summaryrefslogtreecommitdiff
path: root/Source/WTF/wtf/Dominators.h
diff options
context:
space:
mode:
Diffstat (limited to 'Source/WTF/wtf/Dominators.h')
-rw-r--r--Source/WTF/wtf/Dominators.h752
1 files changed, 752 insertions, 0 deletions
diff --git a/Source/WTF/wtf/Dominators.h b/Source/WTF/wtf/Dominators.h
new file mode 100644
index 000000000..e7ab52f7e
--- /dev/null
+++ b/Source/WTF/wtf/Dominators.h
@@ -0,0 +1,752 @@
+/*
+ * Copyright (C) 2011, 2014-2016 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef WTFDominators_h
+#define WTFDominators_h
+
+#include <wtf/FastBitVector.h>
+#include <wtf/GraphNodeWorklist.h>
+
+namespace WTF {
+
+// This is a utility for finding the dominators of a graph. Dominators are almost universally used
+// for control flow graph analysis, so this code will refer to the graph's "nodes" as "blocks". In
+// that regard this code is kind of specialized for the various JSC compilers, but you could use it
+// for non-compiler things if you are OK with referring to your "nodes" as "blocks".
+
+template<typename Graph>
+class Dominators {
+public:
+ Dominators(Graph& graph, bool selfCheck = false)
+ : m_graph(graph)
+ , m_data(graph.template newMap<BlockData>())
+ {
+ LengauerTarjan lengauerTarjan(m_graph);
+ lengauerTarjan.compute();
+
+ m_data = m_graph.template newMap<BlockData>();
+
+ // From here we want to build a spanning tree with both upward and downward links and we want
+ // to do a search over this tree to compute pre and post numbers that can be used for dominance
+ // tests.
+
+ for (unsigned blockIndex = m_graph.numNodes(); blockIndex--;) {
+ typename Graph::Node block = m_graph.node(blockIndex);
+ if (!block)
+ continue;
+
+ typename Graph::Node idomBlock = lengauerTarjan.immediateDominator(block);
+ m_data[block].idomParent = idomBlock;
+ if (idomBlock)
+ m_data[idomBlock].idomKids.append(block);
+ }
+
+ unsigned nextPreNumber = 0;
+ unsigned nextPostNumber = 0;
+
+ // Plain stack-based worklist because we are guaranteed to see each block exactly once anyway.
+ Vector<GraphNodeWithOrder<typename Graph::Node>> worklist;
+ worklist.append(GraphNodeWithOrder<typename Graph::Node>(m_graph.root(), GraphVisitOrder::Pre));
+ while (!worklist.isEmpty()) {
+ GraphNodeWithOrder<typename Graph::Node> item = worklist.takeLast();
+ switch (item.order) {
+ case GraphVisitOrder::Pre:
+ m_data[item.node].preNumber = nextPreNumber++;
+ worklist.append(GraphNodeWithOrder<typename Graph::Node>(item.node, GraphVisitOrder::Post));
+ for (typename Graph::Node kid : m_data[item.node].idomKids)
+ worklist.append(GraphNodeWithOrder<typename Graph::Node>(kid, GraphVisitOrder::Pre));
+ break;
+ case GraphVisitOrder::Post:
+ m_data[item.node].postNumber = nextPostNumber++;
+ break;
+ }
+ }
+
+ if (selfCheck) {
+ // Check our dominator calculation:
+ // 1) Check that our range-based ancestry test is the same as a naive ancestry test.
+ // 2) Check that our notion of who dominates whom is identical to a naive (not
+ // Lengauer-Tarjan) dominator calculation.
