diff options
Diffstat (limited to 'Source/JavaScriptCore/ftl/FTLLowerDFGToB3.cpp')
-rw-r--r-- | Source/JavaScriptCore/ftl/FTLLowerDFGToB3.cpp | 13970 |
1 files changed, 13970 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/ftl/FTLLowerDFGToB3.cpp b/Source/JavaScriptCore/ftl/FTLLowerDFGToB3.cpp new file mode 100644 index 000000000..399c85127 --- /dev/null +++ b/Source/JavaScriptCore/ftl/FTLLowerDFGToB3.cpp @@ -0,0 +1,13970 @@ +/* + * Copyright (C) 2013-2017 Apple Inc. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY + * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "config.h" +#include "FTLLowerDFGToB3.h" + +#if ENABLE(FTL_JIT) + +#include "AirGenerationContext.h" +#include "AllowMacroScratchRegisterUsage.h" +#include "B3CheckValue.h" +#include "B3FenceValue.h" +#include "B3PatchpointValue.h" +#include "B3SlotBaseValue.h" +#include "B3StackmapGenerationParams.h" +#include "B3ValueInlines.h" +#include "CallFrameShuffler.h" +#include "CodeBlockWithJITType.h" +#include "DFGAbstractInterpreterInlines.h" +#include "DFGCapabilities.h" +#include "DFGDominators.h" +#include "DFGInPlaceAbstractState.h" +#include "DFGOSRAvailabilityAnalysisPhase.h" +#include "DFGOSRExitFuzz.h" +#include "DOMJITPatchpoint.h" +#include "DirectArguments.h" +#include "FTLAbstractHeapRepository.h" +#include "FTLAvailableRecovery.h" +#include "FTLDOMJITPatchpointParams.h" +#include "FTLExceptionTarget.h" +#include "FTLForOSREntryJITCode.h" +#include "FTLFormattedValue.h" +#include "FTLLazySlowPathCall.h" +#include "FTLLoweredNodeValue.h" +#include "FTLOperations.h" +#include "FTLOutput.h" +#include "FTLPatchpointExceptionHandle.h" +#include "FTLThunks.h" +#include "FTLWeightedTarget.h" +#include "JITAddGenerator.h" +#include "JITBitAndGenerator.h" +#include "JITBitOrGenerator.h" +#include "JITBitXorGenerator.h" +#include "JITDivGenerator.h" +#include "JITInlineCacheGenerator.h" +#include "JITLeftShiftGenerator.h" +#include "JITMathIC.h" +#include "JITMulGenerator.h" +#include "JITRightShiftGenerator.h" +#include "JITSubGenerator.h" +#include "JSCInlines.h" +#include "JSGeneratorFunction.h" +#include "JSLexicalEnvironment.h" +#include "JSMap.h" +#include "OperandsInlines.h" +#include "ScopedArguments.h" +#include "ScopedArgumentsTable.h" +#include "ScratchRegisterAllocator.h" +#include "SetupVarargsFrame.h" +#include "ShadowChicken.h" +#include "StructureStubInfo.h" +#include "VirtualRegister.h" +#include "Watchdog.h" +#include <atomic> +#if !OS(WINDOWS) +#include <dlfcn.h> +#endif +#include <unordered_set> +#include <wtf/Box.h> +#include <wtf/ProcessID.h> + +namespace JSC { namespace FTL { + +using namespace B3; +using namespace DFG; + +namespace { + +std::atomic<int> compileCounter; + +#if !ASSERT_DISABLED +NO_RETURN_DUE_TO_CRASH static void ftlUnreachable( + CodeBlock* codeBlock, BlockIndex blockIndex, unsigned nodeIndex) +{ + dataLog("Crashing in thought-to-be-unreachable FTL-generated code for ", pointerDump(codeBlock), " at basic block #", blockIndex); + if (nodeIndex != UINT_MAX) + dataLog(", node @", nodeIndex); + dataLog(".\n"); + CRASH(); +} +#endif + +// Using this instead of typeCheck() helps to reduce the load on B3, by creating +// significantly less dead code. +#define FTL_TYPE_CHECK_WITH_EXIT_KIND(exitKind, lowValue, highValue, typesPassedThrough, failCondition) do { \ + FormattedValue _ftc_lowValue = (lowValue); \ + Edge _ftc_highValue = (highValue); \ + SpeculatedType _ftc_typesPassedThrough = (typesPassedThrough); \ + if (!m_interpreter.needsTypeCheck(_ftc_highValue, _ftc_typesPassedThrough)) \ + break; \ + typeCheck(_ftc_lowValue, _ftc_highValue, _ftc_typesPassedThrough, (failCondition), exitKind); \ + } while (false) + +#define FTL_TYPE_CHECK(lowValue, highValue, typesPassedThrough, failCondition) \ + FTL_TYPE_CHECK_WITH_EXIT_KIND(BadType, lowValue, highValue, typesPassedThrough, failCondition) + +class LowerDFGToB3 { + WTF_MAKE_NONCOPYABLE(LowerDFGToB3); +public: + LowerDFGToB3(State& state) + : m_graph(state.graph) + , m_ftlState(state) + , m_out(state) + , m_proc(*state.proc) + , m_availabilityCalculator(m_graph) + , m_state(state.graph) + , m_interpreter(state.graph, m_state) + { + } + + void lower() + { + State* state = &m_ftlState; + + CString name; + if (verboseCompilationEnabled()) { + name = toCString( + "jsBody_", ++compileCounter, "_", codeBlock()->inferredName(), + "_", codeBlock()->hash()); + } else + name = "jsBody"; + + m_graph.ensureDominators(); + + if (verboseCompilationEnabled()) + dataLog("Function ready, beginning lowering.\n"); + + m_out.initialize(m_heaps); + + // We use prologue frequency for all of the initialization code. + m_out.setFrequency(1); + + m_prologue = m_out.newBlock(); + m_handleExceptions = m_out.newBlock(); + + for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) { + m_highBlock = m_graph.block(blockIndex); + if (!m_highBlock) + continue; + m_out.setFrequency(m_highBlock->executionCount); + m_blocks.add(m_highBlock, m_out.newBlock()); + } + + // Back to prologue frequency for any bocks that get sneakily created in the initialization code. + m_out.setFrequency(1); + + m_out.appendTo(m_prologue, m_handleExceptions); + m_out.initializeConstants(m_proc, m_prologue); + createPhiVariables(); + + size_t sizeOfCaptured = sizeof(JSValue) * m_graph.m_nextMachineLocal; + B3::SlotBaseValue* capturedBase = m_out.lockedStackSlot(sizeOfCaptured); + m_captured = m_out.add(capturedBase, m_out.constIntPtr(sizeOfCaptured)); + state->capturedValue = capturedBase->slot(); + + auto preOrder = m_graph.blocksInPreOrder(); + + m_callFrame = m_out.framePointer(); + m_tagTypeNumber = m_out.constInt64(TagTypeNumber); + m_tagMask = m_out.constInt64(TagMask); + + // Make sure that B3 knows that we really care about the mask registers. This forces the + // constants to be materialized in registers. + m_proc.addFastConstant(m_tagTypeNumber->key()); + m_proc.addFastConstant(m_tagMask->key()); + + // We don't want the CodeBlock to have a weak pointer to itself because + // that would cause it to always get collected. + m_out.storePtr(m_out.constIntPtr(bitwise_cast<intptr_t>(codeBlock())), addressFor(CallFrameSlot::codeBlock)); + + // Stack Overflow Check. + unsigned exitFrameSize = m_graph.requiredRegisterCountForExit() * sizeof(Register); + MacroAssembler::AbsoluteAddress addressOfStackLimit(vm().addressOfSoftStackLimit()); + PatchpointValue* stackOverflowHandler = m_out.patchpoint(Void); + CallSiteIndex callSiteIndex = callSiteIndexForCodeOrigin(m_ftlState, CodeOrigin(0)); + stackOverflowHandler->appendSomeRegister(m_callFrame); + stackOverflowHandler->clobber(RegisterSet::macroScratchRegisters()); + stackOverflowHandler->numGPScratchRegisters = 1; + stackOverflowHandler->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + GPRReg fp = params[0].gpr(); + GPRReg scratch = params.gpScratch(0); + + unsigned ftlFrameSize = params.proc().frameSize(); + + jit.addPtr(MacroAssembler::TrustedImm32(-std::max(exitFrameSize, ftlFrameSize)), fp, scratch); + MacroAssembler::Jump stackOverflow = jit.branchPtr(MacroAssembler::Above, addressOfStackLimit, scratch); + + params.addLatePath([=] (CCallHelpers& jit) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + stackOverflow.link(&jit); + jit.store32( + MacroAssembler::TrustedImm32(callSiteIndex.bits()), + CCallHelpers::tagFor(VirtualRegister(CallFrameSlot::argumentCount))); + jit.copyCalleeSavesToVMEntryFrameCalleeSavesBuffer(); + + jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); + jit.move(CCallHelpers::TrustedImmPtr(jit.codeBlock()), GPRInfo::argumentGPR1); + CCallHelpers::Call throwCall = jit.call(); + + jit.move(CCallHelpers::TrustedImmPtr(jit.vm()), GPRInfo::argumentGPR0); + jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR1); + CCallHelpers::Call lookupExceptionHandlerCall = jit.call(); + jit.jumpToExceptionHandler(); + + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + linkBuffer.link(throwCall, FunctionPtr(operationThrowStackOverflowError)); + linkBuffer.link(lookupExceptionHandlerCall, FunctionPtr(lookupExceptionHandlerFromCallerFrame)); + }); + }); + }); + + LBasicBlock firstDFGBasicBlock = lowBlock(m_graph.block(0)); + // Check Arguments. + availabilityMap().clear(); + availabilityMap().m_locals = Operands<Availability>(codeBlock()->numParameters(), 0); + for (unsigned i = codeBlock()->numParameters(); i--;) { + availabilityMap().m_locals.argument(i) = + Availability(FlushedAt(FlushedJSValue, virtualRegisterForArgument(i))); + } + m_node = nullptr; + m_origin = NodeOrigin(CodeOrigin(0), CodeOrigin(0), true); + for (unsigned i = codeBlock()->numParameters(); i--;) { + Node* node = m_graph.m_arguments[i]; + VirtualRegister operand = virtualRegisterForArgument(i); + + LValue jsValue = m_out.load64(addressFor(operand)); + + if (node) { + DFG_ASSERT(m_graph, node, operand == node->stackAccessData()->machineLocal); + + // This is a hack, but it's an effective one. It allows us to do CSE on the + // primordial load of arguments. This assumes that the GetLocal that got put in + // place of the original SetArgument doesn't have any effects before it. This + // should hold true. + m_loadedArgumentValues.add(node, jsValue); + } + + switch (m_graph.m_argumentFormats[i]) { + case FlushedInt32: + speculate(BadType, jsValueValue(jsValue), node, isNotInt32(jsValue)); + break; + case FlushedBoolean: + speculate(BadType, jsValueValue(jsValue), node, isNotBoolean(jsValue)); + break; + case FlushedCell: + speculate(BadType, jsValueValue(jsValue), node, isNotCell(jsValue)); + break; + case FlushedJSValue: + break; + default: + DFG_CRASH(m_graph, node, "Bad flush format for argument"); + break; + } + } + m_out.jump(firstDFGBasicBlock); + + m_out.appendTo(m_handleExceptions, firstDFGBasicBlock); + Box<CCallHelpers::Label> exceptionHandler = state->exceptionHandler; + m_out.patchpoint(Void)->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams&) { + CCallHelpers::Jump jump = jit.jump(); + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + linkBuffer.link(jump, linkBuffer.locationOf(*exceptionHandler)); + }); + }); + m_out.unreachable(); + + for (DFG::BasicBlock* block : preOrder) + compileBlock(block); + + // Make sure everything is decorated. This does a bunch of deferred decorating. This has + // to happen last because our abstract heaps are generated lazily. They have to be + // generated lazily because we have an infiniten number of numbered, indexed, and + // absolute heaps. We only become aware of the ones we actually mention while lowering. + m_heaps.computeRangesAndDecorateInstructions(); + + // We create all Phi's up front, but we may then decide not to compile the basic block + // that would have contained one of them. So this creates orphans, which triggers B3 + // validation failures. Calling this fixes the issue. + // + // Note that you should avoid the temptation to make this call conditional upon + // validation being enabled. B3 makes no guarantees of any kind of correctness when + // dealing with IR that would have failed validation. For example, it would be valid to + // write a B3 phase that so aggressively assumes the lack of orphans that it would crash + // if any orphans were around. We might even have such phases already. + m_proc.deleteOrphans(); + + // We put the blocks into the B3 procedure in a super weird order. Now we reorder them. + m_out.applyBlockOrder(); + } + +private: + + void createPhiVariables() + { + for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { + DFG::BasicBlock* block = m_graph.block(blockIndex); + if (!block) + continue; + for (unsigned nodeIndex = block->size(); nodeIndex--;) { + Node* node = block->at(nodeIndex); + if (node->op() != DFG::Phi) + continue; + LType type; + switch (node->flags() & NodeResultMask) { + case NodeResultDouble: + type = Double; + break; + case NodeResultInt32: + type = Int32; + break; + case NodeResultInt52: + type = Int64; + break; + case NodeResultBoolean: + type = Int32; + break; + case NodeResultJS: + type = Int64; + break; + default: + DFG_CRASH(m_graph, node, "Bad Phi node result type"); + break; + } + m_phis.add(node, m_proc.add<Value>(B3::Phi, type, Origin(node))); + } + } + } + + void compileBlock(DFG::BasicBlock* block) + { + if (!block) + return; + + if (verboseCompilationEnabled()) + dataLog("Compiling block ", *block, "\n"); + + m_highBlock = block; + + // Make sure that any blocks created while lowering code in the high block have the frequency of + // the high block. This is appropriate because B3 doesn't need precise frequencies. It just needs + // something roughly approximate for things like register allocation. + m_out.setFrequency(m_highBlock->executionCount); + + LBasicBlock lowBlock = m_blocks.get(m_highBlock); + + m_nextHighBlock = 0; + for (BlockIndex nextBlockIndex = m_highBlock->index + 1; nextBlockIndex < m_graph.numBlocks(); ++nextBlockIndex) { + m_nextHighBlock = m_graph.block(nextBlockIndex); + if (m_nextHighBlock) + break; + } + m_nextLowBlock = m_nextHighBlock ? m_blocks.get(m_nextHighBlock) : 0; + + // All of this effort to find the next block gives us the ability to keep the + // generated IR in roughly program order. This ought not affect the performance + // of the generated code (since we expect B3 to reorder things) but it will + // make IR dumps easier to read. + m_out.appendTo(lowBlock, m_nextLowBlock); + + if (Options::ftlCrashes()) + m_out.trap(); + + if (!m_highBlock->cfaHasVisited) { + if (verboseCompilationEnabled()) + dataLog("Bailing because CFA didn't reach.\n"); + crash(m_highBlock, nullptr); + return; + } + + m_availabilityCalculator.beginBlock(m_highBlock); + + m_state.reset(); + m_state.beginBasicBlock(m_highBlock); + + for (m_nodeIndex = 0; m_nodeIndex < m_highBlock->size(); ++m_nodeIndex) { + if (!compileNode(m_nodeIndex)) + break; + } + } + + void safelyInvalidateAfterTermination() + { + if (verboseCompilationEnabled()) + dataLog("Bailing.\n"); + crash(); + + // Invalidate dominated blocks. Under normal circumstances we would expect + // them to be invalidated already. But you can have the CFA become more + // precise over time because the structures of objects change on the main + // thread. Failing to do this would result in weird crashes due to a value + // being used but not defined. Race conditions FTW! + for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { + DFG::BasicBlock* target = m_graph.block(blockIndex); + if (!target) + continue; + if (m_graph.m_dominators->dominates(m_highBlock, target)) { + if (verboseCompilationEnabled()) + dataLog("Block ", *target, " will bail also.\n"); + target->cfaHasVisited = false; + } + } + } + + bool compileNode(unsigned nodeIndex) + { + if (!m_state.isValid()) { + safelyInvalidateAfterTermination(); + return false; + } + + m_node = m_highBlock->at(nodeIndex); + m_origin = m_node->origin; + m_out.setOrigin(m_node); + + if (verboseCompilationEnabled()) + dataLog("Lowering ", m_node, "\n"); + + m_availableRecoveries.resize(0); + + m_interpreter.startExecuting(); + m_interpreter.executeKnownEdgeTypes(m_node); + + switch (m_node->op()) { + case DFG::Upsilon: + compileUpsilon(); + break; + case DFG::Phi: + compilePhi(); + break; + case JSConstant: + break; + case DoubleConstant: + compileDoubleConstant(); + break; + case Int52Constant: + compileInt52Constant(); + break; + case LazyJSConstant: + compileLazyJSConstant(); + break; + case DoubleRep: + compileDoubleRep(); + break; + case DoubleAsInt32: + compileDoubleAsInt32(); + break; + case DFG::ValueRep: + compileValueRep(); + break; + case Int52Rep: + compileInt52Rep(); + break; + case ValueToInt32: + compileValueToInt32(); + break; + case BooleanToNumber: + compileBooleanToNumber(); + break; + case ExtractOSREntryLocal: + compileExtractOSREntryLocal(); + break; + case GetStack: + compileGetStack(); + break; + case PutStack: + compilePutStack(); + break; + case DFG::Check: + compileNoOp(); + break; + case CallObjectConstructor: + compileCallObjectConstructor(); + break; + case ToThis: + compileToThis(); + break; + case ValueAdd: + compileValueAdd(); + break; + case StrCat: + compileStrCat(); + break; + case ArithAdd: + case ArithSub: + compileArithAddOrSub(); + break; + case ArithClz32: + compileArithClz32(); + break; + case ArithMul: + compileArithMul(); + break; + case ArithDiv: + compileArithDiv(); + break; + case ArithMod: + compileArithMod(); + break; + case ArithMin: + case ArithMax: + compileArithMinOrMax(); + break; + case ArithAbs: + compileArithAbs(); + break; + case ArithSin: + compileArithSin(); + break; + case ArithCos: + compileArithCos(); + break; + case ArithTan: + compileArithTan(); + break; + case ArithPow: + compileArithPow(); + break; + case ArithRandom: + compileArithRandom(); + break; + case ArithRound: + compileArithRound(); + break; + case ArithFloor: + compileArithFloor(); + break; + case ArithCeil: + compileArithCeil(); + break; + case ArithTrunc: + compileArithTrunc(); + break; + case ArithSqrt: + compileArithSqrt(); + break; + case ArithLog: + compileArithLog(); + break; + case ArithFRound: + compileArithFRound(); + break; + case ArithNegate: + compileArithNegate(); + break; + case DFG::BitAnd: + compileBitAnd(); + break; + case DFG::BitOr: + compileBitOr(); + break; + case DFG::BitXor: + compileBitXor(); + break; + case BitRShift: + compileBitRShift(); + break; + case BitLShift: + compileBitLShift(); + break; + case BitURShift: + compileBitURShift(); + break; + case UInt32ToNumber: + compileUInt32ToNumber(); + break; + case CheckStructure: + compileCheckStructure(); + break; + case CheckCell: + compileCheckCell(); + break; + case CheckNotEmpty: + compileCheckNotEmpty(); + break; + case CheckBadCell: + compileCheckBadCell(); + break; + case CheckStringIdent: + compileCheckStringIdent(); + break; + case GetExecutable: + compileGetExecutable(); + break; + case ArrayifyToStructure: + compileArrayifyToStructure(); + break; + case PutStructure: + compilePutStructure(); + break; + case TryGetById: + compileGetById(AccessType::TryGet); + break; + case GetById: + case GetByIdFlush: + compileGetById(AccessType::Get); + break; + case GetByIdWithThis: + compileGetByIdWithThis(); + break; + case In: + compileIn(); + break; + case HasOwnProperty: + compileHasOwnProperty(); + break; + case PutById: + case PutByIdDirect: + case PutByIdFlush: + compilePutById(); + break; + case PutByIdWithThis: + compilePutByIdWithThis(); + break; + case PutGetterById: + case PutSetterById: + compilePutAccessorById(); + break; + case PutGetterSetterById: + compilePutGetterSetterById(); + break; + case PutGetterByVal: + case PutSetterByVal: + compilePutAccessorByVal(); + break; + case GetButterfly: + compileGetButterfly(); + break; + case ConstantStoragePointer: + compileConstantStoragePointer(); + break; + case GetIndexedPropertyStorage: + compileGetIndexedPropertyStorage(); + break; + case CheckArray: + compileCheckArray(); + break; + case GetArrayLength: + compileGetArrayLength(); + break; + case CheckInBounds: + compileCheckInBounds(); + break; + case GetByVal: + compileGetByVal(); + break; + case GetMyArgumentByVal: + case GetMyArgumentByValOutOfBounds: + compileGetMyArgumentByVal(); + break; + case GetByValWithThis: + compileGetByValWithThis(); + break; + case PutByVal: + case PutByValAlias: + case PutByValDirect: + compilePutByVal(); + break; + case PutByValWithThis: + compilePutByValWithThis(); + break; + case DefineDataProperty: + compileDefineDataProperty(); + break; + case DefineAccessorProperty: + compileDefineAccessorProperty(); + break; + case ArrayPush: + compileArrayPush(); + break; + case ArrayPop: + compileArrayPop(); + break; + case ArraySlice: + compileArraySlice(); + break; + case CreateActivation: + compileCreateActivation(); + break; + case NewFunction: + case NewGeneratorFunction: + case NewAsyncFunction: + compileNewFunction(); + break; + case CreateDirectArguments: + compileCreateDirectArguments(); + break; + case CreateScopedArguments: + compileCreateScopedArguments(); + break; + case CreateClonedArguments: + compileCreateClonedArguments(); + break; + case NewObject: + compileNewObject(); + break; + case NewArray: + compileNewArray(); + break; + case NewArrayWithSpread: + compileNewArrayWithSpread(); + break; + case Spread: + compileSpread(); + break; + case NewArrayBuffer: + compileNewArrayBuffer(); + break; + case NewArrayWithSize: + compileNewArrayWithSize(); + break; + case NewTypedArray: + compileNewTypedArray(); + break; + case GetTypedArrayByteOffset: + compileGetTypedArrayByteOffset(); + break; + case AllocatePropertyStorage: + compileAllocatePropertyStorage(); + break; + case ReallocatePropertyStorage: + compileReallocatePropertyStorage(); + break; + case NukeStructureAndSetButterfly: + compileNukeStructureAndSetButterfly(); + break; + case ToNumber: + compileToNumber(); + break; + case ToString: + case CallStringConstructor: + compileToStringOrCallStringConstructor(); + break; + case ToPrimitive: + compileToPrimitive(); + break; + case MakeRope: + compileMakeRope(); + break; + case StringCharAt: + compileStringCharAt(); + break; + case StringCharCodeAt: + compileStringCharCodeAt(); + break; + case StringFromCharCode: + compileStringFromCharCode(); + break; + case GetByOffset: + case GetGetterSetterByOffset: + compileGetByOffset(); + break; + case GetGetter: + compileGetGetter(); + break; + case GetSetter: + compileGetSetter(); + break; + case MultiGetByOffset: + compileMultiGetByOffset(); + break; + case PutByOffset: + compilePutByOffset(); + break; + case MultiPutByOffset: + compileMultiPutByOffset(); + break; + case GetGlobalVar: + case GetGlobalLexicalVariable: + compileGetGlobalVariable(); + break; + case PutGlobalVariable: + compilePutGlobalVariable(); + break; + case NotifyWrite: + compileNotifyWrite(); + break; + case GetCallee: + compileGetCallee(); + break; + case GetArgumentCountIncludingThis: + compileGetArgumentCountIncludingThis(); + break; + case GetScope: + compileGetScope(); + break; + case SkipScope: + compileSkipScope(); + break; + case GetGlobalObject: + compileGetGlobalObject(); + break; + case GetClosureVar: + compileGetClosureVar(); + break; + case PutClosureVar: + compilePutClosureVar(); + break; + case GetFromArguments: + compileGetFromArguments(); + break; + case PutToArguments: + compilePutToArguments(); + break; + case GetArgument: + compileGetArgument(); + break; + case CompareEq: + compileCompareEq(); + break; + case CompareStrictEq: + compileCompareStrictEq(); + break; + case CompareLess: + compileCompareLess(); + break; + case CompareLessEq: + compileCompareLessEq(); + break; + case CompareGreater: + compileCompareGreater(); + break; + case CompareGreaterEq: + compileCompareGreaterEq(); + break; + case CompareEqPtr: + compileCompareEqPtr(); + break; + case LogicalNot: + compileLogicalNot(); + break; + case Call: + case TailCallInlinedCaller: + case Construct: + compileCallOrConstruct(); + break; + case DirectCall: + case DirectTailCallInlinedCaller: + case DirectConstruct: + case DirectTailCall: + compileDirectCallOrConstruct(); + break; + case TailCall: + compileTailCall(); + break; + case CallVarargs: + case CallForwardVarargs: + case TailCallVarargs: + case TailCallVarargsInlinedCaller: + case TailCallForwardVarargs: + case TailCallForwardVarargsInlinedCaller: + case ConstructVarargs: + case ConstructForwardVarargs: + compileCallOrConstructVarargs(); + break; + case CallEval: + compileCallEval(); + break; + case LoadVarargs: + compileLoadVarargs(); + break; + case ForwardVarargs: + compileForwardVarargs(); + break; + case DFG::Jump: + compileJump(); + break; + case DFG::Branch: + compileBranch(); + break; + case DFG::Switch: + compileSwitch(); + break; + case DFG::Return: + compileReturn(); + break; + case ForceOSRExit: + compileForceOSRExit(); + break; + case Throw: + case ThrowStaticError: + compileThrow(); + break; + case InvalidationPoint: + compileInvalidationPoint(); + break; + case IsEmpty: + compileIsEmpty(); + break; + case IsUndefined: + compileIsUndefined(); + break; + case IsBoolean: + compileIsBoolean(); + break; + case IsNumber: + compileIsNumber(); + break; + case IsCellWithType: + compileIsCellWithType(); + break; + case MapHash: + compileMapHash(); + break; + case GetMapBucket: + compileGetMapBucket(); + break; + case LoadFromJSMapBucket: + compileLoadFromJSMapBucket(); + break; + case IsNonEmptyMapBucket: + compileIsNonEmptyMapBucket(); + break; + case IsObject: + compileIsObject(); + break; + case IsObjectOrNull: + compileIsObjectOrNull(); + break; + case IsFunction: + compileIsFunction(); + break; + case IsTypedArrayView: + compileIsTypedArrayView(); + break; + case ParseInt: + compileParseInt(); + break; + case TypeOf: + compileTypeOf(); + break; + case CheckTypeInfoFlags: + compileCheckTypeInfoFlags(); + break; + case OverridesHasInstance: + compileOverridesHasInstance(); + break; + case InstanceOf: + compileInstanceOf(); + break; + case InstanceOfCustom: + compileInstanceOfCustom(); + break; + case CountExecution: + compileCountExecution(); + break; + case StoreBarrier: + case FencedStoreBarrier: + compileStoreBarrier(); + break; + case HasIndexedProperty: + compileHasIndexedProperty(); + break; + case HasGenericProperty: + compileHasGenericProperty(); + break; + case HasStructureProperty: + compileHasStructureProperty(); + break; + case GetDirectPname: + compileGetDirectPname(); + break; + case GetEnumerableLength: + compileGetEnumerableLength(); + break; + case GetPropertyEnumerator: + compileGetPropertyEnumerator(); + break; + case GetEnumeratorStructurePname: + compileGetEnumeratorStructurePname(); + break; + case GetEnumeratorGenericPname: + compileGetEnumeratorGenericPname(); + break; + case ToIndexString: + compileToIndexString(); + break; + case CheckStructureImmediate: + compileCheckStructureImmediate(); + break; + case MaterializeNewObject: + compileMaterializeNewObject(); + break; + case MaterializeCreateActivation: + compileMaterializeCreateActivation(); + break; + case CheckWatchdogTimer: + compileCheckWatchdogTimer(); + break; + case CreateRest: + compileCreateRest(); + break; + case GetRestLength: + compileGetRestLength(); + break; + case RegExpExec: + compileRegExpExec(); + break; + case RegExpTest: + compileRegExpTest(); + break; + case NewRegexp: + compileNewRegexp(); + break; + case SetFunctionName: + compileSetFunctionName(); + break; + case StringReplace: + case StringReplaceRegExp: + compileStringReplace(); + break; + case GetRegExpObjectLastIndex: + compileGetRegExpObjectLastIndex(); + break; + case SetRegExpObjectLastIndex: + compileSetRegExpObjectLastIndex(); + break; + case LogShadowChickenPrologue: + compileLogShadowChickenPrologue(); + break; + case LogShadowChickenTail: + compileLogShadowChickenTail(); + break; + case RecordRegExpCachedResult: + compileRecordRegExpCachedResult(); + break; + case ResolveScope: + compileResolveScope(); + break; + case GetDynamicVar: + compileGetDynamicVar(); + break; + case PutDynamicVar: + compilePutDynamicVar(); + break; + case Unreachable: + compileUnreachable(); + break; + case ToLowerCase: + compileToLowerCase(); + break; + case NumberToStringWithRadix: + compileNumberToStringWithRadix(); + break; + case CheckDOM: + compileCheckDOM(); + break; + case CallDOM: + compileCallDOM(); + break; + case CallDOMGetter: + compileCallDOMGetter(); + break; + + case PhantomLocal: + case LoopHint: + case MovHint: + case ZombieHint: + case ExitOK: + case PhantomNewObject: + case PhantomNewFunction: + case PhantomNewGeneratorFunction: + case PhantomNewAsyncFunction: + case PhantomCreateActivation: + case PhantomDirectArguments: + case PhantomCreateRest: + case PhantomSpread: + case PhantomNewArrayWithSpread: + case PhantomClonedArguments: + case PutHint: + case BottomValue: + case KillStack: + break; + default: + DFG_CRASH(m_graph, m_node, "Unrecognized node in FTL backend"); + break; + } + + if (m_node->isTerminal()) + return false; + + if (!m_state.isValid()) { + safelyInvalidateAfterTermination(); + return false; + } + + m_availabilityCalculator.executeNode(m_node); + m_interpreter.executeEffects(nodeIndex); + + return true; + } + + void compileUpsilon() + { + LValue upsilonValue = nullptr; + switch (m_node->child1().useKind()) { + case DoubleRepUse: + upsilonValue = lowDouble(m_node->child1()); + break; + case Int32Use: + case KnownInt32Use: + upsilonValue = lowInt32(m_node->child1()); + break; + case Int52RepUse: + upsilonValue = lowInt52(m_node->child1()); + break; + case BooleanUse: + case KnownBooleanUse: + upsilonValue = lowBoolean(m_node->child1()); + break; + case CellUse: + case KnownCellUse: + upsilonValue = lowCell(m_node->child1()); + break; + case UntypedUse: + upsilonValue = lowJSValue(m_node->child1()); + break; + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + ValueFromBlock upsilon = m_out.anchor(upsilonValue); + LValue phiNode = m_phis.get(m_node->phi()); + m_out.addIncomingToPhi(phiNode, upsilon); + } + + void compilePhi() + { + LValue phi = m_phis.get(m_node); + m_out.m_block->append(phi); + + switch (m_node->flags() & NodeResultMask) { + case NodeResultDouble: + setDouble(phi); + break; + case NodeResultInt32: + setInt32(phi); + break; + case NodeResultInt52: + setInt52(phi); + break; + case NodeResultBoolean: + setBoolean(phi); + break; + case NodeResultJS: + setJSValue(phi); + break; + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileDoubleConstant() + { + setDouble(m_out.constDouble(m_node->asNumber())); + } + + void compileInt52Constant() + { + int64_t value = m_node->asAnyInt(); + + setInt52(m_out.constInt64(value << JSValue::int52ShiftAmount)); + setStrictInt52(m_out.constInt64(value)); + } + + void compileLazyJSConstant() + { + PatchpointValue* patchpoint = m_out.patchpoint(Int64); + LazyJSValue value = m_node->lazyJSValue(); + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + value.emit(jit, JSValueRegs(params[0].gpr())); + }); + patchpoint->effects = Effects::none(); + setJSValue(patchpoint); + } + + void compileDoubleRep() + { + switch (m_node->child1().useKind()) { + case RealNumberUse: { + LValue value = lowJSValue(m_node->child1(), ManualOperandSpeculation); + + LValue doubleValue = unboxDouble(value); + + LBasicBlock intCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock fastResult = m_out.anchor(doubleValue); + m_out.branch( + m_out.doubleEqual(doubleValue, doubleValue), + usually(continuation), rarely(intCase)); + + LBasicBlock lastNext = m_out.appendTo(intCase, continuation); + + FTL_TYPE_CHECK( + jsValueValue(value), m_node->child1(), SpecBytecodeRealNumber, + isNotInt32(value, provenType(m_node->child1()) & ~SpecDoubleReal)); + ValueFromBlock slowResult = m_out.anchor(m_out.intToDouble(unboxInt32(value))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + setDouble(m_out.phi(Double, fastResult, slowResult)); + return; + } + + case NotCellUse: + case NumberUse: { + bool shouldConvertNonNumber = m_node->child1().useKind() == NotCellUse; + + LValue value = lowJSValue(m_node->child1(), ManualOperandSpeculation); + + LBasicBlock intCase = m_out.newBlock(); + LBasicBlock doubleTesting = m_out.newBlock(); + LBasicBlock doubleCase = m_out.newBlock(); + LBasicBlock nonDoubleCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + isNotInt32(value, provenType(m_node->child1())), + unsure(doubleTesting), unsure(intCase)); + + LBasicBlock lastNext = m_out.appendTo(intCase, doubleTesting); + + ValueFromBlock intToDouble = m_out.anchor( + m_out.intToDouble(unboxInt32(value))); + m_out.jump(continuation); + + m_out.appendTo(doubleTesting, doubleCase); + LValue valueIsNumber = isNumber(value, provenType(m_node->child1())); + m_out.branch(valueIsNumber, usually(doubleCase), rarely(nonDoubleCase)); + + m_out.appendTo(doubleCase, nonDoubleCase); + ValueFromBlock unboxedDouble = m_out.anchor(unboxDouble(value)); + m_out.jump(continuation); + + if (shouldConvertNonNumber) { + LBasicBlock undefinedCase = m_out.newBlock(); + LBasicBlock testNullCase = m_out.newBlock(); + LBasicBlock nullCase = m_out.newBlock(); + LBasicBlock testBooleanTrueCase = m_out.newBlock(); + LBasicBlock convertBooleanTrueCase = m_out.newBlock(); + LBasicBlock convertBooleanFalseCase = m_out.newBlock(); + + m_out.appendTo(nonDoubleCase, undefinedCase); + LValue valueIsUndefined = m_out.equal(value, m_out.constInt64(ValueUndefined)); + m_out.branch(valueIsUndefined, unsure(undefinedCase), unsure(testNullCase)); + + m_out.appendTo(undefinedCase, testNullCase); + ValueFromBlock convertedUndefined = m_out.anchor(m_out.constDouble(PNaN)); + m_out.jump(continuation); + + m_out.appendTo(testNullCase, nullCase); + LValue valueIsNull = m_out.equal(value, m_out.constInt64(ValueNull)); + m_out.branch(valueIsNull, unsure(nullCase), unsure(testBooleanTrueCase)); + + m_out.appendTo(nullCase, testBooleanTrueCase); + ValueFromBlock convertedNull = m_out.anchor(m_out.constDouble(0)); + m_out.jump(continuation); + + m_out.appendTo(testBooleanTrueCase, convertBooleanTrueCase); + LValue valueIsBooleanTrue = m_out.equal(value, m_out.constInt64(ValueTrue)); + m_out.branch(valueIsBooleanTrue, unsure(convertBooleanTrueCase), unsure(convertBooleanFalseCase)); + + m_out.appendTo(convertBooleanTrueCase, convertBooleanFalseCase); + ValueFromBlock convertedTrue = m_out.anchor(m_out.constDouble(1)); + m_out.jump(continuation); + + m_out.appendTo(convertBooleanFalseCase, continuation); + + LValue valueIsNotBooleanFalse = m_out.notEqual(value, m_out.constInt64(ValueFalse)); + FTL_TYPE_CHECK(jsValueValue(value), m_node->child1(), ~SpecCell, valueIsNotBooleanFalse); + ValueFromBlock convertedFalse = m_out.anchor(m_out.constDouble(0)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setDouble(m_out.phi(Double, intToDouble, unboxedDouble, convertedUndefined, convertedNull, convertedTrue, convertedFalse)); + return; + } + m_out.appendTo(nonDoubleCase, continuation); + FTL_TYPE_CHECK(jsValueValue(value), m_node->child1(), SpecBytecodeNumber, m_out.booleanTrue); + m_out.unreachable(); + + m_out.appendTo(continuation, lastNext); + + setDouble(m_out.phi(Double, intToDouble, unboxedDouble)); + return; + } + + case Int52RepUse: { + setDouble(strictInt52ToDouble(lowStrictInt52(m_node->child1()))); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + } + } + + void compileDoubleAsInt32() + { + LValue integerValue = convertDoubleToInt32(lowDouble(m_node->child1()), shouldCheckNegativeZero(m_node->arithMode())); + setInt32(integerValue); + } + + void compileValueRep() + { + switch (m_node->child1().useKind()) { + case DoubleRepUse: { + LValue value = lowDouble(m_node->child1()); + + if (m_interpreter.needsTypeCheck(m_node->child1(), ~SpecDoubleImpureNaN)) { + value = m_out.select( + m_out.doubleEqual(value, value), value, m_out.constDouble(PNaN)); + } + + setJSValue(boxDouble(value)); + return; + } + + case Int52RepUse: { + setJSValue(strictInt52ToJSValue(lowStrictInt52(m_node->child1()))); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + } + } + + void compileInt52Rep() + { + switch (m_node->child1().useKind()) { + case Int32Use: + setStrictInt52(m_out.signExt32To64(lowInt32(m_node->child1()))); + return; + + case AnyIntUse: + setStrictInt52( + jsValueToStrictInt52( + m_node->child1(), lowJSValue(m_node->child1(), ManualOperandSpeculation))); + return; + + case DoubleRepAnyIntUse: + setStrictInt52( + doubleToStrictInt52( + m_node->child1(), lowDouble(m_node->child1()))); + return; + + default: + RELEASE_ASSERT_NOT_REACHED(); + } + } + + void compileValueToInt32() + { + switch (m_node->child1().useKind()) { + case Int52RepUse: + setInt32(m_out.castToInt32(lowStrictInt52(m_node->child1()))); + break; + + case DoubleRepUse: + setInt32(doubleToInt32(lowDouble(m_node->child1()))); + break; + + case NumberUse: + case NotCellUse: { + LoweredNodeValue value = m_int32Values.get(m_node->child1().node()); + if (isValid(value)) { + setInt32(value.value()); + break; + } + + value = m_jsValueValues.get(m_node->child1().node()); + if (isValid(value)) { + setInt32(numberOrNotCellToInt32(m_node->child1(), value.value())); + break; + } + + // We'll basically just get here for constants. But it's good to have this + // catch-all since we often add new representations into the mix. + setInt32( + numberOrNotCellToInt32( + m_node->child1(), + lowJSValue(m_node->child1(), ManualOperandSpeculation))); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileBooleanToNumber() + { + switch (m_node->child1().useKind()) { + case BooleanUse: { + setInt32(m_out.zeroExt(lowBoolean(m_node->child1()), Int32)); + return; + } + + case UntypedUse: { + LValue value = lowJSValue(m_node->child1()); + + if (!m_interpreter.needsTypeCheck(m_node->child1(), SpecBoolInt32 | SpecBoolean)) { + setInt32(m_out.bitAnd(m_out.castToInt32(value), m_out.int32One)); + return; + } + + LBasicBlock booleanCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock notBooleanResult = m_out.anchor(value); + m_out.branch( + isBoolean(value, provenType(m_node->child1())), + unsure(booleanCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(booleanCase, continuation); + ValueFromBlock booleanResult = m_out.anchor(m_out.bitOr( + m_out.zeroExt(unboxBoolean(value), Int64), m_tagTypeNumber)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, booleanResult, notBooleanResult)); + return; + } + + default: + RELEASE_ASSERT_NOT_REACHED(); + return; + } + } + + void compileExtractOSREntryLocal() + { + EncodedJSValue* buffer = static_cast<EncodedJSValue*>( + m_ftlState.jitCode->ftlForOSREntry()->entryBuffer()->dataBuffer()); + setJSValue(m_out.load64(m_out.absolute(buffer + m_node->unlinkedLocal().toLocal()))); + } + + void compileGetStack() + { + // GetLocals arise only for captured variables and arguments. For arguments, we might have + // already loaded it. + if (LValue value = m_loadedArgumentValues.get(m_node)) { + setJSValue(value); + return; + } + + StackAccessData* data = m_node->stackAccessData(); + AbstractValue& value = m_state.variables().operand(data->local); + + DFG_ASSERT(m_graph, m_node, isConcrete(data->format)); + DFG_ASSERT(m_graph, m_node, data->format != FlushedDouble); // This just happens to not arise for GetStacks, right now. It would be trivial to support. + + if (isInt32Speculation(value.m_type)) + setInt32(m_out.load32(payloadFor(data->machineLocal))); + else + setJSValue(m_out.load64(addressFor(data->machineLocal))); + } + + void compilePutStack() + { + StackAccessData* data = m_node->stackAccessData(); + switch (data->format) { + case FlushedJSValue: { + LValue value = lowJSValue(m_node->child1()); + m_out.store64(value, addressFor(data->machineLocal)); + break; + } + + case FlushedDouble: { + LValue value = lowDouble(m_node->child1()); + m_out.storeDouble(value, addressFor(data->machineLocal)); + break; + } + + case FlushedInt32: { + LValue value = lowInt32(m_node->child1()); + m_out.store32(value, payloadFor(data->machineLocal)); + break; + } + + case FlushedInt52: { + LValue value = lowInt52(m_node->child1()); + m_out.store64(value, addressFor(data->machineLocal)); + break; + } + + case FlushedCell: { + LValue value = lowCell(m_node->child1()); + m_out.store64(value, addressFor(data->machineLocal)); + break; + } + + case FlushedBoolean: { + speculateBoolean(m_node->child1()); + m_out.store64( + lowJSValue(m_node->child1(), ManualOperandSpeculation), + addressFor(data->machineLocal)); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad flush format"); + break; + } + } + + void compileNoOp() + { + DFG_NODE_DO_TO_CHILDREN(m_graph, m_node, speculate); + } + + void compileCallObjectConstructor() + { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(isCell(value, provenType(m_node->child1())), usually(isCellCase), rarely(slowCase)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, slowCase); + ValueFromBlock fastResult = m_out.anchor(value); + m_out.branch(isObject(value), usually(continuation), rarely(slowCase)); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowResult = m_out.anchor(vmCall(Int64, m_out.operation(operationObjectConstructor), m_callFrame, weakPointer(globalObject), value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, fastResult, slowResult)); + } + + void compileToThis() + { + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + isCell(value, provenType(m_node->child1())), usually(isCellCase), rarely(slowCase)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, slowCase); + ValueFromBlock fastResult = m_out.anchor(value); + m_out.branch( + m_out.testIsZero32( + m_out.load8ZeroExt32(value, m_heaps.JSCell_typeInfoFlags), + m_out.constInt32(OverridesToThis)), + usually(continuation), rarely(slowCase)); + + m_out.appendTo(slowCase, continuation); + J_JITOperation_EJ function; + if (m_graph.isStrictModeFor(m_node->origin.semantic)) + function = operationToThisStrict; + else + function = operationToThis; + ValueFromBlock slowResult = m_out.anchor( + vmCall(Int64, m_out.operation(function), m_callFrame, value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, fastResult, slowResult)); + } + + void compileValueAdd() + { + ArithProfile* arithProfile = m_ftlState.graph.baselineCodeBlockFor(m_node->origin.semantic)->arithProfileForBytecodeOffset(m_node->origin.semantic.bytecodeIndex); + JITAddIC* addIC = codeBlock()->addJITAddIC(arithProfile); + auto repatchingFunction = operationValueAddOptimize; + auto nonRepatchingFunction = operationValueAdd; + compileMathIC(addIC, repatchingFunction, nonRepatchingFunction); + } + + template <typename Generator> + void compileMathIC(JITUnaryMathIC<Generator>* mathIC, FunctionPtr repatchingFunction, FunctionPtr nonRepatchingFunction) + { + Node* node = m_node; + + LValue operand = lowJSValue(node->child1()); + + PatchpointValue* patchpoint = m_out.patchpoint(Int64); + patchpoint->appendSomeRegister(operand); + patchpoint->append(m_tagMask, ValueRep::lateReg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::lateReg(GPRInfo::tagTypeNumberRegister)); + RefPtr<PatchpointExceptionHandle> exceptionHandle = preparePatchpointForExceptions(patchpoint); + patchpoint->numGPScratchRegisters = 1; + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + Box<CCallHelpers::JumpList> exceptions = + exceptionHandle->scheduleExitCreation(params)->jumps(jit); + +#if ENABLE(MATH_IC_STATS) + auto inlineStart = jit.label(); +#endif + + Box<MathICGenerationState> mathICGenerationState = Box<MathICGenerationState>::create(); + mathIC->m_generator = Generator(JSValueRegs(params[0].gpr()), JSValueRegs(params[1].gpr()), params.gpScratch(0)); + + bool shouldEmitProfiling = false; + bool generatedInline = mathIC->generateInline(jit, *mathICGenerationState, shouldEmitProfiling); + + if (generatedInline) { + ASSERT(!mathICGenerationState->slowPathJumps.empty()); + auto done = jit.label(); + params.addLatePath([=] (CCallHelpers& jit) { + AllowMacroScratchRegisterUsage allowScratch(jit); + mathICGenerationState->slowPathJumps.link(&jit); + mathICGenerationState->slowPathStart = jit.label(); +#if ENABLE(MATH_IC_STATS) + auto slowPathStart = jit.label(); +#endif + + if (mathICGenerationState->shouldSlowPathRepatch) { + SlowPathCall call = callOperation(*state, params.unavailableRegisters(), jit, node->origin.semantic, exceptions.get(), + repatchingFunction, params[0].gpr(), params[1].gpr(), CCallHelpers::TrustedImmPtr(mathIC)); + mathICGenerationState->slowPathCall = call.call(); + } else { + SlowPathCall call = callOperation(*state, params.unavailableRegisters(), jit, node->origin.semantic, + exceptions.get(), nonRepatchingFunction, params[0].gpr(), params[1].gpr()); + mathICGenerationState->slowPathCall = call.call(); + } + jit.jump().linkTo(done, &jit); + + jit.addLinkTask([=] (LinkBuffer& linkBuffer) { + mathIC->finalizeInlineCode(*mathICGenerationState, linkBuffer); + }); + +#if ENABLE(MATH_IC_STATS) + auto slowPathEnd = jit.label(); + jit.addLinkTask([=] (LinkBuffer& linkBuffer) { + size_t size = static_cast<char*>(linkBuffer.locationOf(slowPathEnd).executableAddress()) - static_cast<char*>(linkBuffer.locationOf(slowPathStart).executableAddress()); + mathIC->m_generatedCodeSize += size; + }); +#endif + }); + } else { + callOperation( + *state, params.unavailableRegisters(), jit, node->origin.semantic, exceptions.get(), + nonRepatchingFunction, params[0].gpr(), params[1].gpr()); + } + +#if ENABLE(MATH_IC_STATS) + auto inlineEnd = jit.label(); + jit.addLinkTask([=] (LinkBuffer& linkBuffer) { + size_t size = static_cast<char*>(linkBuffer.locationOf(inlineEnd).executableAddress()) - static_cast<char*>(linkBuffer.locationOf(inlineStart).executableAddress()); + mathIC->m_generatedCodeSize += size; + }); +#endif + }); + + setJSValue(patchpoint); + } + + template <typename Generator> + void compileMathIC(JITBinaryMathIC<Generator>* mathIC, FunctionPtr repatchingFunction, FunctionPtr nonRepatchingFunction) + { + Node* node = m_node; + + LValue left = lowJSValue(node->child1()); + LValue right = lowJSValue(node->child2()); + + SnippetOperand leftOperand(m_state.forNode(node->child1()).resultType()); + SnippetOperand rightOperand(m_state.forNode(node->child2()).resultType()); + + PatchpointValue* patchpoint = m_out.patchpoint(Int64); + patchpoint->appendSomeRegister(left); + patchpoint->appendSomeRegister(right); + patchpoint->append(m_tagMask, ValueRep::lateReg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::lateReg(GPRInfo::tagTypeNumberRegister)); + RefPtr<PatchpointExceptionHandle> exceptionHandle = + preparePatchpointForExceptions(patchpoint); + patchpoint->numGPScratchRegisters = 1; + patchpoint->numFPScratchRegisters = 2; + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + Box<CCallHelpers::JumpList> exceptions = + exceptionHandle->scheduleExitCreation(params)->jumps(jit); + +#if ENABLE(MATH_IC_STATS) + auto inlineStart = jit.label(); +#endif + + Box<MathICGenerationState> mathICGenerationState = Box<MathICGenerationState>::create(); + mathIC->m_generator = Generator(leftOperand, rightOperand, JSValueRegs(params[0].gpr()), + JSValueRegs(params[1].gpr()), JSValueRegs(params[2].gpr()), params.fpScratch(0), + params.fpScratch(1), params.gpScratch(0), InvalidFPRReg); + + bool shouldEmitProfiling = false; + bool generatedInline = mathIC->generateInline(jit, *mathICGenerationState, shouldEmitProfiling); + + if (generatedInline) { + ASSERT(!mathICGenerationState->slowPathJumps.empty()); + auto done = jit.label(); + params.addLatePath([=] (CCallHelpers& jit) { + AllowMacroScratchRegisterUsage allowScratch(jit); + mathICGenerationState->slowPathJumps.link(&jit); + mathICGenerationState->slowPathStart = jit.label(); +#if