1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
/*
* Copyright (C) 2015-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(B3_JIT)
#include "AirArg.h"
#include "AirBasicBlock.h"
#include "AirSpecial.h"
#include "AirStackSlot.h"
#include "AirTmp.h"
#include "B3SparseCollection.h"
#include "CCallHelpers.h"
#include "RegisterAtOffsetList.h"
#include "StackAlignment.h"
#include <wtf/IndexMap.h>
namespace JSC { namespace B3 {
class Procedure;
#if COMPILER(GCC) && ASSERT_DISABLED
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wreturn-type"
#endif // COMPILER(GCC) && ASSERT_DISABLED
namespace Air {
class BlockInsertionSet;
class CCallSpecial;
typedef void WasmBoundsCheckGeneratorFunction(CCallHelpers&, GPRReg, unsigned);
typedef SharedTask<WasmBoundsCheckGeneratorFunction> WasmBoundsCheckGenerator;
// This is an IR that is very close to the bare metal. It requires about 40x more bytes than the
// generated machine code - for example if you're generating 1MB of machine code, you need about
// 40MB of Air.
class Code {
WTF_MAKE_NONCOPYABLE(Code);
WTF_MAKE_FAST_ALLOCATED;
public:
~Code();
Procedure& proc() { return m_proc; }
const Vector<Reg>& regsInPriorityOrder(Arg::Type type) const
{
switch (type) {
case Arg::GP:
return m_gpRegsInPriorityOrder;
case Arg::FP:
return m_fpRegsInPriorityOrder;
}
ASSERT_NOT_REACHED();
}
void setRegsInPriorityOrder(Arg::Type, const Vector<Reg>&);
// This is the set of registers that Air is allowed to emit code to mutate. It's derived from
// regsInPriorityOrder. Any registers not in this set are said to be "pinned".
const RegisterSet& mutableRegs() const { return m_mutableRegs; }
bool isPinned(Reg reg) const { return !mutableRegs().get(reg); }
void pinRegister(Reg);
JS_EXPORT_PRIVATE BasicBlock* addBlock(double frequency = 1);
// Note that you can rely on stack slots always getting indices that are larger than the index
// of any prior stack slot. In fact, all stack slots you create in the future will have an index
// that is >= stackSlots().size().
JS_EXPORT_PRIVATE StackSlot* addStackSlot(
unsigned byteSize, StackSlotKind, B3::StackSlot* = nullptr);
StackSlot* addStackSlot(B3::StackSlot*);
Special* addSpecial(std::unique_ptr<Special>);
// This is the special you need to make a C call!
CCallSpecial* cCallSpecial();
Tmp newTmp(Arg::Type type)
{
switch (type) {
case Arg::GP:
return Tmp::gpTmpForIndex(m_numGPTmps++);
case Arg::FP:
return Tmp::fpTmpForIndex(m_numFPTmps++);
}
ASSERT_NOT_REACHED();
}
unsigned numTmps(Arg::Type type)
{
switch (type) {
case Arg::GP:
return m_numGPTmps;
case Arg::FP:
return m_numFPTmps;
}
ASSERT_NOT_REACHED();
}
unsigned callArgAreaSizeInBytes() const { return m_callArgAreaSize; }
// You can call this before code generation to force a minimum call arg area size.
void requestCallArgAreaSizeInBytes(unsigned size)
{
m_callArgAreaSize = std::max(
m_callArgAreaSize,
static_cast<unsigned>(WTF::roundUpToMultipleOf(stackAlignmentBytes(), size)));
}
unsigned frameSize() const { return m_frameSize; }
// Only phases that do stack allocation are allowed to set this. Currently, only
// Air::allocateStack() does this.
void setFrameSize(unsigned frameSize)
{
m_frameSize = frameSize;
}
// Note that this is not the same thing as proc().numEntrypoints(). This value here may be zero
// until we lower EntrySwitch.
unsigned numEntrypoints() const { return m_entrypoints.size(); }
const Vector<FrequentedBlock>& entrypoints() const { return m_entrypoints; }
const FrequentedBlock& entrypoint(unsigned index) const { return m_entrypoints[index]; }
bool isEntrypoint(BasicBlock*) const;
// This is used by lowerEntrySwitch().
template<typename Vector>
void setEntrypoints(Vector&& vector)
{
m_entrypoints = std::forward<Vector>(vector);
}
CCallHelpers::Label entrypointLabel(unsigned index) const
{
return m_entrypointLabels[index];
}
// This is used by generate().
template<typename Vector>
void setEntrypointLabels(Vector&& vector)
{
m_entrypointLabels = std::forward<Vector>(vector);
}
const RegisterAtOffsetList& calleeSaveRegisters() const { return m_calleeSaveRegisters; }
RegisterAtOffsetList& calleeSaveRegisters() { return m_calleeSaveRegisters; }
// Recomputes predecessors and deletes unreachable blocks.
void resetReachability();
JS_EXPORT_PRIVATE void dump(PrintStream&) const;
unsigned size() const { return m_blocks.size(); }
BasicBlock* at(unsigned index) const { return m_blocks[index].get(); }
BasicBlock* operator[](unsigned index) const { return at(index); }
// This is used by phases that optimize the block list. You shouldn't use this unless you really know
// what you're doing.