+
+ ValidationContext context(m_graph, *this);
+
+ for (unsigned fromBlockIndex = m_graph.numNodes(); fromBlockIndex--;) {
+ typename Graph::Node fromBlock = m_graph.node(fromBlockIndex);
+ if (!fromBlock || m_data[fromBlock].preNumber == UINT_MAX)
+ continue;
+ for (unsigned toBlockIndex = m_graph.numNodes(); toBlockIndex--;) {
+ typename Graph::Node toBlock = m_graph.node(toBlockIndex);
+ if (!toBlock || m_data[toBlock].preNumber == UINT_MAX)
+ continue;
+
+ if (dominates(fromBlock, toBlock) != naiveDominates(fromBlock, toBlock))
+ context.reportError(fromBlock, toBlock, "Range-based domination check is broken");
+ if (dominates(fromBlock, toBlock) != context.naiveDominators.dominates(fromBlock, toBlock))
+ context.reportError(fromBlock, toBlock, "Lengauer-Tarjan domination is broken");
+ }
+ }
+
+ context.handleErrors();
+ }
+ }
+
+ bool strictlyDominates(typename Graph::Node from, typename Graph::Node to) const
+ {
+ return m_data[to].preNumber > m_data[from].preNumber
+ && m_data[to].postNumber < m_data[from].postNumber;
+ }
+
+ bool dominates(typename Graph::Node from, typename Graph::Node to) const
+ {
+ return from == to || strictlyDominates(from, to);
+ }
+
+ // Returns the immediate dominator of this block. Returns null for the root block.
+ typename Graph::Node idom(typename Graph::Node block) const
+ {
+ return m_data[block].idomParent;
+ }
+
+ template<typename Functor>
+ void forAllStrictDominatorsOf(typename Graph::Node to, const Functor& functor) const
+ {
+ for (typename Graph::Node block = m_data[to].idomParent; block; block = m_data[block].idomParent)
+ functor(block);
+ }
+
+ // Note: This will visit the dominators starting with the 'to' node and moving up the idom tree
+ // until it gets to the root. Some clients of this function, like B3::moveConstants(), rely on this
+ // order.
+ template<typename Functor>
+ void forAllDominatorsOf(typename Graph::Node to, const Functor& functor) const
+ {
+ for (typename Graph::Node block = to; block; block = m_data[block].idomParent)
+ functor(block);
+ }
+
+ template<typename Functor>
+ void forAllBlocksStrictlyDominatedBy(typename Graph::Node from, const Functor& functor) const
+ {
+ Vector<typename Graph::Node, 16> worklist;
+ worklist.appendVector(m_data[from].idomKids);
+ while (!worklist.isEmpty()) {
+ typename Graph::Node block = worklist.takeLast();
+ functor(block);
+ worklist.appendVector(m_data[block].idomKids);
+ }
+ }
+
+ template<typename Functor>
+ void forAllBlocksDominatedBy(typename Graph::Node from, const Functor& functor) const
+ {
+ Vector<typename Graph::Node, 16> worklist;
+ worklist.append(from);
+ while (!worklist.isEmpty()) {
+ typename Graph::Node block = worklist.takeLast();
+ functor(block);
+ worklist.appendVector(m_data[block].idomKids);
+ }
+ }
+
+ typename Graph::Set strictDominatorsOf(typename Graph::Node to) const
+ {
+ typename Graph::Set result;
+ forAllStrictDominatorsOf(
+ to,
+ [&] (typename Graph::Node node) {
+ result.add(node);
+ });
+ return result;
+ }
+
+ typename Graph::Set dominatorsOf(typename Graph::Node to) const
+ {
+ typename Graph::Set result;
+ forAllDominatorsOf(
+ to,
+ [&] (typename Graph::Node node) {
+ result.add(node);
+ });
+ return result;
+ }
+
+ typename Graph::Set blocksStrictlyDominatedBy(typename Graph::Node from) const
+ {
+ typename Graph::Set result;
+ forAllBlocksStrictlyDominatedBy(
+ from,
+ [&] (typename Graph::Node node) {
+ result.add(node);
+ });
+ return result;
+ }
+
+ typename Graph::Set blocksDominatedBy(typename Graph::Node from) const
+ {
+ typename Graph::Set result;
+ forAllBlocksDominatedBy(
+ from,
+ [&] (typename Graph::Node node) {
+ result.add(node);
+ });
+ return result;
+ }
+
+ template<typename Functor>
+ void forAllBlocksInDominanceFrontierOf(
+ typename Graph::Node from, const Functor& functor) const
+ {
+ typename Graph::Set set;
+ forAllBlocksInDominanceFrontierOfImpl(
+ from,
+ [&] (typename Graph::Node block) {
+ if (set.add(block))
+ functor(block);
+ });
+ }
+
+ typename Graph::Set dominanceFrontierOf(typename Graph::Node from) const
+ {
+ typename Graph::Set result;
+ forAllBlocksInDominanceFrontierOf(
+ from,
+ [&] (typename Graph::Node node) {
+ result.add(node);
+ });
+ return result;
+ }
+
+ template<typename Functor>
+ void forAllBlocksInIteratedDominanceFrontierOf(const typename Graph::List& from, const Functor& functor)
+ {
+ forAllBlocksInPrunedIteratedDominanceFrontierOf(
+ from,
+ [&] (typename Graph::Node block) -> bool {
+ functor(block);
+ return true;
+ });
+ }
+
+ // This is a close relative of forAllBlocksInIteratedDominanceFrontierOf(), which allows the
+ // given functor to return false to indicate that we don't wish to consider the given block.