ENABLE(MATH_IC_STATS) + auto slowPathStart = jit.label(); +#endif + + if (mathICGenerationState->shouldSlowPathRepatch) { + SlowPathCall call = callOperation(*state, params.unavailableRegisters(), jit, node->origin.semantic, exceptions.get(), + repatchingFunction, params[0].gpr(), params[1].gpr(), params[2].gpr(), CCallHelpers::TrustedImmPtr(mathIC)); + mathICGenerationState->slowPathCall = call.call(); + } else { + SlowPathCall call = callOperation(*state, params.unavailableRegisters(), jit, node->origin.semantic, + exceptions.get(), nonRepatchingFunction, params[0].gpr(), params[1].gpr(), params[2].gpr()); + mathICGenerationState->slowPathCall = call.call(); + } + jit.jump().linkTo(done, &jit); + + jit.addLinkTask([=] (LinkBuffer& linkBuffer) { + mathIC->finalizeInlineCode(*mathICGenerationState, linkBuffer); + }); + +#if ENABLE(MATH_IC_STATS) + auto slowPathEnd = jit.label(); + jit.addLinkTask([=] (LinkBuffer& linkBuffer) { + size_t size = static_cast<char*>(linkBuffer.locationOf(slowPathEnd).executableAddress()) - static_cast<char*>(linkBuffer.locationOf(slowPathStart).executableAddress()); + mathIC->m_generatedCodeSize += size; + }); +#endif + }); + } else { + callOperation( + *state, params.unavailableRegisters(), jit, node->origin.semantic, exceptions.get(), + nonRepatchingFunction, params[0].gpr(), params[1].gpr(), params[2].gpr()); + } + +#if ENABLE(MATH_IC_STATS) + auto inlineEnd = jit.label(); + jit.addLinkTask([=] (LinkBuffer& linkBuffer) { + size_t size = static_cast<char*>(linkBuffer.locationOf(inlineEnd).executableAddress()) - static_cast<char*>(linkBuffer.locationOf(inlineStart).executableAddress()); + mathIC->m_generatedCodeSize += size; + }); +#endif + }); + + setJSValue(patchpoint); + } + + void compileStrCat() + { + LValue result; + if (m_node->child3()) { + result = vmCall( + Int64, m_out.operation(operationStrCat3), m_callFrame, + lowJSValue(m_node->child1(), ManualOperandSpeculation), + lowJSValue(m_node->child2(), ManualOperandSpeculation), + lowJSValue(m_node->child3(), ManualOperandSpeculation)); + } else { + result = vmCall( + Int64, m_out.operation(operationStrCat2), m_callFrame, + lowJSValue(m_node->child1(), ManualOperandSpeculation), + lowJSValue(m_node->child2(), ManualOperandSpeculation)); + } + setJSValue(result); + } + + void compileArithAddOrSub() + { + bool isSub = m_node->op() == ArithSub; + switch (m_node->binaryUseKind()) { + case Int32Use: { + LValue left = lowInt32(m_node->child1()); + LValue right = lowInt32(m_node->child2()); + + if (!shouldCheckOverflow(m_node->arithMode())) { + setInt32(isSub ? m_out.sub(left, right) : m_out.add(left, right)); + break; + } + + CheckValue* result = + isSub ? m_out.speculateSub(left, right) : m_out.speculateAdd(left, right); + blessSpeculation(result, Overflow, noValue(), nullptr, m_origin); + setInt32(result); + break; + } + + case Int52RepUse: { + if (!abstractValue(m_node->child1()).couldBeType(SpecInt52Only) + && !abstractValue(m_node->child2()).couldBeType(SpecInt52Only)) { + Int52Kind kind; + LValue left = lowWhicheverInt52(m_node->child1(), kind); + LValue right = lowInt52(m_node->child2(), kind); + setInt52(isSub ? m_out.sub(left, right) : m_out.add(left, right), kind); + break; + } + + LValue left = lowInt52(m_node->child1()); + LValue right = lowInt52(m_node->child2()); + CheckValue* result = + isSub ? m_out.speculateSub(left, right) : m_out.speculateAdd(left, right); + blessSpeculation(result, Overflow, noValue(), nullptr, m_origin); + setInt52(result); + break; + } + + case DoubleRepUse: { + LValue C1 = lowDouble(m_node->child1()); + LValue C2 = lowDouble(m_node->child2()); + + setDouble(isSub ? m_out.doubleSub(C1, C2) : m_out.doubleAdd(C1, C2)); + break; + } + + case UntypedUse: { + if (!isSub) { + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + + ArithProfile* arithProfile = m_ftlState.graph.baselineCodeBlockFor(m_node->origin.semantic)->arithProfileForBytecodeOffset(m_node->origin.semantic.bytecodeIndex); + JITSubIC* subIC = codeBlock()->addJITSubIC(arithProfile); + auto repatchingFunction = operationValueSubOptimize; + auto nonRepatchingFunction = operationValueSub; + compileMathIC(subIC, repatchingFunction, nonRepatchingFunction); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileArithClz32() + { + if (m_node->child1().useKind() == Int32Use || m_node->child1().useKind() == KnownInt32Use) { + LValue operand = lowInt32(m_node->child1()); + setInt32(m_out.ctlz32(operand)); + return; + } + DFG_ASSERT(m_graph, m_node, m_node->child1().useKind() == UntypedUse); + LValue argument = lowJSValue(m_node->child1()); + LValue result = vmCall(Int32, m_out.operation(operationArithClz32), m_callFrame, argument); + setInt32(result); + } + + void compileArithMul() + { + switch (m_node->binaryUseKind()) { + case Int32Use: { + LValue left = lowInt32(m_node->child1()); + LValue right = lowInt32(m_node->child2()); + + LValue result; + + if (!shouldCheckOverflow(m_node->arithMode())) + result = m_out.mul(left, right); + else { + CheckValue* speculation = m_out.speculateMul(left, right); + blessSpeculation(speculation, Overflow, noValue(), nullptr, m_origin); + result = speculation; + } + + if (shouldCheckNegativeZero(m_node->arithMode())) { + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + m_out.notZero32(result), usually(continuation), rarely(slowCase)); + + LBasicBlock lastNext = m_out.appendTo(slowCase, continuation); + speculate(NegativeZero, noValue(), nullptr, m_out.lessThan(left, m_out.int32Zero)); + speculate(NegativeZero, noValue(), nullptr, m_out.lessThan(right, m_out.int32Zero)); + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + } + + setInt32(result); + break; + } + + case Int52RepUse: { + Int52Kind kind; + LValue left = lowWhicheverInt52(m_node->child1(), kind); + LValue right = lowInt52(m_node->child2(), opposite(kind)); + + CheckValue* result = m_out.speculateMul(left, right); + blessSpeculation(result, Overflow, noValue(), nullptr, m_origin); + + if (shouldCheckNegativeZero(m_node->arithMode())) { + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + m_out.notZero64(result), usually(continuation), rarely(slowCase)); + + LBasicBlock lastNext = m_out.appendTo(slowCase, continuation); + speculate(NegativeZero, noValue(), nullptr, m_out.lessThan(left, m_out.int64Zero)); + speculate(NegativeZero, noValue(), nullptr, m_out.lessThan(right, m_out.int64Zero)); + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + } + + setInt52(result); + break; + } + + case DoubleRepUse: { + setDouble( + m_out.doubleMul(lowDouble(m_node->child1()), lowDouble(m_node->child2()))); + break; + } + + case UntypedUse: { + ArithProfile* arithProfile = m_ftlState.graph.baselineCodeBlockFor(m_node->origin.semantic)->arithProfileForBytecodeOffset(m_node->origin.semantic.bytecodeIndex); + JITMulIC* mulIC = codeBlock()->addJITMulIC(arithProfile); + auto repatchingFunction = operationValueMulOptimize; + auto nonRepatchingFunction = operationValueMul; + compileMathIC(mulIC, repatchingFunction, nonRepatchingFunction); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileArithDiv() + { + switch (m_node->binaryUseKind()) { + case Int32Use: { + LValue numerator = lowInt32(m_node->child1()); + LValue denominator = lowInt32(m_node->child2()); + + if (shouldCheckNegativeZero(m_node->arithMode())) { + LBasicBlock zeroNumerator = m_out.newBlock(); + LBasicBlock numeratorContinuation = m_out.newBlock(); + + m_out.branch( + m_out.isZero32(numerator), + rarely(zeroNumerator), usually(numeratorContinuation)); + + LBasicBlock innerLastNext = m_out.appendTo(zeroNumerator, numeratorContinuation); + + speculate( + NegativeZero, noValue(), 0, m_out.lessThan(denominator, m_out.int32Zero)); + + m_out.jump(numeratorContinuation); + + m_out.appendTo(numeratorContinuation, innerLastNext); + } + + if (shouldCheckOverflow(m_node->arithMode())) { + LBasicBlock unsafeDenominator = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue adjustedDenominator = m_out.add(denominator, m_out.int32One); + m_out.branch( + m_out.above(adjustedDenominator, m_out.int32One), + usually(continuation), rarely(unsafeDenominator)); + + LBasicBlock lastNext = m_out.appendTo(unsafeDenominator, continuation); + LValue neg2ToThe31 = m_out.constInt32(-2147483647-1); + speculate(Overflow, noValue(), nullptr, m_out.isZero32(denominator)); + speculate(Overflow, noValue(), nullptr, m_out.equal(numerator, neg2ToThe31)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + LValue result = m_out.div(numerator, denominator); + speculate( + Overflow, noValue(), 0, + m_out.notEqual(m_out.mul(result, denominator), numerator)); + setInt32(result); + } else + setInt32(m_out.chillDiv(numerator, denominator)); + + break; + } + + case DoubleRepUse: { + setDouble(m_out.doubleDiv( + lowDouble(m_node->child1()), lowDouble(m_node->child2()))); + break; + } + + case UntypedUse: { + emitBinarySnippet<JITDivGenerator, NeedScratchFPR>(operationValueDiv); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileArithMod() + { + switch (m_node->binaryUseKind()) { + case Int32Use: { + LValue numerator = lowInt32(m_node->child1()); + LValue denominator = lowInt32(m_node->child2()); + + LValue remainder; + if (shouldCheckOverflow(m_node->arithMode())) { + LBasicBlock unsafeDenominator = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue adjustedDenominator = m_out.add(denominator, m_out.int32One); + m_out.branch( + m_out.above(adjustedDenominator, m_out.int32One), + usually(continuation), rarely(unsafeDenominator)); + + LBasicBlock lastNext = m_out.appendTo(unsafeDenominator, continuation); + LValue neg2ToThe31 = m_out.constInt32(-2147483647-1); + speculate(Overflow, noValue(), nullptr, m_out.isZero32(denominator)); + speculate(Overflow, noValue(), nullptr, m_out.equal(numerator, neg2ToThe31)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + LValue result = m_out.mod(numerator, denominator); + remainder = result; + } else + remainder = m_out.chillMod(numerator, denominator); + + if (shouldCheckNegativeZero(m_node->arithMode())) { + LBasicBlock negativeNumerator = m_out.newBlock(); + LBasicBlock numeratorContinuation = m_out.newBlock(); + + m_out.branch( + m_out.lessThan(numerator, m_out.int32Zero), + unsure(negativeNumerator), unsure(numeratorContinuation)); + + LBasicBlock innerLastNext = m_out.appendTo(negativeNumerator, numeratorContinuation); + + speculate(NegativeZero, noValue(), 0, m_out.isZero32(remainder)); + + m_out.jump(numeratorContinuation); + + m_out.appendTo(numeratorContinuation, innerLastNext); + } + + setInt32(remainder); + break; + } + + case DoubleRepUse: { + setDouble( + m_out.doubleMod(lowDouble(m_node->child1()), lowDouble(m_node->child2()))); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileArithMinOrMax() + { + switch (m_node->binaryUseKind()) { + case Int32Use: { + LValue left = lowInt32(m_node->child1()); + LValue right = lowInt32(m_node->child2()); + + setInt32( + m_out.select( + m_node->op() == ArithMin + ? m_out.lessThan(left, right) + : m_out.lessThan(right, left), + left, right)); + break; + } + + case DoubleRepUse: { + LValue left = lowDouble(m_node->child1()); + LValue right = lowDouble(m_node->child2()); + + LBasicBlock notLessThan = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + Vector<ValueFromBlock, 2> results; + + results.append(m_out.anchor(left)); + m_out.branch( + m_node->op() == ArithMin + ? m_out.doubleLessThan(left, right) + : m_out.doubleGreaterThan(left, right), + unsure(continuation), unsure(notLessThan)); + + LBasicBlock lastNext = m_out.appendTo(notLessThan, continuation); + results.append(m_out.anchor(m_out.select( + m_node->op() == ArithMin + ? m_out.doubleGreaterThanOrEqual(left, right) + : m_out.doubleLessThanOrEqual(left, right), + right, m_out.constDouble(PNaN)))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setDouble(m_out.phi(Double, results)); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileArithAbs() + { + switch (m_node->child1().useKind()) { + case Int32Use: { + LValue value = lowInt32(m_node->child1()); + + LValue mask = m_out.aShr(value, m_out.constInt32(31)); + LValue result = m_out.bitXor(mask, m_out.add(mask, value)); + + if (shouldCheckOverflow(m_node->arithMode())) + speculate(Overflow, noValue(), 0, m_out.lessThan(result, m_out.int32Zero)); + + setInt32(result); + break; + } + + case DoubleRepUse: { + setDouble(m_out.doubleAbs(lowDouble(m_node->child1()))); + break; + } + + default: { + DFG_ASSERT(m_graph, m_node, m_node->child1().useKind() == UntypedUse); + LValue argument = lowJSValue(m_node->child1()); + LValue result = vmCall(Double, m_out.operation(operationArithAbs), m_callFrame, argument); + setDouble(result); + break; + } + } + } + + void compileArithSin() + { + if (m_node->child1().useKind() == DoubleRepUse) { + setDouble(m_out.doubleSin(lowDouble(m_node->child1()))); + return; + } + LValue argument = lowJSValue(m_node->child1()); + LValue result = vmCall(Double, m_out.operation(operationArithSin), m_callFrame, argument); + setDouble(result); + } + + void compileArithCos() + { + if (m_node->child1().useKind() == DoubleRepUse) { + setDouble(m_out.doubleCos(lowDouble(m_node->child1()))); + return; + } + LValue argument = lowJSValue(m_node->child1()); + LValue result = vmCall(Double, m_out.operation(operationArithCos), m_callFrame, argument); + setDouble(result); + } + + void compileArithTan() + { + if (m_node->child1().useKind() == DoubleRepUse) { + setDouble(m_out.doubleTan(lowDouble(m_node->child1()))); + return; + } + LValue argument = lowJSValue(m_node->child1()); + LValue result = vmCall(Double, m_out.operation(operationArithTan), m_callFrame, argument); + setDouble(result); + } + + void compileArithPow() + { + if (m_node->child2().useKind() == Int32Use) + setDouble(m_out.doublePowi(lowDouble(m_node->child1()), lowInt32(m_node->child2()))); + else { + LValue base = lowDouble(m_node->child1()); + LValue exponent = lowDouble(m_node->child2()); + + LBasicBlock integerExponentIsSmallBlock = m_out.newBlock(); + LBasicBlock integerExponentPowBlock = m_out.newBlock(); + LBasicBlock doubleExponentPowBlockEntry = m_out.newBlock(); + LBasicBlock nanExceptionBaseIsOne = m_out.newBlock(); + LBasicBlock nanExceptionExponentIsInfinity = m_out.newBlock(); + LBasicBlock testExponentIsOneHalf = m_out.newBlock(); + LBasicBlock handleBaseZeroExponentIsOneHalf = m_out.newBlock(); + LBasicBlock handleInfinityForExponentIsOneHalf = m_out.newBlock(); + LBasicBlock exponentIsOneHalfNormal = m_out.newBlock(); + LBasicBlock exponentIsOneHalfInfinity = m_out.newBlock(); + LBasicBlock testExponentIsNegativeOneHalf = m_out.newBlock(); + LBasicBlock testBaseZeroExponentIsNegativeOneHalf = m_out.newBlock(); + LBasicBlock handleBaseZeroExponentIsNegativeOneHalf = m_out.newBlock(); + LBasicBlock handleInfinityForExponentIsNegativeOneHalf = m_out.newBlock(); + LBasicBlock exponentIsNegativeOneHalfNormal = m_out.newBlock(); + LBasicBlock exponentIsNegativeOneHalfInfinity = m_out.newBlock(); + LBasicBlock powBlock = m_out.newBlock(); + LBasicBlock nanExceptionResultIsNaN = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue integerExponent = m_out.doubleToInt(exponent); + LValue integerExponentConvertedToDouble = m_out.intToDouble(integerExponent); + LValue exponentIsInteger = m_out.doubleEqual(exponent, integerExponentConvertedToDouble); + m_out.branch(exponentIsInteger, unsure(integerExponentIsSmallBlock), unsure(doubleExponentPowBlockEntry)); + + LBasicBlock lastNext = m_out.appendTo(integerExponentIsSmallBlock, integerExponentPowBlock); + LValue integerExponentBelowMax = m_out.belowOrEqual(integerExponent, m_out.constInt32(maxExponentForIntegerMathPow)); + m_out.branch(integerExponentBelowMax, usually(integerExponentPowBlock), rarely(doubleExponentPowBlockEntry)); + + m_out.appendTo(integerExponentPowBlock, doubleExponentPowBlockEntry); + ValueFromBlock powDoubleIntResult = m_out.anchor(m_out.doublePowi(base, integerExponent)); + m_out.jump(continuation); + + // If y is NaN, the result is NaN. + m_out.appendTo(doubleExponentPowBlockEntry, nanExceptionBaseIsOne); + LValue exponentIsNaN; + if (provenType(m_node->child2()) & SpecDoubleNaN) + exponentIsNaN = m_out.doubleNotEqualOrUnordered(exponent, exponent); + else + exponentIsNaN = m_out.booleanFalse; + m_out.branch(exponentIsNaN, rarely(nanExceptionResultIsNaN), usually(nanExceptionBaseIsOne)); + + // If abs(x) is 1 and y is +infinity, the result is NaN. + // If abs(x) is 1 and y is -infinity, the result is NaN. + + // Test if base == 1. + m_out.appendTo(nanExceptionBaseIsOne, nanExceptionExponentIsInfinity); + LValue absoluteBase = m_out.doubleAbs(base); + LValue absoluteBaseIsOne = m_out.doubleEqual(absoluteBase, m_out.constDouble(1)); + m_out.branch(absoluteBaseIsOne, rarely(nanExceptionExponentIsInfinity), usually(testExponentIsOneHalf)); + + // Test if abs(y) == Infinity. + m_out.appendTo(nanExceptionExponentIsInfinity, testExponentIsOneHalf); + LValue absoluteExponent = m_out.doubleAbs(exponent); + LValue absoluteExponentIsInfinity = m_out.doubleEqual(absoluteExponent, m_out.constDouble(std::numeric_limits<double>::infinity())); + m_out.branch(absoluteExponentIsInfinity, rarely(nanExceptionResultIsNaN), usually(testExponentIsOneHalf)); + + // If y == 0.5 or y == -0.5, handle it through SQRT. + // We have be carefuly with -0 and -Infinity. + + // Test if y == 0.5 + m_out.appendTo(testExponentIsOneHalf, handleBaseZeroExponentIsOneHalf); + LValue exponentIsOneHalf = m_out.doubleEqual(exponent, m_out.constDouble(0.5)); + m_out.branch(exponentIsOneHalf, rarely(handleBaseZeroExponentIsOneHalf), usually(testExponentIsNegativeOneHalf)); + + // Handle x == -0. + m_out.appendTo(handleBaseZeroExponentIsOneHalf, handleInfinityForExponentIsOneHalf); + LValue baseIsZeroExponentIsOneHalf = m_out.doubleEqual(base, m_out.doubleZero); + ValueFromBlock zeroResultExponentIsOneHalf = m_out.anchor(m_out.doubleZero); + m_out.branch(baseIsZeroExponentIsOneHalf, rarely(continuation), usually(handleInfinityForExponentIsOneHalf)); + + // Test if abs(x) == Infinity. + m_out.appendTo(handleInfinityForExponentIsOneHalf, exponentIsOneHalfNormal); + LValue absoluteBaseIsInfinityOneHalf = m_out.doubleEqual(absoluteBase, m_out.constDouble(std::numeric_limits<double>::infinity())); + m_out.branch(absoluteBaseIsInfinityOneHalf, rarely(exponentIsOneHalfInfinity), usually(exponentIsOneHalfNormal)); + + // The exponent is 0.5, the base is finite or NaN, we can use SQRT. + m_out.appendTo(exponentIsOneHalfNormal, exponentIsOneHalfInfinity); + ValueFromBlock sqrtResult = m_out.anchor(m_out.doubleSqrt(base)); + m_out.jump(continuation); + + // The exponent is 0.5, the base is infinite, the result is always infinite. + m_out.appendTo(exponentIsOneHalfInfinity, testExponentIsNegativeOneHalf); + ValueFromBlock sqrtInfinityResult = m_out.anchor(m_out.constDouble(std::numeric_limits<double>::infinity())); + m_out.jump(continuation); + + // Test if y == -0.5 + m_out.appendTo(testExponentIsNegativeOneHalf, testBaseZeroExponentIsNegativeOneHalf); + LValue exponentIsNegativeOneHalf = m_out.doubleEqual(exponent, m_out.constDouble(-0.5)); + m_out.branch(exponentIsNegativeOneHalf, rarely(testBaseZeroExponentIsNegativeOneHalf), usually(powBlock)); + + // Handle x == -0. + m_out.appendTo(testBaseZeroExponentIsNegativeOneHalf, handleBaseZeroExponentIsNegativeOneHalf); + LValue baseIsZeroExponentIsNegativeOneHalf = m_out.doubleEqual(base, m_out.doubleZero); + m_out.branch(baseIsZeroExponentIsNegativeOneHalf, rarely(handleBaseZeroExponentIsNegativeOneHalf), usually(handleInfinityForExponentIsNegativeOneHalf)); + + m_out.appendTo(handleBaseZeroExponentIsNegativeOneHalf, handleInfinityForExponentIsNegativeOneHalf); + ValueFromBlock oneOverSqrtZeroResult = m_out.anchor(m_out.constDouble(std::numeric_limits<double>::infinity())); + m_out.jump(continuation); + + // Test if abs(x) == Infinity. + m_out.appendTo(handleInfinityForExponentIsNegativeOneHalf, exponentIsNegativeOneHalfNormal); + LValue absoluteBaseIsInfinityNegativeOneHalf = m_out.doubleEqual(absoluteBase, m_out.constDouble(std::numeric_limits<double>::infinity())); + m_out.branch(absoluteBaseIsInfinityNegativeOneHalf, rarely(exponentIsNegativeOneHalfInfinity), usually(exponentIsNegativeOneHalfNormal)); + + // The exponent is -0.5, the base is finite or NaN, we can use 1/SQRT. + m_out.appendTo(exponentIsNegativeOneHalfNormal, exponentIsNegativeOneHalfInfinity); + LValue sqrtBase = m_out.doubleSqrt(base); + ValueFromBlock oneOverSqrtResult = m_out.anchor(m_out.div(m_out.constDouble(1.), sqrtBase)); + m_out.jump(continuation); + + // The exponent is -0.5, the base is infinite, the result is always zero. + m_out.appendTo(exponentIsNegativeOneHalfInfinity, powBlock); + ValueFromBlock oneOverSqrtInfinityResult = m_out.anchor(m_out.doubleZero); + m_out.jump(continuation); + + m_out.appendTo(powBlock, nanExceptionResultIsNaN); + ValueFromBlock powResult = m_out.anchor(m_out.doublePow(base, exponent)); + m_out.jump(continuation); + + m_out.appendTo(nanExceptionResultIsNaN, continuation); + ValueFromBlock pureNan = m_out.anchor(m_out.constDouble(PNaN)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setDouble(m_out.phi(Double, powDoubleIntResult, zeroResultExponentIsOneHalf, sqrtResult, sqrtInfinityResult, oneOverSqrtZeroResult, oneOverSqrtResult, oneOverSqrtInfinityResult, powResult, pureNan)); + } + } + + void compileArithRandom() + { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + + // Inlined WeakRandom::advance(). + // uint64_t x = m_low; + void* lowAddress = reinterpret_cast<uint8_t*>(globalObject) + JSGlobalObject::weakRandomOffset() + WeakRandom::lowOffset(); + LValue low = m_out.load64(m_out.absolute(lowAddress)); + // uint64_t y = m_high; + void* highAddress = reinterpret_cast<uint8_t*>(globalObject) + JSGlobalObject::weakRandomOffset() + WeakRandom::highOffset(); + LValue high = m_out.load64(m_out.absolute(highAddress)); + // m_low = y; + m_out.store64(high, m_out.absolute(lowAddress)); + + // x ^= x << 23; + LValue phase1 = m_out.bitXor(m_out.shl(low, m_out.constInt64(23)), low); + + // x ^= x >> 17; + LValue phase2 = m_out.bitXor(m_out.lShr(phase1, m_out.constInt64(17)), phase1); + + // x ^= y ^ (y >> 26); + LValue phase3 = m_out.bitXor(m_out.bitXor(high, m_out.lShr(high, m_out.constInt64(26))), phase2); + + // m_high = x; + m_out.store64(phase3, m_out.absolute(highAddress)); + + // return x + y; + LValue random64 = m_out.add(phase3, high); + + // Extract random 53bit. [0, 53] bit is safe integer number ranges in double representation. + LValue random53 = m_out.bitAnd(random64, m_out.constInt64((1ULL << 53) - 1)); + + LValue double53Integer = m_out.intToDouble(random53); + + // Convert `(53bit double integer value) / (1 << 53)` to `(53bit double integer value) * (1.0 / (1 << 53))`. + // In latter case, `1.0 / (1 << 53)` will become a double value represented as (mantissa = 0 & exp = 970, it means 1e-(2**54)). + static const double scale = 1.0 / (1ULL << 53); + + // Multiplying 1e-(2**54) with the double integer does not change anything of the mantissa part of the double integer. + // It just reduces the exp part of the given 53bit double integer. + // (Except for 0.0. This is specially handled and in this case, exp just becomes 0.) + // Now we get 53bit precision random double value in [0, 1). + LValue result = m_out.doubleMul(double53Integer, m_out.constDouble(scale)); + + setDouble(result); + } + + void compileArithRound() + { + if (m_node->child1().useKind() == DoubleRepUse) { + LValue result = nullptr; + if (producesInteger(m_node->arithRoundingMode()) && !shouldCheckNegativeZero(m_node->arithRoundingMode())) { + LValue value = lowDouble(m_node->child1()); + result = m_out.doubleFloor(m_out.doubleAdd(value, m_out.constDouble(0.5))); + } else { + LBasicBlock realPartIsMoreThanHalf = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue value = lowDouble(m_node->child1()); + LValue integerValue = m_out.doubleCeil(value); + ValueFromBlock integerValueResult = m_out.anchor(integerValue); + + LValue realPart = m_out.doubleSub(integerValue, value); + + m_out.branch(m_out.doubleGreaterThanOrUnordered(realPart, m_out.constDouble(0.5)), unsure(realPartIsMoreThanHalf), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(realPartIsMoreThanHalf, continuation); + LValue integerValueRoundedDown = m_out.doubleSub(integerValue, m_out.constDouble(1)); + ValueFromBlock integerValueRoundedDownResult = m_out.anchor(integerValueRoundedDown); + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + + result = m_out.phi(Double, integerValueResult, integerValueRoundedDownResult); + } + + if (producesInteger(m_node->arithRoundingMode())) { + LValue integerValue = convertDoubleToInt32(result, shouldCheckNegativeZero(m_node->arithRoundingMode())); + setInt32(integerValue); + } else + setDouble(result); + return; + } + + DFG_ASSERT(m_graph, m_node, m_node->child1().useKind() == UntypedUse); + LValue argument = lowJSValue(m_node->child1()); + setJSValue(vmCall(Int64, m_out.operation(operationArithRound), m_callFrame, argument)); + } + + void compileArithFloor() + { + if (m_node->child1().useKind() == DoubleRepUse) { + LValue value = lowDouble(m_node->child1()); + LValue integerValue = m_out.doubleFloor(value); + if (producesInteger(m_node->arithRoundingMode())) + setInt32(convertDoubleToInt32(integerValue, shouldCheckNegativeZero(m_node->arithRoundingMode()))); + else + setDouble(integerValue); + return; + } + DFG_ASSERT(m_graph, m_node, m_node->child1().useKind() == UntypedUse); + LValue argument = lowJSValue(m_node->child1()); + setJSValue(vmCall(Int64, m_out.operation(operationArithFloor), m_callFrame, argument)); + } + + void compileArithCeil() + { + if (m_node->child1().useKind() == DoubleRepUse) { + LValue value = lowDouble(m_node->child1()); + LValue integerValue = m_out.doubleCeil(value); + if (producesInteger(m_node->arithRoundingMode())) + setInt32(convertDoubleToInt32(integerValue, shouldCheckNegativeZero(m_node->arithRoundingMode()))); + else + setDouble(integerValue); + return; + } + DFG_ASSERT(m_graph, m_node, m_node->child1().useKind() == UntypedUse); + LValue argument = lowJSValue(m_node->child1()); + setJSValue(vmCall(Int64, m_out.operation(operationArithCeil), m_callFrame, argument)); + } + + void compileArithTrunc() + { + if (m_node->child1().useKind() == DoubleRepUse) { + LValue value = lowDouble(m_node->child1()); + LValue result = m_out.doubleTrunc(value); + if (producesInteger(m_node->arithRoundingMode())) + setInt32(convertDoubleToInt32(result, shouldCheckNegativeZero(m_node->arithRoundingMode()))); + else + setDouble(result); + return; + } + DFG_ASSERT(m_graph, m_node, m_node->child1().useKind() == UntypedUse); + LValue argument = lowJSValue(m_node->child1()); + setJSValue(vmCall(Int64, m_out.operation(operationArithTrunc), m_callFrame, argument)); + } + + void compileArithSqrt() + { + if (m_node->child1().useKind() == DoubleRepUse) { + setDouble(m_out.doubleSqrt(lowDouble(m_node->child1()))); + return; + } + LValue argument = lowJSValue(m_node->child1()); + LValue result = vmCall(Double, m_out.operation(operationArithSqrt), m_callFrame, argument); + setDouble(result); + } + + void compileArithLog() + { + if (m_node->child1().useKind() == DoubleRepUse) { + setDouble(m_out.doubleLog(lowDouble(m_node->child1()))); + return; + } + LValue argument = lowJSValue(m_node->child1()); + LValue result = vmCall(Double, m_out.operation(operationArithLog), m_callFrame, argument); + setDouble(result); + } + + void compileArithFRound() + { + if (m_node->child1().useKind() == DoubleRepUse) { + setDouble(m_out.fround(lowDouble(m_node->child1()))); + return; + } + LValue argument = lowJSValue(m_node->child1()); + LValue result = vmCall(Double, m_out.operation(operationArithFRound), m_callFrame, argument); + setDouble(result); + } + + void compileArithNegate() + { + switch (m_node->child1().useKind()) { + case Int32Use: { + LValue value = lowInt32(m_node->child1()); + + LValue result; + if (!shouldCheckOverflow(m_node->arithMode())) + result = m_out.neg(value); + else if (!shouldCheckNegativeZero(m_node->arithMode())) { + CheckValue* check = m_out.speculateSub(m_out.int32Zero, value); + blessSpeculation(check, Overflow, noValue(), nullptr, m_origin); + result = check; + } else { + speculate(Overflow, noValue(), 0, m_out.testIsZero32(value, m_out.constInt32(0x7fffffff))); + result = m_out.neg(value); + } + + setInt32(result); + break; + } + + case Int52RepUse: { + if (!abstractValue(m_node->child1()).couldBeType(SpecInt52Only)) { + Int52Kind kind; + LValue value = lowWhicheverInt52(m_node->child1(), kind); + LValue result = m_out.neg(value); + if (shouldCheckNegativeZero(m_node->arithMode())) + speculate(NegativeZero, noValue(), 0, m_out.isZero64(result)); + setInt52(result, kind); + break; + } + + LValue value = lowInt52(m_node->child1()); + CheckValue* result = m_out.speculateSub(m_out.int64Zero, value); + blessSpeculation(result, Int52Overflow, noValue(), nullptr, m_origin); + if (shouldCheckNegativeZero(m_node->arithMode())) + speculate(NegativeZero, noValue(), 0, m_out.isZero64(result)); + setInt52(result); + break; + } + + case DoubleRepUse: { + setDouble(m_out.doubleNeg(lowDouble(m_node->child1()))); + break; + } + + default: + DFG_ASSERT(m_graph, m_node, m_node->child1().useKind() == UntypedUse); + ArithProfile* arithProfile = m_ftlState.graph.baselineCodeBlockFor(m_node->origin.semantic)->arithProfileForBytecodeOffset(m_node->origin.semantic.bytecodeIndex); + JITNegIC* negIC = codeBlock()->addJITNegIC(arithProfile); + auto repatchingFunction = operationArithNegateOptimize; + auto nonRepatchingFunction = operationArithNegate; + compileMathIC(negIC, repatchingFunction, nonRepatchingFunction); + break; + } + } + + void compileBitAnd() + { + if (m_node->isBinaryUseKind(UntypedUse)) { + emitBinaryBitOpSnippet<JITBitAndGenerator>(operationValueBitAnd); + return; + } + setInt32(m_out.bitAnd(lowInt32(m_node->child1()), lowInt32(m_node->child2()))); + } + + void compileBitOr() + { + if (m_node->isBinaryUseKind(UntypedUse)) { + emitBinaryBitOpSnippet<JITBitOrGenerator>(operationValueBitOr); + return; + } + setInt32(m_out.bitOr(lowInt32(m_node->child1()), lowInt32(m_node->child2()))); + } + + void compileBitXor() + { + if (m_node->isBinaryUseKind(UntypedUse)) { + emitBinaryBitOpSnippet<JITBitXorGenerator>(operationValueBitXor); + return; + } + setInt32(m_out.bitXor(lowInt32(m_node->child1()), lowInt32(m_node->child2()))); + } + + void compileBitRShift() + { + if (m_node->isBinaryUseKind(UntypedUse)) { + emitRightShiftSnippet(JITRightShiftGenerator::SignedShift); + return; + } + setInt32(m_out.aShr( + lowInt32(m_node->child1()), + m_out.bitAnd(lowInt32(m_node->child2()), m_out.constInt32(31)))); + } + + void compileBitLShift() + { + if (m_node->isBinaryUseKind(UntypedUse)) { + emitBinaryBitOpSnippet<JITLeftShiftGenerator>(operationValueBitLShift); + return; + } + setInt32(m_out.shl( + lowInt32(m_node->child1()), + m_out.bitAnd(lowInt32(m_node->child2()), m_out.constInt32(31)))); + } + + void compileBitURShift() + { + if (m_node->isBinaryUseKind(UntypedUse)) { + emitRightShiftSnippet(JITRightShiftGenerator::UnsignedShift); + return; + } + setInt32(m_out.lShr( + lowInt32(m_node->child1()), + m_out.bitAnd(lowInt32(m_node->child2()), m_out.constInt32(31)))); + } + + void compileUInt32ToNumber() + { + LValue value = lowInt32(m_node->child1()); + + if (doesOverflow(m_node->arithMode())) { + setStrictInt52(m_out.zeroExtPtr(value)); + return; + } + + speculate(Overflow, noValue(), 0, m_out.lessThan(value, m_out.int32Zero)); + setInt32(value); + } + + void compileCheckStructure() + { + ExitKind exitKind; + if (m_node->child1()->hasConstant()) + exitKind = BadConstantCache; + else + exitKind = BadCache; + + switch (m_node->child1().useKind()) { + case CellUse: + case KnownCellUse: { + LValue cell = lowCell(m_node->child1()); + + checkStructure( + m_out.load32(cell, m_heaps.JSCell_structureID), jsValueValue(cell), + exitKind, m_node->structureSet(), + [&] (RegisteredStructure structure) { + return weakStructureID(structure); + }); + return; + } + + case CellOrOtherUse: { + LValue value = lowJSValue(m_node->child1(), ManualOperandSpeculation); + + LBasicBlock cellCase = m_out.newBlock(); + LBasicBlock notCellCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + isCell(value, provenType(m_node->child1())), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, notCellCase); + checkStructure( + m_out.load32(value, m_heaps.JSCell_structureID), jsValueValue(value), + exitKind, m_node->structureSet(), + [&] (RegisteredStructure structure) { + return weakStructureID(structure); + }); + m_out.jump(continuation); + + m_out.appendTo(notCellCase, continuation); + FTL_TYPE_CHECK(jsValueValue(value), m_node->child1(), SpecCell | SpecOther, isNotOther(value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + return; + } + } + + void compileCheckCell() + { + LValue cell = lowCell(m_node->child1()); + + speculate( + BadCell, jsValueValue(cell), m_node->child1().node(), + m_out.notEqual(cell, weakPointer(m_node->cellOperand()->cell()))); + } + + void compileCheckBadCell() + { + terminate(BadCell); + } + + void compileCheckNotEmpty() + { + speculate(TDZFailure, noValue(), nullptr, m_out.isZero64(lowJSValue(m_node->child1()))); + } + + void compileCheckStringIdent() + { + UniquedStringImpl* uid = m_node->uidOperand(); + LValue stringImpl = lowStringIdent(m_node->child1()); + speculate(BadIdent, noValue(), nullptr, m_out.notEqual(stringImpl, m_out.constIntPtr(uid))); + } + + void compileGetExecutable() + { + LValue cell = lowCell(m_node->child1()); + speculateFunction(m_node->child1(), cell); + setJSValue(m_out.loadPtr(cell, m_heaps.JSFunction_executable)); + } + + void compileArrayifyToStructure() + { + LValue cell = lowCell(m_node->child1()); + LValue property = !!m_node->child2() ? lowInt32(m_node->child2()) : 0; + + LBasicBlock unexpectedStructure = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue structureID = m_out.load32(cell, m_heaps.JSCell_structureID); + + m_out.branch( + m_out.notEqual(structureID, weakStructureID(m_node->structure())), + rarely(unexpectedStructure), usually(continuation)); + + LBasicBlock lastNext = m_out.appendTo(unexpectedStructure, continuation); + + if (property) { + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Double: + case Array::Contiguous: + speculate( + Uncountable, noValue(), 0, + m_out.aboveOrEqual(property, m_out.constInt32(MIN_SPARSE_ARRAY_INDEX))); + break; + default: + break; + } + } + + switch (m_node->arrayMode().type()) { + case Array::Int32: + vmCall(Void, m_out.operation(operationEnsureInt32), m_callFrame, cell); + break; + case Array::Double: + vmCall(Void, m_out.operation(operationEnsureDouble), m_callFrame, cell); + break; + case Array::Contiguous: + vmCall(Void, m_out.operation(operationEnsureContiguous), m_callFrame, cell); + break; + case Array::ArrayStorage: + case Array::SlowPutArrayStorage: + vmCall(Void, m_out.operation(operationEnsureArrayStorage), m_callFrame, cell); + break; + default: + DFG_CRASH(m_graph, m_node, "Bad array type"); + break; + } + + structureID = m_out.load32(cell, m_heaps.JSCell_structureID); + speculate( + BadIndexingType, jsValueValue(cell), 0, + m_out.notEqual(structureID, weakStructureID(m_node->structure()))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void compilePutStructure() + { + m_ftlState.jitCode->common.notifyCompilingStructureTransition(m_graph.m_plan, codeBlock(), m_node); + + RegisteredStructure oldStructure = m_node->transition()->previous; + RegisteredStructure newStructure = m_node->transition()->next; + ASSERT_UNUSED(oldStructure, oldStructure->indexingType() == newStructure->indexingType()); + ASSERT(oldStructure->typeInfo().inlineTypeFlags() == newStructure->typeInfo().inlineTypeFlags()); + ASSERT(oldStructure->typeInfo().type() == newStructure->typeInfo().type()); + + LValue cell = lowCell(m_node->child1()); + m_out.store32( + weakStructureID(newStructure), + cell, m_heaps.JSCell_structureID); + } + + void compileGetById(AccessType type) + { + ASSERT(type == AccessType::Get || type == AccessType::TryGet); + switch (m_node->child1().useKind()) { + case CellUse: { + setJSValue(getById(lowCell(m_node->child1()), type)); + return; + } + + case UntypedUse: { + // This is pretty weird, since we duplicate the slow path both here and in the + // code generated by the IC. We should investigate making this less bad. + // https://bugs.webkit.org/show_bug.cgi?id=127830 + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock cellCase = m_out.newBlock(); + LBasicBlock notCellCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + isCell(value, provenType(m_node->child1())), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, notCellCase); + ValueFromBlock cellResult = m_out.anchor(getById(value, type)); + m_out.jump(continuation); + + J_JITOperation_EJI getByIdFunction; + if (type == AccessType::Get) + getByIdFunction = operationGetByIdGeneric; + else + getByIdFunction = operationTryGetByIdGeneric; + + m_out.appendTo(notCellCase, continuation); + ValueFromBlock notCellResult = m_out.anchor(vmCall( + Int64, m_out.operation(getByIdFunction), + m_callFrame, value, + m_out.constIntPtr(m_graph.identifiers()[m_node->identifierNumber()]))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, cellResult, notCellResult)); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + return; + } + } + + void compileGetByIdWithThis() + { + LValue base = lowJSValue(m_node->child1()); + LValue thisValue = lowJSValue(m_node->child2()); + LValue result = vmCall(Int64, m_out.operation(operationGetByIdWithThis), m_callFrame, base, thisValue, m_out.constIntPtr(m_graph.identifiers()[m_node->identifierNumber()])); + setJSValue(result); + } + + void compileGetByValWithThis() + { + LValue base = lowJSValue(m_node->child1()); + LValue thisValue = lowJSValue(m_node->child2()); + LValue subscript = lowJSValue(m_node->child3()); + + LValue result = vmCall(Int64, m_out.operation(operationGetByValWithThis), m_callFrame, base, thisValue, subscript); + setJSValue(result); + } + + void compilePutByIdWithThis() + { + LValue base = lowJSValue(m_node->child1()); + LValue thisValue = lowJSValue(m_node->child2()); + LValue value = lowJSValue(m_node->child3()); + + vmCall(Void, m_out.operation(m_graph.isStrictModeFor(m_node->origin.semantic) ? operationPutByIdWithThisStrict : operationPutByIdWithThis), + m_callFrame, base, thisValue, value, m_out.constIntPtr(m_graph.identifiers()[m_node->identifierNumber()])); + } + + void compilePutByValWithThis() + { + LValue base = lowJSValue(m_graph.varArgChild(m_node, 0)); + LValue thisValue = lowJSValue(m_graph.varArgChild(m_node, 1)); + LValue property = lowJSValue(m_graph.varArgChild(m_node, 2)); + LValue value = lowJSValue(m_graph.varArgChild(m_node, 3)); + + vmCall(Void, m_out.operation(m_graph.isStrictModeFor(m_node->origin.semantic) ? operationPutByValWithThisStrict : operationPutByValWithThis), + m_callFrame, base, thisValue, property, value); + } + + void compileDefineDataProperty() + { + LValue base = lowCell(m_graph.varArgChild(m_node, 0)); + LValue value = lowJSValue(m_graph.varArgChild(m_node, 2)); + LValue attributes = lowInt32(m_graph.varArgChild(m_node, 3)); + Edge& propertyEdge = m_graph.varArgChild(m_node, 1); + switch (propertyEdge.useKind()) { + case StringUse: { + LValue property = lowString(propertyEdge); + vmCall(Void, m_out.operation(operationDefineDataPropertyString), m_callFrame, base, property, value, attributes); + break; + } + case StringIdentUse: { + LValue property = lowStringIdent(propertyEdge); + vmCall(Void, m_out.operation(operationDefineDataPropertyStringIdent), m_callFrame, base, property, value, attributes); + break; + } + case SymbolUse: { + LValue property = lowSymbol(propertyEdge); + vmCall(Void, m_out.operation(operationDefineDataPropertySymbol), m_callFrame, base, property, value, attributes); + break; + } + case UntypedUse: { + LValue property = lowJSValue(propertyEdge); + vmCall(Void, m_out.operation(operationDefineDataProperty), m_callFrame, base, property, value, attributes); + break; + } + default: + RELEASE_ASSERT_NOT_REACHED(); + } + } + + void compileDefineAccessorProperty() + { + LValue base = lowCell(m_graph.varArgChild(m_node, 0)); + LValue getter = lowCell(m_graph.varArgChild(m_node, 2)); + LValue setter = lowCell(m_graph.varArgChild(m_node, 3)); + LValue attributes = lowInt32(m_graph.varArgChild(m_node, 4)); + Edge& propertyEdge = m_graph.varArgChild(m_node, 1); + switch (propertyEdge.useKind()) { + case StringUse: { + LValue property = lowString(propertyEdge); + vmCall(Void, m_out.operation(operationDefineAccessorPropertyString), m_callFrame, base, property, getter, setter, attributes); + break; + } + case StringIdentUse: { + LValue property = lowStringIdent(propertyEdge); + vmCall(Void, m_out.operation(operationDefineAccessorPropertyStringIdent), m_callFrame, base, property, getter, setter, attributes); + break; + } + case SymbolUse: { + LValue property = lowSymbol(propertyEdge); + vmCall(Void, m_out.operation(operationDefineAccessorPropertySymbol), m_callFrame, base, property, getter, setter, attributes); + break; + } + case UntypedUse: { + LValue property = lowJSValue(propertyEdge); + vmCall(Void, m_out.operation(operationDefineAccessorProperty), m_callFrame, base, property, getter, setter, attributes); + break; + } + default: + RELEASE_ASSERT_NOT_REACHED(); + } + } + + void compilePutById() + { + DFG_ASSERT(m_graph, m_node, m_node->child1().useKind() == CellUse); + + Node* node = m_node; + LValue base = lowCell(node->child1()); + LValue value = lowJSValue(node->child2()); + auto uid = m_graph.identifiers()[node->identifierNumber()]; + + B3::PatchpointValue* patchpoint = m_out.patchpoint(Void); + patchpoint->appendSomeRegister(base); + patchpoint->appendSomeRegister(value); + patchpoint->append(m_tagMask, ValueRep::reg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::reg(GPRInfo::tagTypeNumberRegister)); + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + + // FIXME: If this is a PutByIdFlush, we might want to late-clobber volatile registers. + // https://bugs.webkit.org/show_bug.cgi?id=152848 + + RefPtr<PatchpointExceptionHandle> exceptionHandle = + preparePatchpointForExceptions(patchpoint); + + State* state = &m_ftlState; + ECMAMode ecmaMode = m_graph.executableFor(node->origin.semantic)->ecmaMode(); + + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + CallSiteIndex callSiteIndex = + state->jitCode->common.addUniqueCallSiteIndex(node->origin.semantic); + + Box<CCallHelpers::JumpList> exceptions = + exceptionHandle->scheduleExitCreation(params)->jumps(jit); + + // JS setter call ICs generated by the PutById IC will need this. + exceptionHandle->scheduleExitCreationForUnwind(params, callSiteIndex); + + auto generator = Box<JITPutByIdGenerator>::create( + jit.codeBlock(), node->origin.semantic, callSiteIndex, + params.unavailableRegisters(), JSValueRegs(params[0].gpr()), + JSValueRegs(params[1].gpr()), GPRInfo::patchpointScratchRegister, ecmaMode, + node->op() == PutByIdDirect ? Direct : NotDirect); + + generator->generateFastPath(jit); + CCallHelpers::Label done = jit.label(); + + params.addLatePath( + [=] (CCallHelpers& jit) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + generator->slowPathJump().link(&jit); + CCallHelpers::Label slowPathBegin = jit.label(); + CCallHelpers::Call slowPathCall = callOperation( + *state, params.unavailableRegisters(), jit, node->origin.semantic, + exceptions.get(), generator->slowPathFunction(), InvalidGPRReg, + CCallHelpers::TrustedImmPtr(generator->stubInfo()), params[1].gpr(), + params[0].gpr(), CCallHelpers::TrustedImmPtr(uid)).call(); + jit.jump().linkTo(done, &jit); + + generator->reportSlowPathCall(slowPathBegin, slowPathCall); + + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + generator->finalize(linkBuffer); + }); + }); + }); + } + + void compileGetButterfly() + { + setStorage(m_out.loadPtr(lowCell(m_node->child1()), m_heaps.JSObject_butterfly)); + } + + void compileConstantStoragePointer() + { + setStorage(m_out.constIntPtr(m_node->storagePointer())); + } + + void compileGetIndexedPropertyStorage() + { + LValue cell = lowCell(m_node->child1()); + + if (m_node->arrayMode().type() == Array::String) { + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue fastResultValue = m_out.loadPtr(cell, m_heaps.JSString_value); + ValueFromBlock fastResult = m_out.anchor(fastResultValue); + + m_out.branch( + m_out.notNull(fastResultValue), usually(continuation), rarely(slowPath)); + + LBasicBlock lastNext = m_out.appendTo(slowPath, continuation); + + ValueFromBlock slowResult = m_out.anchor( + vmCall(pointerType(), m_out.operation(operationResolveRope), m_callFrame, cell)); + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + setStorage(m_out.loadPtr(m_out.phi(pointerType(), fastResult, slowResult), m_heaps.StringImpl_data)); + return; + } + + DFG_ASSERT(m_graph, m_node, isTypedView(m_node->arrayMode().typedArrayType())); + setStorage(m_out.loadPtr(cell, m_heaps.JSArrayBufferView_vector)); + } + + void compileCheckArray() + { + Edge edge = m_node->child1(); + LValue cell = lowCell(edge); + + if (m_node->arrayMode().alreadyChecked(m_graph, m_node, abstractValue(edge))) + return; + + speculate( + BadIndexingType, jsValueValue(cell), 0, + m_out.logicalNot(isArrayType(cell, m_node->arrayMode()))); + } + + void compileGetTypedArrayByteOffset() + { + LValue basePtr = lowCell(m_node->child1()); + + LBasicBlock simpleCase = m_out.newBlock(); + LBasicBlock wastefulCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue mode = m_out.load32(basePtr, m_heaps.JSArrayBufferView_mode); + m_out.branch( + m_out.notEqual(mode, m_out.constInt32(WastefulTypedArray)), + unsure(simpleCase), unsure(wastefulCase)); + + LBasicBlock lastNext = m_out.appendTo(simpleCase, wastefulCase); + + ValueFromBlock simpleOut = m_out.anchor(m_out.constIntPtr(0)); + + m_out.jump(continuation); + + m_out.appendTo(wastefulCase, continuation); + + LValue vectorPtr = m_out.loadPtr(basePtr, m_heaps.JSArrayBufferView_vector); + LValue butterflyPtr = m_out.loadPtr(basePtr, m_heaps.JSObject_butterfly); + LValue arrayBufferPtr = m_out.loadPtr(butterflyPtr, m_heaps.Butterfly_arrayBuffer); + LValue dataPtr = m_out.loadPtr(arrayBufferPtr, m_heaps.ArrayBuffer_data); + + ValueFromBlock wastefulOut = m_out.anchor(m_out.sub(vectorPtr, dataPtr)); + + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + + setInt32(m_out.castToInt32(m_out.phi(pointerType(), simpleOut, wastefulOut))); + } + + void