Vector<std::unique_ptr<BasicBlock>>& blockList() { return m_blocks; }
// Finds the smallest index' such that at(index') != null and index' >= index.
JS_EXPORT_PRIVATE unsigned findFirstBlockIndex(unsigned index) const;
// Finds the smallest index' such that at(index') != null and index' > index.
unsigned findNextBlockIndex(unsigned index) const;
BasicBlock* findNextBlock(BasicBlock*) const;
class iterator {
public:
iterator()
: m_code(nullptr)
, m_index(0)
{
}
iterator(const Code& code, unsigned index)
: m_code(&code)
, m_index(m_code->findFirstBlockIndex(index))
{
}
BasicBlock* operator*()
{
return m_code->at(m_index);
}
iterator& operator++()
{
m_index = m_code->findFirstBlockIndex(m_index + 1);
return *this;
}
bool operator==(const iterator& other) const
{
return m_index == other.m_index;
}
bool operator!=(const iterator& other) const
{
return !(*this == other);
}
private:
const Code* m_code;
unsigned m_index;
};
iterator begin() const { return iterator(*this, 0); }
iterator end() const { return iterator(*this, size()); }
const SparseCollection<StackSlot>& stackSlots() const { return m_stackSlots; }
SparseCollection<StackSlot>& stackSlots() { return m_stackSlots; }
const SparseCollection<Special>& specials() const { return m_specials; }
SparseCollection<Special>& specials() { return m_specials; }
template<typename Callback>
void forAllTmps(const Callback& callback) const
{
for (unsigned i = m_numGPTmps; i--;)
callback(Tmp::gpTmpForIndex(i));
for (unsigned i = m_numFPTmps; i--;)
callback(Tmp::fpTmpForIndex(i));
}
void addFastTmp(Tmp);
bool isFastTmp(Tmp tmp) const { return m_fastTmps.contains(tmp); }
void* addDataSection(size_t);
// The name has to be a string literal, since we don't do any memory management for the string.
void setLastPhaseName(const char* name)
{
m_lastPhaseName = name;
}
const char* lastPhaseName() const { return m_lastPhaseName; }
void setWasmBoundsCheckGenerator(RefPtr<WasmBoundsCheckGenerator> generator)
{
m_wasmBoundsCheckGenerator = generator;
}
RefPtr<WasmBoundsCheckGenerator> wasmBoundsCheckGenerator() const { return m_wasmBoundsCheckGenerator; }
// This is a hash of the code. You can use this if you want to put code into a hashtable, but
// it's mainly for validating the results from JSAir.
unsigned jsHash() const;
private:
friend class ::JSC::B3::Procedure;
friend class BlockInsertionSet;
Code(Procedure&);
Vector<Reg>& regsInPriorityOrderImpl(Arg::Type type)
{
switch (type) {
case Arg::GP:
return m_gpRegsInPriorityOrder;
case Arg::FP:
return m_fpRegsInPriorityOrder;
}
ASSERT_NOT_REACHED();
}
Procedure& m_proc; // Some meta-data, like byproducts, is stored in the Procedure.
Vector<Reg> m_gpRegsInPriorityOrder;
Vector<Reg> m_fpRegsInPriorityOrder;
RegisterSet m_mutableRegs;
SparseCollection<StackSlot> m_stackSlots;
Vector<std::unique_ptr<BasicBlock>> m_blocks;
SparseCollection<Special> m_specials;
HashSet<Tmp> m_fastTmps;
CCallSpecial* m_cCallSpecial { nullptr };
unsigned m_numGPTmps { 0 };
unsigned m_numFPTmps { 0 };
unsigned m_frameSize { 0 };
unsigned m_callArgAreaSize { 0 };
RegisterAtOffsetList m_calleeSaveRegisters;
Vector<FrequentedBlock> m_entrypoints; // This is empty until after lowerEntrySwitch().
Vector<CCallHelpers::Label> m_entrypointLabels; // This is empty until code generation.
RefPtr<WasmBoundsCheckGenerator> m_wasmBoundsCheckGenerator;
const char* m_lastPhaseName;
};
} } } // namespace JSC::B3::Air
#if COMPILER(GCC) && ASSERT_DISABLED
#pragma GCC diagnostic pop
#endif // COMPILER(GCC) && ASSERT_DISABLED
#endif // ENABLE(B3_JIT)
|