+ // Useful for computing pruned SSA form.
+ template<typename Functor>
+ void forAllBlocksInPrunedIteratedDominanceFrontierOf(
+ const typename Graph::List& from, const Functor& functor)
+ {
+ typename Graph::Set set;
+ forAllBlocksInIteratedDominanceFrontierOfImpl(
+ from,
+ [&] (typename Graph::Node block) -> bool {
+ if (!set.add(block))
+ return false;
+ return functor(block);
+ });
+ }
+
+ typename Graph::Set iteratedDominanceFrontierOf(const typename Graph::List& from) const
+ {
+ typename Graph::Set result;
+ forAllBlocksInIteratedDominanceFrontierOfImpl(
+ from,
+ [&] (typename Graph::Node node) -> bool {
+ return result.add(node);
+ });
+ return result;
+ }
+
+ void dump(PrintStream& out) const
+ {
+ for (unsigned blockIndex = 0; blockIndex < m_data.size(); ++blockIndex) {
+ if (m_data[blockIndex].preNumber == UINT_MAX)
+ continue;
+
+ out.print(" Block #", blockIndex, ": idom = ", m_graph.dump(m_data[blockIndex].idomParent), ", idomKids = [");
+ CommaPrinter comma;
+ for (unsigned i = 0; i < m_data[blockIndex].idomKids.size(); ++i)
+ out.print(comma, m_graph.dump(m_data[blockIndex].idomKids[i]));
+ out.print("], pre/post = ", m_data[blockIndex].preNumber, "/", m_data[blockIndex].postNumber, "\n");
+ }
+ }
+
+private:
+ // This implements Lengauer and Tarjan's "A Fast Algorithm for Finding Dominators in a Flowgraph"
+ // (TOPLAS 1979). It uses the "simple" implementation of LINK and EVAL, which yields an O(n log n)
+ // solution. The full paper is linked below; this code attempts to closely follow the algorithm as
+ // it is presented in the paper; in particular sections 3 and 4 as well as appendix B.
+ // https://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/a%20fast%20algorithm%20for%20finding.pdf
+ //
+ // This code is very subtle. The Lengauer-Tarjan algorithm is incredibly deep to begin with. The
+ // goal of this code is to follow the code in the paper, however our implementation must deviate
+ // from the paper when it comes to recursion. The authors had used recursion to implement DFS, and
+ // also to implement the "simple" EVAL. We convert both of those into worklist-based solutions.
+ // Finally, once the algorithm gives us immediate dominators, we implement dominance tests by
+ // walking the dominator tree and computing pre and post numbers. We then use the range inclusion
+ // check trick that was first discovered by Paul F. Dietz in 1982 in "Maintaining order in a linked
+ // list" (see http://dl.acm.org/citation.cfm?id=802184).