compileGetArrayLength() + { + switch (m_node->arrayMode().type()) { + case Array::Undecided: + case Array::Int32: + case Array::Double: + case Array::Contiguous: { + setInt32(m_out.load32NonNegative(lowStorage(m_node->child2()), m_heaps.Butterfly_publicLength)); + return; + } + + case Array::String: { + LValue string = lowCell(m_node->child1()); + setInt32(m_out.load32NonNegative(string, m_heaps.JSString_length)); + return; + } + + case Array::DirectArguments: { + LValue arguments = lowCell(m_node->child1()); + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.notNull(m_out.loadPtr(arguments, m_heaps.DirectArguments_mappedArguments))); + setInt32(m_out.load32NonNegative(arguments, m_heaps.DirectArguments_length)); + return; + } + + case Array::ScopedArguments: { + LValue arguments = lowCell(m_node->child1()); + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.notZero32(m_out.load8ZeroExt32(arguments, m_heaps.ScopedArguments_overrodeThings))); + setInt32(m_out.load32NonNegative(arguments, m_heaps.ScopedArguments_totalLength)); + return; + } + + default: + if (m_node->arrayMode().isSomeTypedArrayView()) { + setInt32( + m_out.load32NonNegative(lowCell(m_node->child1()), m_heaps.JSArrayBufferView_length)); + return; + } + + DFG_CRASH(m_graph, m_node, "Bad array type"); + return; + } + } + + void compileCheckInBounds() + { + speculate( + OutOfBounds, noValue(), 0, + m_out.aboveOrEqual(lowInt32(m_node->child1()), lowInt32(m_node->child2()))); + } + + void compileGetByVal() + { + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Contiguous: { + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + + IndexedAbstractHeap& heap = m_node->arrayMode().type() == Array::Int32 ? + m_heaps.indexedInt32Properties : m_heaps.indexedContiguousProperties; + + if (m_node->arrayMode().isInBounds()) { + LValue result = m_out.load64(baseIndex(heap, storage, index, m_node->child2())); + LValue isHole = m_out.isZero64(result); + if (m_node->arrayMode().isSaneChain()) { + DFG_ASSERT( + m_graph, m_node, m_node->arrayMode().type() == Array::Contiguous); + result = m_out.select( + isHole, m_out.constInt64(JSValue::encode(jsUndefined())), result); + } else + speculate(LoadFromHole, noValue(), 0, isHole); + setJSValue(result); + return; + } + + LValue base = lowCell(m_node->child1()); + + LBasicBlock fastCase = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + m_out.aboveOrEqual( + index, m_out.load32NonNegative(storage, m_heaps.Butterfly_publicLength)), + rarely(slowCase), usually(fastCase)); + + LBasicBlock lastNext = m_out.appendTo(fastCase, slowCase); + + LValue fastResultValue = m_out.load64(baseIndex(heap, storage, index, m_node->child2())); + ValueFromBlock fastResult = m_out.anchor(fastResultValue); + m_out.branch( + m_out.isZero64(fastResultValue), rarely(slowCase), usually(continuation)); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowResult = m_out.anchor( + vmCall(Int64, m_out.operation(operationGetByValArrayInt), m_callFrame, base, index)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, fastResult, slowResult)); + return; + } + + case Array::Double: { + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + + IndexedAbstractHeap& heap = m_heaps.indexedDoubleProperties; + + if (m_node->arrayMode().isInBounds()) { + LValue result = m_out.loadDouble( + baseIndex(heap, storage, index, m_node->child2())); + + if (!m_node->arrayMode().isSaneChain()) { + speculate( + LoadFromHole, noValue(), 0, + m_out.doubleNotEqualOrUnordered(result, result)); + } + setDouble(result); + break; + } + + LValue base = lowCell(m_node->child1()); + + LBasicBlock inBounds = m_out.newBlock(); + LBasicBlock boxPath = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + m_out.aboveOrEqual( + index, m_out.load32NonNegative(storage, m_heaps.Butterfly_publicLength)), + rarely(slowCase), usually(inBounds)); + + LBasicBlock lastNext = m_out.appendTo(inBounds, boxPath); + LValue doubleValue = m_out.loadDouble( + baseIndex(heap, storage, index, m_node->child2())); + m_out.branch( + m_out.doubleNotEqualOrUnordered(doubleValue, doubleValue), + rarely(slowCase), usually(boxPath)); + + m_out.appendTo(boxPath, slowCase); + ValueFromBlock fastResult = m_out.anchor(boxDouble(doubleValue)); + m_out.jump(continuation); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowResult = m_out.anchor( + vmCall(Int64, m_out.operation(operationGetByValArrayInt), m_callFrame, base, index)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, fastResult, slowResult)); + return; + } + + case Array::Undecided: { + LValue index = lowInt32(m_node->child2()); + + speculate(OutOfBounds, noValue(), m_node, m_out.lessThan(index, m_out.int32Zero)); + setJSValue(m_out.constInt64(ValueUndefined)); + return; + } + + case Array::DirectArguments: { + LValue base = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.notNull(m_out.loadPtr(base, m_heaps.DirectArguments_mappedArguments))); + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.aboveOrEqual( + index, + m_out.load32NonNegative(base, m_heaps.DirectArguments_length))); + + TypedPointer address = m_out.baseIndex( + m_heaps.DirectArguments_storage, base, m_out.zeroExtPtr(index)); + setJSValue(m_out.load64(address)); + return; + } + + case Array::ScopedArguments: { + LValue base = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.aboveOrEqual( + index, + m_out.load32NonNegative(base, m_heaps.ScopedArguments_totalLength))); + + LValue table = m_out.loadPtr(base, m_heaps.ScopedArguments_table); + LValue namedLength = m_out.load32(table, m_heaps.ScopedArgumentsTable_length); + + LBasicBlock namedCase = m_out.newBlock(); + LBasicBlock overflowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + m_out.aboveOrEqual(index, namedLength), unsure(overflowCase), unsure(namedCase)); + + LBasicBlock lastNext = m_out.appendTo(namedCase, overflowCase); + + LValue scope = m_out.loadPtr(base, m_heaps.ScopedArguments_scope); + LValue arguments = m_out.loadPtr(table, m_heaps.ScopedArgumentsTable_arguments); + + TypedPointer address = m_out.baseIndex( + m_heaps.scopedArgumentsTableArguments, arguments, m_out.zeroExtPtr(index)); + LValue scopeOffset = m_out.load32(address); + + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.equal(scopeOffset, m_out.constInt32(ScopeOffset::invalidOffset))); + + address = m_out.baseIndex( + m_heaps.JSEnvironmentRecord_variables, scope, m_out.zeroExtPtr(scopeOffset)); + ValueFromBlock namedResult = m_out.anchor(m_out.load64(address)); + m_out.jump(continuation); + + m_out.appendTo(overflowCase, continuation); + + address = m_out.baseIndex( + m_heaps.ScopedArguments_overflowStorage, base, + m_out.zeroExtPtr(m_out.sub(index, namedLength))); + LValue overflowValue = m_out.load64(address); + speculate(ExoticObjectMode, noValue(), nullptr, m_out.isZero64(overflowValue)); + ValueFromBlock overflowResult = m_out.anchor(overflowValue); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, namedResult, overflowResult)); + return; + } + + case Array::Generic: { + setJSValue(vmCall( + Int64, m_out.operation(operationGetByVal), m_callFrame, + lowJSValue(m_node->child1()), lowJSValue(m_node->child2()))); + return; + } + + case Array::String: { + compileStringCharAt(); + return; + } + + default: { + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + + TypedArrayType type = m_node->arrayMode().typedArrayType(); + + if (isTypedView(type)) { + TypedPointer pointer = TypedPointer( + m_heaps.typedArrayProperties, + m_out.add( + storage, + m_out.shl( + m_out.zeroExtPtr(index), + m_out.constIntPtr(logElementSize(type))))); + + if (isInt(type)) { + LValue result; + switch (elementSize(type)) { + case 1: + result = isSigned(type) ? m_out.load8SignExt32(pointer) : m_out.load8ZeroExt32(pointer); + break; + case 2: + result = isSigned(type) ? m_out.load16SignExt32(pointer) : m_out.load16ZeroExt32(pointer); + break; + case 4: + result = m_out.load32(pointer); + break; + default: + DFG_CRASH(m_graph, m_node, "Bad element size"); + } + + if (elementSize(type) < 4 || isSigned(type)) { + setInt32(result); + return; + } + + if (m_node->shouldSpeculateInt32()) { + speculate( + Overflow, noValue(), 0, m_out.lessThan(result, m_out.int32Zero)); + setInt32(result); + return; + } + + if (m_node->shouldSpeculateAnyInt()) { + setStrictInt52(m_out.zeroExt(result, Int64)); + return; + } + + setDouble(m_out.unsignedToDouble(result)); + return; + } + + ASSERT(isFloat(type)); + + LValue result; + switch (type) { + case TypeFloat32: + result = m_out.floatToDouble(m_out.loadFloat(pointer)); + break; + case TypeFloat64: + result = m_out.loadDouble(pointer); + break; + default: + DFG_CRASH(m_graph, m_node, "Bad typed array type"); + } + + setDouble(result); + return; + } + + DFG_CRASH(m_graph, m_node, "Bad array type"); + return; + } } + } + + void compileGetMyArgumentByVal() + { + InlineCallFrame* inlineCallFrame = m_node->child1()->origin.semantic.inlineCallFrame; + + LValue index = lowInt32(m_node->child2()); + if (m_node->numberOfArgumentsToSkip()) + index = m_out.add(index, m_out.constInt32(m_node->numberOfArgumentsToSkip())); + + LValue limit; + if (inlineCallFrame && !inlineCallFrame->isVarargs()) + limit = m_out.constInt32(inlineCallFrame->arguments.size() - 1); + else { + VirtualRegister argumentCountRegister = AssemblyHelpers::argumentCount(inlineCallFrame); + limit = m_out.sub(m_out.load32(payloadFor(argumentCountRegister)), m_out.int32One); + } + + LValue isOutOfBounds = m_out.aboveOrEqual(index, limit); + LBasicBlock continuation = nullptr; + LBasicBlock lastNext = nullptr; + ValueFromBlock slowResult; + if (m_node->op() == GetMyArgumentByValOutOfBounds) { + LBasicBlock normalCase = m_out.newBlock(); + continuation = m_out.newBlock(); + + slowResult = m_out.anchor(m_out.constInt64(JSValue::encode(jsUndefined()))); + m_out.branch(isOutOfBounds, unsure(continuation), unsure(normalCase)); + + lastNext = m_out.appendTo(normalCase, continuation); + } else + speculate(ExoticObjectMode, noValue(), 0, isOutOfBounds); + + TypedPointer base; + if (inlineCallFrame) { + if (inlineCallFrame->arguments.size() > 1) + base = addressFor(inlineCallFrame->arguments[1].virtualRegister()); + } else + base = addressFor(virtualRegisterForArgument(1)); + + LValue result; + if (base) { + LValue pointer = m_out.baseIndex( + base.value(), m_out.zeroExt(index, pointerType()), ScaleEight); + result = m_out.load64(TypedPointer(m_heaps.variables.atAnyIndex(), pointer)); + } else + result = m_out.constInt64(JSValue::encode(jsUndefined())); + + if (m_node->op() == GetMyArgumentByValOutOfBounds) { + ValueFromBlock normalResult = m_out.anchor(result); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + result = m_out.phi(Int64, slowResult, normalResult); + } + + setJSValue(result); + } + + void compilePutByVal() + { + Edge child1 = m_graph.varArgChild(m_node, 0); + Edge child2 = m_graph.varArgChild(m_node, 1); + Edge child3 = m_graph.varArgChild(m_node, 2); + Edge child4 = m_graph.varArgChild(m_node, 3); + Edge child5 = m_graph.varArgChild(m_node, 4); + + switch (m_node->arrayMode().type()) { + case Array::Generic: { + V_JITOperation_EJJJ operation; + if (m_node->op() == PutByValDirect) { + if (m_graph.isStrictModeFor(m_node->origin.semantic)) + operation = operationPutByValDirectStrict; + else + operation = operationPutByValDirectNonStrict; + } else { + if (m_graph.isStrictModeFor(m_node->origin.semantic)) + operation = operationPutByValStrict; + else + operation = operationPutByValNonStrict; + } + + vmCall( + Void, m_out.operation(operation), m_callFrame, + lowJSValue(child1), lowJSValue(child2), lowJSValue(child3)); + return; + } + + default: + break; + } + + LValue base = lowCell(child1); + LValue index = lowInt32(child2); + LValue storage = lowStorage(child4); + + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Double: + case Array::Contiguous: { + LBasicBlock continuation = m_out.newBlock(); + LBasicBlock outerLastNext = m_out.appendTo(m_out.m_block, continuation); + + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Contiguous: { + LValue value = lowJSValue(child3, ManualOperandSpeculation); + + if (m_node->arrayMode().type() == Array::Int32) + FTL_TYPE_CHECK(jsValueValue(value), child3, SpecInt32Only, isNotInt32(value)); + + TypedPointer elementPointer = m_out.baseIndex( + m_node->arrayMode().type() == Array::Int32 ? + m_heaps.indexedInt32Properties : m_heaps.indexedContiguousProperties, + storage, m_out.zeroExtPtr(index), provenValue(child2)); + + if (m_node->op() == PutByValAlias) { + m_out.store64(value, elementPointer); + break; + } + + contiguousPutByValOutOfBounds( + codeBlock()->isStrictMode() + ? operationPutByValBeyondArrayBoundsStrict + : operationPutByValBeyondArrayBoundsNonStrict, + base, storage, index, value, continuation); + + m_out.store64(value, elementPointer); + break; + } + + case Array::Double: { + LValue value = lowDouble(child3); + + FTL_TYPE_CHECK( + doubleValue(value), child3, SpecDoubleReal, + m_out.doubleNotEqualOrUnordered(value, value)); + + TypedPointer elementPointer = m_out.baseIndex( + m_heaps.indexedDoubleProperties, storage, m_out.zeroExtPtr(index), + provenValue(child2)); + + if (m_node->op() == PutByValAlias) { + m_out.storeDouble(value, elementPointer); + break; + } + + contiguousPutByValOutOfBounds( + codeBlock()->isStrictMode() + ? operationPutDoubleByValBeyondArrayBoundsStrict + : operationPutDoubleByValBeyondArrayBoundsNonStrict, + base, storage, index, value, continuation); + + m_out.storeDouble(value, elementPointer); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad array type"); + } + + m_out.jump(continuation); + m_out.appendTo(continuation, outerLastNext); + return; + } + + default: + TypedArrayType type = m_node->arrayMode().typedArrayType(); + + if (isTypedView(type)) { + TypedPointer pointer = TypedPointer( + m_heaps.typedArrayProperties, + m_out.add( + storage, + m_out.shl( + m_out.zeroExt(index, pointerType()), + m_out.constIntPtr(logElementSize(type))))); + + Output::StoreType storeType; + LValue valueToStore; + + if (isInt(type)) { + LValue intValue; + switch (child3.useKind()) { + case Int52RepUse: + case Int32Use: { + if (child3.useKind() == Int32Use) + intValue = lowInt32(child3); + else + intValue = m_out.castToInt32(lowStrictInt52(child3)); + + if (isClamped(type)) { + ASSERT(elementSize(type) == 1); + + LBasicBlock atLeastZero = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + Vector<ValueFromBlock, 2> intValues; + intValues.append(m_out.anchor(m_out.int32Zero)); + m_out.branch( + m_out.lessThan(intValue, m_out.int32Zero), + unsure(continuation), unsure(atLeastZero)); + + LBasicBlock lastNext = m_out.appendTo(atLeastZero, continuation); + + intValues.append(m_out.anchor(m_out.select( + m_out.greaterThan(intValue, m_out.constInt32(255)), + m_out.constInt32(255), + intValue))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + intValue = m_out.phi(Int32, intValues); + } + break; + } + + case DoubleRepUse: { + LValue doubleValue = lowDouble(child3); + + if (isClamped(type)) { + ASSERT(elementSize(type) == 1); + + LBasicBlock atLeastZero = m_out.newBlock(); + LBasicBlock withinRange = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + Vector<ValueFromBlock, 3> intValues; + intValues.append(m_out.anchor(m_out.int32Zero)); + m_out.branch( + m_out.doubleLessThanOrUnordered(doubleValue, m_out.doubleZero), + unsure(continuation), unsure(atLeastZero)); + + LBasicBlock lastNext = m_out.appendTo(atLeastZero, withinRange); + intValues.append(m_out.anchor(m_out.constInt32(255))); + m_out.branch( + m_out.doubleGreaterThan(doubleValue, m_out.constDouble(255)), + unsure(continuation), unsure(withinRange)); + + m_out.appendTo(withinRange, continuation); + intValues.append(m_out.anchor(m_out.doubleToInt(doubleValue))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + intValue = m_out.phi(Int32, intValues); + } else + intValue = doubleToInt32(doubleValue); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + } + + valueToStore = intValue; + switch (elementSize(type)) { + case 1: + storeType = Output::Store32As8; + break; + case 2: + storeType = Output::Store32As16; + break; + case 4: + storeType = Output::Store32; + break; + default: + DFG_CRASH(m_graph, m_node, "Bad element size"); + } + } else /* !isInt(type) */ { + LValue value = lowDouble(child3); + switch (type) { + case TypeFloat32: + valueToStore = m_out.doubleToFloat(value); + storeType = Output::StoreFloat; + break; + case TypeFloat64: + valueToStore = value; + storeType = Output::StoreDouble; + break; + default: + DFG_CRASH(m_graph, m_node, "Bad typed array type"); + } + } + + if (m_node->arrayMode().isInBounds() || m_node->op() == PutByValAlias) + m_out.store(valueToStore, pointer, storeType); + else { + LBasicBlock isInBounds = m_out.newBlock(); + LBasicBlock isOutOfBounds = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + m_out.aboveOrEqual(index, lowInt32(child5)), + unsure(isOutOfBounds), unsure(isInBounds)); + + LBasicBlock lastNext = m_out.appendTo(isInBounds, isOutOfBounds); + m_out.store(valueToStore, pointer, storeType); + m_out.jump(continuation); + + m_out.appendTo(isOutOfBounds, continuation); + speculateTypedArrayIsNotNeutered(base); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + return; + } + + DFG_CRASH(m_graph, m_node, "Bad array type"); + break; + } + } + + void compilePutAccessorById() + { + LValue base = lowCell(m_node->child1()); + LValue accessor = lowCell(m_node->child2()); + auto uid = m_graph.identifiers()[m_node->identifierNumber()]; + vmCall( + Void, + m_out.operation(m_node->op() == PutGetterById ? operationPutGetterById : operationPutSetterById), + m_callFrame, base, m_out.constIntPtr(uid), m_out.constInt32(m_node->accessorAttributes()), accessor); + } + + void compilePutGetterSetterById() + { + LValue base = lowCell(m_node->child1()); + LValue getter = lowJSValue(m_node->child2()); + LValue setter = lowJSValue(m_node->child3()); + auto uid = m_graph.identifiers()[m_node->identifierNumber()]; + vmCall( + Void, m_out.operation(operationPutGetterSetter), + m_callFrame, base, m_out.constIntPtr(uid), m_out.constInt32(m_node->accessorAttributes()), getter, setter); + + } + + void compilePutAccessorByVal() + { + LValue base = lowCell(m_node->child1()); + LValue subscript = lowJSValue(m_node->child2()); + LValue accessor = lowCell(m_node->child3()); + vmCall( + Void, + m_out.operation(m_node->op() == PutGetterByVal ? operationPutGetterByVal : operationPutSetterByVal), + m_callFrame, base, subscript, m_out.constInt32(m_node->accessorAttributes()), accessor); + } + + void compileArrayPush() + { + LValue base = lowCell(m_node->child1()); + LValue storage = lowStorage(m_node->child3()); + + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Contiguous: + case Array::Double: { + LValue value; + Output::StoreType storeType; + + if (m_node->arrayMode().type() != Array::Double) { + value = lowJSValue(m_node->child2(), ManualOperandSpeculation); + if (m_node->arrayMode().type() == Array::Int32) { + FTL_TYPE_CHECK( + jsValueValue(value), m_node->child2(), SpecInt32Only, isNotInt32(value)); + } + storeType = Output::Store64; + } else { + value = lowDouble(m_node->child2()); + FTL_TYPE_CHECK( + doubleValue(value), m_node->child2(), SpecDoubleReal, + m_out.doubleNotEqualOrUnordered(value, value)); + storeType = Output::StoreDouble; + } + + IndexedAbstractHeap& heap = m_heaps.forArrayType(m_node->arrayMode().type()); + + LValue prevLength = m_out.load32(storage, m_heaps.Butterfly_publicLength); + + LBasicBlock fastPath = m_out.newBlock(); + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + m_out.aboveOrEqual( + prevLength, m_out.load32(storage, m_heaps.Butterfly_vectorLength)), + unsure(slowPath), unsure(fastPath)); + + LBasicBlock lastNext = m_out.appendTo(fastPath, slowPath); + m_out.store( + value, m_out.baseIndex(heap, storage, m_out.zeroExtPtr(prevLength)), storeType); + LValue newLength = m_out.add(prevLength, m_out.int32One); + m_out.store32(newLength, storage, m_heaps.Butterfly_publicLength); + + ValueFromBlock fastResult = m_out.anchor(boxInt32(newLength)); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + LValue operation; + if (m_node->arrayMode().type() != Array::Double) + operation = m_out.operation(operationArrayPush); + else + operation = m_out.operation(operationArrayPushDouble); + ValueFromBlock slowResult = m_out.anchor( + vmCall(Int64, operation, m_callFrame, value, base)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, fastResult, slowResult)); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad array type"); + return; + } + } + + void compileArraySlice() + { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + + LValue sourceStorage = lowStorage(m_node->numChildren() == 3 ? m_graph.varArgChild(m_node, 2) : m_graph.varArgChild(m_node, 3)); + LValue inputLength = m_out.load32(sourceStorage, m_heaps.Butterfly_publicLength); + + LValue endBoundary; + if (m_node->numChildren() == 3) + endBoundary = m_out.load32(sourceStorage, m_heaps.Butterfly_publicLength); + else { + endBoundary = lowInt32(m_graph.varArgChild(m_node, 2)); + endBoundary = m_out.select(m_out.greaterThanOrEqual(endBoundary, m_out.constInt32(0)), + m_out.select(m_out.above(endBoundary, inputLength), inputLength, endBoundary), + m_out.select(m_out.lessThan(m_out.add(inputLength, endBoundary), m_out.constInt32(0)), m_out.constInt32(0), m_out.add(inputLength, endBoundary))); + } + + LValue startIndex = lowInt32(m_graph.varArgChild(m_node, 1)); + startIndex = m_out.select(m_out.greaterThanOrEqual(startIndex, m_out.constInt32(0)), + m_out.select(m_out.above(startIndex, inputLength), inputLength, startIndex), + m_out.select(m_out.lessThan(m_out.add(inputLength, startIndex), m_out.constInt32(0)), m_out.constInt32(0), m_out.add(inputLength, startIndex))); + + LValue resultLength = m_out.select(m_out.below(startIndex, endBoundary), + m_out.sub(endBoundary, startIndex), + m_out.constInt32(0)); + + ArrayValues arrayResult; + { + LValue indexingType = m_out.load8ZeroExt32(lowCell(m_graph.varArgChild(m_node, 0)), m_heaps.JSCell_indexingTypeAndMisc); + indexingType = m_out.bitAnd(indexingType, m_out.constInt32(AllArrayTypesAndHistory)); + // When we emit an ArraySlice, we dominate the use of the array by a CheckStructure + // to ensure the incoming array is one to be one of the original array structures + // with one of the following indexing shapes: Int32, Contiguous, Double. + LValue structure = m_out.select( + m_out.equal(indexingType, m_out.constInt32(ArrayWithInt32)), + weakStructure(m_graph.registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithInt32))), + m_out.select(m_out.equal(indexingType, m_out.constInt32(ArrayWithContiguous)), + weakStructure(m_graph.registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithContiguous))), + weakStructure(m_graph.registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithDouble))))); + arrayResult = allocateJSArray(resultLength, structure, indexingType, false, false); + } + + LBasicBlock loop = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + resultLength = m_out.zeroExtPtr(resultLength); + ValueFromBlock startLoadIndex = m_out.anchor(m_out.zeroExtPtr(startIndex)); + ValueFromBlock startStoreIndex = m_out.anchor(m_out.constIntPtr(0)); + + m_out.branch( + m_out.below(m_out.constIntPtr(0), resultLength), unsure(loop), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(loop, continuation); + LValue storeIndex = m_out.phi(pointerType(), startStoreIndex); + LValue loadIndex = m_out.phi(pointerType(), startLoadIndex); + LValue value = m_out.load64(m_out.baseIndex(m_heaps.root, sourceStorage, loadIndex, ScaleEight)); + m_out.store64(value, m_out.baseIndex(m_heaps.root, arrayResult.butterfly, storeIndex, ScaleEight)); + LValue nextStoreIndex = m_out.add(storeIndex, m_out.constIntPtr(1)); + m_out.addIncomingToPhi(storeIndex, m_out.anchor(nextStoreIndex)); + m_out.addIncomingToPhi(loadIndex, m_out.anchor(m_out.add(loadIndex, m_out.constIntPtr(1)))); + m_out.branch( + m_out.below(nextStoreIndex, resultLength), unsure(loop), unsure(continuation)); + + m_out.appendTo(continuation, lastNext); + + mutatorFence(); + setJSValue(arrayResult.array); + } + + void compileArrayPop() + { + LValue base = lowCell(m_node->child1()); + LValue storage = lowStorage(m_node->child2()); + + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Double: + case Array::Contiguous: { + IndexedAbstractHeap& heap = m_heaps.forArrayType(m_node->arrayMode().type()); + + LBasicBlock fastCase = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue prevLength = m_out.load32(storage, m_heaps.Butterfly_publicLength); + + Vector<ValueFromBlock, 3> results; + results.append(m_out.anchor(m_out.constInt64(JSValue::encode(jsUndefined())))); + m_out.branch( + m_out.isZero32(prevLength), rarely(continuation), usually(fastCase)); + + LBasicBlock lastNext = m_out.appendTo(fastCase, slowCase); + LValue newLength = m_out.sub(prevLength, m_out.int32One); + m_out.store32(newLength, storage, m_heaps.Butterfly_publicLength); + TypedPointer pointer = m_out.baseIndex(heap, storage, m_out.zeroExtPtr(newLength)); + if (m_node->arrayMode().type() != Array::Double) { + LValue result = m_out.load64(pointer); + m_out.store64(m_out.int64Zero, pointer); + results.append(m_out.anchor(result)); + m_out.branch( + m_out.notZero64(result), usually(continuation), rarely(slowCase)); + } else { + LValue result = m_out.loadDouble(pointer); + m_out.store64(m_out.constInt64(bitwise_cast<int64_t>(PNaN)), pointer); + results.append(m_out.anchor(boxDouble(result))); + m_out.branch( + m_out.doubleEqual(result, result), + usually(continuation), rarely(slowCase)); + } + + m_out.appendTo(slowCase, continuation); + results.append(m_out.anchor(vmCall( + Int64, m_out.operation(operationArrayPopAndRecoverLength), m_callFrame, base))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, results)); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad array type"); + return; + } + } + + void compileCreateActivation() + { + LValue scope = lowCell(m_node->child1()); + SymbolTable* table = m_node->castOperand<SymbolTable*>(); + RegisteredStructure structure = m_graph.registerStructure(m_graph.globalObjectFor(m_node->origin.semantic)->activationStructure()); + JSValue initializationValue = m_node->initializationValueForActivation(); + ASSERT(initializationValue.isUndefined() || initializationValue == jsTDZValue()); + if (table->singletonScope()->isStillValid()) { + LValue callResult = vmCall( + Int64, + m_out.operation(operationCreateActivationDirect), m_callFrame, weakStructure(structure), + scope, weakPointer(table), m_out.constInt64(JSValue::encode(initializationValue))); + setJSValue(callResult); + return; + } + + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + LValue fastObject = allocateObject<JSLexicalEnvironment>( + JSLexicalEnvironment::allocationSize(table), structure, m_out.intPtrZero, slowPath); + + // We don't need memory barriers since we just fast-created the activation, so the + // activation must be young. + m_out.storePtr(scope, fastObject, m_heaps.JSScope_next); + m_out.storePtr(weakPointer(table), fastObject, m_heaps.JSSymbolTableObject_symbolTable); + + for (unsigned i = 0; i < table->scopeSize(); ++i) { + m_out.store64( + m_out.constInt64(JSValue::encode(initializationValue)), + fastObject, m_heaps.JSEnvironmentRecord_variables[i]); + } + + mutatorFence(); + + ValueFromBlock fastResult = m_out.anchor(fastObject); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + LValue callResult = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationCreateActivationDirect, locations[0].directGPR(), + CCallHelpers::TrustedImmPtr(structure.get()), locations[1].directGPR(), + CCallHelpers::TrustedImmPtr(table), + CCallHelpers::TrustedImm64(JSValue::encode(initializationValue))); + }, + scope); + ValueFromBlock slowResult = m_out.anchor(callResult); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(pointerType(), fastResult, slowResult)); + } + + void compileNewFunction() + { + ASSERT(m_node->op() == NewFunction || m_node->op() == NewGeneratorFunction || m_node->op() == NewAsyncFunction); + bool isGeneratorFunction = m_node->op() == NewGeneratorFunction; + bool isAsyncFunction = m_node->op() == NewAsyncFunction; + + LValue scope = lowCell(m_node->child1()); + + FunctionExecutable* executable = m_node->castOperand<FunctionExecutable*>(); + if (executable->singletonFunction()->isStillValid()) { + LValue callResult = + isGeneratorFunction ? vmCall(Int64, m_out.operation(operationNewGeneratorFunction), m_callFrame, scope, weakPointer(executable)) : + isAsyncFunction ? vmCall(Int64, m_out.operation(operationNewAsyncFunction), m_callFrame, scope, weakPointer(executable)) : + vmCall(Int64, m_out.operation(operationNewFunction), m_callFrame, scope, weakPointer(executable)); + setJSValue(callResult); + return; + } + + RegisteredStructure structure = m_graph.registerStructure( + isGeneratorFunction ? m_graph.globalObjectFor(m_node->origin.semantic)->generatorFunctionStructure() : + isAsyncFunction ? m_graph.globalObjectFor(m_node->origin.semantic)->asyncFunctionStructure() : + m_graph.globalObjectFor(m_node->origin.semantic)->functionStructure()); + + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + LValue fastObject = + isGeneratorFunction ? allocateObject<JSGeneratorFunction>(structure, m_out.intPtrZero, slowPath) : + allocateObject<JSFunction>(structure, m_out.intPtrZero, slowPath); + + + // We don't need memory barriers since we just fast-created the function, so it + // must be young. + m_out.storePtr(scope, fastObject, m_heaps.JSFunction_scope); + m_out.storePtr(weakPointer(executable), fastObject, m_heaps.JSFunction_executable); + m_out.storePtr(m_out.intPtrZero, fastObject, m_heaps.JSFunction_rareData); + + mutatorFence(); + + ValueFromBlock fastResult = m_out.anchor(fastObject); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + + Vector<LValue> slowPathArguments; + slowPathArguments.append(scope); + LValue callResult = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + if (isGeneratorFunction) { + return createLazyCallGenerator( + operationNewGeneratorFunctionWithInvalidatedReallocationWatchpoint, + locations[0].directGPR(), locations[1].directGPR(), + CCallHelpers::TrustedImmPtr(executable)); + } + if (isAsyncFunction) { + return createLazyCallGenerator( + operationNewAsyncFunctionWithInvalidatedReallocationWatchpoint, + locations[0].directGPR(), locations[1].directGPR(), + CCallHelpers::TrustedImmPtr(executable)); + } + return createLazyCallGenerator( + operationNewFunctionWithInvalidatedReallocationWatchpoint, + locations[0].directGPR(), locations[1].directGPR(), + CCallHelpers::TrustedImmPtr(executable)); + }, + slowPathArguments); + ValueFromBlock slowResult = m_out.anchor(callResult); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(pointerType(), fastResult, slowResult)); + } + + void compileCreateDirectArguments() + { + // FIXME: A more effective way of dealing with the argument count and callee is to have + // them be explicit arguments to this node. + // https://bugs.webkit.org/show_bug.cgi?id=142207 + + RegisteredStructure structure = + m_graph.registerStructure(m_graph.globalObjectFor(m_node->origin.semantic)->directArgumentsStructure()); + + unsigned minCapacity = m_graph.baselineCodeBlockFor(m_node->origin.semantic)->numParameters() - 1; + + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + ArgumentsLength length = getArgumentsLength(); + + LValue fastObject; + if (length.isKnown) { + fastObject = allocateObject<DirectArguments>( + DirectArguments::allocationSize(std::max(length.known, minCapacity)), structure, + m_out.intPtrZero, slowPath); + } else { + LValue size = m_out.add( + m_out.shl(length.value, m_out.constInt32(3)), + m_out.constInt32(DirectArguments::storageOffset())); + + size = m_out.select( + m_out.aboveOrEqual(length.value, m_out.constInt32(minCapacity)), + size, m_out.constInt32(DirectArguments::allocationSize(minCapacity))); + + fastObject = allocateVariableSizedObject<DirectArguments>( + m_out.zeroExtPtr(size), structure, m_out.intPtrZero, slowPath); + } + + m_out.store32(length.value, fastObject, m_heaps.DirectArguments_length); + m_out.store32(m_out.constInt32(minCapacity), fastObject, m_heaps.DirectArguments_minCapacity); + m_out.storePtr(m_out.intPtrZero, fastObject, m_heaps.DirectArguments_mappedArguments); + m_out.storePtr(m_out.intPtrZero, fastObject, m_heaps.DirectArguments_modifiedArgumentsDescriptor); + + ValueFromBlock fastResult = m_out.anchor(fastObject); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + LValue callResult = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationCreateDirectArguments, locations[0].directGPR(), + CCallHelpers::TrustedImmPtr(structure.get()), locations[1].directGPR(), + CCallHelpers::TrustedImm32(minCapacity)); + }, length.value); + ValueFromBlock slowResult = m_out.anchor(callResult); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + LValue result = m_out.phi(pointerType(), fastResult, slowResult); + + m_out.storePtr(getCurrentCallee(), result, m_heaps.DirectArguments_callee); + + if (length.isKnown) { + VirtualRegister start = AssemblyHelpers::argumentsStart(m_node->origin.semantic); + for (unsigned i = 0; i < std::max(length.known, minCapacity); ++i) { + m_out.store64( + m_out.load64(addressFor(start + i)), + result, m_heaps.DirectArguments_storage[i]); + } + } else { + LValue stackBase = getArgumentsStart(); + + LBasicBlock loop = m_out.newBlock(); + LBasicBlock end = m_out.newBlock(); + + ValueFromBlock originalLength; + if (minCapacity) { + LValue capacity = m_out.select( + m_out.aboveOrEqual(length.value, m_out.constInt32(minCapacity)), + length.value, + m_out.constInt32(minCapacity)); + LValue originalLengthValue = m_out.zeroExtPtr(capacity); + originalLength = m_out.anchor(originalLengthValue); + m_out.jump(loop); + } else { + LValue originalLengthValue = m_out.zeroExtPtr(length.value); + originalLength = m_out.anchor(originalLengthValue); + m_out.branch(m_out.isNull(originalLengthValue), unsure(end), unsure(loop)); + } + + lastNext = m_out.appendTo(loop, end); + LValue previousIndex = m_out.phi(pointerType(), originalLength); + LValue index = m_out.sub(previousIndex, m_out.intPtrOne); + m_out.store64( + m_out.load64(m_out.baseIndex(m_heaps.variables, stackBase, index)), + m_out.baseIndex(m_heaps.DirectArguments_storage, result, index)); + ValueFromBlock nextIndex = m_out.anchor(index); + m_out.addIncomingToPhi(previousIndex, nextIndex); + m_out.branch(m_out.isNull(index), unsure(end), unsure(loop)); + + m_out.appendTo(end, lastNext); + } + + mutatorFence(); + + setJSValue(result); + } + + void compileCreateScopedArguments() + { + LValue scope = lowCell(m_node->child1()); + + LValue result = vmCall( + Int64, m_out.operation(operationCreateScopedArguments), m_callFrame, + weakPointer( + m_graph.globalObjectFor(m_node->origin.semantic)->scopedArgumentsStructure()), + getArgumentsStart(), getArgumentsLength().value, getCurrentCallee(), scope); + + setJSValue(result); + } + + void compileCreateClonedArguments() + { + LValue result = vmCall( + Int64, m_out.operation(operationCreateClonedArguments), m_callFrame, + weakPointer( + m_graph.globalObjectFor(m_node->origin.semantic)->clonedArgumentsStructure()), + getArgumentsStart(), getArgumentsLength().value, getCurrentCallee()); + + setJSValue(result); + } + + void compileCreateRest() + { + if (m_graph.isWatchingHavingABadTimeWatchpoint(m_node)) { + LBasicBlock continuation = m_out.newBlock(); + LValue arrayLength = lowInt32(m_node->child1()); + LBasicBlock loopStart = m_out.newBlock(); + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + RegisteredStructure structure = m_graph.registerStructure(globalObject->restParameterStructure()); + ArrayValues arrayValues = allocateUninitializedContiguousJSArray(arrayLength, structure); + LValue array = arrayValues.array; + LValue butterfly = arrayValues.butterfly; + ValueFromBlock startLength = m_out.anchor(arrayLength); + LValue argumentRegion = m_out.add(getArgumentsStart(), m_out.constInt64(sizeof(Register) * m_node->numberOfArgumentsToSkip())); + m_out.branch(m_out.equal(arrayLength, m_out.constInt32(0)), + unsure(continuation), unsure(loopStart)); + + LBasicBlock lastNext = m_out.appendTo(loopStart, continuation); + LValue phiOffset = m_out.phi(Int32, startLength); + LValue currentOffset = m_out.sub(phiOffset, m_out.int32One); + m_out.addIncomingToPhi(phiOffset, m_out.anchor(currentOffset)); + LValue loadedValue = m_out.load64(m_out.baseIndex(m_heaps.variables, argumentRegion, m_out.zeroExtPtr(currentOffset))); + IndexedAbstractHeap& heap = m_heaps.indexedContiguousProperties; + m_out.store64(loadedValue, m_out.baseIndex(heap, butterfly, m_out.zeroExtPtr(currentOffset))); + m_out.branch(m_out.equal(currentOffset, m_out.constInt32(0)), unsure(continuation), unsure(loopStart)); + + m_out.appendTo(continuation, lastNext); + mutatorFence(); + setJSValue(array); + return; + } + + LValue arrayLength = lowInt32(m_node->child1()); + LValue argumentStart = getArgumentsStart(); + LValue numberOfArgumentsToSkip = m_out.constInt32(m_node->numberOfArgumentsToSkip()); + setJSValue(vmCall( + Int64, m_out.operation(operationCreateRest), m_callFrame, argumentStart, numberOfArgumentsToSkip, arrayLength)); + } + + void compileGetRestLength() + { + LBasicBlock nonZeroLength = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock zeroLengthResult = m_out.anchor(m_out.constInt32(0)); + + LValue numberOfArgumentsToSkip = m_out.constInt32(m_node->numberOfArgumentsToSkip()); + LValue argumentsLength = getArgumentsLength().value; + m_out.branch(m_out.above(argumentsLength, numberOfArgumentsToSkip), + unsure(nonZeroLength), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(nonZeroLength, continuation); + ValueFromBlock nonZeroLengthResult = m_out.anchor(m_out.sub(argumentsLength, numberOfArgumentsToSkip)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setInt32(m_out.phi(Int32, zeroLengthResult, nonZeroLengthResult)); + } + + void compileNewObject() + { + setJSValue(allocateObject(m_node->structure())); + mutatorFence(); + } + + void compileNewArray() + { + // First speculate appropriately on all of the children. Do this unconditionally up here + // because some of the slow paths may otherwise forget to do it. It's sort of arguable + // that doing the speculations up here might be unprofitable for RA - so we can consider + // sinking this to below the allocation fast path if we find that this has a lot of + // register pressure. + for (unsigned operandIndex = 0; operandIndex < m_node->numChildren(); ++operandIndex) + speculate(m_graph.varArgChild(m_node, operandIndex)); + + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + RegisteredStructure structure = m_graph.registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation( + m_node->indexingType())); + + if (!globalObject->isHavingABadTime() && !hasAnyArrayStorage(m_node->indexingType())) { + unsigned numElements = m_node->numChildren(); + + ArrayValues arrayValues = + allocateUninitializedContiguousJSArray(m_out.constInt32(numElements), structure); + + for (unsigned operandIndex = 0; operandIndex < m_node->numChildren(); ++operandIndex) { + Edge edge = m_graph.varArgChild(m_node, operandIndex); + + switch (m_node->indexingType()) { + case ALL_BLANK_INDEXING_TYPES: + case ALL_UNDECIDED_INDEXING_TYPES: + DFG_CRASH(m_graph, m_node, "Bad indexing type"); + break; + + case ALL_DOUBLE_INDEXING_TYPES: + m_out.storeDouble( + lowDouble(edge), + arrayValues.butterfly, m_heaps.indexedDoubleProperties[operandIndex]); + break; + + case ALL_INT32_INDEXING_TYPES: + case ALL_CONTIGUOUS_INDEXING_TYPES: + m_out.store64( + lowJSValue(edge, ManualOperandSpeculation), + arrayValues.butterfly, + m_heaps.forIndexingType(m_node->indexingType())->at(operandIndex)); + break; + + default: + DFG_CRASH(m_graph, m_node, "Corrupt indexing type"); + break; + } + } + + setJSValue(arrayValues.array); + mutatorFence(); + return; + } + + if (!m_node->numChildren()) { + setJSValue(vmCall( + Int64, m_out.operation(operationNewEmptyArray), m_callFrame, + weakStructure(structure))); + return; + } + + size_t scratchSize = sizeof(EncodedJSValue) * m_node->numChildren(); + ASSERT(scratchSize); + ScratchBuffer* scratchBuffer = vm().scratchBufferForSize(scratchSize); + EncodedJSValue* buffer = static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()); + + for (unsigned operandIndex = 0; operandIndex < m_node->numChildren(); ++operandIndex) { + Edge edge = m_graph.varArgChild(m_node, operandIndex); + m_out.store64( + lowJSValue(edge, ManualOperandSpeculation), + m_out.absolute(buffer + operandIndex)); + } + + m_out.storePtr( + m_out.constIntPtr(scratchSize), m_out.absolute(scratchBuffer->activeLengthPtr())); + + LValue result = vmCall( + Int64, m_out.operation(operationNewArray), m_callFrame, + weakStructure(structure), m_out.constIntPtr(buffer), + m_out.constIntPtr(m_node->numChildren())); + + m_out.storePtr(m_out.intPtrZero, m_out.absolute(scratchBuffer->activeLengthPtr())); + + setJSValue(result); + } + + void compileNewArrayWithSpread() + { + if (m_graph.isWatchingHavingABadTimeWatchpoint(m_node)) { + unsigned startLength = 0; + BitVector* bitVector = m_node->bitVector(); + HashMap<InlineCallFrame*, LValue, WTF::DefaultHash<InlineCallFrame*>::Hash, WTF::NullableHashTraits<InlineCallFrame*>> cachedSpreadLengths; + + for (unsigned i = 0; i < m_node->numChildren(); ++i) { + if (!bitVector->get(i)) + ++startLength; + } + + LValue length = m_out.constInt32(startLength); + + for (unsigned i = 0; i < m_node->numChildren(); ++i) { + if (bitVector->get(i)) { + Edge use = m_graph.varArgChild(m_node, i); + CheckValue* lengthCheck = nullptr; + if (use->op() == PhantomSpread) { + RELEASE_ASSERT(use->child1()->op() == PhantomCreateRest); + InlineCallFrame* inlineCallFrame = use->child1()->origin.semantic.inlineCallFrame; + unsigned numberOfArgumentsToSkip = use->child1()->numberOfArgumentsToSkip(); + LValue spreadLength = cachedSpreadLengths.ensure(inlineCallFrame, [&] () { + return getSpreadLengthFromInlineCallFrame(inlineCallFrame, numberOfArgumentsToSkip); + }).iterator->value; + lengthCheck = m_out.speculateAdd(length, spreadLength); + } else { + LValue fixedArray = lowCell(use); + lengthCheck = m_out.speculateAdd(length, m_out.load32(fixedArray, m_heaps.JSFixedArray_size)); + } + blessSpeculation(lengthCheck, Overflow, noValue(), nullptr, m_origin); + length = lengthCheck; + } + } + + RegisteredStructure structure = m_graph.registerStructure(m_graph.globalObjectFor(m_node->origin.semantic)->originalArrayStructureForIndexingType(ArrayWithContiguous)); + ArrayValues arrayValues = allocateUninitializedContiguousJSArray(length, structure); + LValue result = arrayValues.array; + LValue storage = arrayValues.butterfly; + LValue index = m_out.constIntPtr(0); + + for (unsigned i = 0; i < m_node->numChildren(); ++i) { + Edge use = m_graph.varArgChild(m_node, i); + if (bitVector->get(i)) { + if (use->op() == PhantomSpread) { + RELEASE_ASSERT(use->child1()->op() == PhantomCreateRest); + InlineCallFrame* inlineCallFrame = use->child1()->origin.semantic.inlineCallFrame; + unsigned numberOfArgumentsToSkip = use->child1()->numberOfArgumentsToSkip(); + + LValue length = m_out.zeroExtPtr(cachedSpreadLengths.get(inlineCallFrame)); + LValue sourceStart = getArgumentsStart(inlineCallFrame, numberOfArgumentsToSkip); + + LBasicBlock loopStart = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock loadIndexStart = m_out.anchor(m_out.constIntPtr(0)); + ValueFromBlock arrayIndexStart = m_out.anchor(index); + ValueFromBlock arrayIndexStartForFinish = m_out.anchor(index); + + m_out.branch( + m_out.isZero64(length), + unsure(continuation), unsure(loopStart)); + + LBasicBlock lastNext = m_out.appendTo(loopStart, continuation); + + LValue arrayIndex = m_out.phi(pointerType(), arrayIndexStart); + LValue loadIndex = m_out.phi(pointerType(), loadIndexStart); + + LValue item = m_out.load64(m_out.baseIndex(m_heaps.variables, sourceStart, loadIndex)); + m_out.store64(item, m_out.baseIndex(m_heaps.indexedContiguousProperties, storage, arrayIndex)); + + LValue nextArrayIndex = m_out.add(arrayIndex, m_out.constIntPtr(1)); + LValue nextLoadIndex = m_out.add(loadIndex, m_out.constIntPtr(1)); + ValueFromBlock arrayIndexLoopForFinish = m_out.anchor(nextArrayIndex); + + m_out.addIncomingToPhi(loadIndex, m_out.anchor(nextLoadIndex)); + m_out.addIncomingToPhi(arrayIndex, m_out.anchor(nextArrayIndex)); + + m_out.branch( + m_out.below(nextLoadIndex, length), + unsure(loopStart), unsure(continuation)); + + m_out.appendTo(continuation, lastNext); + index = m_out.phi(pointerType(), arrayIndexStartForFinish, arrayIndexLoopForFinish); + } else { + LBasicBlock loopStart = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue fixedArray = lowCell(use); + + ValueFromBlock fixedIndexStart = m_out.anchor(m_out.constIntPtr(0)); + ValueFromBlock arrayIndexStart = m_out.anchor(index); + ValueFromBlock arrayIndexStartForFinish = m_out.anchor(index); + + LValue fixedArraySize = m_out.zeroExtPtr(m_out.load32(fixedArray, m_heaps.JSFixedArray_size)); + + m_out.branch( + m_out.isZero64(fixedArraySize), + unsure(continuation), unsure(loopStart)); + + LBasicBlock lastNext = m_out.appendTo(loopStart, continuation); + + LValue arrayIndex = m_out.phi(pointerType(), arrayIndexStart); + LValue fixedArrayIndex = m_out.phi(pointerType(), fixedIndexStart); + + LValue item = m_out.load64(m_out.baseIndex(m_heaps.JSFixedArray_buffer, fixedArray, fixedArrayIndex)); + m_out.store64(item, m_out.baseIndex(m_heaps.indexedContiguousProperties, storage, arrayIndex)); + + LValue nextArrayIndex = m_out.add(arrayIndex, m_out.constIntPtr(1)); + LValue nextFixedArrayIndex = m_out.add(fixedArrayIndex, m_out.constIntPtr(1)); + ValueFromBlock arrayIndexLoopForFinish = m_out.anchor(nextArrayIndex); + + m_out.addIncomingToPhi(fixedArrayIndex, m_out.anchor(nextFixedArrayIndex)); + m_out.addIncomingToPhi(arrayIndex, m_out.anchor(nextArrayIndex)); + + m_out.branch( + m_out.below(nextFixedArrayIndex, fixedArraySize), + unsure(loopStart), unsure(continuation)); + + m_out.appendTo(continuation, lastNext); + index = m_out.phi(pointerType(), arrayIndexStartForFinish, arrayIndexLoopForFinish); + } + } else { + IndexedAbstractHeap& heap = m_heaps.indexedContiguousProperties; + LValue item = lowJSValue(use); + m_out.store64(item, m_out.baseIndex(heap, storage, index)); + index = m_out.add(index, m_out.constIntPtr(1)); + } + } + + mutatorFence(); + setJSValue(result); + return; + } + + ASSERT(m_node->numChildren()); + size_t scratchSize = sizeof(EncodedJSValue) * m_node->numChildren(); + ScratchBuffer* scratchBuffer = vm().scratchBufferForSize(scratchSize); + EncodedJSValue* buffer = static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()); + BitVector* bitVector = m_node->bitVector(); + for (unsigned i = 0; i < m_node->numChildren(); ++i) { + Edge use = m_graph.m_varArgChildren[m_node->firstChild() + i]; + LValue value; + if (bitVector->get(i)) + value = lowCell(use); + else + value = lowJSValue(use); + m_out.store64(value, m_out.absolute(&buffer[i])); + } + + m_out.storePtr(m_out.constIntPtr(scratchSize), m_out.absolute(scratchBuffer->activeLengthPtr())); + LValue result = vmCall(Int64, m_out.operation(operationNewArrayWithSpreadSlow), m_callFrame, m_out.constIntPtr(buffer), m_out.constInt32(m_node->numChildren())); + m_out.storePtr(m_out.constIntPtr(0), m_out.absolute(scratchBuffer->activeLengthPtr())); + + setJSValue(result); + } + + void compileSpread() + { + // It would be trivial to support this, but for now, we never create + // IR that would necessitate this. The reason is that Spread is only + // consumed by NewArrayWithSpread and never anything else. Also, any + // Spread(PhantomCreateRest) will turn into PhantomSpread(PhantomCreateRest). + RELEASE_ASSERT(m_node->child1()->op() != PhantomCreateRest); + + LValue argument = lowCell(m_node->child1()); + + LValue result; + if (m_node->child1().useKind() == ArrayUse) { + speculateArray(m_node->child1()); + + LBasicBlock preLoop = m_out.newBlock(); + LBasicBlock loopSelection = m_out.newBlock(); + LBasicBlock contiguousLoopStart = m_out.newBlock(); + LBasicBlock doubleLoopStart = m_out.newBlock(); + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue indexingShape = m_out.load8ZeroExt32(argument, m_heaps.JSCell_indexingTypeAndMisc); + indexingShape = m_out.bitAnd(indexingShape, m_out.constInt32(IndexingShapeMask)); + LValue isOKIndexingType = m_out.belowOrEqual( + m_out.sub(indexingShape, m_out.constInt32(Int32Shape)), + m_out.constInt32(ContiguousShape - Int32Shape)); + + m_out.branch(isOKIndexingType, unsure(preLoop), unsure(slowPath)); + LBasicBlock lastNext = m_out.appendTo(preLoop, loopSelection); + + LValue butterfly = m_out.loadPtr(argument, m_heaps.JSObject_butterfly); + LValue length = m_out.load32NonNegative(butterfly, m_heaps.Butterfly_publicLength); + static_assert(sizeof(JSValue) == 8 && 1 << 3 == 8, "Assumed in the code below."); + LValue size = m_out.add( + m_out.shl(m_out.zeroExtPtr(length), m_out.constInt32(3)), + m_out.constIntPtr(JSFixedArray::offsetOfData())); + + LValue fastAllocation = allocateVariableSizedCell<JSFixedArray>(size, m_graph.m_vm.fixedArrayStructure.get(), slowPath); + ValueFromBlock fastResult = m_out.anchor(fastAllocation); + m_out.store32(length, fastAllocation, m_heaps.JSFixedArray_size); + + ValueFromBlock startIndexForContiguous = m_out.anchor(m_out.constIntPtr(0)); + ValueFromBlock startIndexForDouble = m_out.anchor(m_out.constIntPtr(0)); + + m_out.branch(m_out.isZero32(length), unsure(continuation), unsure(loopSelection)); + + m_out.appendTo(loopSelection, contiguousLoopStart); + m_out.branch(m_out.equal(indexingShape, m_out.constInt32(DoubleShape)), + unsure(doubleLoopStart), unsure(contiguousLoopStart)); + + { + m_out.appendTo(contiguousLoopStart, doubleLoopStart); + LValue index = m_out.phi(pointerType(), startIndexForContiguous); + + TypedPointer loadSite = m_out.baseIndex(m_heaps.root, butterfly, index, ScaleEight); // We read TOP here since we can be reading either int32 or contiguous properties. + LValue value = m_out.load64(loadSite); + value = m_out.select(m_out.isZero64(value), m_out.constInt64(JSValue::encode(jsUndefined())), value); + m_out.store64(value, m_out.baseIndex(m_heaps.JSFixedArray_buffer, fastAllocation, index)); + + LValue nextIndex = m_out.add(index, m_out.constIntPtr(1)); + m_out.addIncomingToPhi(index, m_out.anchor(nextIndex)); + + m_out.branch(m_out.below(nextIndex, m_out.zeroExtPtr(length)), + unsure(contiguousLoopStart), unsure(continuation)); + } + + { + m_out.appendTo(doubleLoopStart, slowPath); + LValue index = m_out.phi(pointerType(), startIndexForDouble); + + LValue value = m_out.loadDouble(m_out.baseIndex(m_heaps.indexedDoubleProperties, butterfly, index)); + LValue isNaN = m_out.doubleNotEqualOrUnordered(value, value); + LValue holeResult = m_out.constInt64(JSValue::encode(jsUndefined())); + LValue normalResult = boxDouble(value); + value = m_out.select(isNaN, holeResult, normalResult); + m_out.store64(value, m_out.baseIndex(m_heaps.JSFixedArray_buffer, fastAllocation, index)); + + LValue nextIndex = m_out.add(index, m_out.constIntPtr(1)); + m_out.addIncomingToPhi(index, m_out.anchor(nextIndex)); + + m_out.branch(m_out.below(nextIndex, m_out.zeroExtPtr(length)), + unsure(doubleLoopStart), unsure(continuation)); + } + + m_out.appendTo(slowPath, continuation); + ValueFromBlock slowResult = m_out.anchor(vmCall(Int64, m_out.operation(operationSpreadFastArray), m_callFrame, argument)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + result = m_out.phi(Int64, fastResult, slowResult); + mutatorFence(); + } else + result = vmCall(Int64, m_out.operation(operationSpreadGeneric), m_callFrame, argument); + + setJSValue(result); + } + + void compileNewArrayBuffer() + { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + RegisteredStructure structure = m_graph.registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation( + m_node->indexingType())); + + if (!globalObject->isHavingABadTime() && !hasAnyArrayStorage(m_node->indexingType())) { + unsigned numElements = m_node->numConstants(); + + ArrayValues arrayValues = + allocateUninitializedContiguousJSArray(m_out.constInt32(numElements), structure); + + JSValue* data = codeBlock()->constantBuffer(m_node->startConstant()); + for (unsigned index = 0; index < m_node->numConstants(); ++index) { + int64_t value; + if (hasDouble(m_node->indexingType())) + value = bitwise_cast<int64_t>(data[index].asNumber()); + else + value = JSValue::encode(data[index]); + + m_out.store64( + m_out.constInt64(value), + arrayValues.butterfly, + m_heaps.forIndexingType(m_node->indexingType())->at(index)); + } + + mutatorFence(); + setJSValue(arrayValues.array); + return; + } + + setJSValue(vmCall( + Int64, m_out.operation(operationNewArrayBuffer), m_callFrame, + weakStructure(structure), m_out.constIntPtr(m_node->startConstant()), + m_out.constIntPtr(m_node->numConstants()))); + } + + void compileNewArrayWithSize() + { + LValue publicLength = lowInt32(m_node->child1()); + + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + RegisteredStructure structure = m_graph.registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation( + m_node->indexingType())); + + if (!globalObject->isHavingABadTime() && !hasAnyArrayStorage(m_node->indexingType())) { + IndexingType indexingType = m_node->indexingType(); + setJSValue( + allocateJSArray( + publicLength, weakPointer(globalObject->arrayStructureForIndexingTypeDuringAllocation(indexingType)), m_out.constInt32(indexingType)).array); + mutatorFence(); + return; + } + + LValue structureValue = m_out.select( + m_out.aboveOrEqual(publicLength, m_out.constInt32(MIN_ARRAY_STORAGE_CONSTRUCTION_LENGTH)), + weakStructure(m_graph.registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithArrayStorage))), + weakStructure(structure)); + setJSValue(vmCall(Int64, m_out.operation(operationNewArrayWithSize), m_callFrame, structureValue, publicLength, m_out.intPtrZero)); + } + + void compileNewTypedArray() + { + TypedArrayType type = m_node->typedArrayType(); + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + + switch (m_node->child1().useKind()) { + case Int32Use: { + RegisteredStructure structure = m_graph.registerStructure(globalObject->typedArrayStructureConcurrently(type)); + + LValue size = lowInt32(m_node->child1()); + + LBasicBlock smallEnoughCase = m_out.newBlock(); + LBasicBlock nonZeroCase = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock noStorage = m_out.anchor(m_out.intPtrZero); + + m_out.branch( + m_out.above(size, m_out.constInt32(JSArrayBufferView::fastSizeLimit)), + rarely(slowCase), usually(smallEnoughCase)); + + LBasicBlock lastNext = m_out.appendTo(smallEnoughCase, nonZeroCase); + + m_out.branch(m_out.notZero32(size), usually(nonZeroCase), rarely(slowCase)); + + m_out.appendTo(nonZeroCase, slowCase); + + LValue byteSize = + m_out.shl(m_out.zeroExtPtr(size), m_out.constInt32(logElementSize(type))); + if (elementSize(type) < 8) { + byteSize = m_out.bitAnd( + m_out.add(byteSize, m_out.constIntPtr(7)), + m_out.constIntPtr(~static_cast<intptr_t>(7))); + } + + LValue allocator = allocatorForSize(vm().auxiliarySpace, byteSize, slowCase); + LValue storage = allocateHeapCell(allocator, slowCase); + + splatWords( + storage, + m_out.int32Zero, + m_out.castToInt32(m_out.lShr(byteSize, m_out.constIntPtr(3))), + m_out.int64Zero, + m_heaps.typedArrayProperties); + + ValueFromBlock haveStorage = m_out.anchor(storage); + + LValue fastResultValue = + allocateObject<JSArrayBufferView>(structure, m_out.intPtrZero, slowCase); + + m_out.storePtr(storage, fastResultValue, m_heaps.JSArrayBufferView_vector); + m_out.store32(size, fastResultValue, m_heaps.JSArrayBufferView_length); + m_out.store32(m_out.constInt32(FastTypedArray), fastResultValue, m_heaps.JSArrayBufferView_mode); + + mutatorFence(); + ValueFromBlock fastResult = m_out.anchor(fastResultValue); + m_out.jump(continuation); + + m_out.appendTo(slowCase, continuation); + LValue storageValue = m_out.phi(pointerType(), noStorage, haveStorage); + + LValue slowResultValue = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationNewTypedArrayWithSizeForType(type), locations[0].directGPR(), + CCallHelpers::TrustedImmPtr(structure.get()), locations[1].directGPR(), + locations[2].directGPR()); + }, + size, storageValue); + ValueFromBlock slowResult = m_out.anchor(slowResultValue); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(pointerType(), fastResult, slowResult)); + return; + } + + case UntypedUse: { + LValue argument = lowJSValue(m_node->child1()); + + LValue result = vmCall( + pointerType(), m_out.operation(operationNewTypedArrayWithOneArgumentForType(type)), + m_callFrame, weakPointer(globalObject->typedArrayStructureConcurrently(type)), argument); + + setJSValue(result); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + return; + } + } + + void compileAllocatePropertyStorage() + { + LValue object = lowCell(m_node->child1()); + setStorage(allocatePropertyStorage(object, m_node->transition()->previous.get())); + } + + void compileReallocatePropertyStorage() + { + Transition* transition = m_node->transition(); + LValue object = lowCell(m_node->child1()); + LValue oldStorage = lowStorage(m_node->child2()); + + setStorage( + reallocatePropertyStorage( + object, oldStorage, transition->previous.get(), transition->next.get())); + } + + void compileNukeStructureAndSetButterfly() + { + nukeStructureAndSetButterfly(lowStorage(m_node->child2()), lowCell(m_node->child1())); + } + + void compileToNumber() + { + LValue value = lowJSValue(m_node->child1()); + + if (!(abstractValue(m_node->child1()).m_type & SpecBytecodeNumber)) + setJSValue(vmCall(Int64, m_out.operation(operationToNumber), m_callFrame, value)); + else { + LBasicBlock notNumber = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock fastResult = m_out.anchor(value); + m_out.branch(isNumber(value, provenType(m_node->child1())), unsure(continuation), unsure(notNumber)); + + // notNumber case. + LBasicBlock lastNext = m_out.appendTo(notNumber, continuation); + // We have several attempts to remove ToNumber. But ToNumber still exists. + // It means that converting non-numbers to numbers by this ToNumber is not rare. + // Instead of the lazy slow path generator, we call the operation here. + ValueFromBlock slowResult = m_out.anchor(vmCall(Int64, m_out.operation(operationToNumber), m_callFrame, value)); + m_out.jump(continuation); + + // continuation case. + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, fastResult, slowResult)); + } + } + + void compileToStringOrCallStringConstructor() + { + switch (m_node->child1().useKind()) { + case StringObjectUse: { + LValue cell = lowCell(m_node->child1()); + speculateStringObjectForCell(m_node->child1(), cell); + m_interpreter.filter(m_node->child1(), SpecStringObject); + + setJSValue(m_out.loadPtr(cell, m_heaps.JSWrapperObject_internalValue)); + return; + } + + case StringOrStringObjectUse: { + LValue cell = lowCell(m_node->child1()); + LValue structureID = m_out.load32(cell, m_heaps.JSCell_structureID); + + LBasicBlock notString = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock simpleResult = m_out.anchor(cell); + m_out.branch( + m_out.equal(structureID, m_out.constInt32(vm().stringStructure->id())), + unsure(continuation), unsure(notString)); + + LBasicBlock lastNext = m_out.appendTo(notString, continuation); + speculateStringObjectForStructureID(m_node->child1(), structureID); + ValueFromBlock unboxedResult = m_out.anchor( + m_out.loadPtr(cell, m_heaps.JSWrapperObject_internalValue)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, simpleResult, unboxedResult)); + + m_interpreter.filter(m_node->child1(), SpecString | SpecStringObject); + return; + } + + case CellUse: + case NotCellUse: + case UntypedUse: { + LValue value; + if (m_node->child1().useKind() == CellUse) + value = lowCell(m_node->child1()); + else if (m_node->child1().useKind() == NotCellUse) + value = lowNotCell(m_node->child1()); + else + value = lowJSValue(m_node->child1()); + + LBasicBlock isCell = m_out.newBlock(); + LBasicBlock notString = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue isCellPredicate; + if (m_node->child1().useKind() == CellUse) + isCellPredicate = m_out.booleanTrue; + else if (m_node->child1().useKind() == NotCellUse) + isCellPredicate = m_out.booleanFalse; + else + isCellPredicate = this->isCell(value, provenType(m_node->child1())); + m_out.branch(isCellPredicate, unsure(isCell), unsure(notString)); + + LBasicBlock lastNext = m_out.appendTo(isCell, notString); + ValueFromBlock simpleResult = m_out.anchor(value); + LValue isStringPredicate; + if (m_node->child1()->prediction() & SpecString) { + isStringPredicate = isString(value, provenType(m_node->child1())); + } else + isStringPredicate = m_out.booleanFalse; + m_out.branch(isStringPredicate, unsure(continuation), unsure(notString)); + + m_out.appendTo(notString, continuation); + LValue operation; + if (m_node->child1().useKind() == CellUse) + operation = m_out.operation(m_node->op() == ToString ? operationToStringOnCell : operationCallStringConstructorOnCell); + else + operation = m_out.operation(m_node->op() == ToString ? operationToString : operationCallStringConstructor); + ValueFromBlock convertedResult = m_out.anchor(vmCall(Int64, operation, m_callFrame, value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, simpleResult, convertedResult)); + return; + } + + case Int32Use: + setJSValue(vmCall(Int64, m_out.operation(operationInt32ToStringWithValidRadix), m_callFrame, lowInt32(m_node->child1()), m_out.constInt32(10))); + return; + + case Int52RepUse: + setJSValue(vmCall(Int64, m_out.operation(operationInt52ToStringWithValidRadix), m_callFrame, lowStrictInt52(m_node->child1()), m_out.constInt32(10))); + return; + + case DoubleRepUse: + setJSValue(vmCall(Int64, m_out.operation(operationDoubleToStringWithValidRadix), m_callFrame, lowDouble(m_node->child1()), m_out.constInt32(10))); + return; + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileToPrimitive() + { + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = m_out.newBlock(); + LBasicBlock isObjectCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + Vector<ValueFromBlock, 3> results; + + results.append(m_out.anchor(value)); + m_out.branch( + isCell(value, provenType(m_node->child1())), unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, isObjectCase); + results.append(m_out.anchor(value)); + m_out.branch( + isObject(value, provenType(m_node->child1())), + unsure(isObjectCase), unsure(continuation)); + + m_out.appendTo(isObjectCase, continuation); + results.append(m_out.anchor(vmCall( + Int64, m_out.operation(operationToPrimitive), m_callFrame, value))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, results)); + } + + void compileMakeRope() + { + LValue kids[3]; + unsigned numKids; + kids[0] = lowCell(m_node->child1()); + kids[1] = lowCell(m_node->child2()); + if (m_node->child3()) { + kids[2] = lowCell(m_node->child3()); + numKids = 3; + } else { + kids[2] = 0; + numKids = 2; + } + + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + MarkedAllocator* allocator = subspaceFor<JSRopeString>(vm())->allocatorFor(sizeof(JSRopeString)); + DFG_ASSERT(m_graph, m_node, allocator); + + LValue result = allocateCell( + m_out.constIntPtr(allocator), vm().stringStructure.get(), slowPath); + + m_out.storePtr(m_out.intPtrZero, result, m_heaps.JSString_value); + for (unsigned i = 0; i < numKids; ++i) + m_out.storePtr(kids[i], result, m_heaps.JSRopeString_fibers[i]); + for (unsigned i = numKids; i < JSRopeString::s_maxInternalRopeLength; ++i) + m_out.storePtr(m_out.intPtrZero, result, m_heaps.JSRopeString_fibers[i]); + LValue flags = m_out.load32(kids[0], m_heaps.JSString_flags); + LValue length = m_out.load32(kids[0], m_heaps.JSString_length); + for (unsigned i = 1; i < numKids; ++i) { + flags = m_out.bitAnd(flags, m_out.load32(kids[i], m_heaps.JSString_flags)); + CheckValue* lengthCheck = m_out.speculateAdd( + length, m_out.load32(kids[i], m_heaps.JSString_length)); + blessSpeculation(lengthCheck, Uncountable, noValue(), nullptr, m_origin); + length = lengthCheck; + } + m_out.store32( + m_out.bitAnd(m_out.constInt32(JSString::Is8Bit), flags), + result, m_heaps.JSString_flags); + m_out.store32(length, result, m_heaps.JSString_length); + + mutatorFence(); + ValueFromBlock fastResult = m_out.anchor(result); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + LValue slowResultValue; + switch (numKids) { + case 2: + slowResultValue = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationMakeRope2, locations[0].directGPR(), locations[1].directGPR(), + locations[2].directGPR()); + }, kids[0], kids[1]); + break; + case 3: + slowResultValue = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationMakeRope3, locations[0].directGPR(), locations[1].directGPR(), + locations[2].directGPR(), locations[3].directGPR()); + }, kids[0], kids[1], kids[2]); + break; + default: + DFG_CRASH(m_graph, m_node, "Bad number of children"); + break; + } + ValueFromBlock slowResult = m_out.anchor(slowResultValue); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, fastResult, slowResult)); + } + + void compileStringCharAt() + { + LValue base = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + + LBasicBlock fastPath = m_out.newBlock(); + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + m_out.aboveOrEqual( + index, m_out.load32NonNegative(base, m_heaps.JSString_length)), + rarely(slowPath), usually(fastPath)); + + LBasicBlock lastNext = m_out.appendTo(fastPath, slowPath); + + LValue stringImpl = m_out.loadPtr(base, m_heaps.JSString_value); + + LBasicBlock is8Bit = m_out.newBlock(); + LBasicBlock is16Bit = m_out.newBlock(); + LBasicBlock bitsContinuation = m_out.newBlock(); + LBasicBlock bigCharacter = m_out.newBlock(); + + m_out.branch( + m_out.testIsZero32( + m_out.load32(stringImpl, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIs8Bit())), + unsure(is16Bit), unsure(is8Bit)); + + m_out.appendTo(is8Bit, is16Bit); + + ValueFromBlock char8Bit = m_out.anchor( + m_out.load8ZeroExt32(m_out.baseIndex( + m_heaps.characters8, storage, m_out.zeroExtPtr(index), + provenValue(m_node->child2())))); + m_out.jump(bitsContinuation); + + m_out.appendTo(is16Bit, bigCharacter); + + LValue char16BitValue = m_out.load16ZeroExt32( + m_out.baseIndex( + m_heaps.characters16, storage, m_out.zeroExtPtr(index), + provenValue(m_node->child2()))); + ValueFromBlock char16Bit = m_out.anchor(char16BitValue); + m_out.branch( + m_out.aboveOrEqual(char16BitValue, m_out.constInt32(0x100)), + rarely(bigCharacter), usually(bitsContinuation)); + + m_out.appendTo(bigCharacter, bitsContinuation); + + Vector<ValueFromBlock, 4> results; + results.append(m_out.anchor(vmCall( + Int64, m_out.operation(operationSingleCharacterString), + m_callFrame, char16BitValue))); + m_out.jump(continuation); + + m_out.appendTo(bitsContinuation, slowPath); + + LValue character = m_out.phi(Int32, char8Bit, char16Bit); + + LValue smallStrings = m_out.constIntPtr(vm().smallStrings.singleCharacterStrings()); + + results.append(m_out.anchor(m_out.loadPtr(m_out.baseIndex( + m_heaps.singleCharacterStrings, smallStrings, m_out.zeroExtPtr(character))))); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + + if (m_node->arrayMode().isInBounds()) { + speculate(OutOfBounds, noValue(), 0, m_out.booleanTrue); + results.append(m_out.anchor(m_out.intPtrZero)); + } else { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + + bool prototypeChainIsSane = false; + if (globalObject->stringPrototypeChainIsSane()) { + // FIXME: This could be captured using a Speculation mode that means + // "out-of-bounds loads return a trivial value", something like + // SaneChainOutOfBounds. + // https://bugs.webkit.org/show_bug.cgi?id=144668 + + m_graph.watchpoints().addLazily(globalObject->stringPrototype()->structure()->transitionWatchpointSet()); + m_graph.watchpoints().addLazily(globalObject->objectPrototype()->structure()->transitionWatchpointSet()); + + prototypeChainIsSane = globalObject->stringPrototypeChainIsSane(); + } + if (prototypeChainIsSane) { + LBasicBlock negativeIndex = m_out.newBlock(); + + results.append(m_out.anchor(m_out.constInt64(JSValue::encode(jsUndefined())))); + m_out.branch( + m_out.lessThan(index, m_out.int32Zero), + rarely(negativeIndex), usually(continuation)); + + m_out.appendTo(negativeIndex, continuation); + } + + results.append(m_out.anchor(vmCall( + Int64, m_out.operation(operationGetByValStringInt), m_callFrame, base, index))); + } + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, results)); + } + + void compileStringCharCodeAt() + { + LBasicBlock is8Bit = m_out.newBlock(); + LBasicBlock is16Bit = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue base = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + + speculate( + Uncountable, noValue(), 0, + m_out.aboveOrEqual( + index, m_out.load32NonNegative(base, m_heaps.JSString_length))); + + LValue stringImpl = m_out.loadPtr(base, m_heaps.JSString_value); + + m_out.branch( + m_out.testIsZero32( + m_out.load32(stringImpl, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIs8Bit())), + unsure(is16Bit), unsure(is8Bit)); + + LBasicBlock lastNext = m_out.appendTo(is8Bit, is16Bit); + + ValueFromBlock char8Bit = m_out.anchor( + m_out.load8ZeroExt32(m_out.baseIndex( + m_heaps.characters8, storage, m_out.zeroExtPtr(index), + provenValue(m_node->child2())))); + m_out.jump(continuation); + + m_out.appendTo(is16Bit, continuation); + + ValueFromBlock char16Bit = m_out.anchor( + m_out.load16ZeroExt32(m_out.baseIndex( + m_heaps.characters16, storage, m_out.zeroExtPtr(index), + provenValue(m_node->child2())))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + setInt32(m_out.phi(Int32, char8Bit, char16Bit)); + } + + void compileStringFromCharCode() + { + Edge childEdge = m_node->child1(); + + if (childEdge.useKind() == UntypedUse) { + LValue result = vmCall( + Int64, m_out.operation(operationStringFromCharCodeUntyped), m_callFrame, + lowJSValue(childEdge)); + setJSValue(result); + return; + } + + DFG_ASSERT(m_graph, m_node, childEdge.useKind() == Int32Use); + + LValue value = lowInt32(childEdge); + + LBasicBlock smallIntCase = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + m_out.aboveOrEqual(value, m_out.constInt32(0xff)), + rarely(slowCase), usually(smallIntCase)); + + LBasicBlock lastNext = m_out.appendTo(smallIntCase, slowCase); + + LValue smallStrings = m_out.constIntPtr(vm().smallStrings.singleCharacterStrings()); + LValue fastResultValue = m_out.loadPtr( + m_out.baseIndex(m_heaps.singleCharacterStrings, smallStrings, m_out.zeroExtPtr(value))); + ValueFromBlock fastResult = m_out.anchor(fastResultValue); + m_out.jump(continuation); + + m_out.appendTo(slowCase, continuation); + + LValue slowResultValue = vmCall( + pointerType(), m_out.operation(operationStringFromCharCode), m_callFrame, value); + ValueFromBlock slowResult = m_out.anchor(slowResultValue); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + setJSValue(m_out.phi(Int64, fastResult, slowResult)); + } + + void compileGetByOffset() + { + StorageAccessData& data = m_node->storageAccessData(); + + setJSValue(loadProperty( + lowStorage(m_node->child1()), data.identifierNumber, data.offset)); + } + + void compileGetGetter() + { + setJSValue(m_out.loadPtr(lowCell(m_node->child1()), m_heaps.GetterSetter_getter)); + } + + void compileGetSetter() + { + setJSValue(m_out.loadPtr(lowCell(m_node->child1()), m_heaps.GetterSetter_setter)); + } + + void compileMultiGetByOffset() + { + LValue base = lowCell(m_node->child1()); + + MultiGetByOffsetData& data = m_node->multiGetByOffsetData(); + + if (data.cases.isEmpty()) { + // Protect against creating a Phi function with zero inputs. LLVM didn't like that. + // It's not clear if this is needed anymore. + // FIXME: https://bugs.webkit.org/show_bug.cgi?id=154382 + terminate(BadCache); + return; + } + + Vector<LBasicBlock, 2> blocks(data.cases.size()); + for (unsigned i = data.cases.size(); i--;) + blocks[i] = m_out.newBlock(); + LBasicBlock exit = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + Vector<SwitchCase, 2> cases; + RegisteredStructureSet baseSet; + for (unsigned i = data.cases.size(); i--;) { + MultiGetByOffsetCase getCase = data.cases[i]; + for (unsigned j = getCase.set().size(); j--;) { + RegisteredStructure structure = getCase.set()[j]; + baseSet.add(structure); + cases.append(SwitchCase(weakStructureID(structure), blocks[i], Weight(1))); + } + } + m_out.switchInstruction( + m_out.load32(base, m_heaps.JSCell_structureID), cases, exit, Weight(0)); + + LBasicBlock lastNext = m_out.m_nextBlock; + + Vector<ValueFromBlock, 2> results; + for (unsigned i = data.cases.size(); i--;) { + MultiGetByOffsetCase getCase = data.cases[i]; + GetByOffsetMethod method = getCase.method(); + + m_out.appendTo(blocks[i], i + 1 < data.cases.size() ? blocks[i + 1] : exit); + + LValue result; + + switch (method.kind()) { + case GetByOffsetMethod::Invalid: + RELEASE_ASSERT_NOT_REACHED(); + break; + + case GetByOffsetMethod::Constant: + result = m_out.constInt64(JSValue::encode(method.constant()->value())); + break; + + case GetByOffsetMethod::Load: + case GetByOffsetMethod::LoadFromPrototype: { + LValue propertyBase; + if (method.kind() == GetByOffsetMethod::Load) + propertyBase = base; + else + propertyBase = weakPointer(method.prototype()->value().asCell()); + if (!isInlineOffset(method.offset())) + propertyBase = m_out.loadPtr(propertyBase, m_heaps.JSObject_butterfly); + result = loadProperty( + propertyBase, data.identifierNumber, method.offset()); + break; + } } + + results.append(m_out.anchor(result)); + m_out.jump(continuation); + } + + m_out.appendTo(exit, continuation); + if (!m_interpreter.forNode(m_node->child1()).m_structure.isSubsetOf(baseSet)) + speculate(BadCache, noValue(), nullptr, m_out.booleanTrue); + m_out.unreachable(); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, results)); + } + + void compilePutByOffset() + { + StorageAccessData& data = m_node->storageAccessData(); + + storeProperty( + lowJSValue(m_node->child3()), + lowStorage(m_node->child1()), data.identifierNumber, data.offset); + } + + void compileMultiPutByOffset() + { + LValue base = lowCell(m_node->child1()); + LValue value = lowJSValue(m_node->child2()); + + MultiPutByOffsetData& data = m_node->multiPutByOffsetData(); + + Vector<LBasicBlock, 2> blocks(data.variants.size()); + for (unsigned i = data.variants.size(); i--;) + blocks[i] = m_out.newBlock(); + LBasicBlock exit = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + Vector<SwitchCase, 2> cases; + RegisteredStructureSet baseSet; + for (unsigned i = data.variants.size(); i--;) { + PutByIdVariant variant = data.variants[i]; + for (unsigned j = variant.oldStructure().size(); j--;) { + RegisteredStructure structure = m_graph.registerStructure(variant.oldStructure()[j]); + baseSet.add(structure); + cases.append(SwitchCase(weakStructureID(structure), blocks[i], Weight(1))); + } + } + m_out.switchInstruction( + m_out.load32(base, m_heaps.JSCell_structureID), cases, exit, Weight(0)); + + LBasicBlock lastNext = m_out.m_nextBlock; + + for (unsigned i = data.variants.size(); i--;) { + m_out.appendTo(blocks[i], i + 1 < data.variants.size() ? blocks[i + 1] : exit); + + PutByIdVariant variant = data.variants[i]; + + checkInferredType(m_node->child2(), value, variant.requiredType()); + + LValue storage; + if (variant.kind() == PutByIdVariant::Replace) { + if (isInlineOffset(variant.offset())) + storage = base; + else + storage = m_out.loadPtr(base, m_heaps.JSObject_butterfly); + } else { + DFG_ASSERT(m_graph, m_node, variant.kind() == PutByIdVariant::Transition); + m_graph.m_plan.transitions.addLazily( + codeBlock(), m_node->origin.semantic.codeOriginOwner(), + variant.oldStructureForTransition(), variant.newStructure()); + + storage = storageForTransition( + base, variant.offset(), + variant.oldStructureForTransition(), variant.newStructure()); + } + + storeProperty(value, storage, data.identifierNumber, variant.offset()); + + if (variant.kind() == PutByIdVariant::Transition) { + ASSERT(variant.oldStructureForTransition()->indexingType() == variant.newStructure()->indexingType()); + ASSERT(variant.oldStructureForTransition()->typeInfo().inlineTypeFlags() == variant.newStructure()->typeInfo().inlineTypeFlags()); + ASSERT(variant.oldStructureForTransition()->typeInfo().type() == variant.newStructure()->typeInfo().type()); + m_out.store32( + weakStructureID(m_graph.registerStructure(variant.newStructure())), base, m_heaps.JSCell_structureID); + } + + m_out.jump(continuation); + } + + m_out.appendTo(exit, continuation); + if (!m_interpreter.forNode(m_node->child1()).m_structure.isSubsetOf(baseSet)) + speculate(BadCache, noValue(), nullptr, m_out.booleanTrue); + m_out.unreachable(); + + m_out.appendTo(continuation, lastNext); + } + + void compileGetGlobalVariable() + { + setJSValue(m_out.load64(m_out.absolute(m_node->variablePointer()))); + } + + void compilePutGlobalVariable() + { + m_out.store64( + lowJSValue(m_node->child2()), m_out.absolute(m_node->variablePointer())); + } + + void compileNotifyWrite() + { + WatchpointSet* set = m_node->watchpointSet(); + + LBasicBlock isNotInvalidated = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue state = m_out.load8ZeroExt32(m_out.absolute(set->addressOfState())); + m_out.branch( + m_out.equal(state, m_out.constInt32(IsInvalidated)), + usually(continuation), rarely(isNotInvalidated)); + + LBasicBlock lastNext = m_out.appendTo(isNotInvalidated, continuation); + + lazySlowPath( + [=] (const Vector<Location>&) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationNotifyWrite, InvalidGPRReg, CCallHelpers::TrustedImmPtr(set)); + }); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void compileGetCallee() + { + setJSValue(m_out.loadPtr(addressFor(CallFrameSlot::callee))); + } + + void compileGetArgumentCountIncludingThis() + { + setInt32(m_out.load32(payloadFor(CallFrameSlot::argumentCount))); + } + + void compileGetScope() + { + setJSValue(m_out.loadPtr(lowCell(m_node->child1()), m_heaps.JSFunction_scope)); + } + + void compileSkipScope() + { + setJSValue(m_out.loadPtr(lowCell(m_node->child1()), m_heaps.JSScope_next)); + } + + void compileGetGlobalObject() + { + LValue structure = loadStructure(lowCell(m_node->child1())); + setJSValue(m_out.loadPtr(structure, m_heaps.Structure_globalObject)); + } + + void compileGetClosureVar() + { + setJSValue( + m_out.load64( + lowCell(m_node->child1()), + m_heaps.JSEnvironmentRecord_variables[m_node->scopeOffset().offset()])); + } + + void compilePutClosureVar() + { + m_out.store64( + lowJSValue(m_node->child2()), + lowCell(m_node->child1()), + m_heaps.JSEnvironmentRecord_variables[m_node->scopeOffset().offset()]); + } + + void compileGetFromArguments() + { + setJSValue( + m_out.load64( + lowCell(m_node->child1()), + m_heaps.DirectArguments_storage[m_node->capturedArgumentsOffset().offset()])); + } + + void compilePutToArguments() + { + m_out.store64( + lowJSValue(m_node->child2()), + lowCell(m_node->child1()), + m_heaps.DirectArguments_storage[m_node->capturedArgumentsOffset().offset()]); + } + + void compileGetArgument() + { + LValue argumentCount = m_out.load32(payloadFor(AssemblyHelpers::argumentCount(m_node->origin.semantic))); + + LBasicBlock inBounds = m_out.newBlock(); + LBasicBlock outOfBounds = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(m_out.lessThanOrEqual(argumentCount, m_out.constInt32(m_node->argumentIndex())), unsure(outOfBounds), unsure(inBounds)); + + LBasicBlock lastNext = m_out.appendTo(inBounds, outOfBounds); + VirtualRegister arg = AssemblyHelpers::argumentsStart(m_node->origin.semantic) + m_node->argumentIndex() - 1; + ValueFromBlock inBoundsResult = m_out.anchor(m_out.load64(addressFor(arg))); + m_out.jump(continuation); + + m_out.appendTo(outOfBounds, continuation); + ValueFromBlock outOfBoundsResult = m_out.anchor(m_out.constInt64(ValueUndefined)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, inBoundsResult, outOfBoundsResult)); + } + + void compileCompareEq() + { + if (m_node->isBinaryUseKind(Int32Use) + || m_node->isBinaryUseKind(Int52RepUse) + || m_node->isBinaryUseKind(DoubleRepUse) + || m_node->isBinaryUseKind(ObjectUse) + || m_node->isBinaryUseKind(BooleanUse) + || m_node->isBinaryUseKind(SymbolUse) + || m_node->isBinaryUseKind(StringIdentUse) + || m_node->isBinaryUseKind(StringUse)) { + compileCompareStrictEq(); + return; + } + + if (m_node->isBinaryUseKind(ObjectUse, ObjectOrOtherUse)) { + compareEqObjectOrOtherToObject(m_node->child2(), m_node->child1()); + return; + } + + if (m_node->isBinaryUseKind(ObjectOrOtherUse, ObjectUse)) { + compareEqObjectOrOtherToObject(m_node->child1(), m_node->child2()); + return; + } + + if (m_node->child1().useKind() == OtherUse) { + ASSERT(!m_interpreter.needsTypeCheck(m_node->child1(), SpecOther)); + setBoolean(equalNullOrUndefined(m_node->child2(), AllCellsAreFalse, EqualNullOrUndefined, ManualOperandSpeculation)); + return; + } + + if (m_node->child2().useKind() == OtherUse) { + ASSERT(!m_interpreter.needsTypeCheck(m_node->child2(), SpecOther)); + setBoolean(equalNullOrUndefined(m_node->child1(), AllCellsAreFalse, EqualNullOrUndefined, ManualOperandSpeculation)); + return; + } + + DFG_ASSERT(m_graph, m_node, m_node->isBinaryUseKind(UntypedUse)); + nonSpeculativeCompare( + [&] (LValue left, LValue right) { + return m_out.equal(left, right); + }, + operationCompareEq); + } + + void compileCompareStrictEq() + { + if (m_node->isBinaryUseKind(Int32Use)) { + setBoolean( + m_out.equal(lowInt32(m_node->child1()), lowInt32(m_node->child2()))); + return; + } + + if (m_node->isBinaryUseKind(Int52RepUse)) { + Int52Kind kind; + LValue left = lowWhicheverInt52(m_node->child1(), kind); + LValue right = lowInt52(m_node->child2(), kind); + setBoolean(m_out.equal(left, right)); + return; + } + + if (m_node->isBinaryUseKind(DoubleRepUse)) { + setBoolean( + m_out.doubleEqual(lowDouble(m_node->child1()), lowDouble(m_node->child2()))); + return; + } + + if (m_node->isBinaryUseKind(StringIdentUse)) { + setBoolean( + m_out.equal(lowStringIdent(m_node->child1()), lowStringIdent(m_node->child2()))); + return; + } + + if (m_node->isBinaryUseKind(StringUse)) { + LValue left = lowCell(m_node->child1()); + LValue right = lowCell(m_node->child2()); + + LBasicBlock notTriviallyEqualCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + speculateString(m_node->child1(), left); + + ValueFromBlock fastResult = m_out.anchor(m_out.booleanTrue); + m_out.branch( + m_out.equal(left, right), unsure(continuation), unsure(notTriviallyEqualCase)); + + LBasicBlock lastNext = m_out.appendTo(notTriviallyEqualCase, continuation); + + speculateString(m_node->child2(), right); + + ValueFromBlock slowResult = m_out.anchor(stringsEqual(left, right)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, fastResult, slowResult)); + return; + } + + if (m_node->isBinaryUseKind(ObjectUse, UntypedUse)) { + setBoolean( + m_out.equal( + lowNonNullObject(m_node->child1()), + lowJSValue(m_node->child2()))); + return; + } + + if (m_node->isBinaryUseKind(UntypedUse, ObjectUse)) { + setBoolean( + m_out.equal( + lowNonNullObject(m_node->child2()), + lowJSValue(m_node->child1()))); + return; + } + + if (m_node->isBinaryUseKind(ObjectUse)) { + setBoolean( + m_out.equal( + lowNonNullObject(m_node->child1()), + lowNonNullObject(m_node->child2()))); + return; + } + + if (m_node->isBinaryUseKind(BooleanUse)) { + setBoolean( + m_out.equal(lowBoolean(m_node->child1()), lowBoolean(m_node->child2()))); + return; + } + + if (m_node->isBinaryUseKind(SymbolUse)) { + LValue leftSymbol = lowSymbol(m_node->child1()); + LValue rightSymbol = lowSymbol(m_node->child2()); + setBoolean(m_out.equal(leftSymbol, rightSymbol)); + return; + } + + if (m_node->isBinaryUseKind(SymbolUse, UntypedUse) + || m_node->isBinaryUseKind(UntypedUse, SymbolUse)) { + Edge symbolEdge = m_node->child1(); + Edge untypedEdge = m_node->child2(); + if (symbolEdge.useKind() != SymbolUse) + std::swap(symbolEdge, untypedEdge); + + LValue leftSymbol = lowSymbol(symbolEdge); + LValue untypedValue = lowJSValue(untypedEdge); + + setBoolean(m_out.equal(leftSymbol, untypedValue)); + return; + } + + if (m_node->isBinaryUseKind(MiscUse, UntypedUse) + || m_node->isBinaryUseKind(UntypedUse, MiscUse)) { + speculate(m_node->child1()); + speculate(m_node->child2()); + LValue left = lowJSValue(m_node->child1(), ManualOperandSpeculation); + LValue right = lowJSValue(m_node->child2(), ManualOperandSpeculation); + setBoolean(m_out.equal(left, right)); + return; + } + + if (m_node->isBinaryUseKind(StringIdentUse, NotStringVarUse) + || m_node->isBinaryUseKind(NotStringVarUse, StringIdentUse)) { + Edge leftEdge = m_node->childFor(StringIdentUse); + Edge rightEdge = m_node->childFor(NotStringVarUse); + + LValue left = lowStringIdent(leftEdge); + LValue rightValue = lowJSValue(rightEdge, ManualOperandSpeculation); + + LBasicBlock isCellCase = m_out.newBlock(); + LBasicBlock isStringCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isCell(rightValue, provenType(rightEdge)), + unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, isStringCase); + ValueFromBlock notStringResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isString(rightValue, provenType(rightEdge)), + unsure(isStringCase), unsure(continuation)); + + m_out.appendTo(isStringCase, continuation); + LValue right = m_out.loadPtr(rightValue, m_heaps.JSString_value); + speculateStringIdent(rightEdge, rightValue, right); + ValueFromBlock isStringResult = m_out.anchor(m_out.equal(left, right)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, notCellResult, notStringResult, isStringResult)); + return; + } + + if (m_node->isBinaryUseKind(StringUse, UntypedUse)) { + compileStringToUntypedStrictEquality(m_node->child1(), m_node->child2()); + return; + } + if (m_node->isBinaryUseKind(UntypedUse, StringUse)) { + compileStringToUntypedStrictEquality(m_node->child2(), m_node->child1()); + return; + } + + DFG_ASSERT(m_graph, m_node, m_node->isBinaryUseKind(UntypedUse)); + nonSpeculativeCompare( + [&] (LValue left, LValue right) { + return m_out.equal(left, right); + }, + operationCompareStrictEq); + } + + void compileStringToUntypedStrictEquality(Edge stringEdge, Edge untypedEdge) + { + ASSERT(stringEdge.useKind() == StringUse); + ASSERT(untypedEdge.useKind() == UntypedUse); + + LValue leftString = lowCell(stringEdge); + LValue rightValue = lowJSValue(untypedEdge); + SpeculatedType rightValueType = provenType(untypedEdge); + + // Verify left is string. + speculateString(stringEdge, leftString); + + LBasicBlock testUntypedEdgeIsCell = m_out.newBlock(); + LBasicBlock testUntypedEdgeIsString = m_out.newBlock(); + LBasicBlock testStringEquality = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + // Given left is string. If the value are strictly equal, rightValue has to be the same string. + ValueFromBlock fastTrue = m_out.anchor(m_out.booleanTrue); + m_out.branch(m_out.equal(leftString, rightValue), unsure(continuation), unsure(testUntypedEdgeIsCell)); + + LBasicBlock lastNext = m_out.appendTo(testUntypedEdgeIsCell, testUntypedEdgeIsString); + ValueFromBlock fastFalse = m_out.anchor(m_out.booleanFalse); + m_out.branch(isNotCell(rightValue, rightValueType), unsure(continuation), unsure(testUntypedEdgeIsString)); + + // Check if the untyped edge is a string. + m_out.appendTo(testUntypedEdgeIsString, testStringEquality); + m_out.branch(isNotString(rightValue, rightValueType), unsure(continuation), unsure(testStringEquality)); + + // Full String compare. + m_out.appendTo(testStringEquality, continuation); + ValueFromBlock slowResult = m_out.anchor(stringsEqual(leftString, rightValue)); + m_out.jump(continuation); + + // Continuation. + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, fastTrue, fastFalse, slowResult)); + } + + void compileCompareEqPtr() + { + setBoolean( + m_out.equal( + lowJSValue(m_node->child1()), + weakPointer(m_node->cellOperand()->cell()))); + } + + void compileCompareLess() + { + compare( + [&] (LValue left, LValue right) { + return m_out.lessThan(left, right); + }, + [&] (LValue left, LValue right) { + return m_out.doubleLessThan(left, right); + }, + operationCompareStringImplLess, + operationCompareStringLess, + operationCompareLess); + } + + void compileCompareLessEq() + { + compare( + [&] (LValue left, LValue right) { + return m_out.lessThanOrEqual(left, right); + }, + [&] (LValue left, LValue right) { + return m_out.doubleLessThanOrEqual(left, right); + }, + operationCompareStringImplLessEq, + operationCompareStringLessEq, + operationCompareLessEq); + } + + void compileCompareGreater() + { + compare( + [&] (LValue left, LValue right) { + return m_out.greaterThan(left, right); + }, + [&] (LValue left, LValue right) { + return m_out.doubleGreaterThan(left, right); + }, + operationCompareStringImplGreater, + operationCompareStringGreater, + operationCompareGreater); + } + + void compileCompareGreaterEq() + { + compare( + [&] (LValue left, LValue right) { + return m_out.greaterThanOrEqual(left, right); + }, + [&] (LValue left, LValue right) { + return m_out.doubleGreaterThanOrEqual(left, right); + }, + operationCompareStringImplGreaterEq, + operationCompareStringGreaterEq, + operationCompareGreaterEq); + } + + void compileLogicalNot() + { + setBoolean(m_out.logicalNot(boolify(m_node->child1()))); + } + + void compileCallOrConstruct() + { + Node* node = m_node; + unsigned numArgs = node->numChildren() - 1; + + LValue jsCallee = lowJSValue(m_graph.varArgChild(node, 0)); + + unsigned frameSize = (CallFrame::headerSizeInRegisters + numArgs) * sizeof(EncodedJSValue); + unsigned alignedFrameSize = WTF::roundUpToMultipleOf(stackAlignmentBytes(), frameSize); + + // JS->JS calling convention requires that the caller allows this much space on top of stack to + // get trashed by the callee, even if not all of that space is used to pass arguments. We tell + // B3 this explicitly for two reasons: + // + // - We will only pass frameSize worth of stuff. + // - The trashed stack guarantee is logically separate from the act of passing arguments, so we + // shouldn't rely on Air to infer the trashed stack property based on the arguments it ends + // up seeing. + m_proc.requestCallArgAreaSizeInBytes(alignedFrameSize); + + // Collect the arguments, since this can generate code and we want to generate it before we emit + // the call. + Vector<ConstrainedValue> arguments; + + // Make sure that the callee goes into GPR0 because that's where the slow path thunks expect the + // callee to be. + arguments.append(ConstrainedValue(jsCallee, ValueRep::reg(GPRInfo::regT0))); + + auto addArgument = [&] (LValue value, VirtualRegister reg, int offset) { + intptr_t offsetFromSP = + (reg.offset() - CallerFrameAndPC::sizeInRegisters) * sizeof(EncodedJSValue) + offset; + arguments.append(ConstrainedValue(value, ValueRep::stackArgument(offsetFromSP))); + }; + + addArgument(jsCallee, VirtualRegister(CallFrameSlot::callee), 0); + addArgument(m_out.constInt32(numArgs), VirtualRegister(CallFrameSlot::argumentCount), PayloadOffset); + for (unsigned i = 0; i < numArgs; ++i) + addArgument(lowJSValue(m_graph.varArgChild(node, 1 + i)), virtualRegisterForArgument(i), 0); + + PatchpointValue* patchpoint = m_out.patchpoint(Int64); + patchpoint->appendVector(arguments); + + RefPtr<PatchpointExceptionHandle> exceptionHandle = + preparePatchpointForExceptions(patchpoint); + + patchpoint->append(m_tagMask, ValueRep::reg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::reg(GPRInfo::tagTypeNumberRegister)); + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + patchpoint->clobberLate(RegisterSet::volatileRegistersForJSCall()); + patchpoint->resultConstraint = ValueRep::reg(GPRInfo::returnValueGPR); + + CodeOrigin codeOrigin = codeOriginDescriptionOfCallSite(); + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + CallSiteIndex callSiteIndex = state->jitCode->common.addUniqueCallSiteIndex(codeOrigin); + + exceptionHandle->scheduleExitCreationForUnwind(params, callSiteIndex); + + jit.store32( + CCallHelpers::TrustedImm32(callSiteIndex.bits()), + CCallHelpers::tagFor(VirtualRegister(CallFrameSlot::argumentCount))); + + CallLinkInfo* callLinkInfo = jit.codeBlock()->addCallLinkInfo(); + + CCallHelpers::DataLabelPtr targetToCheck; + CCallHelpers::Jump slowPath = jit.branchPtrWithPatch( + CCallHelpers::NotEqual, GPRInfo::regT0, targetToCheck, + CCallHelpers::TrustedImmPtr(0)); + + CCallHelpers::Call fastCall = jit.nearCall(); + CCallHelpers::Jump done = jit.jump(); + + slowPath.link(&jit); + + jit.move(CCallHelpers::TrustedImmPtr(callLinkInfo), GPRInfo::regT2); + CCallHelpers::Call slowCall = jit.nearCall(); + done.link(&jit); + + callLinkInfo->setUpCall( + node->op() == Construct ? CallLinkInfo::Construct : CallLinkInfo::Call, + node->origin.semantic, GPRInfo::regT0); + + jit.addPtr( + CCallHelpers::TrustedImm32(-params.proc().frameSize()), + GPRInfo::callFrameRegister, CCallHelpers::stackPointerRegister); + + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + MacroAssemblerCodePtr linkCall = + linkBuffer.vm().getCTIStub(linkCallThunkGenerator).code(); + linkBuffer.link(slowCall, FunctionPtr(linkCall.executableAddress())); + + callLinkInfo->setCallLocations( + CodeLocationLabel(linkBuffer.locationOfNearCall(slowCall)), + CodeLocationLabel(linkBuffer.locationOf(targetToCheck)), + linkBuffer.locationOfNearCall(fastCall)); + }); + }); + + setJSValue(patchpoint); + } + + void compileDirectCallOrConstruct() + { + Node* node = m_node; + bool isTail = node->op() == DirectTailCall; + bool isConstruct = node->op() == DirectConstruct; + + ExecutableBase* executable = node->castOperand<ExecutableBase*>(); + FunctionExecutable* functionExecutable = jsDynamicCast<FunctionExecutable*>(vm(), executable); + + unsigned numPassedArgs = node->numChildren() - 1; + unsigned numAllocatedArgs = numPassedArgs; + + if (functionExecutable) { + numAllocatedArgs = std::max( + numAllocatedArgs, + std::min( + static_cast<unsigned>(functionExecutable->parameterCount()) + 1, + Options::maximumDirectCallStackSize())); + } + + LValue jsCallee = lowJSValue(m_graph.varArgChild(node, 0)); + + if (!isTail) { + unsigned frameSize = (CallFrame::headerSizeInRegisters + numAllocatedArgs) * sizeof(EncodedJSValue); + unsigned alignedFrameSize = WTF::roundUpToMultipleOf(stackAlignmentBytes(), frameSize); + + m_proc.requestCallArgAreaSizeInBytes(alignedFrameSize); + } + + Vector<ConstrainedValue> arguments; + + arguments.append(ConstrainedValue(jsCallee, ValueRep::SomeRegister)); + if (!isTail) { + auto addArgument = [&] (LValue value, VirtualRegister reg, int offset) { + intptr_t offsetFromSP = + (reg.offset() - CallerFrameAndPC::sizeInRegisters) * sizeof(EncodedJSValue) + offset; + arguments.append(ConstrainedValue(value, ValueRep::stackArgument(offsetFromSP))); + }; + + addArgument(jsCallee, VirtualRegister(CallFrameSlot::callee), 0); + addArgument(m_out.constInt32(numPassedArgs), VirtualRegister(CallFrameSlot::argumentCount), PayloadOffset); + for (unsigned i = 0; i < numPassedArgs; ++i) + addArgument(lowJSValue(m_graph.varArgChild(node, 1 + i)), virtualRegisterForArgument(i), 0); + for (unsigned i = numPassedArgs; i < numAllocatedArgs; ++i) + addArgument(m_out.constInt64(JSValue::encode(jsUndefined())), virtualRegisterForArgument(i), 0); + } else { + for (unsigned i = 0; i < numPassedArgs; ++i) + arguments.append(ConstrainedValue(lowJSValue(m_graph.varArgChild(node, 1 + i)), ValueRep::WarmAny)); + } + + PatchpointValue* patchpoint = m_out.patchpoint(isTail ? Void : Int64); + patchpoint->appendVector(arguments); + + RefPtr<PatchpointExceptionHandle> exceptionHandle = preparePatchpointForExceptions(patchpoint); + + if (isTail) { + // The shuffler needs tags. + patchpoint->append(m_tagMask, ValueRep::reg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::reg(GPRInfo::tagTypeNumberRegister)); + } + + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + if (!isTail) { + patchpoint->clobberLate(RegisterSet::volatileRegistersForJSCall()); + patchpoint->resultConstraint = ValueRep::reg(GPRInfo::returnValueGPR); + } + + CodeOrigin codeOrigin = codeOriginDescriptionOfCallSite(); + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + CallSiteIndex callSiteIndex = state->jitCode->common.addUniqueCallSiteIndex(codeOrigin); + + GPRReg calleeGPR = params[!isTail].gpr(); + + exceptionHandle->scheduleExitCreationForUnwind(params, callSiteIndex); + + Box<CCallHelpers::JumpList> exceptions = + exceptionHandle->scheduleExitCreation(params)->jumps(jit); + + if (isTail) { + CallFrameShuffleData shuffleData; + shuffleData.numLocals = state->jitCode->common.frameRegisterCount; + + RegisterSet toSave = params.unavailableRegisters(); + shuffleData.callee = ValueRecovery::inGPR(calleeGPR, DataFormatCell); + toSave.set(calleeGPR); + for (unsigned i = 0; i < numPassedArgs; ++i) { + ValueRecovery recovery = params[1 + i].recoveryForJSValue(); + shuffleData.args.append(recovery); + recovery.forEachReg( + [&] (Reg reg) { + toSave.set(reg); + }); + } + for (unsigned i = numPassedArgs; i < numAllocatedArgs; ++i) + shuffleData.args.append(ValueRecovery::constant(jsUndefined())); + shuffleData.numPassedArgs = numPassedArgs; + shuffleData.setupCalleeSaveRegisters(jit.codeBlock()); + + CallLinkInfo* callLinkInfo = jit.codeBlock()->addCallLinkInfo(); + + CCallHelpers::PatchableJump patchableJump = jit.patchableJump(); + CCallHelpers::Label mainPath = jit.label(); + + jit.store32( + CCallHelpers::TrustedImm32(callSiteIndex.bits()), + CCallHelpers::tagFor(VirtualRegister(CallFrameSlot::argumentCount))); + + callLinkInfo->setFrameShuffleData(shuffleData); + CallFrameShuffler(jit, shuffleData).prepareForTailCall(); + + CCallHelpers::Call call = jit.nearTailCall(); + + jit.abortWithReason(JITDidReturnFromTailCall); + + CCallHelpers::Label slowPath = jit.label(); + patchableJump.m_jump.linkTo(slowPath, &jit); + callOperation( + *state, toSave, jit, + node->origin.semantic, exceptions.get(), operationLinkDirectCall, + InvalidGPRReg, CCallHelpers::TrustedImmPtr(callLinkInfo), calleeGPR).call(); + jit.jump().linkTo(mainPath, &jit); + + callLinkInfo->setUpCall( + CallLinkInfo::DirectTailCall, node->origin.semantic, InvalidGPRReg); + callLinkInfo->setExecutableDuringCompilation(executable); + if (numAllocatedArgs > numPassedArgs) + callLinkInfo->setMaxNumArguments(numAllocatedArgs); + + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + CodeLocationLabel patchableJumpLocation = linkBuffer.locationOf(patchableJump); + CodeLocationNearCall callLocation = linkBuffer.locationOfNearCall(call); + CodeLocationLabel slowPathLocation = linkBuffer.locationOf(slowPath); + + callLinkInfo->setCallLocations( + patchableJumpLocation, + slowPathLocation, + callLocation); + }); + return; + } + + CallLinkInfo* callLinkInfo = jit.codeBlock()->addCallLinkInfo(); + + CCallHelpers::Label mainPath = jit.label(); + + jit.store32( + CCallHelpers::TrustedImm32(callSiteIndex.bits()), + CCallHelpers::tagFor(VirtualRegister(CallFrameSlot::argumentCount))); + + CCallHelpers::Call call = jit.nearCall(); + jit.addPtr( + CCallHelpers::TrustedImm32(-params.proc().frameSize()), + GPRInfo::callFrameRegister, CCallHelpers::stackPointerRegister); + + callLinkInfo->setUpCall( + isConstruct ? CallLinkInfo::DirectConstruct : CallLinkInfo::DirectCall, + node->origin.semantic, InvalidGPRReg); + callLinkInfo->setExecutableDuringCompilation(executable); + if (numAllocatedArgs > numPassedArgs) + callLinkInfo->setMaxNumArguments(numAllocatedArgs); + + params.addLatePath( + [=] (CCallHelpers& jit) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + CCallHelpers::Label slowPath = jit.label(); + if (isX86()) + jit.pop(CCallHelpers::selectScratchGPR(calleeGPR)); + + callOperation( + *state, params.unavailableRegisters(), jit, + node->origin.semantic, exceptions.get(), operationLinkDirectCall, + InvalidGPRReg, CCallHelpers::TrustedImmPtr(callLinkInfo), + calleeGPR).call(); + jit.jump().linkTo(mainPath, &jit); + + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + CodeLocationNearCall callLocation = linkBuffer.locationOfNearCall(call); + CodeLocationLabel slowPathLocation = linkBuffer.locationOf(slowPath); + + linkBuffer.link(call, slowPathLocation); + + callLinkInfo->setCallLocations( + CodeLocationLabel(), + slowPathLocation, + callLocation); + }); + }); + }); + + if (isTail) + patchpoint->effects.terminal = true; + else + setJSValue(patchpoint); + } + + void compileTailCall() + { + Node* node = m_node; + unsigned numArgs = node->numChildren() - 1; + + LValue jsCallee = lowJSValue(m_graph.varArgChild(node, 0)); + + // We want B3 to give us all of the arguments using whatever mechanism it thinks is + // convenient. The generator then shuffles those arguments into our own call frame, + // destroying our frame in the process. + + // Note that we don't have to do anything special for exceptions. A tail call is only a + // tail call if it is not inside a try block. + + Vector<ConstrainedValue> arguments; + + arguments.append(ConstrainedValue(jsCallee, ValueRep::reg(GPRInfo::regT0))); + + for (unsigned i = 0; i < numArgs; ++i) { + // Note: we could let the shuffler do boxing for us, but it's not super clear that this + // would be better. Also, if we wanted to do that, then we'd have to teach the shuffler + // that 32-bit values could land at 4-byte alignment but not 8-byte alignment. + + ConstrainedValue constrainedValue( + lowJSValue(m_graph.varArgChild(node, 1 + i)), + ValueRep::WarmAny); + arguments.append(constrainedValue); + } + + PatchpointValue* patchpoint = m_out.patchpoint(Void); + patchpoint->appendVector(arguments); + + patchpoint->append(m_tagMask, ValueRep::reg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::reg(GPRInfo::tagTypeNumberRegister)); + + // Prevent any of the arguments from using the scratch register. + patchpoint->clobberEarly(RegisterSet::macroScratchRegisters()); + + patchpoint->effects.terminal = true; + + // We don't have to tell the patchpoint that we will clobber registers, since we won't return + // anyway. + + CodeOrigin codeOrigin = codeOriginDescriptionOfCallSite(); + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + CallSiteIndex callSiteIndex = state->jitCode->common.addUniqueCallSiteIndex(codeOrigin); + + // Yes, this is really necessary. You could throw an exception in a host call on the + // slow path. That'll route us to lookupExceptionHandler(), which unwinds starting + // with the call site index of our frame. Bad things happen if it's not set. + jit.store32( + CCallHelpers::TrustedImm32(callSiteIndex.bits()), + CCallHelpers::tagFor(VirtualRegister(CallFrameSlot::argumentCount))); + + CallFrameShuffleData shuffleData; + shuffleData.numLocals = state->jitCode->common.frameRegisterCount; + shuffleData.callee = ValueRecovery::inGPR(GPRInfo::regT0, DataFormatJS); + + for (unsigned i = 0; i < numArgs; ++i) + shuffleData.args.append(params[1 + i].recoveryForJSValue()); + + shuffleData.numPassedArgs = numArgs; + + shuffleData.setupCalleeSaveRegisters(jit.codeBlock()); + + CallLinkInfo* callLinkInfo = jit.codeBlock()->addCallLinkInfo(); + + CCallHelpers::DataLabelPtr targetToCheck; + CCallHelpers::Jump slowPath = jit.branchPtrWithPatch( + CCallHelpers::NotEqual, GPRInfo::regT0, targetToCheck, + CCallHelpers::TrustedImmPtr(0)); + + callLinkInfo->setFrameShuffleData(shuffleData); + CallFrameShuffler(jit, shuffleData).prepareForTailCall(); + + CCallHelpers::Call fastCall = jit.nearTailCall(); + + slowPath.link(&jit); + + CallFrameShuffler slowPathShuffler(jit, shuffleData); + slowPathShuffler.setCalleeJSValueRegs(JSValueRegs(GPRInfo::regT0)); + slowPathShuffler.prepareForSlowPath(); + + jit.move(CCallHelpers::TrustedImmPtr(callLinkInfo), GPRInfo::regT2); + CCallHelpers::Call slowCall = jit.nearCall(); + + jit.abortWithReason(JITDidReturnFromTailCall); + + callLinkInfo->setUpCall(CallLinkInfo::TailCall, codeOrigin, GPRInfo::regT0); + + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + MacroAssemblerCodePtr linkCall = + linkBuffer.vm().getCTIStub(linkCallThunkGenerator).code(); + linkBuffer.link(slowCall, FunctionPtr(linkCall.executableAddress())); + + callLinkInfo->setCallLocations( + CodeLocationLabel(linkBuffer.locationOfNearCall(slowCall)), + CodeLocationLabel(linkBuffer.locationOf(targetToCheck)), + linkBuffer.locationOfNearCall(fastCall)); + }); + }); + } + + void compileCallOrConstructVarargsSpread() + { + Node* node = m_node; + LValue jsCallee = lowJSValue(m_node->child1()); + LValue thisArg = lowJSValue(m_node->child2()); + + RELEASE_ASSERT(node->child3()->op() == PhantomNewArrayWithSpread); + Node* arrayWithSpread = node->child3().node(); + BitVector* bitVector = arrayWithSpread->bitVector(); + unsigned numNonSpreadParameters = 0; + Vector<LValue, 2> spreadLengths; + Vector<LValue, 8> patchpointArguments; + HashMap<InlineCallFrame*, LValue, WTF::DefaultHash<InlineCallFrame*>::Hash, WTF::NullableHashTraits<InlineCallFrame*>> cachedSpreadLengths; + + for (unsigned i = 0; i < arrayWithSpread->numChildren(); i++) { + if (bitVector->get(i)) { + Node* spread = m_graph.varArgChild(arrayWithSpread, i).node(); + RELEASE_ASSERT(spread->op() == PhantomSpread); + RELEASE_ASSERT(spread->child1()->op() == PhantomCreateRest); + InlineCallFrame* inlineCallFrame = spread->child1()->origin.semantic.inlineCallFrame; + unsigned numberOfArgumentsToSkip = spread->child1()->numberOfArgumentsToSkip(); + LValue length = cachedSpreadLengths.ensure(inlineCallFrame, [&] () { + return m_out.zeroExtPtr(getSpreadLengthFromInlineCallFrame(inlineCallFrame, numberOfArgumentsToSkip)); + }).iterator->value; + patchpointArguments.append(length); + spreadLengths.append(length); + } else { + ++numNonSpreadParameters; + LValue argument = lowJSValue(m_graph.varArgChild(arrayWithSpread, i)); + patchpointArguments.append(argument); + } + } + + LValue argumentCountIncludingThis = m_out.constIntPtr(numNonSpreadParameters + 1); + for (LValue length : spreadLengths) + argumentCountIncludingThis = m_out.add(length, argumentCountIncludingThis); + + PatchpointValue* patchpoint = m_out.patchpoint(Int64); + + patchpoint->append(jsCallee, ValueRep::reg(GPRInfo::regT0)); + patchpoint->append(thisArg, ValueRep::WarmAny); + patchpoint->append(argumentCountIncludingThis, ValueRep::WarmAny); + patchpoint->appendVectorWithRep(patchpointArguments, ValueRep::WarmAny); + patchpoint->append(m_tagMask, ValueRep::reg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::reg(GPRInfo::tagTypeNumberRegister)); + + RefPtr<PatchpointExceptionHandle> exceptionHandle = preparePatchpointForExceptions(patchpoint); + + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + patchpoint->clobber(RegisterSet::volatileRegistersForJSCall()); // No inputs will be in a volatile register. + patchpoint->resultConstraint = ValueRep::reg(GPRInfo::returnValueGPR); + + patchpoint->numGPScratchRegisters = 0; + + // This is the minimum amount of call arg area stack space that all JS->JS calls always have. + unsigned minimumJSCallAreaSize = + sizeof(CallerFrameAndPC) + + WTF::roundUpToMultipleOf(stackAlignmentBytes(), 5 * sizeof(EncodedJSValue)); + + m_proc.requestCallArgAreaSizeInBytes(minimumJSCallAreaSize); + + CodeOrigin codeOrigin = codeOriginDescriptionOfCallSite(); + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + CallSiteIndex callSiteIndex = + state->jitCode->common.addUniqueCallSiteIndex(codeOrigin); + + Box<CCallHelpers::JumpList> exceptions = + exceptionHandle->scheduleExitCreation(params)->jumps(jit); + + exceptionHandle->scheduleExitCreationForUnwind(params, callSiteIndex); + + jit.store32( + CCallHelpers::TrustedImm32(callSiteIndex.bits()), + CCallHelpers::tagFor(VirtualRegister(CallFrameSlot::argumentCount))); + + CallLinkInfo* callLinkInfo = jit.codeBlock()->addCallLinkInfo(); + + RegisterSet usedRegisters = RegisterSet::allRegisters(); + usedRegisters.exclude(RegisterSet::volatileRegistersForJSCall()); + GPRReg calleeGPR = params[1].gpr(); + usedRegisters.set(calleeGPR); + + ScratchRegisterAllocator allocator(usedRegisters); + GPRReg scratchGPR1 = allocator.allocateScratchGPR(); + GPRReg scratchGPR2 = allocator.allocateScratchGPR(); + GPRReg scratchGPR3 = allocator.allocateScratchGPR(); + GPRReg scratchGPR4 = allocator.allocateScratchGPR(); + RELEASE_ASSERT(!allocator.numberOfReusedRegisters()); + + auto getValueFromRep = [&] (B3::ValueRep rep, GPRReg result) { + ASSERT(!usedRegisters.get(result)); + + if (rep.isConstant()) { + jit.move(CCallHelpers::Imm64(rep.value()), result); + return; + } + + // Note: in this function, we only request 64 bit values. + if (rep.isStack()) { + jit.load64( + CCallHelpers::Address(GPRInfo::callFrameRegister, rep.offsetFromFP()), + result); + return; + } + + RELEASE_ASSERT(rep.isGPR()); + ASSERT(usedRegisters.get(rep.gpr())); + jit.move(rep.gpr(), result); + }; + + auto callWithExceptionCheck = [&] (void* callee) { + jit.move(CCallHelpers::TrustedImmPtr(callee), GPRInfo::nonPreservedNonArgumentGPR); + jit.call(GPRInfo::nonPreservedNonArgumentGPR); + exceptions->append(jit.emitExceptionCheck(AssemblyHelpers::NormalExceptionCheck, AssemblyHelpers::FarJumpWidth)); + }; + + CCallHelpers::JumpList slowCase; + unsigned originalStackHeight = params.proc().frameSize(); + + { + unsigned numUsedSlots = WTF::roundUpToMultipleOf(stackAlignmentRegisters(), originalStackHeight / sizeof(EncodedJSValue)); + B3::ValueRep argumentCountIncludingThisRep = params[3]; + getValueFromRep(argumentCountIncludingThisRep, scratchGPR2); + slowCase.append(jit.branch32(CCallHelpers::Above, scratchGPR2, CCallHelpers::TrustedImm32(JSC::maxArguments + 1))); + + jit.move(scratchGPR2, scratchGPR1); + jit.addPtr(CCallHelpers::TrustedImmPtr(static_cast<size_t>(numUsedSlots + CallFrame::headerSizeInRegisters)), scratchGPR1); + // scratchGPR1 now has the required frame size in Register units + // Round scratchGPR1 to next multiple of stackAlignmentRegisters() + jit.addPtr(CCallHelpers::TrustedImm32(stackAlignmentRegisters() - 1), scratchGPR1); + jit.andPtr(CCallHelpers::TrustedImm32(~(stackAlignmentRegisters() - 1)), scratchGPR1); + jit.negPtr(scratchGPR1); + jit.lshiftPtr(CCallHelpers::Imm32(3), scratchGPR1); + jit.addPtr(GPRInfo::callFrameRegister, scratchGPR1); + + // Before touching stack values, we should update the stack pointer to protect them from signal stack. + jit.addPtr(CCallHelpers::TrustedImm32(sizeof(CallerFrameAndPC)), scratchGPR1, CCallHelpers::stackPointerRegister); + + jit.store32(scratchGPR2, CCallHelpers::Address(scratchGPR1, CallFrameSlot::argumentCount * static_cast<int>(sizeof(Register)) + PayloadOffset)); + + int storeOffset = CallFrame::thisArgumentOffset() * static_cast<int>(sizeof(Register)); + + for (unsigned i = arrayWithSpread->numChildren(); i--; ) { + unsigned paramsOffset = 4; + + if (bitVector->get(i)) { + Node* spread = state->graph.varArgChild(arrayWithSpread, i).node(); + RELEASE_ASSERT(spread->op() == PhantomSpread); + RELEASE_ASSERT(spread->child1()->op() == PhantomCreateRest); + InlineCallFrame* inlineCallFrame = spread->child1()->origin.semantic.inlineCallFrame; + + unsigned numberOfArgumentsToSkip = spread->child1()->numberOfArgumentsToSkip(); + + B3::ValueRep numArgumentsToCopy = params[paramsOffset + i]; + getValueFromRep(numArgumentsToCopy, scratchGPR3); + int loadOffset = (AssemblyHelpers::argumentsStart(inlineCallFrame).offset() + numberOfArgumentsToSkip) * static_cast<int>(sizeof(Register)); + + auto done = jit.branchTestPtr(MacroAssembler::Zero, scratchGPR3); + auto loopStart = jit.label(); + jit.subPtr(CCallHelpers::TrustedImmPtr(static_cast<size_t>(1)), scratchGPR3); + jit.subPtr(CCallHelpers::TrustedImmPtr(static_cast<size_t>(1)), scratchGPR2); + jit.load64(CCallHelpers::BaseIndex(GPRInfo::callFrameRegister, scratchGPR3, CCallHelpers::TimesEight, loadOffset), scratchGPR4); + jit.store64(scratchGPR4, + CCallHelpers::BaseIndex(scratchGPR1, scratchGPR2, CCallHelpers::TimesEight, storeOffset)); + jit.branchTestPtr(CCallHelpers::NonZero, scratchGPR3).linkTo(loopStart, &jit); + done.link(&jit); + } else { + jit.subPtr(CCallHelpers::TrustedImmPtr(static_cast<size_t>(1)), scratchGPR2); + getValueFromRep(params[paramsOffset + i], scratchGPR3); + jit.store64(scratchGPR3, + CCallHelpers::BaseIndex(scratchGPR1, scratchGPR2, CCallHelpers::TimesEight, storeOffset)); + } + } + } + + { + CCallHelpers::Jump dontThrow = jit.jump(); + slowCase.link(&jit); + jit.setupArgumentsExecState(); + callWithExceptionCheck(bitwise_cast<void*>(operationThrowStackOverflowForVarargs)); + jit.abortWithReason(DFGVarargsThrowingPathDidNotThrow); + + dontThrow.link(&jit); + } + + ASSERT(calleeGPR == GPRInfo::regT0); + jit.store64(calleeGPR, CCallHelpers::calleeFrameSlot(CallFrameSlot::callee)); + getValueFromRep(params[2], scratchGPR3); + jit.store64(scratchGPR3, CCallHelpers::calleeArgumentSlot(0)); + + CallLinkInfo::CallType callType; + if (node->op() == ConstructVarargs || node->op() == ConstructForwardVarargs) + callType = CallLinkInfo::ConstructVarargs; + else if (node->op() == TailCallVarargs || node->op() == TailCallForwardVarargs) + callType = CallLinkInfo::TailCallVarargs; + else + callType = CallLinkInfo::CallVarargs; + + bool isTailCall = CallLinkInfo::callModeFor(callType) == CallMode::Tail; + + CCallHelpers::DataLabelPtr targetToCheck; + CCallHelpers::Jump slowPath = jit.branchPtrWithPatch( + CCallHelpers::NotEqual, GPRInfo::regT0, targetToCheck, + CCallHelpers::TrustedImmPtr(nullptr)); + + CCallHelpers::Call fastCall; + CCallHelpers::Jump done; + + if (isTailCall) { + jit.emitRestoreCalleeSaves(); + jit.prepareForTailCallSlow(); + fastCall = jit.nearTailCall(); + } else { + fastCall = jit.nearCall(); + done = jit.jump(); + } + + slowPath.link(&jit); + + if (isTailCall) + jit.emitRestoreCalleeSaves(); + ASSERT(!usedRegisters.get(GPRInfo::regT2)); + jit.move(CCallHelpers::TrustedImmPtr(callLinkInfo), GPRInfo::regT2); + CCallHelpers::Call slowCall = jit.nearCall(); + + if (isTailCall) + jit.abortWithReason(JITDidReturnFromTailCall); + else + done.link(&jit); + + callLinkInfo->setUpCall(callType, node->origin.semantic, GPRInfo::regT0); + + jit.addPtr( + CCallHelpers::TrustedImm32(-originalStackHeight), + GPRInfo::callFrameRegister, CCallHelpers::stackPointerRegister); + + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + MacroAssemblerCodePtr linkCall = + linkBuffer.vm().getCTIStub(linkCallThunkGenerator).code(); + linkBuffer.link(slowCall, FunctionPtr(linkCall.executableAddress())); + + callLinkInfo->setCallLocations( + CodeLocationLabel(linkBuffer.locationOfNearCall(slowCall)), + CodeLocationLabel(linkBuffer.locationOf(targetToCheck)), + linkBuffer.locationOfNearCall(fastCall)); + }); + }); + + switch (node->op()) { + case TailCallForwardVarargs: + m_out.unreachable(); + break; + + default: + setJSValue(patchpoint); + break; + } + } + + void compileCallOrConstructVarargs() + { + Node* node = m_node; + LValue jsCallee = lowJSValue(m_node->child1()); + LValue thisArg = lowJSValue(m_node->child2()); + + LValue jsArguments = nullptr; + bool forwarding = false; + + switch (node->op()) { + case CallVarargs: + case TailCallVarargs: + case TailCallVarargsInlinedCaller: + case ConstructVarargs: + jsArguments = lowJSValue(node->child3()); + break; + case CallForwardVarargs: + case TailCallForwardVarargs: + case TailCallForwardVarargsInlinedCaller: + case ConstructForwardVarargs: + forwarding = true; + break; + default: + DFG_CRASH(m_graph, node, "bad node type"); + break; + } + + if (forwarding && m_node->child3() && m_node->child3()->op() == PhantomNewArrayWithSpread) { + compileCallOrConstructVarargsSpread(); + return; + } + + + PatchpointValue* patchpoint = m_out.patchpoint(Int64); + + // Append the forms of the arguments that we will use before any clobbering happens. + patchpoint->append(jsCallee, ValueRep::reg(GPRInfo::regT0)); + if (jsArguments) + patchpoint->appendSomeRegister(jsArguments); + patchpoint->appendSomeRegister(thisArg); + + if (!forwarding) { + // Now append them again for after clobbering. Note that the compiler may ask us to use a + // different register for the late for the post-clobbering version of the value. This gives + // the compiler a chance to spill these values without having to burn any callee-saves. + patchpoint->append(jsCallee, ValueRep::LateColdAny); + patchpoint->append(jsArguments, ValueRep::LateColdAny); + patchpoint->append(thisArg, ValueRep::LateColdAny); + } + + RefPtr<PatchpointExceptionHandle> exceptionHandle = + preparePatchpointForExceptions(patchpoint); + + patchpoint->append(m_tagMask, ValueRep::reg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::reg(GPRInfo::tagTypeNumberRegister)); + + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + patchpoint->clobberLate(RegisterSet::volatileRegistersForJSCall()); + patchpoint->resultConstraint = ValueRep::reg(GPRInfo::returnValueGPR); + + // This is the minimum amount of call arg area stack space that all JS->JS calls always have. + unsigned minimumJSCallAreaSize = + sizeof(CallerFrameAndPC) + + WTF::roundUpToMultipleOf(stackAlignmentBytes(), 5 * sizeof(EncodedJSValue)); + + m_proc.requestCallArgAreaSizeInBytes(minimumJSCallAreaSize); + + CodeOrigin codeOrigin = codeOriginDescriptionOfCallSite(); + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + CallSiteIndex callSiteIndex = + state->jitCode->common.addUniqueCallSiteIndex(codeOrigin); + + Box<CCallHelpers::JumpList> exceptions = + exceptionHandle->scheduleExitCreation(params)->jumps(jit); + + exceptionHandle->scheduleExitCreationForUnwind(params, callSiteIndex); + + jit.store32( + CCallHelpers::TrustedImm32(callSiteIndex.bits()), + CCallHelpers::tagFor(VirtualRegister(CallFrameSlot::argumentCount))); + + CallLinkInfo* callLinkInfo = jit.codeBlock()->addCallLinkInfo(); + CallVarargsData* data = node->callVarargsData(); + + unsigned argIndex = 1; + GPRReg calleeGPR = params[argIndex++].gpr(); + ASSERT(calleeGPR == GPRInfo::regT0); + GPRReg argumentsGPR = jsArguments ? params[argIndex++].gpr() : InvalidGPRReg; + GPRReg thisGPR = params[argIndex++].gpr(); + + B3::ValueRep calleeLateRep; + B3::ValueRep argumentsLateRep; + B3::ValueRep thisLateRep; + if (!forwarding) { + // If we're not forwarding then we'll need callee, arguments, and this after we + // have potentially clobbered calleeGPR, argumentsGPR, and thisGPR. Our technique + // for this is to supply all of those operands as late uses in addition to + // specifying them as early uses. It's possible that the late use uses a spill + // while the early use uses a register, and it's possible for the late and early + // uses to use different registers. We do know that the late uses interfere with + // all volatile registers and so won't use those, but the early uses may use + // volatile registers and in the case of calleeGPR, it's pinned to regT0 so it + // definitely will. + // + // Note that we have to be super careful with these. It's possible that these + // use a shuffling of the registers used for calleeGPR, argumentsGPR, and + // thisGPR. If that happens and we do for example: + // + // calleeLateRep.emitRestore(jit, calleeGPR); + // argumentsLateRep.emitRestore(jit, calleeGPR); + // + // Then we might end up with garbage if calleeLateRep.gpr() == argumentsGPR and + // argumentsLateRep.gpr() == calleeGPR. + // + // We do a variety of things to prevent this from happening. For example, we use + // argumentsLateRep before needing the other two and after we've already stopped + // using the *GPRs. Also, we pin calleeGPR to regT0, and rely on the fact that + // the *LateReps cannot use volatile registers (so they cannot be regT0, so + // calleeGPR != argumentsLateRep.gpr() and calleeGPR != thisLateRep.gpr()). + // + // An alternative would have been to just use early uses and early-clobber all + // volatile registers. But that would force callee, arguments, and this into + // callee-save registers even if we have to spill them. We don't want spilling to + // use up three callee-saves. + // + // TL;DR: The way we use LateReps here is dangerous and barely works but achieves + // some desirable performance properties, so don't mistake the cleverness for + // elegance. + calleeLateRep = params[argIndex++]; + argumentsLateRep = params[argIndex++]; + thisLateRep = params[argIndex++]; + } + + // Get some scratch registers. + RegisterSet usedRegisters; + usedRegisters.merge(RegisterSet::stackRegisters()); + usedRegisters.merge(RegisterSet::reservedHardwareRegisters()); + usedRegisters.merge(RegisterSet::calleeSaveRegisters()); + usedRegisters.set(calleeGPR); + if (argumentsGPR != InvalidGPRReg) + usedRegisters.set(argumentsGPR); + usedRegisters.set(thisGPR); + if (calleeLateRep.isReg()) + usedRegisters.set(calleeLateRep.reg()); + if (argumentsLateRep.isReg()) + usedRegisters.set(argumentsLateRep.reg()); + if (thisLateRep.isReg()) + usedRegisters.set(thisLateRep.reg()); + ScratchRegisterAllocator allocator(usedRegisters); + GPRReg scratchGPR1 = allocator.allocateScratchGPR(); + GPRReg scratchGPR2 = allocator.allocateScratchGPR(); + GPRReg scratchGPR3 = forwarding ? allocator.allocateScratchGPR() : InvalidGPRReg; + RELEASE_ASSERT(!allocator.numberOfReusedRegisters()); + + auto callWithExceptionCheck = [&] (void* callee) { + jit.move(CCallHelpers::TrustedImmPtr(callee), GPRInfo::nonPreservedNonArgumentGPR); + jit.call(GPRInfo::nonPreservedNonArgumentGPR); + exceptions->append(jit.emitExceptionCheck(AssemblyHelpers::NormalExceptionCheck, AssemblyHelpers::FarJumpWidth)); + }; + + unsigned originalStackHeight = params.proc().frameSize(); + + if (forwarding) { + jit.move(CCallHelpers::TrustedImm32(originalStackHeight / sizeof(EncodedJSValue)), scratchGPR2); + + CCallHelpers::JumpList slowCase; + InlineCallFrame* inlineCallFrame; + if (node->child3()) + inlineCallFrame = node->child3()->origin.semantic.inlineCallFrame; + else + inlineCallFrame = node->origin.semantic.inlineCallFrame; + + // emitSetupVarargsFrameFastCase modifies the stack pointer if it succeeds. + emitSetupVarargsFrameFastCase(jit, scratchGPR2, scratchGPR1, scratchGPR2, scratchGPR3, inlineCallFrame, data->firstVarArgOffset, slowCase); + + CCallHelpers::Jump done = jit.jump(); + slowCase.link(&jit); + jit.setupArgumentsExecState(); + callWithExceptionCheck(bitwise_cast<void*>(operationThrowStackOverflowForVarargs)); + jit.abortWithReason(DFGVarargsThrowingPathDidNotThrow); + + done.link(&jit); + } else { + jit.move(CCallHelpers::TrustedImm32(originalStackHeight / sizeof(EncodedJSValue)), scratchGPR1); + jit.setupArgumentsWithExecState(argumentsGPR, scratchGPR1, CCallHelpers::TrustedImm32(data->firstVarArgOffset)); + callWithExceptionCheck(bitwise_cast<void*>(operationSizeFrameForVarargs)); + + jit.move(GPRInfo::returnValueGPR, scratchGPR1); + jit.move(CCallHelpers::TrustedImm32(originalStackHeight / sizeof(EncodedJSValue)), scratchGPR2); + argumentsLateRep.emitRestore(jit, argumentsGPR); + emitSetVarargsFrame(jit, scratchGPR1, false, scratchGPR2, scratchGPR2); + jit.addPtr(CCallHelpers::TrustedImm32(-minimumJSCallAreaSize), scratchGPR2, CCallHelpers::stackPointerRegister); + jit.setupArgumentsWithExecState(scratchGPR2, argumentsGPR, CCallHelpers::TrustedImm32(data->firstVarArgOffset), scratchGPR1); + callWithExceptionCheck(bitwise_cast<void*>(operationSetupVarargsFrame)); + + jit.addPtr(CCallHelpers::TrustedImm32(sizeof(CallerFrameAndPC)), GPRInfo::returnValueGPR, CCallHelpers::stackPointerRegister); + + calleeLateRep.emitRestore(jit, GPRInfo::regT0); + + // This may not emit code if thisGPR got a callee-save. Also, we're guaranteed + // that thisGPR != GPRInfo::regT0 because regT0 interferes with it. + thisLateRep.emitRestore(jit, thisGPR); + } + + jit.store64(GPRInfo::regT0, CCallHelpers::calleeFrameSlot(CallFrameSlot::callee)); + jit.store64(thisGPR, CCallHelpers::calleeArgumentSlot(0)); + + CallLinkInfo::CallType callType; + if (node->op() == ConstructVarargs || node->op() == ConstructForwardVarargs) + callType = CallLinkInfo::ConstructVarargs; + else if (node->op() == TailCallVarargs || node->op() == TailCallForwardVarargs) + callType = CallLinkInfo::TailCallVarargs; + else + callType = CallLinkInfo::CallVarargs; + + bool isTailCall = CallLinkInfo::callModeFor(callType) == CallMode::Tail; + + CCallHelpers::DataLabelPtr targetToCheck; + CCallHelpers::Jump slowPath = jit.branchPtrWithPatch( + CCallHelpers::NotEqual, GPRInfo::regT0, targetToCheck, + CCallHelpers::TrustedImmPtr(0)); + + CCallHelpers::Call fastCall; + CCallHelpers::Jump done; + + if (isTailCall) { + jit.emitRestoreCalleeSaves(); + jit.prepareForTailCallSlow(); + fastCall = jit.nearTailCall(); + } else { + fastCall = jit.nearCall(); + done = jit.jump(); + } + + slowPath.link(&jit); + + if (isTailCall) + jit.emitRestoreCalleeSaves(); + jit.move(CCallHelpers::TrustedImmPtr(callLinkInfo), GPRInfo::regT2); + CCallHelpers::Call slowCall = jit.nearCall(); + + if (isTailCall) + jit.abortWithReason(JITDidReturnFromTailCall); + else + done.link(&jit); + + callLinkInfo->setUpCall(callType, node->origin.semantic, GPRInfo::regT0); + + jit.addPtr( + CCallHelpers::TrustedImm32(-originalStackHeight), + GPRInfo::callFrameRegister, CCallHelpers::stackPointerRegister); + + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + MacroAssemblerCodePtr linkCall = + linkBuffer.vm().getCTIStub(linkCallThunkGenerator).code(); + linkBuffer.link(slowCall, FunctionPtr(linkCall.executableAddress())); + + callLinkInfo->setCallLocations( + CodeLocationLabel(linkBuffer.locationOfNearCall(slowCall)), + CodeLocationLabel(linkBuffer.locationOf(targetToCheck)), + linkBuffer.locationOfNearCall(fastCall)); + }); + }); + + switch (node->op()) { + case TailCallVarargs: + case TailCallForwardVarargs: + m_out.unreachable(); + break; + + default: + setJSValue(patchpoint); + break; + } + } + + void compileCallEval() + { + Node* node = m_node; + unsigned numArgs = node->numChildren() - 1; + + LValue jsCallee = lowJSValue(m_graph.varArgChild(node, 0)); + + unsigned frameSize = (CallFrame::headerSizeInRegisters + numArgs) * sizeof(EncodedJSValue); + unsigned alignedFrameSize = WTF::roundUpToMultipleOf(stackAlignmentBytes(), frameSize); + + m_proc.requestCallArgAreaSizeInBytes(alignedFrameSize); + + Vector<ConstrainedValue> arguments; + arguments.append(ConstrainedValue(jsCallee, ValueRep::reg(GPRInfo::regT0))); + + auto addArgument = [&] (LValue value, VirtualRegister reg, int offset) { + intptr_t offsetFromSP = + (reg.offset() - CallerFrameAndPC::sizeInRegisters) * sizeof(EncodedJSValue) + offset; + arguments.append(ConstrainedValue(value, ValueRep::stackArgument(offsetFromSP))); + }; + + addArgument(jsCallee, VirtualRegister(CallFrameSlot::callee), 0); + addArgument(m_out.constInt32(numArgs), VirtualRegister(CallFrameSlot::argumentCount), PayloadOffset); + for (unsigned i = 0; i < numArgs; ++i) + addArgument(lowJSValue(m_graph.varArgChild(node, 1 + i)), virtualRegisterForArgument(i), 0); + + PatchpointValue* patchpoint = m_out.patchpoint(Int64); + patchpoint->appendVector(arguments); + + RefPtr<PatchpointExceptionHandle> exceptionHandle = preparePatchpointForExceptions(patchpoint); + + patchpoint->append(m_tagMask, ValueRep::reg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::reg(GPRInfo::tagTypeNumberRegister)); + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + patchpoint->clobberLate(RegisterSet::volatileRegistersForJSCall()); + patchpoint->resultConstraint = ValueRep::reg(GPRInfo::returnValueGPR); + + CodeOrigin codeOrigin = codeOriginDescriptionOfCallSite(); + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + CallSiteIndex callSiteIndex = state->jitCode->common.addUniqueCallSiteIndex(codeOrigin); + + Box<CCallHelpers::JumpList> exceptions = exceptionHandle->scheduleExitCreation(params)->jumps(jit); + + exceptionHandle->scheduleExitCreationForUnwind(params, callSiteIndex); + + jit.store32( + CCallHelpers::TrustedImm32(callSiteIndex.bits()), + CCallHelpers::tagFor(VirtualRegister(CallFrameSlot::argumentCount))); + + CallLinkInfo* callLinkInfo = jit.codeBlock()->addCallLinkInfo(); + callLinkInfo->setUpCall(CallLinkInfo::Call, node->origin.semantic, GPRInfo::regT0); + + jit.addPtr(CCallHelpers::TrustedImm32(-static_cast<ptrdiff_t>(sizeof(CallerFrameAndPC))), CCallHelpers::stackPointerRegister, GPRInfo::regT1); + jit.storePtr(GPRInfo::callFrameRegister, CCallHelpers::Address(GPRInfo::regT1, CallFrame::callerFrameOffset())); + + // Now we need to make room for: + // - The caller frame and PC for a call to operationCallEval. + // - Potentially two arguments on the stack. + unsigned requiredBytes = sizeof(CallerFrameAndPC) + sizeof(ExecState*) * 2; + requiredBytes = WTF::roundUpToMultipleOf(stackAlignmentBytes(), requiredBytes); + jit.subPtr(CCallHelpers::TrustedImm32(requiredBytes), CCallHelpers::stackPointerRegister); + jit.setupArgumentsWithExecState(GPRInfo::regT1); + jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationCallEval)), GPRInfo::nonPreservedNonArgumentGPR); + jit.call(GPRInfo::nonPreservedNonArgumentGPR); + exceptions->append(jit.emitExceptionCheck(AssemblyHelpers::NormalExceptionCheck, AssemblyHelpers::FarJumpWidth)); + + CCallHelpers::Jump done = jit.branchTest64(CCallHelpers::NonZero, GPRInfo::returnValueGPR); + + jit.addPtr(CCallHelpers::TrustedImm32(requiredBytes), CCallHelpers::stackPointerRegister); + jit.load64(CCallHelpers::calleeFrameSlot(CallFrameSlot::callee), GPRInfo::regT0); + jit.emitDumbVirtualCall(callLinkInfo); + + done.link(&jit); + jit.addPtr( + CCallHelpers::TrustedImm32(-params.proc().frameSize()), + GPRInfo::callFrameRegister, CCallHelpers::stackPointerRegister); + }); + + setJSValue(patchpoint); + } + + void compileLoadVarargs() + { + LoadVarargsData* data = m_node->loadVarargsData(); + LValue jsArguments = lowJSValue(m_node->child1()); + + LValue length = vmCall( + Int32, m_out.operation(operationSizeOfVarargs), m_callFrame, jsArguments, + m_out.constInt32(data->offset)); + + // FIXME: There is a chance that we will call an effectful length property twice. This is safe + // from the standpoint of the VM's integrity, but it's subtly wrong from a spec compliance + // standpoint. The best solution would be one where we can exit *into* the op_call_varargs right + // past the sizing. + // https://bugs.webkit.org/show_bug.cgi?id=141448 + + LValue lengthIncludingThis = m_out.add(length, m_out.int32One); + speculate( + VarargsOverflow, noValue(), nullptr, + m_out.above(lengthIncludingThis, m_out.constInt32(data->limit))); + + m_out.store32(lengthIncludingThis, payloadFor(data->machineCount)); + + // FIXME: This computation is rather silly. If operationLaodVarargs just took a pointer instead + // of a VirtualRegister, we wouldn't have to do this. + // https://bugs.webkit.org/show_bug.cgi?id=141660 + LValue machineStart = m_out.lShr( + m_out.sub(addressFor(data->machineStart.offset()).value(), m_callFrame), + m_out.constIntPtr(3)); + + vmCall( + Void, m_out.operation(operationLoadVarargs), m_callFrame, + m_out.castToInt32(machineStart), jsArguments, m_out.constInt32(data->offset), + length, m_out.constInt32(data->mandatoryMinimum)); + } + + void compileForwardVarargs() + { + if (m_node->child1() && m_node->child1()->op() == PhantomNewArrayWithSpread) { + compileForwardVarargsWithSpread(); + return; + } + + LoadVarargsData* data = m_node->loadVarargsData(); + InlineCallFrame* inlineCallFrame; + if (m_node->child1()) + inlineCallFrame = m_node->child1()->origin.semantic.inlineCallFrame; + else + inlineCallFrame = m_node->origin.semantic.inlineCallFrame; + + LValue length = nullptr; + LValue lengthIncludingThis = nullptr; + ArgumentsLength argumentsLength = getArgumentsLength(inlineCallFrame); + if (argumentsLength.isKnown) { + unsigned knownLength = argumentsLength.known; + if (knownLength >= data->offset) + knownLength = knownLength - data->offset; + else + knownLength = 0; + length = m_out.constInt32(knownLength); + lengthIncludingThis = m_out.constInt32(knownLength + 1); + } else { + // We need to perform the same logical operation as the code above, but through dynamic operations. + if (!data->offset) + length = argumentsLength.value; + else { + LBasicBlock isLarger = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock smallerOrEqualLengthResult = m_out.anchor(m_out.constInt32(0)); + m_out.branch( + m_out.above(argumentsLength.value, m_out.constInt32(data->offset)), unsure(isLarger), unsure(continuation)); + LBasicBlock lastNext = m_out.appendTo(isLarger, continuation); + ValueFromBlock largerLengthResult = m_out.anchor(m_out.sub(argumentsLength.value, m_out.constInt32(data->offset))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + length = m_out.phi(Int32, smallerOrEqualLengthResult, largerLengthResult); + } + lengthIncludingThis = m_out.add(length, m_out.constInt32(1)); + } + + speculate( + VarargsOverflow, noValue(), nullptr, + m_out.above(lengthIncludingThis, m_out.constInt32(data->limit))); + + m_out.store32(lengthIncludingThis, payloadFor(data->machineCount)); + + unsigned numberOfArgumentsToSkip = data->offset; + LValue sourceStart = getArgumentsStart(inlineCallFrame, numberOfArgumentsToSkip); + LValue targetStart = addressFor(data->machineStart).value(); + + LBasicBlock undefinedLoop = m_out.newBlock(); + LBasicBlock mainLoopEntry = m_out.newBlock(); + LBasicBlock mainLoop = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue lengthAsPtr = m_out.zeroExtPtr(length); + LValue loopBoundValue = m_out.constIntPtr(data->mandatoryMinimum); + ValueFromBlock loopBound = m_out.anchor(loopBoundValue); + m_out.branch( + m_out.above(loopBoundValue, lengthAsPtr), unsure(undefinedLoop), unsure(mainLoopEntry)); + + LBasicBlock lastNext = m_out.appendTo(undefinedLoop, mainLoopEntry); + LValue previousIndex = m_out.phi(pointerType(), loopBound); + LValue currentIndex = m_out.sub(previousIndex, m_out.intPtrOne); + m_out.store64( + m_out.constInt64(JSValue::encode(jsUndefined())), + m_out.baseIndex(m_heaps.variables, targetStart, currentIndex)); + ValueFromBlock nextIndex = m_out.anchor(currentIndex); + m_out.addIncomingToPhi(previousIndex, nextIndex); + m_out.branch( + m_out.above(currentIndex, lengthAsPtr), unsure(undefinedLoop), unsure(mainLoopEntry)); + + m_out.appendTo(mainLoopEntry, mainLoop); + loopBound = m_out.anchor(lengthAsPtr); + m_out.branch(m_out.notNull(lengthAsPtr), unsure(mainLoop), unsure(continuation)); + + m_out.appendTo(mainLoop, continuation); + previousIndex = m_out.phi(pointerType(), loopBound); + currentIndex = m_out.sub(previousIndex, m_out.intPtrOne); + LValue value = m_out.load64( + m_out.baseIndex(m_heaps.variables, sourceStart, currentIndex)); + m_out.store64(value, m_out.baseIndex(m_heaps.variables, targetStart, currentIndex)); + nextIndex = m_out.anchor(currentIndex); + m_out.addIncomingToPhi(previousIndex, nextIndex); + m_out.branch(m_out.isNull(currentIndex), unsure(continuation), unsure(mainLoop)); + + m_out.appendTo(continuation, lastNext); + } + + LValue getSpreadLengthFromInlineCallFrame(InlineCallFrame* inlineCallFrame, unsigned numberOfArgumentsToSkip) + { + ArgumentsLength argumentsLength = getArgumentsLength(inlineCallFrame); + if (argumentsLength.isKnown) { + unsigned knownLength = argumentsLength.known; + if (knownLength >= numberOfArgumentsToSkip) + knownLength = knownLength - numberOfArgumentsToSkip; + else + knownLength = 0; + return m_out.constInt32(knownLength); + } + + + // We need to perform the same logical operation as the code above, but through dynamic operations. + if (!numberOfArgumentsToSkip) + return argumentsLength.value; + + LBasicBlock isLarger = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock smallerOrEqualLengthResult = m_out.anchor(m_out.constInt32(0)); + m_out.branch( + m_out.above(argumentsLength.value, m_out.constInt32(numberOfArgumentsToSkip)), unsure(isLarger), unsure(continuation)); + LBasicBlock lastNext = m_out.appendTo(isLarger, continuation); + ValueFromBlock largerLengthResult = m_out.anchor(m_out.sub(argumentsLength.value, m_out.constInt32(numberOfArgumentsToSkip))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(Int32, smallerOrEqualLengthResult, largerLengthResult); + } + + void compileForwardVarargsWithSpread() + { + HashMap<InlineCallFrame*, LValue, WTF::DefaultHash<InlineCallFrame*>::Hash, WTF::NullableHashTraits<InlineCallFrame*>> cachedSpreadLengths; + + Node* arrayWithSpread = m_node->child1().node(); + RELEASE_ASSERT(arrayWithSpread->op() == PhantomNewArrayWithSpread); + BitVector* bitVector = arrayWithSpread->bitVector(); + + unsigned numberOfStaticArguments = 0; + Vector<LValue, 2> spreadLengths; + for (unsigned i = 0; i < arrayWithSpread->numChildren(); i++) { + if (bitVector->get(i)) { + Node* child = m_graph.varArgChild(arrayWithSpread, i).node(); + ASSERT(child->op() == PhantomSpread); + ASSERT(child->child1()->op() == PhantomCreateRest); + InlineCallFrame* inlineCallFrame = child->child1()->origin.semantic.inlineCallFrame; + LValue length = cachedSpreadLengths.ensure(inlineCallFrame, [&] () { + return getSpreadLengthFromInlineCallFrame(inlineCallFrame, child->child1()->numberOfArgumentsToSkip()); + }).iterator->value; + spreadLengths.append(length); + } else + ++numberOfStaticArguments; + } + + LValue lengthIncludingThis = m_out.constInt32(1 + numberOfStaticArguments); + for (LValue length : spreadLengths) + lengthIncludingThis = m_out.add(lengthIncludingThis, length); + + LoadVarargsData* data = m_node->loadVarargsData(); + speculate( + VarargsOverflow, noValue(), nullptr, + m_out.above(lengthIncludingThis, m_out.constInt32(data->limit))); + + m_out.store32(lengthIncludingThis, payloadFor(data->machineCount)); + + LValue targetStart = addressFor(data->machineStart).value(); + LValue storeIndex = m_out.constIntPtr(0); + for (unsigned i = 0; i < arrayWithSpread->numChildren(); i++) { + if (bitVector->get(i)) { + Node* child = m_graph.varArgChild(arrayWithSpread, i).node(); + RELEASE_ASSERT(child->op() == PhantomSpread); + RELEASE_ASSERT(child->child1()->op() == PhantomCreateRest); + InlineCallFrame* inlineCallFrame = child->child1()->origin.semantic.inlineCallFrame; + + LValue sourceStart = getArgumentsStart(inlineCallFrame, child->child1()->numberOfArgumentsToSkip()); + LValue spreadLength = m_out.zeroExtPtr(cachedSpreadLengths.get(inlineCallFrame)); + + LBasicBlock loop = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + ValueFromBlock startLoadIndex = m_out.anchor(m_out.constIntPtr(0)); + ValueFromBlock startStoreIndex = m_out.anchor(storeIndex); + ValueFromBlock startStoreIndexForEnd = m_out.anchor(storeIndex); + + m_out.branch(m_out.isZero64(spreadLength), unsure(continuation), unsure(loop)); + + LBasicBlock lastNext = m_out.appendTo(loop, continuation); + LValue loopStoreIndex = m_out.phi(Int64, startStoreIndex); + LValue loadIndex = m_out.phi(Int64, startLoadIndex); + LValue value = m_out.load64( + m_out.baseIndex(m_heaps.variables, sourceStart, loadIndex)); + m_out.store64(value, m_out.baseIndex(m_heaps.variables, targetStart, loopStoreIndex)); + LValue nextLoadIndex = m_out.add(m_out.constIntPtr(1), loadIndex); + m_out.addIncomingToPhi(loadIndex, m_out.anchor(nextLoadIndex)); + LValue nextStoreIndex = m_out.add(m_out.constIntPtr(1), loopStoreIndex); + m_out.addIncomingToPhi(loopStoreIndex, m_out.anchor(nextStoreIndex)); + ValueFromBlock loopStoreIndexForEnd = m_out.anchor(nextStoreIndex); + m_out.branch(m_out.below(nextLoadIndex, spreadLength), unsure(loop), unsure(continuation)); + + m_out.appendTo(continuation, lastNext); + storeIndex = m_out.phi(Int64, startStoreIndexForEnd, loopStoreIndexForEnd); + } else { + LValue value = lowJSValue(m_graph.varArgChild(arrayWithSpread, i)); + m_out.store64(value, m_out.baseIndex(m_heaps.variables, targetStart, storeIndex)); + storeIndex = m_out.add(m_out.constIntPtr(1), storeIndex); + } + } + + LBasicBlock undefinedLoop = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock startStoreIndex = m_out.anchor(storeIndex); + LValue loopBoundValue = m_out.constIntPtr(data->mandatoryMinimum); + m_out.branch(m_out.below(storeIndex, loopBoundValue), + unsure(undefinedLoop), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(undefinedLoop, continuation); + LValue loopStoreIndex = m_out.phi(Int64, startStoreIndex); + m_out.store64( + m_out.constInt64(JSValue::encode(jsUndefined())), + m_out.baseIndex(m_heaps.variables, targetStart, loopStoreIndex)); + LValue nextIndex = m_out.add(loopStoreIndex, m_out.constIntPtr(1)); + m_out.addIncomingToPhi(loopStoreIndex, m_out.anchor(nextIndex)); + m_out.branch( + m_out.below(nextIndex, loopBoundValue), unsure(undefinedLoop), unsure(continuation)); + + m_out.appendTo(continuation, lastNext); + } + + void compileJump() + { + m_out.jump(lowBlock(m_node->targetBlock())); + } + + void compileBranch() + { + m_out.branch( + boolify(m_node->child1()), + WeightedTarget( + lowBlock(m_node->branchData()->taken.block), + m_node->branchData()->taken.count), + WeightedTarget( + lowBlock(m_node->branchData()->notTaken.block), + m_node->branchData()->notTaken.count)); + } + + void compileSwitch() + { + SwitchData* data = m_node->switchData(); + switch (data->kind) { + case SwitchImm: { + Vector<ValueFromBlock, 2> intValues; + LBasicBlock switchOnInts = m_out.newBlock(); + + LBasicBlock lastNext = m_out.appendTo(m_out.m_block, switchOnInts); + + switch (m_node->child1().useKind()) { + case Int32Use: { + intValues.append(m_out.anchor(lowInt32(m_node->child1()))); + m_out.jump(switchOnInts); + break; + } + + case UntypedUse: { + LBasicBlock isInt = m_out.newBlock(); + LBasicBlock isNotInt = m_out.newBlock(); + LBasicBlock isDouble = m_out.newBlock(); + + LValue boxedValue = lowJSValue(m_node->child1()); + m_out.branch(isNotInt32(boxedValue), unsure(isNotInt), unsure(isInt)); + + LBasicBlock innerLastNext = m_out.appendTo(isInt, isNotInt); + + intValues.append(m_out.anchor(unboxInt32(boxedValue))); + m_out.jump(switchOnInts); + + m_out.appendTo(isNotInt, isDouble); + m_out.branch( + isCellOrMisc(boxedValue, provenType(m_node->child1())), + usually(lowBlock(data->fallThrough.block)), rarely(isDouble)); + + m_out.appendTo(isDouble, innerLastNext); + LValue doubleValue = unboxDouble(boxedValue); + LValue intInDouble = m_out.doubleToInt(doubleValue); + intValues.append(m_out.anchor(intInDouble)); + m_out.branch( + m_out.doubleEqual(m_out.intToDouble(intInDouble), doubleValue), + unsure(switchOnInts), unsure(lowBlock(data->fallThrough.block))); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + + m_out.appendTo(switchOnInts, lastNext); + buildSwitch(data, Int32, m_out.phi(Int32, intValues)); + return; + } + + case SwitchChar: { + LValue stringValue; + + // FIXME: We should use something other than unsure() for the branch weight + // of the fallThrough block. The main challenge is just that we have multiple + // branches to fallThrough but a single count, so we would need to divvy it up + // among the different lowered branches. + // https://bugs.webkit.org/show_bug.cgi?id=129082 + + switch (m_node->child1().useKind()) { + case StringUse: { + stringValue = lowString(m_node->child1()); + break; + } + + case UntypedUse: { + LValue unboxedValue = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = m_out.newBlock(); + LBasicBlock isStringCase = m_out.newBlock(); + + m_out.branch( + isNotCell(unboxedValue, provenType(m_node->child1())), + unsure(lowBlock(data->fallThrough.block)), unsure(isCellCase)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, isStringCase); + LValue cellValue = unboxedValue; + m_out.branch( + isNotString(cellValue, provenType(m_node->child1())), + unsure(lowBlock(data->fallThrough.block)), unsure(isStringCase)); + + m_out.appendTo(isStringCase, lastNext); + stringValue = cellValue; + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + + LBasicBlock lengthIs1 = m_out.newBlock(); + LBasicBlock needResolution = m_out.newBlock(); + LBasicBlock resolved = m_out.newBlock(); + LBasicBlock is8Bit = m_out.newBlock(); + LBasicBlock is16Bit = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + m_out.notEqual( + m_out.load32NonNegative(stringValue, m_heaps.JSString_length), + m_out.int32One), + unsure(lowBlock(data->fallThrough.block)), unsure(lengthIs1)); + + LBasicBlock lastNext = m_out.appendTo(lengthIs1, needResolution); + Vector<ValueFromBlock, 2> values; + LValue fastValue = m_out.loadPtr(stringValue, m_heaps.JSString_value); + values.append(m_out.anchor(fastValue)); + m_out.branch(m_out.isNull(fastValue), rarely(needResolution), usually(resolved)); + + m_out.appendTo(needResolution, resolved); + values.append(m_out.anchor( + vmCall(pointerType(), m_out.operation(operationResolveRope), m_callFrame, stringValue))); + m_out.jump(resolved); + + m_out.appendTo(resolved, is8Bit); + LValue value = m_out.phi(pointerType(), values); + LValue characterData = m_out.loadPtr(value, m_heaps.StringImpl_data); + m_out.branch( + m_out.testNonZero32( + m_out.load32(value, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIs8Bit())), + unsure(is8Bit), unsure(is16Bit)); + + Vector<ValueFromBlock, 2> characters; + m_out.appendTo(is8Bit, is16Bit); + characters.append(m_out.anchor(m_out.load8ZeroExt32(characterData, m_heaps.characters8[0]))); + m_out.jump(continuation); + + m_out.appendTo(is16Bit, continuation); + characters.append(m_out.anchor(m_out.load16ZeroExt32(characterData, m_heaps.characters16[0]))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + buildSwitch(data, Int32, m_out.phi(Int32, characters)); + return; + } + + case SwitchString: { + switch (m_node->child1().useKind()) { + case StringIdentUse: { + LValue stringImpl = lowStringIdent(m_node->child1()); + + Vector<SwitchCase> cases; + for (unsigned i = 0; i < data->cases.size(); ++i) { + LValue value = m_out.constIntPtr(data->cases[i].value.stringImpl()); + LBasicBlock block = lowBlock(data->cases[i].target.block); + Weight weight = Weight(data->cases[i].target.count); + cases.append(SwitchCase(value, block, weight)); + } + + m_out.switchInstruction( + stringImpl, cases, lowBlock(data->fallThrough.block), + Weight(data->fallThrough.count)); + return; + } + + case StringUse: { + switchString(data, lowString(m_node->child1())); + return; + } + + case UntypedUse: { + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellBlock = m_out.newBlock(); + LBasicBlock isStringBlock = m_out.newBlock(); + + m_out.branch( + isCell(value, provenType(m_node->child1())), + unsure(isCellBlock), unsure(lowBlock(data->fallThrough.block))); + + LBasicBlock lastNext = m_out.appendTo(isCellBlock, isStringBlock); + + m_out.branch( + isString(value, provenType(m_node->child1())), + unsure(isStringBlock), unsure(lowBlock(data->fallThrough.block))); + + m_out.appendTo(isStringBlock, lastNext); + + switchString(data, value); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + return; + } + return; + } + + case SwitchCell: { + LValue cell; + switch (m_node->child1().useKind()) { + case CellUse: { + cell = lowCell(m_node->child1()); + break; + } + + case UntypedUse: { + LValue value = lowJSValue(m_node->child1()); + LBasicBlock cellCase = m_out.newBlock(); + m_out.branch( + isCell(value, provenType(m_node->child1())), + unsure(cellCase), unsure(lowBlock(data->fallThrough.block))); + m_out.appendTo(cellCase); + cell = value; + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + return; + } + + buildSwitch(m_node->switchData(), pointerType(), cell); + return; + } } + + DFG_CRASH(m_graph, m_node, "Bad switch kind"); + } + + void compileReturn() + { + m_out.ret(lowJSValue(m_node->child1())); + } + + void compileForceOSRExit() + { + terminate(InadequateCoverage); + } + + void compileThrow() + { + terminate(Uncountable); + } + + void compileInvalidationPoint() + { + if (verboseCompilationEnabled()) + dataLog(" Invalidation point with availability: ", availabilityMap(), "\n"); + + DFG_ASSERT(m_graph, m_node, m_origin.exitOK); + + PatchpointValue* patchpoint = m_out.patchpoint(Void); + OSRExitDescriptor* descriptor = appendOSRExitDescriptor(noValue(), nullptr); + NodeOrigin origin = m_origin; + patchpoint->appendColdAnys(buildExitArguments(descriptor, origin.forExit, noValue())); + + State* state = &m_ftlState; + + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) { + // The MacroAssembler knows more about this than B3 does. The watchpointLabel() method + // will ensure that this is followed by a nop shadow but only when this is actually + // necessary. + CCallHelpers::Label label = jit.watchpointLabel(); + + RefPtr<OSRExitHandle> handle = descriptor->emitOSRExitLater( + *state, UncountableInvalidation, origin, params); + + RefPtr<JITCode> jitCode = state->jitCode.get(); + + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + JumpReplacement jumpReplacement( + linkBuffer.locationOf(label), + linkBuffer.locationOf(handle->label)); + jitCode->common.jumpReplacements.append(jumpReplacement); + }); + }); + + // Set some obvious things. + patchpoint->effects.terminal = false; + patchpoint->effects.writesLocalState = false; + patchpoint->effects.readsLocalState = false; + + // This is how we tell B3 about the possibility of jump replacement. + patchpoint->effects.exitsSideways = true; + + // It's not possible for some prior branch to determine the safety of this operation. It's always + // fine to execute this on some path that wouldn't have originally executed it before + // optimization. + patchpoint->effects.controlDependent = false; + + // If this falls through then it won't write anything. + patchpoint->effects.writes = HeapRange(); + + // When this abruptly terminates, it could read any heap location. + patchpoint->effects.reads = HeapRange::top(); + } + + void compileIsEmpty() + { + setBoolean(m_out.isZero64(lowJSValue(m_node->child1()))); + } + + void compileIsUndefined() + { + setBoolean(equalNullOrUndefined(m_node->child1(), AllCellsAreFalse, EqualUndefined)); + } + + void compileIsBoolean() + { + setBoolean(isBoolean(lowJSValue(m_node->child1()), provenType(m_node->child1()))); + } + + void compileIsNumber() + { + setBoolean(isNumber(lowJSValue(m_node->child1()), provenType(m_node->child1()))); + } + + void compileIsCellWithType() + { + if (m_node->child1().useKind() == UntypedUse) { + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isCell(value, provenType(m_node->child1())), unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, continuation); + ValueFromBlock cellResult = m_out.anchor(isCellWithType(value, m_node->queriedType(), m_node->speculatedTypeForQuery(), provenType(m_node->child1()))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, notCellResult, cellResult)); + } else { + ASSERT(m_node->child1().useKind() == CellUse); + setBoolean(isCellWithType(lowCell(m_node->child1()), m_node->queriedType(), m_node->speculatedTypeForQuery(), provenType(m_node->child1()))); + } + } + + void compileIsObject() + { + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isCell(value, provenType(m_node->child1())), unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, continuation); + ValueFromBlock cellResult = m_out.anchor(isObject(value, provenType(m_node->child1()))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, notCellResult, cellResult)); + } + + LValue wangsInt64Hash(LValue input) + { + // key += ~(key << 32); + LValue key = input; + LValue temp = key; + temp = m_out.shl(temp, m_out.constInt32(32)); + temp = m_out.bitNot(temp); + key = m_out.add(key, temp); + // key ^= (key >> 22); + temp = key; + temp = m_out.lShr(temp, m_out.constInt32(22)); + key = m_out.bitXor(key, temp); + // key += ~(key << 13); + temp = key; + temp = m_out.shl(temp, m_out.constInt32(13)); + temp = m_out.bitNot(temp); + key = m_out.add(key, temp); + // key ^= (key >> 8); + temp = key; + temp = m_out.lShr(temp, m_out.constInt32(8)); + key = m_out.bitXor(key, temp); + // key += (key << 3); + temp = key; + temp = m_out.shl(temp, m_out.constInt32(3)); + key = m_out.add(key, temp); + // key ^= (key >> 15); + temp = key; + temp = m_out.lShr(temp, m_out.constInt32(15)); + key = m_out.bitXor(key, temp); + // key += ~(key << 27); + temp = key; + temp = m_out.shl(temp, m_out.constInt32(27)); + temp = m_out.bitNot(temp); + key = m_out.add(key, temp); + // key ^= (key >> 31); + temp = key; + temp = m_out.lShr(temp, m_out.constInt32(31)); + key = m_out.bitXor(key, temp); + key = m_out.castToInt32(key); + + return key; + } + + LValue mapHashString(LValue string) + { + LBasicBlock nonEmptyStringCase = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue stringImpl = m_out.loadPtr(string, m_heaps.JSString_value); + m_out.branch( + m_out.equal(stringImpl, m_out.constIntPtr(0)), unsure(slowCase), unsure(nonEmptyStringCase)); + + LBasicBlock lastNext = m_out.appendTo(nonEmptyStringCase, slowCase); + LValue hash = m_out.lShr(m_out.load32(stringImpl, m_heaps.StringImpl_hashAndFlags), m_out.constInt32(StringImpl::s_flagCount)); + ValueFromBlock nonEmptyStringHashResult = m_out.anchor(hash); + m_out.branch(m_out.equal(hash, m_out.constInt32(0)), + unsure(slowCase), unsure(continuation)); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowResult = m_out.anchor( + vmCall(Int32, m_out.operation(operationMapHash), m_callFrame, string)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(Int32, slowResult, nonEmptyStringHashResult); + } + + void compileMapHash() + { + switch (m_node->child1().useKind()) { + case BooleanUse: + case Int32Use: + case SymbolUse: + case ObjectUse: { + LValue key = lowJSValue(m_node->child1(), ManualOperandSpeculation); + speculate(m_node->child1()); + setInt32(wangsInt64Hash(key)); + return; + } + + case CellUse: { + LBasicBlock isString = m_out.newBlock(); + LBasicBlock notString = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue value = lowCell(m_node->child1()); + LValue isStringValue = m_out.equal(m_out.load8ZeroExt32(value, m_heaps.JSCell_typeInfoType), m_out.constInt32(StringType)); + m_out.branch( + isStringValue, unsure(isString), unsure(notString)); + + LBasicBlock lastNext = m_out.appendTo(isString, notString); + ValueFromBlock stringResult = m_out.anchor(mapHashString(value)); + m_out.jump(continuation); + + m_out.appendTo(notString, continuation); + ValueFromBlock notStringResult = m_out.anchor(wangsInt64Hash(value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setInt32(m_out.phi(Int32, stringResult, notStringResult)); + return; + } + + case StringUse: { + LValue string = lowString(m_node->child1()); + setInt32(mapHashString(string)); + return; + } + + default: + RELEASE_ASSERT(m_node->child1().useKind() == UntypedUse); + break; + } + + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = m_out.newBlock(); + LBasicBlock notCell = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock straightHash = m_out.newBlock(); + LBasicBlock isNumberCase = m_out.newBlock(); + LBasicBlock isStringCase = m_out.newBlock(); + LBasicBlock nonEmptyStringCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + isCell(value, provenType(m_node->child1())), unsure(isCellCase), unsure(notCell)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, isStringCase); + LValue isString = m_out.equal(m_out.load8ZeroExt32(value, m_heaps.JSCell_typeInfoType), m_out.constInt32(StringType)); + m_out.branch( + isString, unsure(isStringCase), unsure(straightHash)); + + m_out.appendTo(isStringCase, nonEmptyStringCase); + LValue stringImpl = m_out.loadPtr(value, m_heaps.JSString_value); + m_out.branch( + m_out.equal(stringImpl, m_out.constIntPtr(0)), rarely(slowCase), usually(nonEmptyStringCase)); + + m_out.appendTo(nonEmptyStringCase, notCell); + LValue hash = m_out.lShr(m_out.load32(stringImpl, m_heaps.StringImpl_hashAndFlags), m_out.constInt32(StringImpl::s_flagCount)); + ValueFromBlock nonEmptyStringHashResult = m_out.anchor(hash); + m_out.branch(m_out.equal(hash, m_out.constInt32(0)), + unsure(slowCase), unsure(continuation)); + + m_out.appendTo(notCell, isNumberCase); + m_out.branch( + isNumber(value), unsure(isNumberCase), unsure(straightHash)); + + m_out.appendTo(isNumberCase, straightHash); + m_out.branch( + isInt32(value), unsure(straightHash), unsure(slowCase)); + + m_out.appendTo(straightHash, slowCase); + ValueFromBlock fastResult = m_out.anchor(wangsInt64Hash(value)); + m_out.jump(continuation); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowResult = m_out.anchor( + vmCall(Int32, m_out.operation(operationMapHash), m_callFrame, value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setInt32(m_out.phi(Int32, fastResult, slowResult, nonEmptyStringHashResult)); + } + + void compileGetMapBucket() + { + LBasicBlock loopStart = m_out.newBlock(); + LBasicBlock loopAround = m_out.newBlock(); + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock notPresentInTable = m_out.newBlock(); + LBasicBlock notEmptyValue = m_out.newBlock(); + LBasicBlock notDeletedValue = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(loopStart); + + LValue map; + if (m_node->child1().useKind() == MapObjectUse) + map = lowMapObject(m_node->child1()); + else if (m_node->child1().useKind() == SetObjectUse) + map = lowSetObject(m_node->child1()); + else + RELEASE_ASSERT_NOT_REACHED(); + + LValue key = lowJSValue(m_node->child2(), ManualOperandSpeculation); + if (m_node->child2().useKind() != UntypedUse) + speculate(m_node->child2()); + + LValue hash = lowInt32(m_node->child3()); + + LValue hashMapImpl = m_out.loadPtr(map, m_node->child1().useKind() == MapObjectUse ? m_heaps.JSMap_hashMapImpl : m_heaps.JSSet_hashMapImpl); + LValue buffer = m_out.loadPtr(hashMapImpl, m_heaps.HashMapImpl_buffer); + LValue mask = m_out.sub(m_out.load32(hashMapImpl, m_heaps.HashMapImpl_capacity), m_out.int32One); + + ValueFromBlock indexStart = m_out.anchor(hash); + m_out.jump(loopStart); + + m_out.appendTo(loopStart, notEmptyValue); + LValue unmaskedIndex = m_out.phi(Int32, indexStart); + LValue index = m_out.bitAnd(mask, unmaskedIndex); + LValue hashMapBucket = m_out.load64(m_out.baseIndex(m_heaps.properties.atAnyNumber(), buffer, m_out.zeroExt(index, Int64), ScaleEight)); + ValueFromBlock bucketResult = m_out.anchor(hashMapBucket); + m_out.branch(m_out.equal(hashMapBucket, m_out.constIntPtr(bitwise_cast<intptr_t>(HashMapImpl<HashMapBucket<HashMapBucketDataKey>>::emptyValue()))), + unsure(notPresentInTable), unsure(notEmptyValue)); + + m_out.appendTo(notEmptyValue, notDeletedValue); + m_out.branch(m_out.equal(hashMapBucket, m_out.constIntPtr(bitwise_cast<intptr_t>(HashMapImpl<HashMapBucket<HashMapBucketDataKey>>::deletedValue()))), + unsure(loopAround), unsure(notDeletedValue)); + + m_out.appendTo(notDeletedValue, loopAround); + LValue bucketKey = m_out.load64(hashMapBucket, m_heaps.HashMapBucket_key); + + // Perform Object.is() + switch (m_node->child2().useKind()) { + case BooleanUse: + case Int32Use: + case SymbolUse: + case ObjectUse: { + m_out.branch(m_out.equal(key, bucketKey), + unsure(continuation), unsure(loopAround)); + break; + } + case StringUse: { + LBasicBlock notBitEqual = m_out.newBlock(); + LBasicBlock bucketKeyIsCell = m_out.newBlock(); + + m_out.branch(m_out.equal(key, bucketKey), + unsure(continuation), unsure(notBitEqual)); + + m_out.appendTo(notBitEqual, bucketKeyIsCell); + m_out.branch(isCell(bucketKey), + unsure(bucketKeyIsCell), unsure(loopAround)); + + m_out.appendTo(bucketKeyIsCell, loopAround); + m_out.branch(isString(bucketKey), + unsure(slowPath), unsure(loopAround)); + break; + } + case CellUse: { + LBasicBlock notBitEqual = m_out.newBlock(); + LBasicBlock bucketKeyIsCell = m_out.newBlock(); + LBasicBlock bucketKeyIsString = m_out.newBlock(); + + m_out.branch(m_out.equal(key, bucketKey), + unsure(continuation), unsure(notBitEqual)); + + m_out.appendTo(notBitEqual, bucketKeyIsCell); + m_out.branch(isCell(bucketKey), + unsure(bucketKeyIsCell), unsure(loopAround)); + + m_out.appendTo(bucketKeyIsCell, bucketKeyIsString); + m_out.branch(isString(bucketKey), + unsure(bucketKeyIsString), unsure(loopAround)); + + m_out.appendTo(bucketKeyIsString, loopAround); + m_out.branch(isString(key), + unsure(slowPath), unsure(loopAround)); + break; + } + case UntypedUse: { + LBasicBlock notBitEqual = m_out.newBlock(); + LBasicBlock bucketKeyIsCell = m_out.newBlock(); + LBasicBlock bothAreCells = m_out.newBlock(); + LBasicBlock bucketKeyIsString = m_out.newBlock(); + LBasicBlock bucketKeyNotCell = m_out.newBlock(); + LBasicBlock bucketKeyIsNumber = m_out.newBlock(); + LBasicBlock bothAreNumbers = m_out.newBlock(); + LBasicBlock bucketKeyIsInt32 = m_out.newBlock(); + + m_out.branch(m_out.equal(key, bucketKey), + unsure(continuation), unsure(notBitEqual)); + + m_out.appendTo(notBitEqual, bucketKeyIsCell); + m_out.branch(isCell(bucketKey), + unsure(bucketKeyIsCell), unsure(bucketKeyNotCell)); + + m_out.appendTo(bucketKeyIsCell, bothAreCells); + m_out.branch(isCell(key), + unsure(bothAreCells), unsure(loopAround)); + + m_out.appendTo(bothAreCells, bucketKeyIsString); + m_out.branch(isString(bucketKey), + unsure(bucketKeyIsString), unsure(loopAround)); + + m_out.appendTo(bucketKeyIsString, bucketKeyNotCell); + m_out.branch(isString(key), + unsure(slowPath), unsure(loopAround)); + + m_out.appendTo(bucketKeyNotCell, bucketKeyIsNumber); + m_out.branch(isNotNumber(bucketKey), + unsure(loopAround), unsure(bucketKeyIsNumber)); + + m_out.appendTo(bucketKeyIsNumber, bothAreNumbers); + m_out.branch(isNotNumber(key), + unsure(loopAround), unsure(bothAreNumbers)); + + m_out.appendTo(bothAreNumbers, bucketKeyIsInt32); + m_out.branch(isNotInt32(bucketKey), + unsure(slowPath), unsure(bucketKeyIsInt32)); + + m_out.appendTo(bucketKeyIsInt32, loopAround); + m_out.branch(isNotInt32(key), + unsure(slowPath), unsure(loopAround)); + break; + } + default: + RELEASE_ASSERT_NOT_REACHED(); + } + + m_out.appendTo(loopAround, slowPath); + m_out.addIncomingToPhi(unmaskedIndex, m_out.anchor(m_out.add(index, m_out.int32One))); + m_out.jump(loopStart); + + m_out.appendTo(slowPath, notPresentInTable); + ValueFromBlock slowPathResult = m_out.anchor(vmCall(pointerType(), + m_out.operation(m_node->child1().useKind() == MapObjectUse ? operationJSMapFindBucket : operationJSSetFindBucket), m_callFrame, map, key, hash)); + m_out.jump(continuation); + + m_out.appendTo(notPresentInTable, continuation); + ValueFromBlock notPresentResult = m_out.anchor(m_out.constIntPtr(0)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setMapBucket(m_out.phi(pointerType(), bucketResult, slowPathResult, notPresentResult)); + } + + void compileLoadFromJSMapBucket() + { + LValue mapBucket = lowMapBucket(m_node->child1()); + + LBasicBlock continuation = m_out.newBlock(); + LBasicBlock hasBucket = m_out.newBlock(); + + ValueFromBlock noBucketResult = m_out.anchor(m_out.constInt64(JSValue::encode(jsUndefined()))); + + m_out.branch(m_out.equal(mapBucket, m_out.constIntPtr(0)), + unsure(continuation), unsure(hasBucket)); + + LBasicBlock lastNext = m_out.appendTo(hasBucket, continuation); + ValueFromBlock bucketResult = m_out.anchor(m_out.load64(mapBucket, m_heaps.HashMapBucket_value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, noBucketResult, bucketResult)); + } + + void compileIsNonEmptyMapBucket() + { + LValue bucket = lowMapBucket(m_node->child1()); + LValue result = m_out.notEqual(bucket, m_out.constIntPtr(0)); + setBoolean(result); + } + + void compileIsObjectOrNull() + { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + + Edge child = m_node->child1(); + LValue value = lowJSValue(child); + + LBasicBlock cellCase = m_out.newBlock(); + LBasicBlock notFunctionCase = m_out.newBlock(); + LBasicBlock objectCase = m_out.newBlock(); + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock notCellCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(isCell(value, provenType(child)), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, notFunctionCase); + ValueFromBlock isFunctionResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isFunction(value, provenType(child)), + unsure(continuation), unsure(notFunctionCase)); + + m_out.appendTo(notFunctionCase, objectCase); + ValueFromBlock notObjectResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isObject(value, provenType(child)), + unsure(objectCase), unsure(continuation)); + + m_out.appendTo(objectCase, slowPath); + ValueFromBlock objectResult = m_out.anchor(m_out.booleanTrue); + m_out.branch( + isExoticForTypeof(value, provenType(child)), + rarely(slowPath), usually(continuation)); + + m_out.appendTo(slowPath, notCellCase); + LValue slowResultValue = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationObjectIsObject, locations[0].directGPR(), + CCallHelpers::TrustedImmPtr(globalObject), locations[1].directGPR()); + }, value); + ValueFromBlock slowResult = m_out.anchor(m_out.notZero64(slowResultValue)); + m_out.jump(continuation); + + m_out.appendTo(notCellCase, continuation); + LValue notCellResultValue = m_out.equal(value, m_out.constInt64(JSValue::encode(jsNull()))); + ValueFromBlock notCellResult = m_out.anchor(notCellResultValue); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + LValue result = m_out.phi( + Int32, + isFunctionResult, notObjectResult, objectResult, slowResult, notCellResult); + setBoolean(result); + } + + void compileIsFunction() + { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + + Edge child = m_node->child1(); + LValue value = lowJSValue(child); + + LBasicBlock cellCase = m_out.newBlock(); + LBasicBlock notFunctionCase = m_out.newBlock(); + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isCell(value, provenType(child)), unsure(cellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, notFunctionCase); + ValueFromBlock functionResult = m_out.anchor(m_out.booleanTrue); + m_out.branch( + isFunction(value, provenType(child)), + unsure(continuation), unsure(notFunctionCase)); + + m_out.appendTo(notFunctionCase, slowPath); + ValueFromBlock objectResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isExoticForTypeof(value, provenType(child)), + rarely(slowPath), usually(continuation)); + + m_out.appendTo(slowPath, continuation); + LValue slowResultValue = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationObjectIsFunction, locations[0].directGPR(), + CCallHelpers::TrustedImmPtr(globalObject), locations[1].directGPR()); + }, value); + ValueFromBlock slowResult = m_out.anchor(m_out.notNull(slowResultValue)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + LValue result = m_out.phi( + Int32, notCellResult, functionResult, objectResult, slowResult); + setBoolean(result); + } + + void compileIsTypedArrayView() + { + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.branch(isCell(value, provenType(m_node->child1())), unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, continuation); + ValueFromBlock cellResult = m_out.anchor(isTypedArrayView(value, provenType(m_node->child1()))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, notCellResult, cellResult)); + } + + void compileTypeOf() + { + Edge child = m_node->child1(); + LValue value = lowJSValue(child); + + LBasicBlock continuation = m_out.newBlock(); + LBasicBlock lastNext = m_out.insertNewBlocksBefore(continuation); + + Vector<ValueFromBlock> results; + + buildTypeOf( + child, value, + [&] (TypeofType type) { + results.append(m_out.anchor(weakPointer(vm().smallStrings.typeString(type)))); + m_out.jump(continuation); + }); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, results)); + } + + void compileIn() + { + DFG_ASSERT(m_graph, m_node, m_node->child1().useKind() == CellUse); + + Node* node = m_node; + Edge base = node->child1(); + LValue cell = lowCell(base); + if (JSString* string = node->child2()->dynamicCastConstant<JSString*>(vm())) { + if (string->tryGetValueImpl() && string->tryGetValueImpl()->isAtomic()) { + UniquedStringImpl* str = bitwise_cast<UniquedStringImpl*>(string->tryGetValueImpl()); + B3::PatchpointValue* patchpoint = m_out.patchpoint(Int64); + patchpoint->appendSomeRegister(cell); + patchpoint->append(m_tagMask, ValueRep::lateReg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::lateReg(GPRInfo::tagTypeNumberRegister)); + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + + RefPtr<PatchpointExceptionHandle> exceptionHandle = preparePatchpointForExceptions(patchpoint); + + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + // This is the direct exit target for operation calls. We don't need a JS exceptionHandle because we don't + // cache Proxy objects. + Box<CCallHelpers::JumpList> exceptions = exceptionHandle->scheduleExitCreation(params)->jumps(jit); + + GPRReg baseGPR = params[1].gpr(); + GPRReg resultGPR = params[0].gpr(); + + StructureStubInfo* stubInfo = + jit.codeBlock()->addStubInfo(AccessType::In); + stubInfo->callSiteIndex = + state->jitCode->common.addCodeOrigin(node->origin.semantic); + stubInfo->codeOrigin = node->origin.semantic; + stubInfo->patch.baseGPR = static_cast<int8_t>(baseGPR); + stubInfo->patch.valueGPR = static_cast<int8_t>(resultGPR); + stubInfo->patch.usedRegisters = params.unavailableRegisters(); + + CCallHelpers::PatchableJump jump = jit.patchableJump(); + CCallHelpers::Label done = jit.label(); + + params.addLatePath( + [=] (CCallHelpers& jit) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + jump.m_jump.link(&jit); + CCallHelpers::Label slowPathBegin = jit.label(); + CCallHelpers::Call slowPathCall = callOperation( + *state, params.unavailableRegisters(), jit, + node->origin.semantic, exceptions.get(), operationInOptimize, + resultGPR, CCallHelpers::TrustedImmPtr(stubInfo), baseGPR, + CCallHelpers::TrustedImmPtr(str)).call(); + jit.jump().linkTo(done, &jit); + + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + CodeLocationLabel start = linkBuffer.locationOf(jump); + stubInfo->patch.start = start; + ptrdiff_t inlineSize = MacroAssembler::differenceBetweenCodePtr( + start, linkBuffer.locationOf(done)); + RELEASE_ASSERT(inlineSize >= 0); + stubInfo->patch.inlineSize = inlineSize; + + stubInfo->patch.deltaFromStartToSlowPathCallLocation = MacroAssembler::differenceBetweenCodePtr( + start, linkBuffer.locationOf(slowPathCall)); + + stubInfo->patch.deltaFromStartToSlowPathStart = MacroAssembler::differenceBetweenCodePtr( + start, linkBuffer.locationOf(slowPathBegin)); + + }); + }); + }); + + setJSValue(patchpoint); + return; + } + } + + setJSValue(vmCall(Int64, m_out.operation(operationGenericIn), m_callFrame, cell, lowJSValue(m_node->child2()))); + } + + void compileHasOwnProperty() + { + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + LBasicBlock lastNext = nullptr; + + LValue object = lowObject(m_node->child1()); + LValue uniquedStringImpl; + LValue keyAsValue = nullptr; + switch (m_node->child2().useKind()) { + case StringUse: { + LBasicBlock isNonEmptyString = m_out.newBlock(); + LBasicBlock isAtomicString = m_out.newBlock(); + + keyAsValue = lowString(m_node->child2()); + uniquedStringImpl = m_out.loadPtr(keyAsValue, m_heaps.JSString_value); + m_out.branch(m_out.notNull(uniquedStringImpl), usually(isNonEmptyString), rarely(slowCase)); + + lastNext = m_out.appendTo(isNonEmptyString, isAtomicString); + LValue isNotAtomic = m_out.testIsZero32(m_out.load32(uniquedStringImpl, m_heaps.StringImpl_hashAndFlags), m_out.constInt32(StringImpl::flagIsAtomic())); + m_out.branch(isNotAtomic, rarely(slowCase), usually(isAtomicString)); + + m_out.appendTo(isAtomicString, slowCase); + break; + } + case SymbolUse: { + keyAsValue = lowSymbol(m_node->child2()); + uniquedStringImpl = m_out.loadPtr(keyAsValue, m_heaps.Symbol_symbolImpl); + lastNext = m_out.insertNewBlocksBefore(slowCase); + break; + } + case UntypedUse: { + LBasicBlock isCellCase = m_out.newBlock(); + LBasicBlock isStringCase = m_out.newBlock(); + LBasicBlock notStringCase = m_out.newBlock(); + LBasicBlock isNonEmptyString = m_out.newBlock(); + LBasicBlock isSymbolCase = m_out.newBlock(); + LBasicBlock hasUniquedStringImpl = m_out.newBlock(); + + keyAsValue = lowJSValue(m_node->child2()); + m_out.branch(isCell(keyAsValue), usually(isCellCase), rarely(slowCase)); + + lastNext = m_out.appendTo(isCellCase, isStringCase); + m_out.branch(isString(keyAsValue), unsure(isStringCase), unsure(notStringCase)); + + m_out.appendTo(isStringCase, isNonEmptyString); + LValue implFromString = m_out.loadPtr(keyAsValue, m_heaps.JSString_value); + ValueFromBlock stringResult = m_out.anchor(implFromString); + m_out.branch(m_out.notNull(implFromString), usually(isNonEmptyString), rarely(slowCase)); + + m_out.appendTo(isNonEmptyString, notStringCase); + LValue isNotAtomic = m_out.testIsZero32(m_out.load32(implFromString, m_heaps.StringImpl_hashAndFlags), m_out.constInt32(StringImpl::flagIsAtomic())); + m_out.branch(isNotAtomic, rarely(slowCase), usually(hasUniquedStringImpl)); + + m_out.appendTo(notStringCase, isSymbolCase); + m_out.branch(isSymbol(keyAsValue), unsure(isSymbolCase), unsure(slowCase)); + + m_out.appendTo(isSymbolCase, hasUniquedStringImpl); + ValueFromBlock symbolResult = m_out.anchor(m_out.loadPtr(keyAsValue, m_heaps.Symbol_symbolImpl)); + m_out.jump(hasUniquedStringImpl); + + m_out.appendTo(hasUniquedStringImpl, slowCase); + uniquedStringImpl = m_out.phi(pointerType(), stringResult, symbolResult); + break; + } + default: + RELEASE_ASSERT_NOT_REACHED(); + } + + ASSERT(keyAsValue); + + // Note that we don't test if the hash is zero here. AtomicStringImpl's can't have a zero + // hash, however, a SymbolImpl may. But, because this is a cache, we don't care. We only + // ever load the result from the cache if the cache entry matches what we are querying for. + // So we either get super lucky and use zero for the hash and somehow collide with the entity + // we're looking for, or we realize we're comparing against another entity, and go to the + // slow path anyways. + LValue hash = m_out.lShr(m_out.load32(uniquedStringImpl, m_heaps.StringImpl_hashAndFlags), m_out.constInt32(StringImpl::s_flagCount)); + + LValue structureID = m_out.load32(object, m_heaps.JSCell_structureID); + LValue index = m_out.add(hash, structureID); + index = m_out.zeroExtPtr(m_out.bitAnd(index, m_out.constInt32(HasOwnPropertyCache::mask))); + ASSERT(vm().hasOwnPropertyCache()); + LValue cache = m_out.constIntPtr(vm().hasOwnPropertyCache()); + + IndexedAbstractHeap& heap = m_heaps.HasOwnPropertyCache; + LValue sameStructureID = m_out.equal(structureID, m_out.load32(m_out.baseIndex(heap, cache, index, JSValue(), HasOwnPropertyCache::Entry::offsetOfStructureID()))); + LValue sameImpl = m_out.equal(uniquedStringImpl, m_out.loadPtr(m_out.baseIndex(heap, cache, index, JSValue(), HasOwnPropertyCache::Entry::offsetOfImpl()))); + ValueFromBlock fastResult = m_out.anchor(m_out.load8ZeroExt32(m_out.baseIndex(heap, cache, index, JSValue(), HasOwnPropertyCache::Entry::offsetOfResult()))); + LValue cacheHit = m_out.bitAnd(sameStructureID, sameImpl); + + m_out.branch(m_out.notZero32(cacheHit), usually(continuation), rarely(slowCase)); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowResult; + slowResult = m_out.anchor(vmCall(Int32, m_out.operation(operationHasOwnProperty), m_callFrame, object, keyAsValue)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, fastResult, slowResult)); + } + + void compileParseInt() + { + RELEASE_ASSERT(m_node->child1().useKind() == UntypedUse || m_node->child1().useKind() == StringUse); + LValue result; + if (m_node->child2()) { + LValue radix = lowInt32(m_node->child2()); + if (m_node->child1().useKind() == UntypedUse) + result = vmCall(Int64, m_out.operation(operationParseIntGeneric), m_callFrame, lowJSValue(m_node->child1()), radix); + else + result = vmCall(Int64, m_out.operation(operationParseIntString), m_callFrame, lowString(m_node->child1()), radix); + } else { + if (m_node->child1().useKind() == UntypedUse) + result = vmCall(Int64, m_out.operation(operationParseIntNoRadixGeneric), m_callFrame, lowJSValue(m_node->child1())); + else + result = vmCall(Int64, m_out.operation(operationParseIntStringNoRadix), m_callFrame, lowString(m_node->child1())); + } + setJSValue(result); + } + + void compileOverridesHasInstance() + { + FrozenValue* defaultHasInstanceFunction = m_node->cellOperand(); + ASSERT(defaultHasInstanceFunction->cell()->inherits(vm(), JSFunction::info())); + + LValue constructor = lowCell(m_node->child1()); + LValue hasInstance = lowJSValue(m_node->child2()); + + LBasicBlock defaultHasInstance = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + // Unlike in the DFG, we don't worry about cleaning this code up for the case where we have proven the hasInstanceValue is a constant as B3 should fix it for us. + + ValueFromBlock notDefaultHasInstanceResult = m_out.anchor(m_out.booleanTrue); + m_out.branch(m_out.notEqual(hasInstance, frozenPointer(defaultHasInstanceFunction)), unsure(continuation), unsure(defaultHasInstance)); + + LBasicBlock lastNext = m_out.appendTo(defaultHasInstance, continuation); + ValueFromBlock implementsDefaultHasInstanceResult = m_out.anchor(m_out.testIsZero32( + m_out.load8ZeroExt32(constructor, m_heaps.JSCell_typeInfoFlags), + m_out.constInt32(ImplementsDefaultHasInstance))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, implementsDefaultHasInstanceResult, notDefaultHasInstanceResult)); + } + + void compileCheckTypeInfoFlags() + { + speculate( + BadTypeInfoFlags, noValue(), 0, + m_out.testIsZero32( + m_out.load8ZeroExt32(lowCell(m_node->child1()), m_heaps.JSCell_typeInfoFlags), + m_out.constInt32(m_node->typeInfoOperand()))); + } + + void compileInstanceOf() + { + LValue cell; + + if (m_node->child1().useKind() == UntypedUse) + cell = lowJSValue(m_node->child1()); + else + cell = lowCell(m_node->child1()); + + LValue prototype = lowCell(m_node->child2()); + + LBasicBlock isCellCase = m_out.newBlock(); + LBasicBlock loop = m_out.newBlock(); + LBasicBlock notYetInstance = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + LBasicBlock loadPrototypeDirect = m_out.newBlock(); + LBasicBlock defaultHasInstanceSlow = m_out.newBlock(); + + LValue condition; + if (m_node->child1().useKind() == UntypedUse) + condition = isCell(cell, provenType(m_node->child1())); + else + condition = m_out.booleanTrue; + + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.branch(condition, unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, loop); + + speculate(BadType, noValue(), 0, isNotObject(prototype, provenType(m_node->child2()))); + + ValueFromBlock originalValue = m_out.anchor(cell); + m_out.jump(loop); + + m_out.appendTo(loop, loadPrototypeDirect); + LValue value = m_out.phi(Int64, originalValue); + LValue type = m_out.load8ZeroExt32(value, m_heaps.JSCell_typeInfoType); + m_out.branch( + m_out.notEqual(type, m_out.constInt32(ProxyObjectType)), + usually(loadPrototypeDirect), rarely(defaultHasInstanceSlow)); + + m_out.appendTo(loadPrototypeDirect, notYetInstance); + LValue structure = loadStructure(value); + LValue currentPrototype = m_out.load64(structure, m_heaps.Structure_prototype); + ValueFromBlock isInstanceResult = m_out.anchor(m_out.booleanTrue); + m_out.branch( + m_out.equal(currentPrototype, prototype), + unsure(continuation), unsure(notYetInstance)); + + m_out.appendTo(notYetInstance, defaultHasInstanceSlow); + ValueFromBlock notInstanceResult = m_out.anchor(m_out.booleanFalse); + m_out.addIncomingToPhi(value, m_out.anchor(currentPrototype)); + m_out.branch(isCell(currentPrototype), unsure(loop), unsure(continuation)); + + m_out.appendTo(defaultHasInstanceSlow, continuation); + // We can use the value that we're looping with because we + // can just continue off from wherever we bailed from the + // loop. + ValueFromBlock defaultHasInstanceResult = m_out.anchor( + vmCall(Int32, m_out.operation(operationDefaultHasInstance), m_callFrame, value, prototype)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean( + m_out.phi(Int32, notCellResult, isInstanceResult, notInstanceResult, defaultHasInstanceResult)); + } + + void compileInstanceOfCustom() + { + LValue value = lowJSValue(m_node->child1()); + LValue constructor = lowCell(m_node->child2()); + LValue hasInstance = lowJSValue(m_node->child3()); + + setBoolean(m_out.logicalNot(m_out.equal(m_out.constInt32(0), vmCall(Int32, m_out.operation(operationInstanceOfCustom), m_callFrame, value, constructor, hasInstance)))); + } + + void compileCountExecution() + { + TypedPointer counter = m_out.absolute(m_node->executionCounter()->address()); + m_out.store64(m_out.add(m_out.load64(counter), m_out.constInt64(1)), counter); + } + + void compileStoreBarrier() + { + emitStoreBarrier(lowCell(m_node->child1()), m_node->op() == FencedStoreBarrier); + } + + void compileHasIndexedProperty() + { + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Contiguous: { + LValue base = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + LValue internalMethodType = m_out.constInt32(static_cast<int32_t>(m_node->internalMethodType())); + + IndexedAbstractHeap& heap = m_node->arrayMode().type() == Array::Int32 ? + m_heaps.indexedInt32Properties : m_heaps.indexedContiguousProperties; + + LBasicBlock checkHole = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + if (!m_node->arrayMode().isInBounds()) { + m_out.branch( + m_out.aboveOrEqual( + index, m_out.load32NonNegative(storage, m_heaps.Butterfly_publicLength)), + rarely(slowCase), usually(checkHole)); + } else + m_out.jump(checkHole); + + LBasicBlock lastNext = m_out.appendTo(checkHole, slowCase); + LValue checkHoleResultValue = + m_out.notZero64(m_out.load64(baseIndex(heap, storage, index, m_node->child2()))); + ValueFromBlock checkHoleResult = m_out.anchor(checkHoleResultValue); + m_out.branch(checkHoleResultValue, usually(continuation), rarely(slowCase)); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowResult = m_out.anchor(m_out.equal( + m_out.constInt64(JSValue::encode(jsBoolean(true))), + vmCall(Int64, m_out.operation(operationHasIndexedProperty), m_callFrame, base, index, internalMethodType))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, checkHoleResult, slowResult)); + return; + } + case Array::Double: { + LValue base = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + LValue internalMethodType = m_out.constInt32(static_cast<int32_t>(m_node->internalMethodType())); + + IndexedAbstractHeap& heap = m_heaps.indexedDoubleProperties; + + LBasicBlock checkHole = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + if (!m_node->arrayMode().isInBounds()) { + m_out.branch( + m_out.aboveOrEqual( + index, m_out.load32NonNegative(storage, m_heaps.Butterfly_publicLength)), + rarely(slowCase), usually(checkHole)); + } else + m_out.jump(checkHole); + + LBasicBlock lastNext = m_out.appendTo(checkHole, slowCase); + LValue doubleValue = m_out.loadDouble(baseIndex(heap, storage, index, m_node->child2())); + LValue checkHoleResultValue = m_out.doubleEqual(doubleValue, doubleValue); + ValueFromBlock checkHoleResult = m_out.anchor(checkHoleResultValue); + m_out.branch(checkHoleResultValue, usually(continuation), rarely(slowCase)); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowResult = m_out.anchor(m_out.equal( + m_out.constInt64(JSValue::encode(jsBoolean(true))), + vmCall(Int64, m_out.operation(operationHasIndexedProperty), m_callFrame, base, index, internalMethodType))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, checkHoleResult, slowResult)); + return; + } + + default: + RELEASE_ASSERT_NOT_REACHED(); + return; + } + } + + void compileHasGenericProperty() + { + LValue base = lowJSValue(m_node->child1()); + LValue property = lowCell(m_node->child2()); + setJSValue(vmCall(Int64, m_out.operation(operationHasGenericProperty), m_callFrame, base, property)); + } + + void compileHasStructureProperty() + { + LValue base = lowJSValue(m_node->child1()); + LValue property = lowString(m_node->child2()); + LValue enumerator = lowCell(m_node->child3()); + + LBasicBlock correctStructure = m_out.newBlock(); + LBasicBlock wrongStructure = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(m_out.notEqual( + m_out.load32(base, m_heaps.JSCell_structureID), + m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_cachedStructureID)), + rarely(wrongStructure), usually(correctStructure)); + + LBasicBlock lastNext = m_out.appendTo(correctStructure, wrongStructure); + ValueFromBlock correctStructureResult = m_out.anchor(m_out.booleanTrue); + m_out.jump(continuation); + + m_out.appendTo(wrongStructure, continuation); + ValueFromBlock wrongStructureResult = m_out.anchor( + m_out.equal( + m_out.constInt64(JSValue::encode(jsBoolean(true))), + vmCall(Int64, m_out.operation(operationHasGenericProperty), m_callFrame, base, property))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, correctStructureResult, wrongStructureResult)); + } + + void compileGetDirectPname() + { + LValue base = lowCell(m_graph.varArgChild(m_node, 0)); + LValue property = lowCell(m_graph.varArgChild(m_node, 1)); + LValue index = lowInt32(m_graph.varArgChild(m_node, 2)); + LValue enumerator = lowCell(m_graph.varArgChild(m_node, 3)); + + LBasicBlock checkOffset = m_out.newBlock(); + LBasicBlock inlineLoad = m_out.newBlock(); + LBasicBlock outOfLineLoad = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(m_out.notEqual( + m_out.load32(base, m_heaps.JSCell_structureID), + m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_cachedStructureID)), + rarely(slowCase), usually(checkOffset)); + + LBasicBlock lastNext = m_out.appendTo(checkOffset, inlineLoad); + m_out.branch(m_out.aboveOrEqual(index, m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_cachedInlineCapacity)), + unsure(outOfLineLoad), unsure(inlineLoad)); + + m_out.appendTo(inlineLoad, outOfLineLoad); + ValueFromBlock inlineResult = m_out.anchor( + m_out.load64(m_out.baseIndex(m_heaps.properties.atAnyNumber(), + base, m_out.zeroExt(index, Int64), ScaleEight, JSObject::offsetOfInlineStorage()))); + m_out.jump(continuation); + + m_out.appendTo(outOfLineLoad, slowCase); + LValue storage = m_out.loadPtr(base, m_heaps.JSObject_butterfly); + LValue realIndex = m_out.signExt32To64( + m_out.neg(m_out.sub(index, m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_cachedInlineCapacity)))); + int32_t offsetOfFirstProperty = static_cast<int32_t>(offsetInButterfly(firstOutOfLineOffset)) * sizeof(EncodedJSValue); + ValueFromBlock