}
void readTop()
{
auto readFrame = [&] (InlineCallFrame* inlineCallFrame, unsigned numberOfArgumentsToSkip) {
if (!inlineCallFrame) {
// Read the outermost arguments and argument count.
for (unsigned i = 1 + numberOfArgumentsToSkip; i < static_cast<unsigned>(m_graph.m_codeBlock->numParameters()); i++)
m_read(virtualRegisterForArgument(i));
m_read(VirtualRegister(CallFrameSlot::argumentCount));
return;
}
for (unsigned i = 1 + numberOfArgumentsToSkip; i < inlineCallFrame->arguments.size(); i++)
m_read(VirtualRegister(inlineCallFrame->stackOffset + virtualRegisterForArgument(i).offset()));
if (inlineCallFrame->isVarargs())
m_read(VirtualRegister(inlineCallFrame->stackOffset + CallFrameSlot::argumentCount));
};
auto readNewArrayWithSpreadNode = [&] (Node* arrayWithSpread) {
ASSERT(arrayWithSpread->op() == NewArrayWithSpread || arrayWithSpread->op() == PhantomNewArrayWithSpread);
BitVector* bitVector = arrayWithSpread->bitVector();
for (unsigned i = 0; i < arrayWithSpread->numChildren(); i++) {
if (bitVector->get(i)) {
Node* child = m_graph.varArgChild(arrayWithSpread, i).node();
if (child->op() == PhantomSpread) {
ASSERT(child->child1()->op() == PhantomCreateRest);
InlineCallFrame* inlineCallFrame = child->child1()->origin.semantic.inlineCallFrame;
unsigned numberOfArgumentsToSkip = child->child1()->numberOfArgumentsToSkip();
readFrame(inlineCallFrame, numberOfArgumentsToSkip);
}
}
}
};
switch (m_node->op()) {
case ForwardVarargs:
case CallForwardVarargs:
case ConstructForwardVarargs:
case TailCallForwardVarargs:
case TailCallForwardVarargsInlinedCaller:
case GetMyArgumentByVal:
case GetMyArgumentByValOutOfBounds:
case CreateDirectArguments:
case CreateScopedArguments:
case CreateClonedArguments:
case PhantomDirectArguments:
case PhantomClonedArguments:
case GetRestLength:
case CreateRest: {
bool isForwardingNode = false;
bool isPhantomNode = false;
switch (m_node->op()) {
case ForwardVarargs:
case CallForwardVarargs:
case ConstructForwardVarargs:
case TailCallForwardVarargs:
case TailCallForwardVarargsInlinedCaller:
isForwardingNode = true;
break;
case PhantomDirectArguments:
case PhantomClonedArguments:
isPhantomNode = true;
break;
default:
break;
}
if (isPhantomNode && isFTL(m_graph.m_plan.mode))
break;
if (isForwardingNode && m_node->hasArgumentsChild() && m_node->argumentsChild() && m_node->argumentsChild()->op() == PhantomNewArrayWithSpread) {
Node* arrayWithSpread = m_node->argumentsChild().node();
readNewArrayWithSpreadNode(arrayWithSpread);
} else {
InlineCallFrame* inlineCallFrame;
if (m_node->hasArgumentsChild() && m_node->argumentsChild())
inlineCallFrame = m_node->argumentsChild()->origin.semantic.inlineCallFrame;
else
inlineCallFrame = m_node->origin.semantic.inlineCallFrame;
unsigned numberOfArgumentsToSkip = 0;
if (m_node->op() == GetMyArgumentByVal || m_node->op() == GetMyArgumentByValOutOfBounds) {
// The value of numberOfArgumentsToSkip guarantees that GetMyArgumentByVal* will never
// read any arguments below the number of arguments to skip. For example, if numberOfArgumentsToSkip is 2,
// we will never read argument 0 or argument 1.
numberOfArgumentsToSkip = m_node->numberOfArgumentsToSkip();
}
readFrame(inlineCallFrame, numberOfArgumentsToSkip);
}
break;
}
case NewArrayWithSpread: {
readNewArrayWithSpreadNode(m_node);
break;
}
case GetArgument: {
InlineCallFrame* inlineCallFrame = m_node->origin.semantic.inlineCallFrame;
unsigned indexIncludingThis = m_node->argumentIndex();
if (!inlineCallFrame) {
if (indexIncludingThis < static_cast<unsigned>(m_graph.m_codeBlock->numParameters()))
m_read(virtualRegisterForArgument(indexIncludingThis));
m_read(VirtualRegister(CallFrameSlot::argumentCount));
break;
}
ASSERT_WITH_MESSAGE(inlineCallFrame->isVarargs(), "GetArgument is only used for InlineCallFrame if the call frame is varargs.");
if (indexIncludingThis < inlineCallFrame->arguments.size())
m_read(VirtualRegister(inlineCallFrame->stackOffset + virtualRegisterForArgument(indexIncludingThis).offset()));
m_read(VirtualRegister(inlineCallFrame->stackOffset + CallFrameSlot::argumentCount));
break;
}
default: {
// All of the outermost arguments, except this, are read in sloppy mode.
if (!m_graph.m_codeBlock->isStrictMode()) {
for (unsigned i = m_graph.m_codeBlock->numParameters(); i-- > 1;)
m_read(virtualRegisterForArgument(i));
}
// The stack header is read.
for (unsigned i = 0; i < CallFrameSlot::thisArgument; ++i)
m_read(VirtualRegister(i));
// Read all of the inline arguments and call frame headers that we didn't already capture.
for (InlineCallFrame* inlineCallFrame = m_node->origin.semantic.inlineCallFrame; inlineCallFrame; inlineCallFrame = inlineCallFrame->getCallerInlineFrameSkippingTailCalls()) {
if (!inlineCallFrame->isStrictMode()) {
for (unsigned i = inlineCallFrame->arguments.size(); i-- > 1;)
m_read(VirtualRegister(inlineCallFrame->stackOffset + virtualRegisterForArgument(i).offset()));
}
if (inlineCallFrame->isClosureCall)
m_read(VirtualRegister(inlineCallFrame->stackOffset + CallFrameSlot::callee));
if (inlineCallFrame->isVarargs())
m_read(VirtualRegister(inlineCallFrame->stackOffset + CallFrameSlot::argumentCount));
}
break;
} }
}
Graph& m_graph;
Node* m_node;
const ReadFunctor& m_read;
const WriteFunctor& m_unconditionalWrite;
const DefFunctor& m_def;
};
template<typename ReadFunctor, typename WriteFunctor, typename DefFunctor>
void preciseLocalClobberize(
Graph& graph, Node* node,
const ReadFunctor& read, const WriteFunctor& write, const DefFunctor& def)
{
PreciseLocalClobberizeAdaptor<ReadFunctor, WriteFunctor, DefFunctor>
adaptor(graph, node, read, write, def);
clobberize(graph, node, adaptor);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|