+
+ class LengauerTarjan {
+ public:
+ LengauerTarjan(Graph& graph)
+ : m_graph(graph)
+ , m_data(graph.template newMap<BlockData>())
+ {
+ for (unsigned blockIndex = m_graph.numNodes(); blockIndex--;) {
+ typename Graph::Node block = m_graph.node(blockIndex);
+ if (!block)
+ continue;
+ m_data[block].label = block;
+ }
+ }
+
+ void compute()
+ {
+ computeDepthFirstPreNumbering(); // Step 1.
+ computeSemiDominatorsAndImplicitImmediateDominators(); // Steps 2 and 3.
+ computeExplicitImmediateDominators(); // Step 4.
+ }
+
+ typename Graph::Node immediateDominator(typename Graph::Node block)
+ {
+ return m_data[block].dom;
+ }
+
+ private:
+ void computeDepthFirstPreNumbering()
+ {
+ // Use a block worklist that also tracks the index inside the successor list. This is
+ // necessary for ensuring that we don't attempt to visit a successor until the previous
+ // successors that we had visited are fully processed. This ends up being revealed in the
+ // output of this method because the first time we see an edge to a block, we set the
+ // block's parent. So, if we have:
+ //
+ // A -> B
+ // A -> C
+ // B -> C
+ //
+ // And we're processing A, then we want to ensure that if we see A->B first (and hence set
+ // B's prenumber before we set C's) then we also end up setting C's parent to B by virtue
+ // of not noticing A->C until we're done processing B.
+
+ ExtendedGraphNodeWorklist<typename Graph::Node, unsigned, typename Graph::Set> worklist;
+ worklist.push(m_graph.root(), 0);
+
+ while (GraphNodeWith<typename Graph::Node, unsigned> item = worklist.pop()) {
+ typename Graph::Node block = item.node;
+ unsigned successorIndex = item.data;
+
+ // We initially push with successorIndex = 0 regardless of whether or not we have any
+ // successors. This is so that we can assign our prenumber. Subsequently we get pushed
+ // with higher successorIndex values, but only if they are in range.
+ ASSERT(!successorIndex || successorIndex < m_graph.successors(block).size());
+
+ if (!successorIndex) {
+ m_data[block].semiNumber = m_blockByPreNumber.size();
+ m_blockByPreNumber.append(block);
+ }
+
+ if (successorIndex < m_graph.successors(block).size()) {
+ unsigned nextSuccessorIndex = successorIndex + 1;
+ if (nextSuccessorIndex < m_graph.successors(block).size())
+ worklist.forcePush(block, nextSuccessorIndex);
+
+ typename Graph::Node successorBlock = m_graph.successors(block)[successorIndex];
+ if (worklist.push(successorBlock, 0))
+ m_data[successorBlock].parent = block;
+ }
+ }
+ }
+
+ void computeSemiDominatorsAndImplicitImmediateDominators()
+ {
+ for (unsigned currentPreNumber = m_blockByPreNumber.size(); currentPreNumber-- > 1;) {
+ typename Graph::Node block = m_blockByPreNumber[currentPreNumber];
+ BlockData& blockData = m_data[block];
+
+ // Step 2:
+ for (typename Graph::Node predecessorBlock : m_graph.predecessors(block)) {
+ typename Graph::Node intermediateBlock = eval(predecessorBlock);
+ blockData.semiNumber = std::min(
+ m_data[intermediateBlock].semiNumber, blockData.semiNumber);
+ }
+ unsigned bucketPreNumber = blockData.semiNumber;
+ ASSERT(bucketPreNumber <= currentPreNumber);
+ m_data[m_blockByPreNumber[bucketPreNumber]].bucket.append(block);
+ link(blockData.parent, block);
+
+ // Step 3:
+ for (typename Graph::Node semiDominee : m_data[blockData.parent].bucket) {
+ typename Graph::Node possibleDominator = eval(semiDominee);
+ BlockData& semiDomineeData = m_data[semiDominee];
