diff options
Diffstat (limited to 'Source/WebCore/contentextensions/DFAMinimizer.cpp')
-rw-r--r-- | Source/WebCore/contentextensions/DFAMinimizer.cpp | 509 |
1 files changed, 509 insertions, 0 deletions
diff --git a/Source/WebCore/contentextensions/DFAMinimizer.cpp b/Source/WebCore/contentextensions/DFAMinimizer.cpp new file mode 100644 index 000000000..4408e84bf --- /dev/null +++ b/Source/WebCore/contentextensions/DFAMinimizer.cpp @@ -0,0 +1,509 @@ +/* + * Copyright (C) 2015 Apple Inc. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, + * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "config.h" +#include "DFAMinimizer.h" + +#if ENABLE(CONTENT_EXTENSIONS) + +#include "DFA.h" +#include "DFANode.h" +#include "MutableRangeList.h" +#include <wtf/HashMap.h> +#include <wtf/Hasher.h> +#include <wtf/Vector.h> + +namespace WebCore { +namespace ContentExtensions { + +namespace { + +template<typename VectorType, typename Iterable, typename Function> +static inline void iterateIntersections(const VectorType& singularTransitionsFirsts, const Iterable& iterableTransitionList, const Function& intersectionHandler) +{ + ASSERT(!singularTransitionsFirsts.isEmpty()); + auto otherIterator = iterableTransitionList.begin(); + auto otherEnd = iterableTransitionList.end(); + + if (otherIterator == otherEnd) + return; + + unsigned singularTransitionsLength = singularTransitionsFirsts.size(); + unsigned singularTransitionsFirstsIndex = 0; + for (; otherIterator != otherEnd; ++otherIterator) { + auto firstCharacter = otherIterator.first(); + while (singularTransitionsFirstsIndex < singularTransitionsLength + && singularTransitionsFirsts[singularTransitionsFirstsIndex] != firstCharacter) + ++singularTransitionsFirstsIndex; + + intersectionHandler(singularTransitionsFirstsIndex, otherIterator); + ++singularTransitionsFirstsIndex; + + auto lastCharacter = otherIterator.last(); + while (singularTransitionsFirstsIndex < singularTransitionsLength + && singularTransitionsFirsts[singularTransitionsFirstsIndex] <= lastCharacter) { + intersectionHandler(singularTransitionsFirstsIndex, otherIterator); + ++singularTransitionsFirstsIndex; + } + } +} + +class Partition { +public: + void initialize(unsigned size) + { + if (!size) + return; + + m_sets.reserveInitialCapacity(size); + m_partitionedElements.resize(size); + m_elementPositionInPartitionedNodes.resize(size); + m_elementToSetMap.resize(size); + + for (unsigned i = 0; i < size; ++i) { + m_partitionedElements[i] = i; + m_elementPositionInPartitionedNodes[i] = i; + m_elementToSetMap[i] = 0; + } + m_sets.uncheckedAppend(SetDescriptor { 0, size, 0 }); + } + + void reserveUninitializedCapacity(unsigned elementCount) + { + m_partitionedElements.resize(elementCount); + m_elementPositionInPartitionedNodes.resize(elementCount); + m_elementToSetMap.resize(elementCount); + } + + void addSetUnchecked(unsigned start, unsigned size) + { + m_sets.append(SetDescriptor { start, size, 0 }); + } + + void setElementUnchecked(unsigned elementIndex, unsigned positionInPartition, unsigned setIndex) + { + ASSERT(setIndex < m_sets.size()); + m_partitionedElements[positionInPartition] = elementIndex; + m_elementPositionInPartitionedNodes[elementIndex] = positionInPartition; + m_elementToSetMap[elementIndex] = setIndex; + } + + unsigned startOffsetOfSet(unsigned setIndex) const + { + return m_sets[setIndex].start; + } + + ALWAYS_INLINE void markElementInCurrentGeneration(unsigned elementIndex) + { + // Swap the node with the first unmarked node. + unsigned setIndex = m_elementToSetMap[elementIndex]; + SetDescriptor& setDescriptor = m_sets[setIndex]; + + unsigned elementPositionInPartition = m_elementPositionInPartitionedNodes[elementIndex]; + ASSERT(elementPositionInPartition >= setDescriptor.start); + ASSERT(elementPositionInPartition < setDescriptor.end()); + + unsigned firstUnmarkedElementPositionInPartition = setDescriptor.indexAfterMarkedElements(); + ASSERT(firstUnmarkedElementPositionInPartition >= setDescriptor.start && firstUnmarkedElementPositionInPartition < setDescriptor.end()); + ASSERT(firstUnmarkedElementPositionInPartition >= firstUnmarkedElementPositionInPartition); + + // Swap the nodes in the set. + unsigned firstUnmarkedElement = m_partitionedElements[firstUnmarkedElementPositionInPartition]; + m_partitionedElements[firstUnmarkedElementPositionInPartition] = elementIndex; + m_partitionedElements[elementPositionInPartition] = firstUnmarkedElement; + + // Update their index. + m_elementPositionInPartitionedNodes[elementIndex] = firstUnmarkedElementPositionInPartition; + m_elementPositionInPartitionedNodes[firstUnmarkedElement] = elementPositionInPartition; + + if (!setDescriptor.markedCount) { + ASSERT(!m_setsMarkedInCurrentGeneration.contains(setIndex)); + m_setsMarkedInCurrentGeneration.append(setIndex); + } + ++setDescriptor.markedCount; + } + + // The function passed as argument MUST not modify the partition. + template<typename Function> + void refineGeneration(const Function& function) + { + for (unsigned setIndex : m_setsMarkedInCurrentGeneration) { + SetDescriptor& setDescriptor = m_sets[setIndex]; + if (setDescriptor.markedCount == setDescriptor.size) { + // Everything is marked, there is nothing to refine. + setDescriptor.markedCount = 0; + continue; + } + + SetDescriptor newSet; + bool newSetIsMarkedSet = setDescriptor.markedCount * 2 <= setDescriptor.size; + if (newSetIsMarkedSet) { + // Less than half of the nodes have been marked. + newSet = { setDescriptor.start, setDescriptor.markedCount, 0 }; + setDescriptor.start = setDescriptor.start + setDescriptor.markedCount; + } else + newSet = { setDescriptor.start + setDescriptor.markedCount, setDescriptor.size - setDescriptor.markedCount, 0 }; + setDescriptor.size -= newSet.size; + setDescriptor.markedCount = 0; + + unsigned newSetIndex = m_sets.size(); + m_sets.append(newSet); + + for (unsigned i = newSet.start; i < newSet.end(); ++i) + m_elementToSetMap[m_partitionedElements[i]] = newSetIndex; + + function(newSetIndex); + } + m_setsMarkedInCurrentGeneration.clear(); + } + + // Call Function() on every node of a given subset. + template<typename Function> + void iterateSet(unsigned setIndex, const Function& function) + { + SetDescriptor& setDescriptor = m_sets[setIndex]; + for (unsigned i = setDescriptor.start; i < setDescriptor.end(); ++i) + function(m_partitionedElements[i]); + } + + // Index of the set containing the Node. + unsigned setIndex(unsigned elementIndex) const + { + return m_elementToSetMap[elementIndex]; + } + + // NodeIndex of the first element in the set. + unsigned firstElementInSet(unsigned setIndex) const + { + return m_partitionedElements[m_sets[setIndex].start]; + } + + unsigned size() const + { + return m_sets.size(); + } + +private: + struct SetDescriptor { + unsigned start; + unsigned size; + unsigned markedCount; + + unsigned indexAfterMarkedElements() const { return start + markedCount; } + unsigned end() const { return start + size; } + }; + + // List of sets. + Vector<SetDescriptor, 0, ContentExtensionsOverflowHandler> m_sets; + + // All the element indices such that two elements of the same set never have a element of a different set between them. + Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_partitionedElements; + + // Map elementIndex->position in the partitionedElements. + Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_elementPositionInPartitionedNodes; + + // Map elementIndex->SetIndex. + Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_elementToSetMap; + + // List of sets with any marked node. Each set can appear at most once. + // FIXME: find a good inline size for this. + Vector<unsigned, 128, ContentExtensionsOverflowHandler> m_setsMarkedInCurrentGeneration; +}; + +class FullGraphPartition { + typedef MutableRangeList<char, uint32_t, 128> SingularTransitionsMutableRangeList; +public: + FullGraphPartition(const DFA& dfa) + { + m_nodePartition.initialize(dfa.nodes.size()); + + SingularTransitionsMutableRangeList singularTransitions; + CounterConverter counterConverter; + for (const DFANode& node : dfa.nodes) { + if (node.isKilled()) + continue; + auto transitions = node.transitions(dfa); + singularTransitions.extend(transitions.begin(), transitions.end(), counterConverter); + } + + // Count the number of transition for each singular range. This will give us the bucket size + // for the transition partition, where transitions are partitioned by "symbol". + unsigned rangeIndexAccumulator = 0; + for (const auto& transition : singularTransitions) { + m_transitionPartition.addSetUnchecked(rangeIndexAccumulator, transition.data); + rangeIndexAccumulator += transition.data; + } + + // Count