1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
/*
* Copyright (C) 2008-2017 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "CodeBlock.h"
#include "CodeOrigin.h"
#include "Instruction.h"
#include "JITStubRoutine.h"
#include "MacroAssembler.h"
#include "ObjectPropertyConditionSet.h"
#include "Options.h"
#include "RegisterSet.h"
#include "Structure.h"
#include "StructureSet.h"
#include "StructureStubClearingWatchpoint.h"
namespace JSC {
#if ENABLE(JIT)
class AccessCase;
class AccessGenerationResult;
class PolymorphicAccess;
enum class AccessType : int8_t {
Get,
TryGet,
Put,
In
};
enum class CacheType : int8_t {
Unset,
GetByIdSelf,
PutByIdReplace,
Stub,
ArrayLength
};
class StructureStubInfo {
WTF_MAKE_NONCOPYABLE(StructureStubInfo);
WTF_MAKE_FAST_ALLOCATED;
public:
StructureStubInfo(AccessType);
~StructureStubInfo();
void initGetByIdSelf(CodeBlock*, Structure* baseObjectStructure, PropertyOffset);
void initArrayLength();
void initPutByIdReplace(CodeBlock*, Structure* baseObjectStructure, PropertyOffset);
void initStub(CodeBlock*, std::unique_ptr<PolymorphicAccess>);
AccessGenerationResult addAccessCase(CodeBlock*, const Identifier&, std::unique_ptr<AccessCase>);
void reset(CodeBlock*);
void deref();
void aboutToDie();
// Check if the stub has weak references that are dead. If it does, then it resets itself,
// either entirely or just enough to ensure that those dead pointers don't get used anymore.
void visitWeakReferences(CodeBlock*);
// This returns true if it has marked everything that it will ever mark.
bool propagateTransitions(SlotVisitor&);
ALWAYS_INLINE bool considerCaching(CodeBlock* codeBlock, Structure* structure)
{
// We never cache non-cells.
if (!structure)
return false;
// This method is called from the Optimize variants of IC slow paths. The first part of this
// method tries to determine if the Optimize variant should really behave like the
// non-Optimize variant and leave the IC untouched.
//
// If we determine that we should do something to the IC then the next order of business is
// to determine if this Structure would impact the IC at all. We know that it won't, if we
// have already buffered something on its behalf. That's what the bufferedStructures set is
// for.
everConsidered = true;
if (!countdown) {
// Check if we have been doing repatching too frequently. If so, then we should cool off
// for a while.
WTF::incrementWithSaturation(repatchCount);
if (repatchCount > Options::repatchCountForCoolDown()) {
// We've been repatching too much, so don't do it now.
repatchCount = 0;
// The amount of time we require for cool-down depends on the number of times we've
// had to cool down in the past. The relationship is exponential. The max value we
// allow here is 2^256 - 2, since the slow paths may increment the count to indicate
// that they'd like to temporarily skip patching just this once.
countdown = WTF::leftShiftWithSaturation(
static_cast<uint8_t>(Options::initialCoolDownCount()),
numberOfCoolDowns,
static_cast<uint8_t>(std::numeric_limits<uint8_t>::max() - 1));
WTF::incrementWithSaturation(numberOfCoolDowns);
// We may still have had something buffered. Trigger generation now.
bufferingCountdown = 0;
return true;
}
// We don't want to return false due to buffering indefinitely.
if (!bufferingCountdown) {
// Note that when this returns true, it's possible that we will not even get an
// AccessCase because this may cause Repatch.cpp to simply do an in-place
// repatching.
return true;
}
bufferingCountdown--;
// Now protect the IC buffering. We want to proceed only if this is a structure that
// we don't already have a case buffered for. Note that if this returns true but the
// bufferingCountdown is not zero then we will buffer the access case for later without
// immediately generating code for it.
bool isNewlyAdded = bufferedStructures.add(structure);
if (isNewlyAdded) {
VM& vm = *codeBlock->vm();
vm.heap.writeBarrier(codeBlock);
}
return isNewlyAdded;
}
countdown--;
return false;
}
bool containsPC(void* pc) const;
CodeOrigin codeOrigin;
CallSiteIndex callSiteIndex;
union {
struct {
WriteBarrierBase<Structure> baseObjectStructure;
PropertyOffset offset;
} byIdSelf;
PolymorphicAccess* stub;
} u;
// Represents those structures that already have buffered AccessCases in the PolymorphicAccess.
// Note that it's always safe to clear this. If we clear it prematurely, then if we see the same
// structure again during this buffering countdown, we will create an AccessCase object for it.
// That's not so bad - we'll get rid of the redundant ones once we regenerate.
StructureSet bufferedStructures;
struct {
CodeLocationLabel start; // This is either the start of the inline IC for *byId caches, or the location of patchable jump for 'in' caches.
RegisterSet usedRegisters;
uint32_t inlineSize;
int32_t deltaFromStartToSlowPathCallLocation;
int32_t deltaFromStartToSlowPathStart;
int8_t baseGPR;
int8_t valueGPR;
#if USE(JSVALUE32_64)
int8_t valueTagGPR;
int8_t baseTagGPR;
#endif
} patch;
CodeLocationCall slowPathCallLocation() { return patch.start.callAtOffset(patch.deltaFromStartToSlowPathCallLocation); }
CodeLocationLabel doneLocation() { return patch.start.labelAtOffset(patch.inlineSize); }
CodeLocationLabel slowPathStartLocation() { return patch.start.labelAtOffset(patch.deltaFromStartToSlowPathStart); }
CodeLocationJump patchableJumpForIn()
{
ASSERT(accessType == AccessType::In);
return patch.start.jumpAtOffset(0);
}
JSValueRegs valueRegs() const
{
return JSValueRegs(
#if USE(JSVALUE32_64)
static_cast<GPRReg>(patch.valueTagGPR),
#endif
static_cast<GPRReg>(patch.valueGPR));
}
AccessType accessType;
CacheType cacheType;
uint8_t countdown; // We repatch only when this is zero. If not zero, we decrement.
uint8_t repatchCount;
uint8_t numberOfCoolDowns;
uint8_t bufferingCountdown;
bool resetByGC : 1;
bool tookSlowPath : 1;
bool everConsidered : 1;
};
inline CodeOrigin getStructureStubInfoCodeOrigin(StructureStubInfo& structureStubInfo)
{
return structureStubInfo.codeOrigin;
}
#else
class StructureStubInfo;
#endif // ENABLE(JIT)
typedef HashMap<CodeOrigin, StructureStubInfo*, CodeOriginApproximateHash> StubInfoMap;
} // namespace JSC
|