+ ASSERT(m_blockByPreNumber[semiDomineeData.semiNumber] == blockData.parent);
+ BlockData& possibleDominatorData = m_data[possibleDominator];
+ if (possibleDominatorData.semiNumber < semiDomineeData.semiNumber)
+ semiDomineeData.dom = possibleDominator;
+ else
+ semiDomineeData.dom = blockData.parent;
+ }
+ m_data[blockData.parent].bucket.clear();
+ }
+ }
+
+ void computeExplicitImmediateDominators()
+ {
+ for (unsigned currentPreNumber = 1; currentPreNumber < m_blockByPreNumber.size(); ++currentPreNumber) {
+ typename Graph::Node block = m_blockByPreNumber[currentPreNumber];
+ BlockData& blockData = m_data[block];
+
+ if (blockData.dom != m_blockByPreNumber[blockData.semiNumber])
+ blockData.dom = m_data[blockData.dom].dom;
+ }
+ }
+
+ void link(typename Graph::Node from, typename Graph::Node to)
+ {
+ m_data[to].ancestor = from;
+ }
+
+ typename Graph::Node eval(typename Graph::Node block)
+ {
+ if (!m_data[block].ancestor)
+ return block;
+
+ compress(block);
+ return m_data[block].label;
+ }
+
+ void compress(typename Graph::Node initialBlock)
+ {
+ // This was meant to be a recursive function, but we don't like recursion because we don't
+ // want to blow the stack. The original function will call compress() recursively on the
+ // ancestor of anything that has an ancestor. So, we populate our worklist with the
+ // recursive ancestors of initialBlock. Then we process the list starting from the block
+ // that is furthest up the ancestor chain.
+
+ typename Graph::Node ancestor = m_data[initialBlock].ancestor;
+ ASSERT(ancestor);
+ if (!m_data[ancestor].ancestor)
+ return;
+
+ Vector<typename Graph::Node, 16> stack;
+ for (typename Graph::Node block = initialBlock; block; block = m_data[block].ancestor)
+ stack.append(block);
+
+ // We only care about blocks that have an ancestor that has an ancestor. The last two
+ // elements in the stack won't satisfy this property.
+ ASSERT(stack.size() >= 2);
+ ASSERT(!m_data[stack[stack.size() - 1]].ancestor);
+ ASSERT(!m_data[m_data[stack[stack.size() - 2]].ancestor].ancestor);
+
+ for (unsigned i = stack.size() - 2; i--;) {
+ typename Graph::Node block = stack[i];
+ typename Graph::Node& labelOfBlock = m_data[block].label;
+ typename Graph::Node& ancestorOfBlock = m_data[block].ancestor;
+ ASSERT(ancestorOfBlock);
+ ASSERT(m_data[ancestorOfBlock].ancestor);
+
+ typename Graph::Node labelOfAncestorOfBlock = m_data[ancestorOfBlock].label;
+
+ if (m_data[labelOfAncestorOfBlock].semiNumber < m_data[labelOfBlock].semiNumber)
+ labelOfBlock = labelOfAncestorOfBlock;
+ ancestorOfBlock = m_data[ancestorOfBlock].ancestor;
+ }
+ }
+
+ struct BlockData {
+ BlockData()
+ : parent(nullptr)
+ , preNumber(UINT_MAX)
+ , semiNumber(UINT_MAX)
+ , ancestor(nullptr)
+ , label(nullptr)
+ , dom(nullptr)
+ {
+ }
+
+ typename Graph::Node parent;
+ unsigned preNumber;
+ unsigned semiNumber;
+ typename Graph::Node ancestor;
+ typename Graph::Node label;
+ Vector<typename Graph::Node> bucket;
+ typename Graph::Node dom;
+ };
+
+ Graph& m_graph;
+ typename Graph::template Map<BlockData> m_data;
+ Vector<typename Graph::Node> m_blockByPreNumber;
+ };
+
+ class NaiveDominators {
+ public:
+ NaiveDominators(Graph& graph)
+ : m_graph(graph)
+ {
+ // This implements a naive dominator solver.
+
+ ASSERT(!graph.predecessors(graph.root()).size());
+
+ unsigned numBlocks = graph.numNodes();
+
+ // Allocate storage for the dense dominance matrix.