the number of incoming transitions per node. + m_flattenedTransitionsStartOffsetPerNode.resize(dfa.nodes.size()); + memset(m_flattenedTransitionsStartOffsetPerNode.data(), 0, m_flattenedTransitionsStartOffsetPerNode.size() * sizeof(unsigned)); + + Vector<char, 0, ContentExtensionsOverflowHandler> singularTransitionsFirsts; + singularTransitionsFirsts.reserveInitialCapacity(singularTransitions.m_ranges.size()); + for (const auto& transition : singularTransitions) + singularTransitionsFirsts.uncheckedAppend(transition.first); + + for (const DFANode& node : dfa.nodes) { + if (node.isKilled()) + continue; + auto transitions = node.transitions(dfa); + iterateIntersections(singularTransitionsFirsts, transitions, [&](unsigned, const DFANode::ConstRangeIterator& origin) { + uint32_t targetNodeIndex = origin.target(); + ++m_flattenedTransitionsStartOffsetPerNode[targetNodeIndex]; + }); + } + + // Accumulate the offsets. This gives us the start position of each bucket. + unsigned transitionAccumulator = 0; + for (unsigned i = 0; i < m_flattenedTransitionsStartOffsetPerNode.size(); ++i) { + unsigned transitionsCountForNode = m_flattenedTransitionsStartOffsetPerNode[i]; + m_flattenedTransitionsStartOffsetPerNode[i] = transitionAccumulator; + transitionAccumulator += transitionsCountForNode; + } + unsigned flattenedTransitionsSize = transitionAccumulator; + ASSERT_WITH_MESSAGE(flattenedTransitionsSize == rangeIndexAccumulator, "The number of transitions should be the same, regardless of how they are arranged in buckets."); + + m_transitionPartition.reserveUninitializedCapacity(flattenedTransitionsSize); + + // Next, let's fill the transition table and set up the size of each group at the same time. + m_flattenedTransitionsSizePerNode.resize(dfa.nodes.size()); + for (unsigned& counter : m_flattenedTransitionsSizePerNode) + counter = 0; + m_flattenedTransitions.resize(flattenedTransitionsSize); + + Vector<uint32_t> transitionPerRangeOffset(m_transitionPartition.size()); + memset(transitionPerRangeOffset.data(), 0, transitionPerRangeOffset.size() * sizeof(uint32_t)); + + for (unsigned i = 0; i < dfa.nodes.size(); ++i) { + const DFANode& node = dfa.nodes[i]; + if (node.isKilled()) + continue; + + auto transitions = node.transitions(dfa); + iterateIntersections(singularTransitionsFirsts, transitions, [&](unsigned singularTransitonIndex, const DFANode::ConstRangeIterator& origin) { + uint32_t targetNodeIndex = origin.target(); + + unsigned start = m_flattenedTransitionsStartOffsetPerNode[targetNodeIndex]; + unsigned offset = m_flattenedTransitionsSizePerNode[targetNodeIndex]; + unsigned positionInFlattenedTransitions = start + offset; + m_flattenedTransitions[positionInFlattenedTransitions] = Transition({ i }); + + uint32_t& inRangeOffset = transitionPerRangeOffset[singularTransitonIndex]; + unsigned positionInTransitionPartition = m_transitionPartition.startOffsetOfSet(singularTransitonIndex) + inRangeOffset; + ++inRangeOffset; + + m_transitionPartition.setElementUnchecked(positionInFlattenedTransitions, positionInTransitionPartition, singularTransitonIndex); + + ++m_flattenedTransitionsSizePerNode[targetNodeIndex]; + }); + } + } + + void markNode(unsigned nodeIndex) + { + m_nodePartition.markElementInCurrentGeneration(nodeIndex); + } + + void refinePartitions() + { + m_nodePartition.refineGeneration([&](unsigned smallestSetIndex) { + m_nodePartition.iterateSet(smallestSetIndex, [&](unsigned nodeIndex) { + unsigned incomingTransitionsStartForNode = m_flattenedTransitionsStartOffsetPerNode[nodeIndex]; + unsigned incomingTransitionsSizeForNode = m_flattenedTransitionsSizePerNode[nodeIndex]; + + for (unsigned i = 0; i < incomingTransitionsSizeForNode; ++i) + m_transitionPartition.markElementInCurrentGeneration(incomingTransitionsStartForNode + i); + }); + + // We only need to split the transitions, we handle the new sets through the main loop. + m_transitionPartition.refineGeneration([](unsigned) { }); + }); + } + + void splitByUniqueTransitions() + { + for (; m_nextTransitionSetToProcess < m_transitionPartition.size(); ++m_nextTransitionSetToProcess) { + // We use the known splitters to refine the set. + m_transitionPartition.iterateSet(m_nextTransitionSetToProcess, [&](unsigned transitionIndex) { + unsigned sourceNodeIndex = m_flattenedTransitions[transitionIndex].source; + m_nodePartition.markElementInCurrentGeneration(sourceNodeIndex); + }); + + refinePartitions(); + } + } + + unsigned nodeReplacement(unsigned nodeIndex) + { + unsigned setIndex = m_nodePartition.setIndex(nodeIndex); + return m_nodePartition.firstElementInSet(setIndex); + } + +private: + struct Transition { + unsigned source; + }; + + struct CounterConverter { + uint32_t convert(uint32_t) + { + return 1; + } + + void extend(uint32_t& destination, uint32_t) + { + ++destination; + } + }; + + Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_flattenedTransitionsStartOffsetPerNode; + Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_flattenedTransitionsSizePerNode; + Vector<Transition, 0, ContentExtensionsOverflowHandler> m_flattenedTransitions; + + Partition m_nodePartition; + Partition m_transitionPartition; + + unsigned m_nextTransitionSetToProcess { 0 }; +}; + +struct ActionKey { + enum DeletedValueTag { DeletedValue }; + explicit ActionKey(DeletedValueTag) { state = Deleted; } + + enum EmptyValueTag { EmptyValue }; + explicit ActionKey(EmptyValueTag) { state = Empty; } + + explicit ActionKey(const DFA* dfa, uint32_t actionsStart, uint16_t actionsLength) + : dfa(dfa) + , actionsStart(actionsStart) + , actionsLength(actionsLength) + , state(Valid) + { + StringHasher hasher; + hasher.addCharactersAssumingAligned(reinterpret_cast<const UChar*>(&dfa->actions[actionsStart]), actionsLength * sizeof(uint64_t) / sizeof(UChar)); + hash = hasher.hash(); + } + + bool isEmptyValue() const { return state == Empty; } + bool isDeletedValue() const { return state == Deleted; } + + unsigned hash; + + const DFA* dfa; + uint32_t actionsStart; + uint16_t actionsLength; + + enum { + Valid, + Empty, + Deleted + } state; +}; + +struct ActionKeyHash { + static unsigned hash(const ActionKey& actionKey) + { + return actionKey.hash; + } + + static bool equal(const ActionKey& a, const ActionKey& b) + { + if (a.state != b.state + || a.dfa != b.dfa + || a.actionsLength != b.actionsLength) + return false; + for (uint16_t i = 0; i < a.actionsLength; ++i) { + if (a.dfa->actions[a.actionsStart + i] != a.dfa->actions[b.actionsStart + i]) + return false; + } + return true; + } + static const bool safeToCompareToEmptyOrDeleted = false; +}; + +struct ActionKeyHashTraits : public WTF::CustomHashTraits<ActionKey> { + static const bool emptyValueIsZero = true; +}; + +} // anonymous namespace. + +void DFAMinimizer::minimize(DFA& dfa) +{ + FullGraphPartition fullGraphPartition(dfa); + + // Unlike traditional minimization final states can be differentiated by their action. + // Instead of creating a single set for the final state, we partition by actions from + // the start. + HashMap<ActionKey, Vector<unsigned>, ActionKeyHash, ActionKeyHashTraits> finalStates; + for (unsigned i = 0; i < dfa.nodes.size(); ++i) { + const DFANode& node = dfa.nodes[i]; + if (node.hasActions()) { + // FIXME: Sort the actions in the dfa to make nodes that have the same actions in different order equal. + auto addResult = finalStates.add(ActionKey(&dfa, node.actionsStart(), node.actionsLength()), Vector<unsigned>()); + addResult.iterator->value.append(i); + } + } + + for (const auto& slot : finalStates) { + for (unsigned finalStateIndex : slot.value) + fullGraphPartition.markNode(finalStateIndex); + fullGraphPartition.refinePartitions(); + } + + // Use every splitter to refine the node partitions. + fullGraphPartition.splitByUniqueTransitions(); + + Vector<unsigned> relocationVector; + relocationVector.reserveInitialCapacity(dfa.nodes.size()); + for (unsigned i = 0; i < dfa.nodes.size(); ++i) + relocationVector.uncheckedAppend(i); + + // Update all the transitions. + for (unsigned i = 0; i < dfa.nodes.size(); ++i) { + unsigned replacement = fullGraphPartition.nodeReplacement(i); + if (i != replacement) { + relocationVector[i] = replacement; + dfa.nodes[i].kill(dfa); + } + } + + dfa.root = relocationVector[dfa.root]; + for (DFANode& node : dfa.nodes) { + if (node.isKilled()) + continue; + + for (auto& transition : node.transitions(dfa)) { + uint32_t target = transition.target(); + uint32_t relocatedTarget = relocationVector[target]; + if (target != relocatedTarget) + transition.resetTarget(relocatedTarget); + } + } +} + +} // namespace ContentExtensions +} // namespace WebCore + +#endif // ENABLE(CONTENT_EXTENSIONS) |