outOfLineResult = m_out.anchor( + m_out.load64(m_out.baseIndex(m_heaps.properties.atAnyNumber(), storage, realIndex, ScaleEight, offsetOfFirstProperty))); + m_out.jump(continuation); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowCaseResult = m_out.anchor( + vmCall(Int64, m_out.operation(operationGetByVal), m_callFrame, base, property)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, inlineResult, outOfLineResult, slowCaseResult)); + } + + void compileGetEnumerableLength() + { + LValue enumerator = lowCell(m_node->child1()); + setInt32(m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_indexLength)); + } + + void compileGetPropertyEnumerator() + { + LValue base = lowCell(m_node->child1()); + setJSValue(vmCall(Int64, m_out.operation(operationGetPropertyEnumerator), m_callFrame, base)); + } + + void compileGetEnumeratorStructurePname() + { + LValue enumerator = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + + LBasicBlock inBounds = m_out.newBlock(); + LBasicBlock outOfBounds = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(m_out.below(index, m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_endStructurePropertyIndex)), + usually(inBounds), rarely(outOfBounds)); + + LBasicBlock lastNext = m_out.appendTo(inBounds, outOfBounds); + LValue storage = m_out.loadPtr(enumerator, m_heaps.JSPropertyNameEnumerator_cachedPropertyNamesVector); + ValueFromBlock inBoundsResult = m_out.anchor( + m_out.loadPtr(m_out.baseIndex(m_heaps.JSPropertyNameEnumerator_cachedPropertyNamesVectorContents, storage, m_out.zeroExtPtr(index)))); + m_out.jump(continuation); + + m_out.appendTo(outOfBounds, continuation); + ValueFromBlock outOfBoundsResult = m_out.anchor(m_out.constInt64(ValueNull)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, inBoundsResult, outOfBoundsResult)); + } + + void compileGetEnumeratorGenericPname() + { + LValue enumerator = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + + LBasicBlock inBounds = m_out.newBlock(); + LBasicBlock outOfBounds = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(m_out.below(index, m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_endGenericPropertyIndex)), + usually(inBounds), rarely(outOfBounds)); + + LBasicBlock lastNext = m_out.appendTo(inBounds, outOfBounds); + LValue storage = m_out.loadPtr(enumerator, m_heaps.JSPropertyNameEnumerator_cachedPropertyNamesVector); + ValueFromBlock inBoundsResult = m_out.anchor( + m_out.loadPtr(m_out.baseIndex(m_heaps.JSPropertyNameEnumerator_cachedPropertyNamesVectorContents, storage, m_out.zeroExtPtr(index)))); + m_out.jump(continuation); + + m_out.appendTo(outOfBounds, continuation); + ValueFromBlock outOfBoundsResult = m_out.anchor(m_out.constInt64(ValueNull)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(Int64, inBoundsResult, outOfBoundsResult)); + } + + void compileToIndexString() + { + LValue index = lowInt32(m_node->child1()); + setJSValue(vmCall(Int64, m_out.operation(operationToIndexString), m_callFrame, index)); + } + + void compileCheckStructureImmediate() + { + LValue structure = lowCell(m_node->child1()); + checkStructure( + structure, noValue(), BadCache, m_node->structureSet(), + [this] (RegisteredStructure structure) { + return weakStructure(structure); + }); + } + + void compileMaterializeNewObject() + { + ObjectMaterializationData& data = m_node->objectMaterializationData(); + + // Lower the values first, to avoid creating values inside a control flow diamond. + + Vector<LValue, 8> values; + for (unsigned i = 0; i < data.m_properties.size(); ++i) { + Edge edge = m_graph.varArgChild(m_node, 1 + i); + switch (data.m_properties[i].kind()) { + case PublicLengthPLoc: + case VectorLengthPLoc: + values.append(lowInt32(edge)); + break; + default: + values.append(lowJSValue(edge)); + break; + } + } + + RegisteredStructureSet set = m_node->structureSet(); + + Vector<LBasicBlock, 1> blocks(set.size()); + for (unsigned i = set.size(); i--;) + blocks[i] = m_out.newBlock(); + LBasicBlock dummyDefault = m_out.newBlock(); + LBasicBlock outerContinuation = m_out.newBlock(); + + Vector<SwitchCase, 1> cases(set.size()); + for (unsigned i = set.size(); i--;) + cases[i] = SwitchCase(weakStructure(set.at(i)), blocks[i], Weight(1)); + m_out.switchInstruction( + lowCell(m_graph.varArgChild(m_node, 0)), cases, dummyDefault, Weight(0)); + + LBasicBlock outerLastNext = m_out.m_nextBlock; + + Vector<ValueFromBlock, 1> results; + + for (unsigned i = set.size(); i--;) { + m_out.appendTo(blocks[i], i + 1 < set.size() ? blocks[i + 1] : dummyDefault); + + RegisteredStructure structure = set.at(i); + + LValue object; + LValue butterfly; + + if (structure->outOfLineCapacity() || hasIndexedProperties(structure->indexingType())) { + size_t allocationSize = JSFinalObject::allocationSize(structure->inlineCapacity()); + MarkedAllocator* cellAllocator = subspaceFor<JSFinalObject>(vm())->allocatorFor(allocationSize); + DFG_ASSERT(m_graph, m_node, cellAllocator); + + bool hasIndexingHeader = hasIndexedProperties(structure->indexingType()); + unsigned indexingHeaderSize = 0; + LValue indexingPayloadSizeInBytes = m_out.intPtrZero; + LValue vectorLength = m_out.int32Zero; + LValue publicLength = m_out.int32Zero; + if (hasIndexingHeader) { + indexingHeaderSize = sizeof(IndexingHeader); + for (unsigned i = data.m_properties.size(); i--;) { + PromotedLocationDescriptor descriptor = data.m_properties[i]; + switch (descriptor.kind()) { + case PublicLengthPLoc: + publicLength = values[i]; + break; + case VectorLengthPLoc: + vectorLength = values[i]; + break; + default: + break; + } + } + indexingPayloadSizeInBytes = + m_out.mul(m_out.zeroExtPtr(vectorLength), m_out.intPtrEight); + } + + LValue butterflySize = m_out.add( + m_out.constIntPtr( + structure->outOfLineCapacity() * sizeof(JSValue) + indexingHeaderSize), + indexingPayloadSizeInBytes); + + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + ValueFromBlock noButterfly = m_out.anchor(m_out.intPtrZero); + + LValue startOfStorage = allocateHeapCell( + allocatorForSize(vm().auxiliarySpace, butterflySize, slowPath), + slowPath); + + LValue fastButterflyValue = m_out.add( + startOfStorage, + m_out.constIntPtr( + structure->outOfLineCapacity() * sizeof(JSValue) + sizeof(IndexingHeader))); + + ValueFromBlock haveButterfly = m_out.anchor(fastButterflyValue); + + splatWords( + fastButterflyValue, + m_out.constInt32(-structure->outOfLineCapacity() - 1), + m_out.constInt32(-1), + m_out.int64Zero, m_heaps.properties.atAnyNumber()); + + m_out.store32(vectorLength, fastButterflyValue, m_heaps.Butterfly_vectorLength); + + LValue fastObjectValue = allocateObject( + m_out.constIntPtr(cellAllocator), structure, fastButterflyValue, slowPath); + + ValueFromBlock fastObject = m_out.anchor(fastObjectValue); + ValueFromBlock fastButterfly = m_out.anchor(fastButterflyValue); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + + LValue butterflyValue = m_out.phi(pointerType(), noButterfly, haveButterfly); + + LValue slowObjectValue; + if (hasIndexingHeader) { + slowObjectValue = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationNewObjectWithButterflyWithIndexingHeaderAndVectorLength, + locations[0].directGPR(), CCallHelpers::TrustedImmPtr(structure.get()), + locations[1].directGPR(), locations[2].directGPR()); + }, + vectorLength, butterflyValue); + } else { + slowObjectValue = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationNewObjectWithButterfly, locations[0].directGPR(), + CCallHelpers::TrustedImmPtr(structure.get()), locations[1].directGPR()); + }, + butterflyValue); + } + ValueFromBlock slowObject = m_out.anchor(slowObjectValue); + ValueFromBlock slowButterfly = m_out.anchor( + m_out.loadPtr(slowObjectValue, m_heaps.JSObject_butterfly)); + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + object = m_out.phi(pointerType(), fastObject, slowObject); + butterfly = m_out.phi(pointerType(), fastButterfly, slowButterfly); + + m_out.store32(publicLength, butterfly, m_heaps.Butterfly_publicLength); + + initializeArrayElements(m_out.constInt32(structure->indexingType()), m_out.int32Zero, vectorLength, butterfly); + + HashMap<int32_t, LValue, DefaultHash<int32_t>::Hash, WTF::UnsignedWithZeroKeyHashTraits<int32_t>> indexMap; + Vector<int32_t> indices; + for (unsigned i = data.m_properties.size(); i--;) { + PromotedLocationDescriptor descriptor = data.m_properties[i]; + if (descriptor.kind() != IndexedPropertyPLoc) + continue; + int32_t index = static_cast<int32_t>(descriptor.info()); + + auto result = indexMap.add(index, values[i]); + DFG_ASSERT(m_graph, m_node, result); // Duplicates are illegal. + + indices.append(index); + } + + if (!indices.isEmpty()) { + std::sort(indices.begin(), indices.end()); + + Vector<LBasicBlock> blocksWithStores(indices.size()); + Vector<LBasicBlock> blocksWithChecks(indices.size()); + + for (unsigned i = indices.size(); i--;) { + blocksWithStores[i] = m_out.newBlock(); + blocksWithChecks[i] = m_out.newBlock(); // blocksWithChecks[0] is the continuation. + } + + LBasicBlock indexLastNext = m_out.m_nextBlock; + + for (unsigned i = indices.size(); i--;) { + int32_t index = indices[i]; + LValue value = indexMap.get(index); + + m_out.branch( + m_out.below(m_out.constInt32(index), publicLength), + unsure(blocksWithStores[i]), unsure(blocksWithChecks[i])); + + m_out.appendTo(blocksWithStores[i], blocksWithChecks[i]); + + // This has to type-check and convert its inputs, but it cannot do so in a + // way that updates AI. That's a bit annoying, but if you think about how + // sinking works, it's actually not a bad thing. We are virtually guaranteed + // that these type checks will not fail, since the type checks that guarded + // the original stores to the array are still somewhere above this point. + Output::StoreType storeType; + IndexedAbstractHeap* heap; + switch (structure->indexingType()) { + case ALL_INT32_INDEXING_TYPES: + // FIXME: This could use the proven type if we had the Edge for the + // value. https://bugs.webkit.org/show_bug.cgi?id=155311 + speculate(BadType, noValue(), nullptr, isNotInt32(value)); + storeType = Output::Store64; + heap = &m_heaps.indexedInt32Properties; + break; + + case ALL_DOUBLE_INDEXING_TYPES: { + // FIXME: If the source is ValueRep, we should avoid emitting any + // checks. We could also avoid emitting checks if we had the Edge of + // this value. https://bugs.webkit.org/show_bug.cgi?id=155311 + + LBasicBlock intCase = m_out.newBlock(); + LBasicBlock doubleCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(isInt32(value), unsure(intCase), unsure(doubleCase)); + + LBasicBlock lastNext = m_out.appendTo(intCase, doubleCase); + + ValueFromBlock intResult = + m_out.anchor(m_out.intToDouble(unboxInt32(value))); + m_out.jump(continuation); + + m_out.appendTo(doubleCase, continuation); + + speculate(BadType, noValue(), nullptr, isNumber(value)); + ValueFromBlock doubleResult = m_out.anchor(unboxDouble(value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + value = m_out.phi(Double, intResult, doubleResult); + storeType = Output::StoreDouble; + heap = &m_heaps.indexedDoubleProperties; + break; + } + + case ALL_CONTIGUOUS_INDEXING_TYPES: + storeType = Output::Store64; + heap = &m_heaps.indexedContiguousProperties; + break; + + default: + DFG_CRASH(m_graph, m_node, "Invalid indexing type"); + break; + } + + m_out.store(value, m_out.address(butterfly, heap->at(index)), storeType); + + m_out.jump(blocksWithChecks[i]); + m_out.appendTo( + blocksWithChecks[i], i ? blocksWithStores[i - 1] : indexLastNext); + } + } + } else { + // In the easy case where we can do a one-shot allocation, we simply allocate the + // object to directly have the desired structure. + object = allocateObject(structure); + butterfly = nullptr; // Don't have one, don't need one. + } + + BitVector setInlineOffsets; + for (PropertyMapEntry entry : structure->getPropertiesConcurrently()) { + for (unsigned i = data.m_properties.size(); i--;) { + PromotedLocationDescriptor descriptor = data.m_properties[i]; + if (descriptor.kind() != NamedPropertyPLoc) + continue; + if (m_graph.identifiers()[descriptor.info()] != entry.key) + continue; + + LValue base; + if (isInlineOffset(entry.offset)) { + setInlineOffsets.set(entry.offset); + base = object; + } else + base = butterfly; + storeProperty(values[i], base, descriptor.info(), entry.offset); + break; + } + } + for (unsigned i = structure->inlineCapacity(); i--;) { + if (!setInlineOffsets.get(i)) + m_out.store64(m_out.int64Zero, m_out.address(m_heaps.properties.atAnyNumber(), object, offsetRelativeToBase(i))); + } + + results.append(m_out.anchor(object)); + m_out.jump(outerContinuation); + } + + m_out.appendTo(dummyDefault, outerContinuation); + m_out.unreachable(); + + m_out.appendTo(outerContinuation, outerLastNext); + setJSValue(m_out.phi(pointerType(), results)); + mutatorFence(); + } + + void compileMaterializeCreateActivation() + { + ObjectMaterializationData& data = m_node->objectMaterializationData(); + + Vector<LValue, 8> values; + for (unsigned i = 0; i < data.m_properties.size(); ++i) + values.append(lowJSValue(m_graph.varArgChild(m_node, 2 + i))); + + LValue scope = lowCell(m_graph.varArgChild(m_node, 1)); + SymbolTable* table = m_node->castOperand<SymbolTable*>(); + ASSERT(table == m_graph.varArgChild(m_node, 0)->castConstant<SymbolTable*>(vm())); + RegisteredStructure structure = m_graph.registerStructure(m_graph.globalObjectFor(m_node->origin.semantic)->activationStructure()); + + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + LValue fastObject = allocateObject<JSLexicalEnvironment>( + JSLexicalEnvironment::allocationSize(table), structure, m_out.intPtrZero, slowPath); + + m_out.storePtr(scope, fastObject, m_heaps.JSScope_next); + m_out.storePtr(weakPointer(table), fastObject, m_heaps.JSSymbolTableObject_symbolTable); + + + ValueFromBlock fastResult = m_out.anchor(fastObject); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + // We ensure allocation sinking explictly sets bottom values for all field members. + // Therefore, it doesn't matter what JSValue we pass in as the initialization value + // because all fields will be overwritten. + // FIXME: It may be worth creating an operation that calls a constructor on JSLexicalEnvironment that + // doesn't initialize every slot because we are guaranteed to do that here. + LValue callResult = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationCreateActivationDirect, locations[0].directGPR(), + CCallHelpers::TrustedImmPtr(structure.get()), locations[1].directGPR(), + CCallHelpers::TrustedImmPtr(table), + CCallHelpers::TrustedImm64(JSValue::encode(jsUndefined()))); + }, scope); + ValueFromBlock slowResult = m_out.anchor(callResult); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + LValue activation = m_out.phi(pointerType(), fastResult, slowResult); + RELEASE_ASSERT(data.m_properties.size() == table->scopeSize()); + for (unsigned i = 0; i < data.m_properties.size(); ++i) { + PromotedLocationDescriptor descriptor = data.m_properties[i]; + ASSERT(descriptor.kind() == ClosureVarPLoc); + m_out.store64( + values[i], activation, + m_heaps.JSEnvironmentRecord_variables[descriptor.info()]); + } + + if (validationEnabled()) { + // Validate to make sure every slot in the scope has one value. + ConcurrentJSLocker locker(table->m_lock); + for (auto iter = table->begin(locker), end = table->end(locker); iter != end; ++iter) { + bool found = false; + for (unsigned i = 0; i < data.m_properties.size(); ++i) { + PromotedLocationDescriptor descriptor = data.m_properties[i]; + ASSERT(descriptor.kind() == ClosureVarPLoc); + if (iter->value.scopeOffset().offset() == descriptor.info()) { + found = true; + break; + } + } + ASSERT_UNUSED(found, found); + } + } + + mutatorFence(); + setJSValue(activation); + } + + void compileCheckWatchdogTimer() + { + LBasicBlock timerDidFire = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue state = m_out.load8ZeroExt32(m_out.absolute(vm().watchdog()->timerDidFireAddress())); + m_out.branch(m_out.isZero32(state), + usually(continuation), rarely(timerDidFire)); + + LBasicBlock lastNext = m_out.appendTo(timerDidFire, continuation); + + lazySlowPath( + [=] (const Vector<Location>&) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator(operationHandleWatchdogTimer, InvalidGPRReg); + }); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void compileRegExpExec() + { + LValue globalObject = lowCell(m_node->child1()); + + if (m_node->child2().useKind() == RegExpObjectUse) { + LValue base = lowRegExpObject(m_node->child2()); + + if (m_node->child3().useKind() == StringUse) { + LValue argument = lowString(m_node->child3()); + LValue result = vmCall( + Int64, m_out.operation(operationRegExpExecString), m_callFrame, globalObject, + base, argument); + setJSValue(result); + return; + } + + LValue argument = lowJSValue(m_node->child3()); + LValue result = vmCall( + Int64, m_out.operation(operationRegExpExec), m_callFrame, globalObject, base, + argument); + setJSValue(result); + return; + } + + LValue base = lowJSValue(m_node->child2()); + LValue argument = lowJSValue(m_node->child3()); + LValue result = vmCall( + Int64, m_out.operation(operationRegExpExecGeneric), m_callFrame, globalObject, base, + argument); + setJSValue(result); + } + + void compileRegExpTest() + { + LValue globalObject = lowCell(m_node->child1()); + + if (m_node->child2().useKind() == RegExpObjectUse) { + LValue base = lowRegExpObject(m_node->child2()); + + if (m_node->child3().useKind() == StringUse) { + LValue argument = lowString(m_node->child3()); + LValue result = vmCall( + Int32, m_out.operation(operationRegExpTestString), m_callFrame, globalObject, + base, argument); + setBoolean(result); + return; + } + + LValue argument = lowJSValue(m_node->child3()); + LValue result = vmCall( + Int32, m_out.operation(operationRegExpTest), m_callFrame, globalObject, base, + argument); + setBoolean(result); + return; + } + + LValue base = lowJSValue(m_node->child2()); + LValue argument = lowJSValue(m_node->child3()); + LValue result = vmCall( + Int32, m_out.operation(operationRegExpTestGeneric), m_callFrame, globalObject, base, + argument); + setBoolean(result); + } + + void compileNewRegexp() + { + FrozenValue* regexp = m_node->cellOperand(); + ASSERT(regexp->cell()->inherits(vm(), RegExp::info())); + LValue result = vmCall( + pointerType(), + m_out.operation(operationNewRegexp), m_callFrame, + frozenPointer(regexp)); + + setJSValue(result); + } + + void compileSetFunctionName() + { + vmCall(Void, m_out.operation(operationSetFunctionName), m_callFrame, + lowCell(m_node->child1()), lowJSValue(m_node->child2())); + } + + void compileStringReplace() + { + if (m_node->child1().useKind() == StringUse + && m_node->child2().useKind() == RegExpObjectUse + && m_node->child3().useKind() == StringUse) { + + if (JSString* replace = m_node->child3()->dynamicCastConstant<JSString*>(vm())) { + if (!replace->length()) { + LValue string = lowString(m_node->child1()); + LValue regExp = lowRegExpObject(m_node->child2()); + + LValue result = vmCall( + Int64, m_out.operation(operationStringProtoFuncReplaceRegExpEmptyStr), + m_callFrame, string, regExp); + + setJSValue(result); + return; + } + } + + LValue string = lowString(m_node->child1()); + LValue regExp = lowRegExpObject(m_node->child2()); + LValue replace = lowString(m_node->child3()); + + LValue result = vmCall( + Int64, m_out.operation(operationStringProtoFuncReplaceRegExpString), + m_callFrame, string, regExp, replace); + + setJSValue(result); + return; + } + + LValue search; + if (m_node->child2().useKind() == StringUse) + search = lowString(m_node->child2()); + else + search = lowJSValue(m_node->child2()); + + LValue result = vmCall( + Int64, m_out.operation(operationStringProtoFuncReplaceGeneric), m_callFrame, + lowJSValue(m_node->child1()), search, + lowJSValue(m_node->child3())); + + setJSValue(result); + } + + void compileGetRegExpObjectLastIndex() + { + setJSValue(m_out.load64(lowRegExpObject(m_node->child1()), m_heaps.RegExpObject_lastIndex)); + } + + void compileSetRegExpObjectLastIndex() + { + LValue regExp = lowRegExpObject(m_node->child1()); + LValue value = lowJSValue(m_node->child2()); + + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.isZero32(m_out.load8ZeroExt32(regExp, m_heaps.RegExpObject_lastIndexIsWritable))); + + m_out.store64(value, regExp, m_heaps.RegExpObject_lastIndex); + } + + void compileLogShadowChickenPrologue() + { + LValue packet = ensureShadowChickenPacket(); + LValue scope = lowCell(m_node->child1()); + + m_out.storePtr(m_callFrame, packet, m_heaps.ShadowChicken_Packet_frame); + m_out.storePtr(m_out.loadPtr(addressFor(0)), packet, m_heaps.ShadowChicken_Packet_callerFrame); + m_out.storePtr(m_out.loadPtr(payloadFor(CallFrameSlot::callee)), packet, m_heaps.ShadowChicken_Packet_callee); + m_out.storePtr(scope, packet, m_heaps.ShadowChicken_Packet_scope); + } + + void compileLogShadowChickenTail() + { + LValue packet = ensureShadowChickenPacket(); + LValue thisValue = lowJSValue(m_node->child1()); + LValue scope = lowCell(m_node->child2()); + CallSiteIndex callSiteIndex = m_ftlState.jitCode->common.addCodeOrigin(m_node->origin.semantic); + + m_out.storePtr(m_callFrame, packet, m_heaps.ShadowChicken_Packet_frame); + m_out.storePtr(m_out.constIntPtr(bitwise_cast<intptr_t>(ShadowChicken::Packet::tailMarker())), packet, m_heaps.ShadowChicken_Packet_callee); + m_out.store64(thisValue, packet, m_heaps.ShadowChicken_Packet_thisValue); + m_out.storePtr(scope, packet, m_heaps.ShadowChicken_Packet_scope); + // We don't want the CodeBlock to have a weak pointer to itself because + // that would cause it to always get collected. + m_out.storePtr(m_out.constIntPtr(bitwise_cast<intptr_t>(codeBlock())), packet, m_heaps.ShadowChicken_Packet_codeBlock); + m_out.store32(m_out.constInt32(callSiteIndex.bits()), packet, m_heaps.ShadowChicken_Packet_callSiteIndex); + } + + void compileRecordRegExpCachedResult() + { + Edge constructorEdge = m_graph.varArgChild(m_node, 0); + Edge regExpEdge = m_graph.varArgChild(m_node, 1); + Edge stringEdge = m_graph.varArgChild(m_node, 2); + Edge startEdge = m_graph.varArgChild(m_node, 3); + Edge endEdge = m_graph.varArgChild(m_node, 4); + + LValue constructor = lowCell(constructorEdge); + LValue regExp = lowCell(regExpEdge); + LValue string = lowCell(stringEdge); + LValue start = lowInt32(startEdge); + LValue end = lowInt32(endEdge); + + m_out.storePtr(regExp, constructor, m_heaps.RegExpConstructor_cachedResult_lastRegExp); + m_out.storePtr(string, constructor, m_heaps.RegExpConstructor_cachedResult_lastInput); + m_out.store32(start, constructor, m_heaps.RegExpConstructor_cachedResult_result_start); + m_out.store32(end, constructor, m_heaps.RegExpConstructor_cachedResult_result_end); + m_out.store32As8( + m_out.constInt32(0), + m_out.address(constructor, m_heaps.RegExpConstructor_cachedResult_reified)); + } + + struct ArgumentsLength { + ArgumentsLength() + : isKnown(false) + , known(UINT_MAX) + , value(nullptr) + { + } + + bool isKnown; + unsigned known; + LValue value; + }; + ArgumentsLength getArgumentsLength(InlineCallFrame* inlineCallFrame) + { + ArgumentsLength length; + + if (inlineCallFrame && !inlineCallFrame->isVarargs()) { + length.known = inlineCallFrame->arguments.size() - 1; + length.isKnown = true; + length.value = m_out.constInt32(length.known); + } else { + length.known = UINT_MAX; + length.isKnown = false; + + VirtualRegister argumentCountRegister; + if (!inlineCallFrame) + argumentCountRegister = VirtualRegister(CallFrameSlot::argumentCount); + else + argumentCountRegister = inlineCallFrame->argumentCountRegister; + length.value = m_out.sub(m_out.load32(payloadFor(argumentCountRegister)), m_out.int32One); + } + + return length; + } + + ArgumentsLength getArgumentsLength() + { + return getArgumentsLength(m_node->origin.semantic.inlineCallFrame); + } + + LValue getCurrentCallee() + { + if (InlineCallFrame* frame = m_node->origin.semantic.inlineCallFrame) { + if (frame->isClosureCall) + return m_out.loadPtr(addressFor(frame->calleeRecovery.virtualRegister())); + return weakPointer(frame->calleeRecovery.constant().asCell()); + } + return m_out.loadPtr(addressFor(CallFrameSlot::callee)); + } + + LValue getArgumentsStart(InlineCallFrame* inlineCallFrame, unsigned offset = 0) + { + VirtualRegister start = AssemblyHelpers::argumentsStart(inlineCallFrame) + offset; + return addressFor(start).value(); + } + + LValue getArgumentsStart() + { + return getArgumentsStart(m_node->origin.semantic.inlineCallFrame); + } + + template<typename Functor> + void checkStructure( + LValue structureDiscriminant, const FormattedValue& formattedValue, ExitKind exitKind, + RegisteredStructureSet set, const Functor& weakStructureDiscriminant) + { + if (set.isEmpty()) { + terminate(exitKind); + return; + } + + if (set.size() == 1) { + speculate( + exitKind, formattedValue, 0, + m_out.notEqual(structureDiscriminant, weakStructureDiscriminant(set[0]))); + return; + } + + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(continuation); + for (unsigned i = 0; i < set.size() - 1; ++i) { + LBasicBlock nextStructure = m_out.newBlock(); + m_out.branch( + m_out.equal(structureDiscriminant, weakStructureDiscriminant(set[i])), + unsure(continuation), unsure(nextStructure)); + m_out.appendTo(nextStructure); + } + + speculate( + exitKind, formattedValue, 0, + m_out.notEqual(structureDiscriminant, weakStructureDiscriminant(set.last()))); + + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + } + + LValue numberOrNotCellToInt32(Edge edge, LValue value) + { + LBasicBlock intCase = m_out.newBlock(); + LBasicBlock notIntCase = m_out.newBlock(); + LBasicBlock doubleCase = 0; + LBasicBlock notNumberCase = 0; + if (edge.useKind() == NotCellUse) { + doubleCase = m_out.newBlock(); + notNumberCase = m_out.newBlock(); + } + LBasicBlock continuation = m_out.newBlock(); + + Vector<ValueFromBlock> results; + + m_out.branch(isNotInt32(value), unsure(notIntCase), unsure(intCase)); + + LBasicBlock lastNext = m_out.appendTo(intCase, notIntCase); + results.append(m_out.anchor(unboxInt32(value))); + m_out.jump(continuation); + + if (edge.useKind() == NumberUse) { + m_out.appendTo(notIntCase, continuation); + FTL_TYPE_CHECK(jsValueValue(value), edge, SpecBytecodeNumber, isCellOrMisc(value)); + results.append(m_out.anchor(doubleToInt32(unboxDouble(value)))); + m_out.jump(continuation); + } else { + m_out.appendTo(notIntCase, doubleCase); + m_out.branch( + isCellOrMisc(value, provenType(edge)), unsure(notNumberCase), unsure(doubleCase)); + + m_out.appendTo(doubleCase, notNumberCase); + results.append(m_out.anchor(doubleToInt32(unboxDouble(value)))); + m_out.jump(continuation); + + m_out.appendTo(notNumberCase, continuation); + + FTL_TYPE_CHECK(jsValueValue(value), edge, ~SpecCell, isCell(value)); + + LValue specialResult = m_out.select( + m_out.equal(value, m_out.constInt64(JSValue::encode(jsBoolean(true)))), + m_out.int32One, m_out.int32Zero); + results.append(m_out.anchor(specialResult)); + m_out.jump(continuation); + } + + m_out.appendTo(continuation, lastNext); + return m_out.phi(Int32, results); + } + + void checkInferredType(Edge edge, LValue value, const InferredType::Descriptor& type) + { + // This cannot use FTL_TYPE_CHECK or typeCheck() because it is called partially, as in a node like: + // + // MultiPutByOffset(...) + // + // may be lowered to: + // + // switch (object->structure) { + // case 42: + // checkInferredType(..., type1); + // ... + // break; + // case 43: + // checkInferredType(..., type2); + // ... + // break; + // } + // + // where type1 and type2 are different. Using typeCheck() would mean that the edge would be + // filtered by type1 & type2, instead of type1 | type2. + + switch (type.kind()) { + case InferredType::Bottom: + speculate(BadType, jsValueValue(value), edge.node(), m_out.booleanTrue); + return; + + case InferredType::Boolean: + speculate(BadType, jsValueValue(value), edge.node(), isNotBoolean(value, provenType(edge))); + return; + + case InferredType::Other: + speculate(BadType, jsValueValue(value), edge.node(), isNotOther(value, provenType(edge))); + return; + + case InferredType::Int32: + speculate(BadType, jsValueValue(value), edge.node(), isNotInt32(value, provenType(edge))); + return; + + case InferredType::Number: + speculate(BadType, jsValueValue(value), edge.node(), isNotNumber(value, provenType(edge))); + return; + + case InferredType::String: + speculate(BadType, jsValueValue(value), edge.node(), isNotCell(value, provenType(edge))); + speculate(BadType, jsValueValue(value), edge.node(), isNotString(value, provenType(edge))); + return; + + case InferredType::Symbol: + speculate(BadType, jsValueValue(value), edge.node(), isNotCell(value, provenType(edge))); + speculate(BadType, jsValueValue(value), edge.node(), isNotSymbol(value, provenType(edge))); + return; + + case InferredType::ObjectWithStructure: { + RegisteredStructure structure = m_graph.registerStructure(type.structure()); + speculate(BadType, jsValueValue(value), edge.node(), isNotCell(value, provenType(edge))); + if (!abstractValue(edge).m_structure.isSubsetOf(RegisteredStructureSet(structure))) { + speculate( + BadType, jsValueValue(value), edge.node(), + m_out.notEqual( + m_out.load32(value, m_heaps.JSCell_structureID), + weakStructureID(structure))); + } + return; + } + + case InferredType::ObjectWithStructureOrOther: { + LBasicBlock cellCase = m_out.newBlock(); + LBasicBlock notCellCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(isCell(value, provenType(edge)), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, notCellCase); + + RegisteredStructure structure = m_graph.registerStructure(type.structure()); + if (!abstractValue(edge).m_structure.isSubsetOf(RegisteredStructureSet(structure))) { + speculate( + BadType, jsValueValue(value), edge.node(), + m_out.notEqual( + m_out.load32(value, m_heaps.JSCell_structureID), + weakStructureID(structure))); + } + + m_out.jump(continuation); + + m_out.appendTo(notCellCase, continuation); + + speculate( + BadType, jsValueValue(value), edge.node(), + isNotOther(value, provenType(edge) & ~SpecCell)); + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return; + } + + case InferredType::Object: + speculate(BadType, jsValueValue(value), edge.node(), isNotCell(value, provenType(edge))); + speculate(BadType, jsValueValue(value), edge.node(), isNotObject(value, provenType(edge))); + return; + + case InferredType::ObjectOrOther: { + LBasicBlock cellCase = m_out.newBlock(); + LBasicBlock notCellCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(isCell(value, provenType(edge)), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, notCellCase); + + speculate( + BadType, jsValueValue(value), edge.node(), + isNotObject(value, provenType(edge) & SpecCell)); + + m_out.jump(continuation); + + m_out.appendTo(notCellCase, continuation); + + speculate( + BadType, jsValueValue(value), edge.node(), + isNotOther(value, provenType(edge) & ~SpecCell)); + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return; + } + + case InferredType::Top: + return; + } + + DFG_CRASH(m_graph, m_node, "Bad inferred type"); + } + + LValue loadProperty(LValue storage, unsigned identifierNumber, PropertyOffset offset) + { + return m_out.load64(addressOfProperty(storage, identifierNumber, offset)); + } + + void storeProperty( + LValue value, LValue storage, unsigned identifierNumber, PropertyOffset offset) + { + m_out.store64(value, addressOfProperty(storage, identifierNumber, offset)); + } + + TypedPointer addressOfProperty( + LValue storage, unsigned identifierNumber, PropertyOffset offset) + { + return m_out.address( + m_heaps.properties[identifierNumber], storage, offsetRelativeToBase(offset)); + } + + LValue storageForTransition( + LValue object, PropertyOffset offset, + Structure* previousStructure, Structure* nextStructure) + { + if (isInlineOffset(offset)) + return object; + + if (previousStructure->outOfLineCapacity() == nextStructure->outOfLineCapacity()) + return m_out.loadPtr(object, m_heaps.JSObject_butterfly); + + LValue result; + if (!previousStructure->outOfLineCapacity()) + result = allocatePropertyStorage(object, previousStructure); + else { + result = reallocatePropertyStorage( + object, m_out.loadPtr(object, m_heaps.JSObject_butterfly), + previousStructure, nextStructure); + } + + nukeStructureAndSetButterfly(result, object); + return result; + } + + void initializeArrayElements(LValue indexingType, LValue begin, LValue end, LValue butterfly) + { + + if (begin == end) + return; + + if (indexingType->hasInt32()) { + IndexingType rawIndexingType = static_cast<IndexingType>(indexingType->asInt32()); + if (hasUndecided(rawIndexingType)) + return; + IndexedAbstractHeap* heap = m_heaps.forIndexingType(rawIndexingType); + DFG_ASSERT(m_graph, m_node, heap); + + LValue hole; + if (hasDouble(rawIndexingType)) + hole = m_out.constInt64(bitwise_cast<int64_t>(PNaN)); + else + hole = m_out.constInt64(JSValue::encode(JSValue())); + + splatWords(butterfly, begin, end, hole, heap->atAnyIndex()); + } else { + LValue hole = m_out.select( + m_out.equal(m_out.bitAnd(indexingType, m_out.constInt32(IndexingShapeMask)), m_out.constInt32(DoubleShape)), + m_out.constInt64(bitwise_cast<int64_t>(PNaN)), + m_out.constInt64(JSValue::encode(JSValue()))); + splatWords(butterfly, begin, end, hole, m_heaps.root); + } + } + + void splatWords(LValue base, LValue begin, LValue end, LValue value, const AbstractHeap& heap) + { + const uint64_t unrollingLimit = 10; + if (begin->hasInt() && end->hasInt()) { + uint64_t beginConst = static_cast<uint64_t>(begin->asInt()); + uint64_t endConst = static_cast<uint64_t>(end->asInt()); + + if (endConst - beginConst <= unrollingLimit) { + for (uint64_t i = beginConst; i < endConst; ++i) { + LValue pointer = m_out.add(base, m_out.constIntPtr(i * sizeof(uint64_t))); + m_out.store64(value, TypedPointer(heap, pointer)); + } + return; + } + } + + LBasicBlock initLoop = m_out.newBlock(); + LBasicBlock initDone = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(initLoop); + + ValueFromBlock originalIndex = m_out.anchor(end); + ValueFromBlock originalPointer = m_out.anchor( + m_out.add(base, m_out.shl(m_out.signExt32ToPtr(begin), m_out.constInt32(3)))); + m_out.branch(m_out.notEqual(end, begin), unsure(initLoop), unsure(initDone)); + + m_out.appendTo(initLoop, initDone); + LValue index = m_out.phi(Int32, originalIndex); + LValue pointer = m_out.phi(pointerType(), originalPointer); + + m_out.store64(value, TypedPointer(heap, pointer)); + + LValue nextIndex = m_out.sub(index, m_out.int32One); + m_out.addIncomingToPhi(index, m_out.anchor(nextIndex)); + m_out.addIncomingToPhi(pointer, m_out.anchor(m_out.add(pointer, m_out.intPtrEight))); + m_out.branch( + m_out.notEqual(nextIndex, begin), unsure(initLoop), unsure(initDone)); + + m_out.appendTo(initDone, lastNext); + } + + LValue allocatePropertyStorage(LValue object, Structure* previousStructure) + { + if (previousStructure->couldHaveIndexingHeader()) { + return vmCall( + pointerType(), + m_out.operation(operationAllocateComplexPropertyStorageWithInitialCapacity), + m_callFrame, object); + } + + LValue result = allocatePropertyStorageWithSizeImpl(initialOutOfLineCapacity); + + splatWords( + result, + m_out.constInt32(-initialOutOfLineCapacity - 1), m_out.constInt32(-1), + m_out.int64Zero, m_heaps.properties.atAnyNumber()); + + return result; + } + + LValue reallocatePropertyStorage( + LValue object, LValue oldStorage, Structure* previous, Structure* next) + { + size_t oldSize = previous->outOfLineCapacity(); + size_t newSize = oldSize * outOfLineGrowthFactor; + + ASSERT_UNUSED(next, newSize == next->outOfLineCapacity()); + + if (previous->couldHaveIndexingHeader()) { + LValue newAllocSize = m_out.constIntPtr(newSize); + return vmCall(pointerType(), m_out.operation(operationAllocateComplexPropertyStorage), m_callFrame, object, newAllocSize); + } + + LValue result = allocatePropertyStorageWithSizeImpl(newSize); + + ptrdiff_t headerSize = -sizeof(IndexingHeader) - sizeof(void*); + ptrdiff_t endStorage = headerSize - static_cast<ptrdiff_t>(oldSize * sizeof(JSValue)); + + for (ptrdiff_t offset = headerSize; offset > endStorage; offset -= sizeof(void*)) { + LValue loaded = + m_out.loadPtr(m_out.address(m_heaps.properties.atAnyNumber(), oldStorage, offset)); + m_out.storePtr(loaded, m_out.address(m_heaps.properties.atAnyNumber(), result, offset)); + } + + splatWords( + result, + m_out.constInt32(-newSize - 1), m_out.constInt32(-oldSize - 1), + m_out.int64Zero, m_heaps.properties.atAnyNumber()); + + return result; + } + + LValue allocatePropertyStorageWithSizeImpl(size_t sizeInValues) + { + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + size_t sizeInBytes = sizeInValues * sizeof(JSValue); + MarkedAllocator* allocator = vm().auxiliarySpace.allocatorFor(sizeInBytes); + LValue startOfStorage = allocateHeapCell(m_out.constIntPtr(allocator), slowPath); + ValueFromBlock fastButterfly = m_out.anchor( + m_out.add(m_out.constIntPtr(sizeInBytes + sizeof(IndexingHeader)), startOfStorage)); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + + LValue slowButterflyValue; + if (sizeInValues == initialOutOfLineCapacity) { + slowButterflyValue = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationAllocateSimplePropertyStorageWithInitialCapacity, + locations[0].directGPR()); + }); + } else { + slowButterflyValue = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationAllocateSimplePropertyStorage, locations[0].directGPR(), + CCallHelpers::TrustedImmPtr(sizeInValues)); + }); + } + ValueFromBlock slowButterfly = m_out.anchor(slowButterflyValue); + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + return m_out.phi(pointerType(), fastButterfly, slowButterfly); + } + + LValue getById(LValue base, AccessType type) + { + Node* node = m_node; + UniquedStringImpl* uid = m_graph.identifiers()[node->identifierNumber()]; + + B3::PatchpointValue* patchpoint = m_out.patchpoint(Int64); + patchpoint->appendSomeRegister(base); + patchpoint->append(m_tagMask, ValueRep::lateReg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::lateReg(GPRInfo::tagTypeNumberRegister)); + + // FIXME: If this is a GetByIdFlush, we might get some performance boost if we claim that it + // clobbers volatile registers late. It's not necessary for correctness, though, since the + // IC code is super smart about saving registers. + // https://bugs.webkit.org/show_bug.cgi?id=152848 + + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + + RefPtr<PatchpointExceptionHandle> exceptionHandle = + preparePatchpointForExceptions(patchpoint); + + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + CallSiteIndex callSiteIndex = + state->jitCode->common.addUniqueCallSiteIndex(node->origin.semantic); + + // This is the direct exit target for operation calls. + Box<CCallHelpers::JumpList> exceptions = + exceptionHandle->scheduleExitCreation(params)->jumps(jit); + + // This is the exit for call IC's created by the getById for getters. We don't have + // to do anything weird other than call this, since it will associate the exit with + // the callsite index. + exceptionHandle->scheduleExitCreationForUnwind(params, callSiteIndex); + + auto generator = Box<JITGetByIdGenerator>::create( + jit.codeBlock(), node->origin.semantic, callSiteIndex, + params.unavailableRegisters(), uid, JSValueRegs(params[1].gpr()), + JSValueRegs(params[0].gpr()), type); + + generator->generateFastPath(jit); + CCallHelpers::Label done = jit.label(); + + params.addLatePath( + [=] (CCallHelpers& jit) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + J_JITOperation_ESsiJI optimizationFunction; + if (type == AccessType::Get) + optimizationFunction = operationGetByIdOptimize; + else + optimizationFunction = operationTryGetByIdOptimize; + + generator->slowPathJump().link(&jit); + CCallHelpers::Label slowPathBegin = jit.label(); + CCallHelpers::Call slowPathCall = callOperation( + *state, params.unavailableRegisters(), jit, node->origin.semantic, + exceptions.get(), optimizationFunction, params[0].gpr(), + CCallHelpers::TrustedImmPtr(generator->stubInfo()), params[1].gpr(), + CCallHelpers::TrustedImmPtr(uid)).call(); + jit.jump().linkTo(done, &jit); + + generator->reportSlowPathCall(slowPathBegin, slowPathCall); + + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + generator->finalize(linkBuffer); + }); + }); + }); + + return patchpoint; + } + + LValue isFastTypedArray(LValue object) + { + return m_out.equal( + m_out.load32(object, m_heaps.JSArrayBufferView_mode), + m_out.constInt32(FastTypedArray)); + } + + TypedPointer baseIndex(IndexedAbstractHeap& heap, LValue storage, LValue index, Edge edge, ptrdiff_t offset = 0) + { + return m_out.baseIndex( + heap, storage, m_out.zeroExtPtr(index), provenValue(edge), offset); + } + + template<typename IntFunctor, typename DoubleFunctor> + void compare( + const IntFunctor& intFunctor, const DoubleFunctor& doubleFunctor, + C_JITOperation_TT stringIdentFunction, + C_JITOperation_B_EJssJss stringFunction, + S_JITOperation_EJJ fallbackFunction) + { + if (m_node->isBinaryUseKind(Int32Use)) { + LValue left = lowInt32(m_node->child1()); + LValue right = lowInt32(m_node->child2()); + setBoolean(intFunctor(left, right)); + return; + } + + if (m_node->isBinaryUseKind(Int52RepUse)) { + Int52Kind kind; + LValue left = lowWhicheverInt52(m_node->child1(), kind); + LValue right = lowInt52(m_node->child2(), kind); + setBoolean(intFunctor(left, right)); + return; + } + + if (m_node->isBinaryUseKind(DoubleRepUse)) { + LValue left = lowDouble(m_node->child1()); + LValue right = lowDouble(m_node->child2()); + setBoolean(doubleFunctor(left, right)); + return; + } + + if (m_node->isBinaryUseKind(StringIdentUse)) { + LValue left = lowStringIdent(m_node->child1()); + LValue right = lowStringIdent(m_node->child2()); + setBoolean(m_out.callWithoutSideEffects(Int32, stringIdentFunction, left, right)); + return; + } + + if (m_node->isBinaryUseKind(StringUse)) { + LValue left = lowCell(m_node->child1()); + LValue right = lowCell(m_node->child2()); + speculateString(m_node->child1(), left); + speculateString(m_node->child2(), right); + + LValue result = vmCall( + Int32, m_out.operation(stringFunction), + m_callFrame, left, right); + setBoolean(result); + return; + } + + DFG_ASSERT(m_graph, m_node, m_node->isBinaryUseKind(UntypedUse)); + nonSpeculativeCompare(intFunctor, fallbackFunction); + } + + void compileToLowerCase() + { + LBasicBlock notRope = m_out.newBlock(); + LBasicBlock is8Bit = m_out.newBlock(); + LBasicBlock loopTop = m_out.newBlock(); + LBasicBlock loopBody = m_out.newBlock(); + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue string = lowString(m_node->child1()); + ValueFromBlock startIndex = m_out.anchor(m_out.constInt32(0)); + ValueFromBlock startIndexForCall = m_out.anchor(m_out.constInt32(0)); + LValue impl = m_out.loadPtr(string, m_heaps.JSString_value); + m_out.branch(m_out.isZero64(impl), + unsure(slowPath), unsure(notRope)); + + LBasicBlock lastNext = m_out.appendTo(notRope, is8Bit); + + m_out.branch( + m_out.testIsZero32( + m_out.load32(impl, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIs8Bit())), + unsure(slowPath), unsure(is8Bit)); + + m_out.appendTo(is8Bit, loopTop); + LValue length = m_out.load32(impl, m_heaps.StringImpl_length); + LValue buffer = m_out.loadPtr(impl, m_heaps.StringImpl_data); + ValueFromBlock fastResult = m_out.anchor(string); + m_out.jump(loopTop); + + m_out.appendTo(loopTop, loopBody); + LValue index = m_out.phi(Int32, startIndex); + ValueFromBlock indexFromBlock = m_out.anchor(index); + m_out.branch(m_out.below(index, length), + unsure(loopBody), unsure(continuation)); + + m_out.appendTo(loopBody, slowPath); + + LValue byte = m_out.load8ZeroExt32(m_out.baseIndex(m_heaps.characters8, buffer, m_out.zeroExtPtr(index))); + LValue isInvalidAsciiRange = m_out.bitAnd(byte, m_out.constInt32(~0x7F)); + LValue isUpperCase = m_out.belowOrEqual(m_out.sub(byte, m_out.constInt32('A')), m_out.constInt32('Z' - 'A')); + LValue isBadCharacter = m_out.bitOr(isInvalidAsciiRange, isUpperCase); + m_out.addIncomingToPhi(index, m_out.anchor(m_out.add(index, m_out.int32One))); + m_out.branch(isBadCharacter, unsure(slowPath), unsure(loopTop)); + + m_out.appendTo(slowPath, continuation); + LValue slowPathIndex = m_out.phi(Int32, startIndexForCall, indexFromBlock); + ValueFromBlock slowResult = m_out.anchor(vmCall(pointerType(), m_out.operation(operationToLowerCase), m_callFrame, string, slowPathIndex)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(pointerType(), fastResult, slowResult)); + } + + void compileNumberToStringWithRadix() + { + bool validRadixIsGuaranteed = false; + if (m_node->child2()->isInt32Constant()) { + int32_t radix = m_node->child2()->asInt32(); + if (radix >= 2 && radix <= 36) + validRadixIsGuaranteed = true; + } + + switch (m_node->child1().useKind()) { + case Int32Use: + setJSValue(vmCall(pointerType(), m_out.operation(validRadixIsGuaranteed ? operationInt32ToStringWithValidRadix : operationInt32ToString), m_callFrame, lowInt32(m_node->child1()), lowInt32(m_node->child2()))); + break; + case Int52RepUse: + setJSValue(vmCall(pointerType(), m_out.operation(validRadixIsGuaranteed ? operationInt52ToStringWithValidRadix : operationInt52ToString), m_callFrame, lowStrictInt52(m_node->child1()), lowInt32(m_node->child2()))); + break; + case DoubleRepUse: + setJSValue(vmCall(pointerType(), m_out.operation(validRadixIsGuaranteed ? operationDoubleToStringWithValidRadix : operationDoubleToString), m_callFrame, lowDouble(m_node->child1()), lowInt32(m_node->child2()))); + break; + default: + RELEASE_ASSERT_NOT_REACHED(); + } + } + + void compileResolveScope() + { + UniquedStringImpl* uid = m_graph.identifiers()[m_node->identifierNumber()]; + setJSValue(vmCall(pointerType(), m_out.operation(operationResolveScope), + m_callFrame, lowCell(m_node->child1()), m_out.constIntPtr(uid))); + } + + void compileGetDynamicVar() + { + UniquedStringImpl* uid = m_graph.identifiers()[m_node->identifierNumber()]; + setJSValue(vmCall(Int64, m_out.operation(operationGetDynamicVar), + m_callFrame, lowCell(m_node->child1()), m_out.constIntPtr(uid), m_out.constInt32(m_node->getPutInfo()))); + } + + void compilePutDynamicVar() + { + UniquedStringImpl* uid = m_graph.identifiers()[m_node->identifierNumber()]; + setJSValue(vmCall(Void, m_out.operation(operationPutDynamicVar), + m_callFrame, lowCell(m_node->child1()), lowJSValue(m_node->child2()), m_out.constIntPtr(uid), m_out.constInt32(m_node->getPutInfo()))); + } + + void