+ m_results.grow(numBlocks);
+ for (unsigned i = numBlocks; i--;)
+ m_results[i].resize(numBlocks);
+ m_scratch.resize(numBlocks);
+
+ // We know that the entry block is only dominated by itself.
+ m_results[0].clearAll();
+ m_results[0][0] = true;
+
+ // Find all of the valid blocks.
+ m_scratch.clearAll();
+ for (unsigned i = numBlocks; i--;) {
+ if (!graph.node(i))
+ continue;
+ m_scratch[i] = true;
+ }
+
+ // Mark all nodes as dominated by everything.
+ for (unsigned i = numBlocks; i-- > 1;) {
+ if (!graph.node(i) || !graph.predecessors(graph.node(i)).size())
+ m_results[i].clearAll();
+ else
+ m_results[i] = m_scratch;
+ }
+
+ // Iteratively eliminate nodes that are not dominator.
+ bool changed;
+ do {
+ changed = false;
+ // Prune dominators in all non entry blocks: forward scan.
+ for (unsigned i = 1; i < numBlocks; ++i)
+ changed |= pruneDominators(i);
+
+ if (!changed)
+ break;
+
+ // Prune dominators in all non entry blocks: backward scan.
+ changed = false;
+ for (unsigned i = numBlocks; i-- > 1;)
+ changed |= pruneDominators(i);
+ } while (changed);
+ }
+
+ bool dominates(unsigned from, unsigned to) const
+ {
+ return m_results[to][from];
+ }
+
+ bool dominates(typename Graph::Node from, typename Graph::Node to) const
+ {
+ return dominates(m_graph.index(from), m_graph.index(to));
+ }
+
+ void dump(PrintStream& out) const
+ {
+ for (unsigned blockIndex = 0; blockIndex < m_graph.numNodes(); ++blockIndex) {
+ typename Graph::Node block = m_graph.node(blockIndex);
+ if (!block)
+ continue;
+ out.print(" Block ", m_graph.dump(block), ":");
+ for (unsigned otherIndex = 0; otherIndex < m_graph.numNodes(); ++otherIndex) {
+ if (!dominates(m_graph.index(block), otherIndex))
+ continue;
+ out.print(" ", m_graph.dump(m_graph.node(otherIndex)));
+ }
+ out.print("\n");
+ }
+ }
+
+ private:
+ bool pruneDominators(unsigned idx)
+ {
+ typename Graph::Node block = m_graph.node(idx);
+
+ if (!block || !m_graph.predecessors(block).size())
+ return false;
+
+ // Find the intersection of dom(preds).
+ m_scratch = m_results[m_graph.index(m_graph.predecessors(block)[0])];
+ for (unsigned j = m_graph.predecessors(block).size(); j-- > 1;)
+ m_scratch &= m_results[m_graph.index(m_graph.predecessors(block)[j])];
+
+ // The block is also dominated by itself.
+ m_scratch[idx] = true;
+
+ return m_results[idx].setAndCheck(m_scratch);
+ }
+
+ Graph& m_graph;
+ Vector<FastBitVector> m_results; // For each block, the bitvector of blocks that dominate it.
+ FastBitVector m_scratch; // A temporary bitvector with bit for each block. We recycle this to save new/deletes.
+ };
+
+ struct ValidationContext {
+ ValidationContext(Graph& graph, Dominators& dominators)
+ : graph(graph)
+ , dominators(dominators)
+ , naiveDominators(graph)
+ {
+ }
+
+ void reportError(typename Graph::Node from, typename Graph::Node to, const char* message)
+ {
+ Error error;
+ error.from = from;
+ error.to = to;
+ error.message = message;
+ errors.append(error);
+ }
+
+ void handleErrors()
+ {
+ if (errors.isEmpty())
+ return;
+
+ dataLog("DFG DOMINATOR VALIDATION FAILED:\n");
+ dataLog("\n");
+ dataLog("For block domination relationships:\n");
+ for (unsigned i = 0; i < errors.size(); ++i) {
+ dataLog(
+ " ", graph.dump(errors[i].from), " -> ", graph.dump(errors[i].to),
+ " (", errors[i].message, ")\n");
+ }
+ dataLog("\n");
+ dataLog("Control flow graph:\n");
+ for (unsigned blockIndex = 0; blockIndex < graph.numNodes(); ++blockIndex) {
+ typename Graph::Node block = graph.node(blockIndex);
+ if (!block)
+ continue;
+ dataLog(" Block ", graph.dump(graph.node(blockIndex)), ": successors = [");
+ CommaPrinter comma;
+ for (auto successor : graph.successors(block))
+ dataLog(comma, graph.dump(successor));
+ dataLog("], predecessors = [");
+ comma = CommaPrinter();
+ for (auto predecessor : graph.predecessors(block))
+ dataLog(comma, graph.dump(predecessor));
+ dataLog("]\n");
+ }
+ dataLog("\n");
+ dataLog("Lengauer-Tarjan Dominators:\n");
+ dataLog(dominators);
+ dataLog("\n");
+ dataLog("Naive Dominators:\n");
+ naiveDominators.dump(WTF::dataFile());
+ dataLog("\n");
+ dataLog("Graph at time of failure:\n");
+ dataLog(graph);
+ dataLog("\n");
+ dataLog("DFG DOMINATOR VALIDATION FAILIED!\n");
+ CRASH();
+ }
+
+ Graph& graph;
+ Dominators& dominators;
+ NaiveDominators naiveDominators;
+
+ struct Error {
+ typename Graph::Node from;
+ typename Graph::Node to;
+ const char* message;
+ };
+
+ Vector<Error> errors;
+ };
+
+ bool naiveDominates(typename Graph::Node from, typename Graph::Node to) const
+ {
+ for (typename Graph::Node block = to; block; block = m_data[block].idomParent) {
+ if (block == from)
+ return true;
+ }
+ return false;
+ }
+
+ template<typename Functor>
+ void forAllBlocksInDominanceFrontierOfImpl(
+ typename Graph::Node from, const Functor& functor) const
+ {
+ // Paraphrasing from http://en.wikipedia.org/wiki/Dominator_(graph_theory):
+ // "The dominance frontier of a block 'from' is the set of all blocks 'to' such that
+ // 'from' dominates an immediate predecessor of 'to', but 'from' does not strictly
+ // dominate 'to'."
+ //
+ // A useful corner case to remember: a block may be in its own dominance frontier if it has
+ // a loop edge to itself, since it dominates itself and so it dominates its own immediate
+ // predecessor, and a block never strictly dominates itself.
+
+ forAllBlocksDominatedBy(
+ from,
+ [&] (typename Graph::Node block) {
+ for (typename Graph::Node to : m_graph.successors(block)) {
+ if (!strictlyDominates(from, to))
+ functor(to);
+ }
+ });
+ }
+
+ template<typename Functor>
+ void forAllBlocksInIteratedDominanceFrontierOfImpl(
+ const typename Graph::List& from, const Functor& functor) const
+ {
+ typename Graph::List worklist = from;
+ while (!worklist.isEmpty()) {
+ typename Graph::Node block = worklist.takeLast();
+ forAllBlocksInDominanceFrontierOfImpl(
+ block,
+ [&] (typename Graph::Node otherBlock) {
+ if (functor(otherBlock))
+ worklist.append(otherBlock);
+ });
+ }
+ }
+
+ struct BlockData {
+ BlockData()
+ : idomParent(nullptr)
+ , preNumber(UINT_MAX)
+ , postNumber(UINT_MAX)
+ {
+ }
+
+ Vector<typename Graph::Node> idomKids;
+ typename Graph::Node idomParent;
+
+ unsigned preNumber;
+ unsigned postNumber;
+ };
+
+ Graph& m_graph;
+ typename Graph::template Map<BlockData> m_data;
+};
+
+} // namespace WTF
+
+using WTF::Dominators;
+
+#endif // WTFDominators_h
+