compileUnreachable() + { + // It's so tempting to assert that AI has proved that this is unreachable. But that's + // simply not a requirement of the Unreachable opcode at all. If you emit an opcode that + // *you* know will not return, then it's fine to end the basic block with Unreachable + // after that opcode. You don't have to also prove to AI that your opcode does not return. + // Hence, there is nothing to do here but emit code that will crash, so that we catch + // cases where you said Unreachable but you lied. + + crash(); + } + + void compileCheckDOM() + { + LValue cell = lowCell(m_node->child1()); + + DOMJIT::Patchpoint* domJIT = m_node->checkDOMPatchpoint(); + + PatchpointValue* patchpoint = m_out.patchpoint(Void); + patchpoint->appendSomeRegister(cell); + patchpoint->append(m_tagMask, ValueRep::reg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::reg(GPRInfo::tagTypeNumberRegister)); + + NodeOrigin origin = m_origin; + unsigned osrExitArgumentOffset = patchpoint->numChildren(); + OSRExitDescriptor* exitDescriptor = appendOSRExitDescriptor(jsValueValue(cell), m_node->child1().node()); + patchpoint->appendColdAnys(buildExitArguments(exitDescriptor, origin.forExit, jsValueValue(cell))); + + patchpoint->numGPScratchRegisters = domJIT->numGPScratchRegisters; + patchpoint->numFPScratchRegisters = domJIT->numFPScratchRegisters; + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + + State* state = &m_ftlState; + Node* node = m_node; + JSValue child1Constant = m_state.forNode(m_node->child1()).value(); + + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + Vector<GPRReg> gpScratch; + Vector<FPRReg> fpScratch; + Vector<DOMJIT::Value> regs; + + regs.append(DOMJIT::Value(params[0].gpr(), child1Constant)); + + for (unsigned i = 0; i < domJIT->numGPScratchRegisters; ++i) + gpScratch.append(params.gpScratch(i)); + + for (unsigned i = 0; i < domJIT->numFPScratchRegisters; ++i) + fpScratch.append(params.fpScratch(i)); + + RefPtr<OSRExitHandle> handle = exitDescriptor->emitOSRExitLater(*state, BadType, origin, params, osrExitArgumentOffset); + + DOMJITPatchpointParams domJITParams(*state, params, node, nullptr, WTFMove(regs), WTFMove(gpScratch), WTFMove(fpScratch)); + CCallHelpers::JumpList failureCases = domJIT->generator()->run(jit, domJITParams); + + jit.addLinkTask([=] (LinkBuffer& linkBuffer) { + linkBuffer.link(failureCases, linkBuffer.locationOf(handle->label)); + }); + }); + patchpoint->effects = Effects::forCheck(); + } + + void compileCallDOM() + { + const DOMJIT::Signature* signature = m_node->signature(); + + // FIXME: We should have a way to call functions with the vector of registers. + // https://bugs.webkit.org/show_bug.cgi?id=163099 + Vector<LValue, JSC_DOMJIT_SIGNATURE_MAX_ARGUMENTS_INCLUDING_THIS> operands; + + unsigned index = 0; + DFG_NODE_DO_TO_CHILDREN(m_graph, m_node, [&](Node*, Edge edge) { + if (!index) + operands.append(lowCell(edge)); + else { + switch (signature->arguments[index - 1]) { + case SpecString: + operands.append(lowString(edge)); + break; + case SpecInt32Only: + operands.append(lowInt32(edge)); + break; + case SpecBoolean: + operands.append(lowBoolean(edge)); + break; + default: + RELEASE_ASSERT_NOT_REACHED(); + break; + } + } + ++index; + }); + + unsigned argumentCountIncludingThis = signature->argumentCount + 1; + LValue result; + switch (argumentCountIncludingThis) { + case 1: + result = vmCall(Int64, m_out.operation(reinterpret_cast<J_JITOperation_EP>(signature->unsafeFunction)), m_callFrame, operands[0]); + break; + case 2: + result = vmCall(Int64, m_out.operation(reinterpret_cast<J_JITOperation_EPP>(signature->unsafeFunction)), m_callFrame, operands[0], operands[1]); + break; + case 3: + result = vmCall(Int64, m_out.operation(reinterpret_cast<J_JITOperation_EPPP>(signature->unsafeFunction)), m_callFrame, operands[0], operands[1], operands[2]); + break; + default: + RELEASE_ASSERT_NOT_REACHED(); + break; + } + + setJSValue(result); + } + + void compileCallDOMGetter() + { + DOMJIT::CallDOMGetterPatchpoint* domJIT = m_node->callDOMGetterData()->patchpoint; + + Edge& baseEdge = m_node->child1(); + LValue base = lowCell(baseEdge); + JSValue baseConstant = m_state.forNode(baseEdge).value(); + + LValue globalObject; + JSValue globalObjectConstant; + if (domJIT->requireGlobalObject) { + Edge& globalObjectEdge = m_node->child2(); + globalObject = lowCell(globalObjectEdge); + globalObjectConstant = m_state.forNode(globalObjectEdge).value(); + } + + PatchpointValue* patchpoint = m_out.patchpoint(Int64); + patchpoint->appendSomeRegister(base); + if (domJIT->requireGlobalObject) + patchpoint->appendSomeRegister(globalObject); + patchpoint->append(m_tagMask, ValueRep::reg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::reg(GPRInfo::tagTypeNumberRegister)); + RefPtr<PatchpointExceptionHandle> exceptionHandle = preparePatchpointForExceptions(patchpoint); + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + patchpoint->numGPScratchRegisters = domJIT->numGPScratchRegisters; + patchpoint->numFPScratchRegisters = domJIT->numFPScratchRegisters; + patchpoint->resultConstraint = ValueRep::SomeEarlyRegister; + + State* state = &m_ftlState; + Node* node = m_node; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + Vector<GPRReg> gpScratch; + Vector<FPRReg> fpScratch; + Vector<DOMJIT::Value> regs; + + regs.append(JSValueRegs(params[0].gpr())); + regs.append(DOMJIT::Value(params[1].gpr(), baseConstant)); + if (domJIT->requireGlobalObject) + regs.append(DOMJIT::Value(params[2].gpr(), globalObjectConstant)); + + for (unsigned i = 0; i < domJIT->numGPScratchRegisters; ++i) + gpScratch.append(params.gpScratch(i)); + + for (unsigned i = 0; i < domJIT->numFPScratchRegisters; ++i) + fpScratch.append(params.fpScratch(i)); + + Box<CCallHelpers::JumpList> exceptions = exceptionHandle->scheduleExitCreation(params)->jumps(jit); + + DOMJITPatchpointParams domJITParams(*state, params, node, exceptions, WTFMove(regs), WTFMove(gpScratch), WTFMove(fpScratch)); + domJIT->generator()->run(jit, domJITParams); + }); + patchpoint->effects = Effects::forCall(); + setJSValue(patchpoint); + } + + void compareEqObjectOrOtherToObject(Edge leftChild, Edge rightChild) + { + LValue rightCell = lowCell(rightChild); + LValue leftValue = lowJSValue(leftChild, ManualOperandSpeculation); + + speculateTruthyObject(rightChild, rightCell, SpecObject); + + LBasicBlock leftCellCase = m_out.newBlock(); + LBasicBlock leftNotCellCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + isCell(leftValue, provenType(leftChild)), + unsure(leftCellCase), unsure(leftNotCellCase)); + + LBasicBlock lastNext = m_out.appendTo(leftCellCase, leftNotCellCase); + speculateTruthyObject(leftChild, leftValue, SpecObject | (~SpecCell)); + ValueFromBlock cellResult = m_out.anchor(m_out.equal(rightCell, leftValue)); + m_out.jump(continuation); + + m_out.appendTo(leftNotCellCase, continuation); + FTL_TYPE_CHECK( + jsValueValue(leftValue), leftChild, SpecOther | SpecCell, isNotOther(leftValue)); + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, cellResult, notCellResult)); + } + + void speculateTruthyObject(Edge edge, LValue cell, SpeculatedType filter) + { + if (masqueradesAsUndefinedWatchpointIsStillValid()) { + FTL_TYPE_CHECK(jsValueValue(cell), edge, filter, isNotObject(cell)); + return; + } + + FTL_TYPE_CHECK(jsValueValue(cell), edge, filter, isNotObject(cell)); + speculate( + BadType, jsValueValue(cell), edge.node(), + m_out.testNonZero32( + m_out.load8ZeroExt32(cell, m_heaps.JSCell_typeInfoFlags), + m_out.constInt32(MasqueradesAsUndefined))); + } + + template<typename IntFunctor> + void nonSpeculativeCompare(const IntFunctor& intFunctor, S_JITOperation_EJJ helperFunction) + { + LValue left = lowJSValue(m_node->child1()); + LValue right = lowJSValue(m_node->child2()); + + LBasicBlock leftIsInt = m_out.newBlock(); + LBasicBlock fastPath = m_out.newBlock(); + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(isNotInt32(left, provenType(m_node->child1())), rarely(slowPath), usually(leftIsInt)); + + LBasicBlock lastNext = m_out.appendTo(leftIsInt, fastPath); + m_out.branch(isNotInt32(right, provenType(m_node->child2())), rarely(slowPath), usually(fastPath)); + + m_out.appendTo(fastPath, slowPath); + ValueFromBlock fastResult = m_out.anchor(intFunctor(unboxInt32(left), unboxInt32(right))); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + ValueFromBlock slowResult = m_out.anchor(m_out.notNull(vmCall( + pointerType(), m_out.operation(helperFunction), m_callFrame, left, right))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(Int32, fastResult, slowResult)); + } + + LValue stringsEqual(LValue leftJSString, LValue rightJSString) + { + LBasicBlock notTriviallyUnequalCase = m_out.newBlock(); + LBasicBlock notEmptyCase = m_out.newBlock(); + LBasicBlock leftReadyCase = m_out.newBlock(); + LBasicBlock rightReadyCase = m_out.newBlock(); + LBasicBlock left8BitCase = m_out.newBlock(); + LBasicBlock right8BitCase = m_out.newBlock(); + LBasicBlock loop = m_out.newBlock(); + LBasicBlock bytesEqual = m_out.newBlock(); + LBasicBlock trueCase = m_out.newBlock(); + LBasicBlock falseCase = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue length = m_out.load32(leftJSString, m_heaps.JSString_length); + + m_out.branch( + m_out.notEqual(length, m_out.load32(rightJSString, m_heaps.JSString_length)), + unsure(falseCase), unsure(notTriviallyUnequalCase)); + + LBasicBlock lastNext = m_out.appendTo(notTriviallyUnequalCase, notEmptyCase); + + m_out.branch(m_out.isZero32(length), unsure(trueCase), unsure(notEmptyCase)); + + m_out.appendTo(notEmptyCase, leftReadyCase); + + LValue left = m_out.loadPtr(leftJSString, m_heaps.JSString_value); + LValue right = m_out.loadPtr(rightJSString, m_heaps.JSString_value); + + m_out.branch(m_out.notNull(left), usually(leftReadyCase), rarely(slowCase)); + + m_out.appendTo(leftReadyCase, rightReadyCase); + + m_out.branch(m_out.notNull(right), usually(rightReadyCase), rarely(slowCase)); + + m_out.appendTo(rightReadyCase, left8BitCase); + + m_out.branch( + m_out.testIsZero32( + m_out.load32(left, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIs8Bit())), + unsure(slowCase), unsure(left8BitCase)); + + m_out.appendTo(left8BitCase, right8BitCase); + + m_out.branch( + m_out.testIsZero32( + m_out.load32(right, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIs8Bit())), + unsure(slowCase), unsure(right8BitCase)); + + m_out.appendTo(right8BitCase, loop); + + LValue leftData = m_out.loadPtr(left, m_heaps.StringImpl_data); + LValue rightData = m_out.loadPtr(right, m_heaps.StringImpl_data); + + ValueFromBlock indexAtStart = m_out.anchor(length); + + m_out.jump(loop); + + m_out.appendTo(loop, bytesEqual); + + LValue indexAtLoopTop = m_out.phi(Int32, indexAtStart); + LValue indexInLoop = m_out.sub(indexAtLoopTop, m_out.int32One); + + LValue leftByte = m_out.load8ZeroExt32( + m_out.baseIndex(m_heaps.characters8, leftData, m_out.zeroExtPtr(indexInLoop))); + LValue rightByte = m_out.load8ZeroExt32( + m_out.baseIndex(m_heaps.characters8, rightData, m_out.zeroExtPtr(indexInLoop))); + + m_out.branch(m_out.notEqual(leftByte, rightByte), unsure(falseCase), unsure(bytesEqual)); + + m_out.appendTo(bytesEqual, trueCase); + + ValueFromBlock indexForNextIteration = m_out.anchor(indexInLoop); + m_out.addIncomingToPhi(indexAtLoopTop, indexForNextIteration); + m_out.branch(m_out.notZero32(indexInLoop), unsure(loop), unsure(trueCase)); + + m_out.appendTo(trueCase, falseCase); + + ValueFromBlock trueResult = m_out.anchor(m_out.booleanTrue); + m_out.jump(continuation); + + m_out.appendTo(falseCase, slowCase); + + ValueFromBlock falseResult = m_out.anchor(m_out.booleanFalse); + m_out.jump(continuation); + + m_out.appendTo(slowCase, continuation); + + LValue slowResultValue = vmCall( + Int64, m_out.operation(operationCompareStringEq), m_callFrame, + leftJSString, rightJSString); + ValueFromBlock slowResult = m_out.anchor(unboxBoolean(slowResultValue)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(Int32, trueResult, falseResult, slowResult); + } + + enum ScratchFPRUsage { + DontNeedScratchFPR, + NeedScratchFPR + }; + template<typename BinaryArithOpGenerator, ScratchFPRUsage scratchFPRUsage = DontNeedScratchFPR> + void emitBinarySnippet(J_JITOperation_EJJ slowPathFunction) + { + Node* node = m_node; + + LValue left = lowJSValue(node->child1()); + LValue right = lowJSValue(node->child2()); + + SnippetOperand leftOperand(m_state.forNode(node->child1()).resultType()); + SnippetOperand rightOperand(m_state.forNode(node->child2()).resultType()); + + PatchpointValue* patchpoint = m_out.patchpoint(Int64); + patchpoint->appendSomeRegister(left); + patchpoint->appendSomeRegister(right); + patchpoint->append(m_tagMask, ValueRep::lateReg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::lateReg(GPRInfo::tagTypeNumberRegister)); + RefPtr<PatchpointExceptionHandle> exceptionHandle = + preparePatchpointForExceptions(patchpoint); + patchpoint->numGPScratchRegisters = 1; + patchpoint->numFPScratchRegisters = 2; + if (scratchFPRUsage == NeedScratchFPR) + patchpoint->numFPScratchRegisters++; + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + patchpoint->resultConstraint = ValueRep::SomeEarlyRegister; + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + Box<CCallHelpers::JumpList> exceptions = + exceptionHandle->scheduleExitCreation(params)->jumps(jit); + + auto generator = Box<BinaryArithOpGenerator>::create( + leftOperand, rightOperand, JSValueRegs(params[0].gpr()), + JSValueRegs(params[1].gpr()), JSValueRegs(params[2].gpr()), + params.fpScratch(0), params.fpScratch(1), params.gpScratch(0), + scratchFPRUsage == NeedScratchFPR ? params.fpScratch(2) : InvalidFPRReg); + + generator->generateFastPath(jit); + + if (generator->didEmitFastPath()) { + generator->endJumpList().link(&jit); + CCallHelpers::Label done = jit.label(); + + params.addLatePath( + [=] (CCallHelpers& jit) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + generator->slowPathJumpList().link(&jit); + callOperation( + *state, params.unavailableRegisters(), jit, node->origin.semantic, + exceptions.get(), slowPathFunction, params[0].gpr(), + params[1].gpr(), params[2].gpr()); + jit.jump().linkTo(done, &jit); + }); + } else { + callOperation( + *state, params.unavailableRegisters(), jit, node->origin.semantic, + exceptions.get(), slowPathFunction, params[0].gpr(), params[1].gpr(), + params[2].gpr()); + } + }); + + setJSValue(patchpoint); + } + + template<typename BinaryBitOpGenerator> + void emitBinaryBitOpSnippet(J_JITOperation_EJJ slowPathFunction) + { + Node* node = m_node; + + LValue left = lowJSValue(node->child1()); + LValue right = lowJSValue(node->child2()); + + SnippetOperand leftOperand(m_state.forNode(node->child1()).resultType()); + SnippetOperand rightOperand(m_state.forNode(node->child2()).resultType()); + + PatchpointValue* patchpoint = m_out.patchpoint(Int64); + patchpoint->appendSomeRegister(left); + patchpoint->appendSomeRegister(right); + patchpoint->append(m_tagMask, ValueRep::lateReg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::lateReg(GPRInfo::tagTypeNumberRegister)); + RefPtr<PatchpointExceptionHandle> exceptionHandle = + preparePatchpointForExceptions(patchpoint); + patchpoint->numGPScratchRegisters = 1; + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + patchpoint->resultConstraint = ValueRep::SomeEarlyRegister; + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + Box<CCallHelpers::JumpList> exceptions = + exceptionHandle->scheduleExitCreation(params)->jumps(jit); + + auto generator = Box<BinaryBitOpGenerator>::create( + leftOperand, rightOperand, JSValueRegs(params[0].gpr()), + JSValueRegs(params[1].gpr()), JSValueRegs(params[2].gpr()), params.gpScratch(0)); + + generator->generateFastPath(jit); + generator->endJumpList().link(&jit); + CCallHelpers::Label done = jit.label(); + + params.addLatePath( + [=] (CCallHelpers& jit) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + generator->slowPathJumpList().link(&jit); + callOperation( + *state, params.unavailableRegisters(), jit, node->origin.semantic, + exceptions.get(), slowPathFunction, params[0].gpr(), + params[1].gpr(), params[2].gpr()); + jit.jump().linkTo(done, &jit); + }); + }); + + setJSValue(patchpoint); + } + + void emitRightShiftSnippet(JITRightShiftGenerator::ShiftType shiftType) + { + Node* node = m_node; + + // FIXME: Make this do exceptions. + // https://bugs.webkit.org/show_bug.cgi?id=151686 + + LValue left = lowJSValue(node->child1()); + LValue right = lowJSValue(node->child2()); + + SnippetOperand leftOperand(m_state.forNode(node->child1()).resultType()); + SnippetOperand rightOperand(m_state.forNode(node->child2()).resultType()); + + PatchpointValue* patchpoint = m_out.patchpoint(Int64); + patchpoint->appendSomeRegister(left); + patchpoint->appendSomeRegister(right); + patchpoint->append(m_tagMask, ValueRep::lateReg(GPRInfo::tagMaskRegister)); + patchpoint->append(m_tagTypeNumber, ValueRep::lateReg(GPRInfo::tagTypeNumberRegister)); + RefPtr<PatchpointExceptionHandle> exceptionHandle = + preparePatchpointForExceptions(patchpoint); + patchpoint->numGPScratchRegisters = 1; + patchpoint->numFPScratchRegisters = 1; + patchpoint->clobber(RegisterSet::macroScratchRegisters()); + patchpoint->resultConstraint = ValueRep::SomeEarlyRegister; + State* state = &m_ftlState; + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + Box<CCallHelpers::JumpList> exceptions = + exceptionHandle->scheduleExitCreation(params)->jumps(jit); + + auto generator = Box<JITRightShiftGenerator>::create( + leftOperand, rightOperand, JSValueRegs(params[0].gpr()), + JSValueRegs(params[1].gpr()), JSValueRegs(params[2].gpr()), + params.fpScratch(0), params.gpScratch(0), InvalidFPRReg, shiftType); + + generator->generateFastPath(jit); + generator->endJumpList().link(&jit); + CCallHelpers::Label done = jit.label(); + + params.addLatePath( + [=] (CCallHelpers& jit) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + generator->slowPathJumpList().link(&jit); + + J_JITOperation_EJJ slowPathFunction = + shiftType == JITRightShiftGenerator::SignedShift + ? operationValueBitRShift : operationValueBitURShift; + + callOperation( + *state, params.unavailableRegisters(), jit, node->origin.semantic, + exceptions.get(), slowPathFunction, params[0].gpr(), + params[1].gpr(), params[2].gpr()); + jit.jump().linkTo(done, &jit); + }); + }); + + setJSValue(patchpoint); + } + + LValue allocateHeapCell(LValue allocator, LBasicBlock slowPath) + { + MarkedAllocator* actualAllocator = nullptr; + if (allocator->hasIntPtr()) + actualAllocator = bitwise_cast<MarkedAllocator*>(allocator->asIntPtr()); + + if (!actualAllocator) { + // This means that either we know that the allocator is null or we don't know what the + // allocator is. In either case, we need the null check. + LBasicBlock haveAllocator = m_out.newBlock(); + LBasicBlock lastNext = m_out.insertNewBlocksBefore(haveAllocator); + m_out.branch(allocator, usually(haveAllocator), rarely(slowPath)); + m_out.appendTo(haveAllocator, lastNext); + } + + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(continuation); + + PatchpointValue* patchpoint = m_out.patchpoint(pointerType()); + patchpoint->effects.terminal = true; + patchpoint->appendSomeRegister(allocator); + patchpoint->numGPScratchRegisters++; + patchpoint->resultConstraint = ValueRep::SomeEarlyRegister; + + m_out.appendSuccessor(usually(continuation)); + m_out.appendSuccessor(rarely(slowPath)); + + patchpoint->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + CCallHelpers::JumpList jumpToSlowPath; + + // We use a patchpoint to emit the allocation path because whenever we mess with + // allocation paths, we already reason about them at the machine code level. We know + // exactly what instruction sequence we want. We're confident that no compiler + // optimization could make this code better. So, it's best to have the code in + // AssemblyHelpers::emitAllocate(). That way, the same optimized path is shared by + // all of the compiler tiers. + jit.emitAllocateWithNonNullAllocator( + params[0].gpr(), actualAllocator, params[1].gpr(), params.gpScratch(0), + jumpToSlowPath); + + CCallHelpers::Jump jumpToSuccess; + if (!params.fallsThroughToSuccessor(0)) + jumpToSuccess = jit.jump(); + + Vector<Box<CCallHelpers::Label>> labels = params.successorLabels(); + + params.addLatePath( + [=] (CCallHelpers& jit) { + jumpToSlowPath.linkTo(*labels[1], &jit); + if (jumpToSuccess.isSet()) + jumpToSuccess.linkTo(*labels[0], &jit); + }); + }); + + m_out.appendTo(continuation, lastNext); + return patchpoint; + } + + void storeStructure(LValue object, Structure* structure) + { + m_out.store32(m_out.constInt32(structure->id()), object, m_heaps.JSCell_structureID); + m_out.store32( + m_out.constInt32(structure->objectInitializationBlob()), + object, m_heaps.JSCell_usefulBytes); + } + + void storeStructure(LValue object, LValue structure) + { + if (structure->hasIntPtr()) { + storeStructure(object, bitwise_cast<Structure*>(structure->asIntPtr())); + return; + } + + LValue id = m_out.load32(structure, m_heaps.Structure_structureID); + m_out.store32(id, object, m_heaps.JSCell_structureID); + + LValue blob = m_out.load32(structure, m_heaps.Structure_indexingTypeIncludingHistory); + m_out.store32(blob, object, m_heaps.JSCell_usefulBytes); + } + + template <typename StructureType> + LValue allocateCell(LValue allocator, StructureType structure, LBasicBlock slowPath) + { + LValue result = allocateHeapCell(allocator, slowPath); + storeStructure(result, structure); + return result; + } + + LValue allocateObject(LValue allocator, RegisteredStructure structure, LValue butterfly, LBasicBlock slowPath) + { + return allocateObject(allocator, weakStructure(structure), butterfly, slowPath); + } + + LValue allocateObject(LValue allocator, LValue structure, LValue butterfly, LBasicBlock slowPath) + { + LValue result = allocateCell(allocator, structure, slowPath); + if (structure->hasIntPtr()) { + splatWords( + result, + m_out.constInt32(JSFinalObject::offsetOfInlineStorage() / 8), + m_out.constInt32(JSFinalObject::offsetOfInlineStorage() / 8 + bitwise_cast<Structure*>(structure->asIntPtr())->inlineCapacity()), + m_out.int64Zero, + m_heaps.properties.atAnyNumber()); + } else { + LValue end = m_out.add( + m_out.constInt32(JSFinalObject::offsetOfInlineStorage() / 8), + m_out.load8ZeroExt32(structure, m_heaps.Structure_inlineCapacity)); + splatWords( + result, + m_out.constInt32(JSFinalObject::offsetOfInlineStorage() / 8), + end, + m_out.int64Zero, + m_heaps.properties.atAnyNumber()); + } + + m_out.storePtr(butterfly, result, m_heaps.JSObject_butterfly); + return result; + } + + template<typename ClassType, typename StructureType> + LValue allocateObject( + size_t size, StructureType structure, LValue butterfly, LBasicBlock slowPath) + { + MarkedAllocator* allocator = subspaceFor<ClassType>(vm())->allocatorFor(size); + return allocateObject(m_out.constIntPtr(allocator), structure, butterfly, slowPath); + } + + template<typename ClassType, typename StructureType> + LValue allocateObject(StructureType structure, LValue butterfly, LBasicBlock slowPath) + { + return allocateObject<ClassType>( + ClassType::allocationSize(0), structure, butterfly, slowPath); + } + + LValue allocatorForSize(LValue subspace, LValue size, LBasicBlock slowPath) + { + static_assert(!(MarkedSpace::sizeStep & (MarkedSpace::sizeStep - 1)), "MarkedSpace::sizeStep must be a power of two."); + + // Try to do some constant-folding here. + if (subspace->hasIntPtr() && size->hasIntPtr()) { + Subspace* actualSubspace = bitwise_cast<Subspace*>(subspace->asIntPtr()); + size_t actualSize = size->asIntPtr(); + + MarkedAllocator* actualAllocator = actualSubspace->allocatorFor(actualSize); + if (!actualAllocator) { + LBasicBlock continuation = m_out.newBlock(); + LBasicBlock lastNext = m_out.insertNewBlocksBefore(continuation); + m_out.jump(slowPath); + m_out.appendTo(continuation, lastNext); + return m_out.intPtrZero; + } + + return m_out.constIntPtr(actualAllocator); + } + + unsigned stepShift = getLSBSet(MarkedSpace::sizeStep); + + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(continuation); + + LValue sizeClassIndex = m_out.lShr( + m_out.add(size, m_out.constIntPtr(MarkedSpace::sizeStep - 1)), + m_out.constInt32(stepShift)); + + m_out.branch( + m_out.above(sizeClassIndex, m_out.constIntPtr(MarkedSpace::largeCutoff >> stepShift)), + rarely(slowPath), usually(continuation)); + + m_out.appendTo(continuation, lastNext); + + return m_out.loadPtr( + m_out.baseIndex( + m_heaps.Subspace_allocatorForSizeStep, + subspace, m_out.sub(sizeClassIndex, m_out.intPtrOne))); + } + + LValue allocatorForSize(Subspace& subspace, LValue size, LBasicBlock slowPath) + { + return allocatorForSize(m_out.constIntPtr(&subspace), size, slowPath); + } + + template<typename ClassType> + LValue allocateVariableSizedObject( + LValue size, RegisteredStructure structure, LValue butterfly, LBasicBlock slowPath) + { + LValue allocator = allocatorForSize( + *subspaceFor<ClassType>(vm()), size, slowPath); + return allocateObject(allocator, structure, butterfly, slowPath); + } + + template<typename ClassType> + LValue allocateVariableSizedCell( + LValue size, Structure* structure, LBasicBlock slowPath) + { + LValue allocator = allocatorForSize( + *subspaceFor<ClassType>(vm()), size, slowPath); + return allocateCell(allocator, structure, slowPath); + } + + LValue allocateObject(RegisteredStructure structure) + { + size_t allocationSize = JSFinalObject::allocationSize(structure.get()->inlineCapacity()); + MarkedAllocator* allocator = subspaceFor<JSFinalObject>(vm())->allocatorFor(allocationSize); + + // FIXME: If the allocator is null, we could simply emit a normal C call to the allocator + // instead of putting it on the slow path. + // https://bugs.webkit.org/show_bug.cgi?id=161062 + + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + ValueFromBlock fastResult = m_out.anchor(allocateObject( + m_out.constIntPtr(allocator), structure, m_out.intPtrZero, slowPath)); + + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + + LValue slowResultValue = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationNewObject, locations[0].directGPR(), + CCallHelpers::TrustedImmPtr(structure.get())); + }); + ValueFromBlock slowResult = m_out.anchor(slowResultValue); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(pointerType(), fastResult, slowResult); + } + + struct ArrayValues { + ArrayValues() + : array(0) + , butterfly(0) + { + } + + ArrayValues(LValue array, LValue butterfly) + : array(array) + , butterfly(butterfly) + { + } + + LValue array; + LValue butterfly; + }; + + ArrayValues allocateJSArray(LValue publicLength, LValue structure, LValue indexingType, bool shouldInitializeElements = true, bool shouldLargeArraySizeCreateArrayStorage = true) + { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + if (indexingType->hasInt32()) { + IndexingType type = static_cast<IndexingType>(indexingType->asInt32()); + ASSERT_UNUSED(type, + hasUndecided(type) + || hasInt32(type) + || hasDouble(type) + || hasContiguous(type)); + } + + LBasicBlock fastCase = m_out.newBlock(); + LBasicBlock largeCase = m_out.newBlock(); + LBasicBlock failCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + LBasicBlock slowCase = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(fastCase); + + ValueFromBlock noButterfly = m_out.anchor(m_out.intPtrZero); + + LValue predicate; + if (shouldLargeArraySizeCreateArrayStorage) + predicate = m_out.aboveOrEqual(publicLength, m_out.constInt32(MIN_ARRAY_STORAGE_CONSTRUCTION_LENGTH)); + else + predicate = m_out.booleanFalse; + + m_out.branch(predicate, rarely(largeCase), usually(fastCase)); + + m_out.appendTo(fastCase, largeCase); + + LValue vectorLength = nullptr; + if (publicLength->hasInt32() && structure->hasIntPtr()) { + unsigned publicLengthConst = static_cast<unsigned>(publicLength->asInt32()); + if (publicLengthConst <= MAX_STORAGE_VECTOR_LENGTH) { + vectorLength = m_out.constInt32( + Butterfly::optimalContiguousVectorLength( + bitwise_cast<Structure*>(structure->asIntPtr())->outOfLineCapacity(), publicLengthConst)); + } + } + + if (!vectorLength) { + // We don't compute the optimal vector length for new Array(blah) where blah is not + // statically known, since the compute effort of doing it here is probably not worth it. + vectorLength = publicLength; + } + + LValue payloadSize = + m_out.shl(m_out.zeroExt(vectorLength, pointerType()), m_out.constIntPtr(3)); + + LValue butterflySize = m_out.add( + payloadSize, m_out.constIntPtr(sizeof(IndexingHeader))); + + LValue allocator = allocatorForSize(vm().auxiliarySpace, butterflySize, failCase); + LValue startOfStorage = allocateHeapCell(allocator, failCase); + + LValue butterfly = m_out.add(startOfStorage, m_out.constIntPtr(sizeof(IndexingHeader))); + + m_out.store32(publicLength, butterfly, m_heaps.Butterfly_publicLength); + m_out.store32(vectorLength, butterfly, m_heaps.Butterfly_vectorLength); + + initializeArrayElements( + indexingType, + shouldInitializeElements ? m_out.int32Zero : publicLength, vectorLength, + butterfly); + + ValueFromBlock haveButterfly = m_out.anchor(butterfly); + + LValue object = allocateObject<JSArray>(structure, butterfly, failCase); + + ValueFromBlock fastResult = m_out.anchor(object); + ValueFromBlock fastButterfly = m_out.anchor(butterfly); + m_out.jump(continuation); + + m_out.appendTo(largeCase, failCase); + ValueFromBlock largeStructure = m_out.anchor( + weakStructure(m_graph.registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithArrayStorage)))); + m_out.jump(slowCase); + + m_out.appendTo(failCase, slowCase); + ValueFromBlock failStructure = m_out.anchor(structure); + m_out.jump(slowCase); + + m_out.appendTo(slowCase, continuation); + LValue structureValue = m_out.phi(pointerType(), largeStructure, failStructure); + LValue butterflyValue = m_out.phi(pointerType(), noButterfly, haveButterfly); + + LValue slowResultValue = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationNewArrayWithSize, locations[0].directGPR(), + locations[1].directGPR(), locations[2].directGPR(), locations[3].directGPR()); + }, + structureValue, publicLength, butterflyValue); + ValueFromBlock slowResult = m_out.anchor(slowResultValue); + ValueFromBlock slowButterfly = m_out.anchor( + m_out.loadPtr(slowResultValue, m_heaps.JSObject_butterfly)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return ArrayValues( + m_out.phi(pointerType(), fastResult, slowResult), + m_out.phi(pointerType(), fastButterfly, slowButterfly)); + } + + ArrayValues allocateUninitializedContiguousJSArray(LValue publicLength, RegisteredStructure structure) + { + bool shouldInitializeElements = false; + bool shouldLargeArraySizeCreateArrayStorage = false; + return allocateJSArray( + publicLength, weakStructure(structure), m_out.constInt32(structure->indexingType()), shouldInitializeElements, + shouldLargeArraySizeCreateArrayStorage); + } + + LValue ensureShadowChickenPacket() + { + LBasicBlock slowCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + TypedPointer addressOfLogCursor = m_out.absolute(vm().shadowChicken().addressOfLogCursor()); + LValue logCursor = m_out.loadPtr(addressOfLogCursor); + + ValueFromBlock fastResult = m_out.anchor(logCursor); + + m_out.branch( + m_out.below(logCursor, m_out.constIntPtr(vm().shadowChicken().logEnd())), + usually(continuation), rarely(slowCase)); + + LBasicBlock lastNext = m_out.appendTo(slowCase, continuation); + + vmCall(Void, m_out.operation(operationProcessShadowChickenLog), m_callFrame); + + ValueFromBlock slowResult = m_out.anchor(m_out.loadPtr(addressOfLogCursor)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + LValue result = m_out.phi(pointerType(), fastResult, slowResult); + + m_out.storePtr( + m_out.add(result, m_out.constIntPtr(sizeof(ShadowChicken::Packet))), + addressOfLogCursor); + + return result; + } + + LValue boolify(Edge edge) + { + switch (edge.useKind()) { + case BooleanUse: + case KnownBooleanUse: + return lowBoolean(edge); + case Int32Use: + return m_out.notZero32(lowInt32(edge)); + case DoubleRepUse: + return m_out.doubleNotEqualAndOrdered(lowDouble(edge), m_out.doubleZero); + case ObjectOrOtherUse: + return m_out.logicalNot( + equalNullOrUndefined( + edge, CellCaseSpeculatesObject, SpeculateNullOrUndefined, + ManualOperandSpeculation)); + case StringUse: { + LValue stringValue = lowString(edge); + LValue length = m_out.load32NonNegative(stringValue, m_heaps.JSString_length); + return m_out.notEqual(length, m_out.int32Zero); + } + case StringOrOtherUse: { + LValue value = lowJSValue(edge, ManualOperandSpeculation); + + LBasicBlock cellCase = m_out.newBlock(); + LBasicBlock notCellCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(isCell(value, provenType(edge)), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, notCellCase); + + FTL_TYPE_CHECK(jsValueValue(value), edge, (~SpecCell) | SpecString, isNotString(value)); + LValue length = m_out.load32NonNegative(value, m_heaps.JSString_length); + ValueFromBlock cellResult = m_out.anchor(m_out.notEqual(length, m_out.int32Zero)); + m_out.jump(continuation); + + m_out.appendTo(notCellCase, continuation); + + FTL_TYPE_CHECK(jsValueValue(value), edge, SpecCell | SpecOther, isNotOther(value)); + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + + return m_out.phi(Int32, cellResult, notCellResult); + } + case UntypedUse: { + LValue value = lowJSValue(edge); + + // Implements the following control flow structure: + // if (value is cell) { + // if (value is string) + // result = !!value->length + // else { + // do evil things for masquerades-as-undefined + // result = true + // } + // } else if (value is int32) { + // result = !!unboxInt32(value) + // } else if (value is number) { + // result = !!unboxDouble(value) + // } else { + // result = value == jsTrue + // } + + LBasicBlock cellCase = m_out.newBlock(); + LBasicBlock stringCase = m_out.newBlock(); + LBasicBlock notStringCase = m_out.newBlock(); + LBasicBlock notCellCase = m_out.newBlock(); + LBasicBlock int32Case = m_out.newBlock(); + LBasicBlock notInt32Case = m_out.newBlock(); + LBasicBlock doubleCase = m_out.newBlock(); + LBasicBlock notDoubleCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + Vector<ValueFromBlock> results; + + m_out.branch(isCell(value, provenType(edge)), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, stringCase); + m_out.branch( + isString(value, provenType(edge) & SpecCell), + unsure(stringCase), unsure(notStringCase)); + + m_out.appendTo(stringCase, notStringCase); + LValue nonEmptyString = m_out.notZero32( + m_out.load32NonNegative(value, m_heaps.JSString_length)); + results.append(m_out.anchor(nonEmptyString)); + m_out.jump(continuation); + + m_out.appendTo(notStringCase, notCellCase); + LValue isTruthyObject; + if (masqueradesAsUndefinedWatchpointIsStillValid()) + isTruthyObject = m_out.booleanTrue; + else { + LBasicBlock masqueradesCase = m_out.newBlock(); + + results.append(m_out.anchor(m_out.booleanTrue)); + + m_out.branch( + m_out.testIsZero32( + m_out.load8ZeroExt32(value, m_heaps.JSCell_typeInfoFlags), + m_out.constInt32(MasqueradesAsUndefined)), + usually(continuation), rarely(masqueradesCase)); + + m_out.appendTo(masqueradesCase); + + isTruthyObject = m_out.notEqual( + weakPointer(m_graph.globalObjectFor(m_node->origin.semantic)), + m_out.loadPtr(loadStructure(value), m_heaps.Structure_globalObject)); + } + results.append(m_out.anchor(isTruthyObject)); + m_out.jump(continuation); + + m_out.appendTo(notCellCase, int32Case); + m_out.branch( + isInt32(value, provenType(edge) & ~SpecCell), + unsure(int32Case), unsure(notInt32Case)); + + m_out.appendTo(int32Case, notInt32Case); + results.append(m_out.anchor(m_out.notZero32(unboxInt32(value)))); + m_out.jump(continuation); + + m_out.appendTo(notInt32Case, doubleCase); + m_out.branch( + isNumber(value, provenType(edge) & ~SpecCell), + unsure(doubleCase), unsure(notDoubleCase)); + + m_out.appendTo(doubleCase, notDoubleCase); + LValue doubleIsTruthy = m_out.doubleNotEqualAndOrdered( + unboxDouble(value), m_out.constDouble(0)); + results.append(m_out.anchor(doubleIsTruthy)); + m_out.jump(continuation); + + m_out.appendTo(notDoubleCase, continuation); + LValue miscIsTruthy = m_out.equal( + value, m_out.constInt64(JSValue::encode(jsBoolean(true)))); + results.append(m_out.anchor(miscIsTruthy)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(Int32, results); + } + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + return 0; + } + } + + enum StringOrObjectMode { + AllCellsAreFalse, + CellCaseSpeculatesObject + }; + enum EqualNullOrUndefinedMode { + EqualNull, + EqualUndefined, + EqualNullOrUndefined, + SpeculateNullOrUndefined + }; + LValue equalNullOrUndefined( + Edge edge, StringOrObjectMode cellMode, EqualNullOrUndefinedMode primitiveMode, + OperandSpeculationMode operandMode = AutomaticOperandSpeculation) + { + bool validWatchpoint = masqueradesAsUndefinedWatchpointIsStillValid(); + + LValue value = lowJSValue(edge, operandMode); + + LBasicBlock cellCase = m_out.newBlock(); + LBasicBlock primitiveCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(isNotCell(value, provenType(edge)), unsure(primitiveCase), unsure(cellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, primitiveCase); + + Vector<ValueFromBlock, 3> results; + + switch (cellMode) { + case AllCellsAreFalse: + break; + case CellCaseSpeculatesObject: + FTL_TYPE_CHECK( + jsValueValue(value), edge, (~SpecCell) | SpecObject, isNotObject(value)); + break; + } + + if (validWatchpoint) { + results.append(m_out.anchor(m_out.booleanFalse)); + m_out.jump(continuation); + } else { + LBasicBlock masqueradesCase = + m_out.newBlock(); + + results.append(m_out.anchor(m_out.booleanFalse)); + + m_out.branch( + m_out.testNonZero32( + m_out.load8ZeroExt32(value, m_heaps.JSCell_typeInfoFlags), + m_out.constInt32(MasqueradesAsUndefined)), + rarely(masqueradesCase), usually(continuation)); + + m_out.appendTo(masqueradesCase, primitiveCase); + + LValue structure = loadStructure(value); + + results.append(m_out.anchor( + m_out.equal( + weakPointer(m_graph.globalObjectFor(m_node->origin.semantic)), + m_out.loadPtr(structure, m_heaps.Structure_globalObject)))); + m_out.jump(continuation); + } + + m_out.appendTo(primitiveCase, continuation); + + LValue primitiveResult; + switch (primitiveMode) { + case EqualNull: + primitiveResult = m_out.equal(value, m_out.constInt64(ValueNull)); + break; + case EqualUndefined: + primitiveResult = m_out.equal(value, m_out.constInt64(ValueUndefined)); + break; + case EqualNullOrUndefined: + primitiveResult = isOther(value, provenType(edge)); + break; + case SpeculateNullOrUndefined: + FTL_TYPE_CHECK( + jsValueValue(value), edge, SpecCell | SpecOther, isNotOther(value)); + primitiveResult = m_out.booleanTrue; + break; + } + results.append(m_out.anchor(primitiveResult)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + return m_out.phi(Int32, results); + } + + template<typename FunctionType> + void contiguousPutByValOutOfBounds( + FunctionType slowPathFunction, LValue base, LValue storage, LValue index, LValue value, + LBasicBlock continuation) + { + LValue isNotInBounds = m_out.aboveOrEqual( + index, m_out.load32NonNegative(storage, m_heaps.Butterfly_publicLength)); + if (!m_node->arrayMode().isInBounds()) { + LBasicBlock notInBoundsCase = + m_out.newBlock(); + LBasicBlock performStore = + m_out.newBlock(); + + m_out.branch(isNotInBounds, unsure(notInBoundsCase), unsure(performStore)); + + LBasicBlock lastNext = m_out.appendTo(notInBoundsCase, performStore); + + LValue isOutOfBounds = m_out.aboveOrEqual( + index, m_out.load32NonNegative(storage, m_heaps.Butterfly_vectorLength)); + + if (!m_node->arrayMode().isOutOfBounds()) + speculate(OutOfBounds, noValue(), 0, isOutOfBounds); + else { + LBasicBlock outOfBoundsCase = + m_out.newBlock(); + LBasicBlock holeCase = + m_out.newBlock(); + + m_out.branch(isOutOfBounds, rarely(outOfBoundsCase), usually(holeCase)); + + LBasicBlock innerLastNext = m_out.appendTo(outOfBoundsCase, holeCase); + + vmCall( + Void, m_out.operation(slowPathFunction), + m_callFrame, base, index, value); + + m_out.jump(continuation); + + m_out.appendTo(holeCase, innerLastNext); + } + + m_out.store32( + m_out.add(index, m_out.int32One), + storage, m_heaps.Butterfly_publicLength); + + m_out.jump(performStore); + m_out.appendTo(performStore, lastNext); + } + } + + void buildSwitch(SwitchData* data, LType type, LValue switchValue) + { + ASSERT(type == pointerType() || type == Int32); + + Vector<SwitchCase> cases; + for (unsigned i = 0; i < data->cases.size(); ++i) { + SwitchCase newCase; + + if (type == pointerType()) { + newCase = SwitchCase(m_out.constIntPtr(data->cases[i].value.switchLookupValue(data->kind)), + lowBlock(data->cases[i].target.block), Weight(data->cases[i].target.count)); + } else if (type == Int32) { + newCase = SwitchCase(m_out.constInt32(data->cases[i].value.switchLookupValue(data->kind)), + lowBlock(data->cases[i].target.block), Weight(data->cases[i].target.count)); + } else + CRASH(); + + cases.append(newCase); + } + + m_out.switchInstruction( + switchValue, cases, + lowBlock(data->fallThrough.block), Weight(data->fallThrough.count)); + } + + void switchString(SwitchData* data, LValue string) + { + bool canDoBinarySwitch = true; + unsigned totalLength = 0; + + for (DFG::SwitchCase myCase : data->cases) { + StringImpl* string = myCase.value.stringImpl(); + if (!string->is8Bit()) { + canDoBinarySwitch = false; + break; + } + if (string->length() > Options::maximumBinaryStringSwitchCaseLength()) { + canDoBinarySwitch = false; + break; + } + totalLength += string->length(); + } + + if (!canDoBinarySwitch || totalLength > Options::maximumBinaryStringSwitchTotalLength()) { + switchStringSlow(data, string); + return; + } + + LValue stringImpl = m_out.loadPtr(string, m_heaps.JSString_value); + LValue length = m_out.load32(string, m_heaps.JSString_length); + + LBasicBlock hasImplBlock = m_out.newBlock(); + LBasicBlock is8BitBlock = m_out.newBlock(); + LBasicBlock slowBlock = m_out.newBlock(); + + m_out.branch(m_out.isNull(stringImpl), unsure(slowBlock), unsure(hasImplBlock)); + + LBasicBlock lastNext = m_out.appendTo(hasImplBlock, is8BitBlock); + + m_out.branch( + m_out.testIsZero32( + m_out.load32(stringImpl, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIs8Bit())), + unsure(slowBlock), unsure(is8BitBlock)); + + m_out.appendTo(is8BitBlock, slowBlock); + + LValue buffer = m_out.loadPtr(stringImpl, m_heaps.StringImpl_data); + + // FIXME: We should propagate branch weight data to the cases of this switch. + // https://bugs.webkit.org/show_bug.cgi?id=144368 + + Vector<StringSwitchCase> cases; + for (DFG::SwitchCase myCase : data->cases) + cases.append(StringSwitchCase(myCase.value.stringImpl(), lowBlock(myCase.target.block))); + std::sort(cases.begin(), cases.end()); + switchStringRecurse(data, buffer, length, cases, 0, 0, cases.size(), 0, false); + + m_out.appendTo(slowBlock, lastNext); + switchStringSlow(data, string); + } + + // The code for string switching is based closely on the same code in the DFG backend. While it + // would be nice to reduce the amount of similar-looking code, it seems like this is one of + // those algorithms where factoring out the common bits would result in more code than just + // duplicating. + + struct StringSwitchCase { + StringSwitchCase() { } + + StringSwitchCase(StringImpl* string, LBasicBlock target) + : string(string) + , target(target) + { + } + + bool operator<(const StringSwitchCase& other) const + { + return stringLessThan(*string, *other.string); + } + + StringImpl* string; + LBasicBlock target; + }; + + struct CharacterCase { + CharacterCase() + : character(0) + , begin(0) + , end(0) + { + } + + CharacterCase(LChar character, unsigned begin, unsigned end) + : character(character) + , begin(begin) + , end(end) + { + } + + bool operator<(const CharacterCase& other) const + { + return character < other.character; + } + + LChar character; + unsigned begin; + unsigned end; + }; + + void switchStringRecurse( + SwitchData* data, LValue buffer, LValue length, const Vector<StringSwitchCase>& cases, + unsigned numChecked, unsigned begin, unsigned end, unsigned alreadyCheckedLength, + unsigned checkedExactLength) + { + LBasicBlock fallThrough = lowBlock(data->fallThrough.block); + + if (begin == end) { + m_out.jump(fallThrough); + return; + } + + unsigned minLength = cases[begin].string->length(); + unsigned commonChars = minLength; + bool allLengthsEqual = true; + for (unsigned i = begin + 1; i < end; ++i) { + unsigned myCommonChars = numChecked; + unsigned limit = std::min(cases[begin].string->length(), cases[i].string->length()); + for (unsigned j = numChecked; j < limit; ++j) { + if (cases[begin].string->at(j) != cases[i].string->at(j)) + break; + myCommonChars++; + } + commonChars = std::min(commonChars, myCommonChars); + if (minLength != cases[i].string->length()) + allLengthsEqual = false; + minLength = std::min(minLength, cases[i].string->length()); + } + + if (checkedExactLength) { + DFG_ASSERT(m_graph, m_node, alreadyCheckedLength == minLength); + DFG_ASSERT(m_graph, m_node, allLengthsEqual); + } + + DFG_ASSERT(m_graph, m_node, minLength >= commonChars); + + if (!allLengthsEqual && alreadyCheckedLength < minLength) + m_out.check(m_out.below(length, m_out.constInt32(minLength)), unsure(fallThrough)); + if (allLengthsEqual && (alreadyCheckedLength < minLength || !checkedExactLength)) + m_out.check(m_out.notEqual(length, m_out.constInt32(minLength)), unsure(fallThrough)); + + for (unsigned i = numChecked; i < commonChars; ++i) { + m_out.check( + m_out.notEqual( + m_out.load8ZeroExt32(buffer, m_heaps.characters8[i]), + m_out.constInt32(static_cast<uint16_t>(cases[begin].string->at(i)))), + unsure(fallThrough)); + } + + if (minLength == commonChars) { + // This is the case where one of the cases is a prefix of all of the other cases. + // We've already checked that the input string is a prefix of all of the cases, + // so we just check length to jump to that case. + + DFG_ASSERT(m_graph, m_node, cases[begin].string->length() == commonChars); + for (unsigned i = begin + 1; i < end; ++i) + DFG_ASSERT(m_graph, m_node, cases[i].string->length() > commonChars); + + if (allLengthsEqual) { + DFG_ASSERT(m_graph, m_node, end == begin + 1); + m_out.jump(cases[begin].target); + return; + } + + m_out.check( + m_out.equal(length, m_out.constInt32(commonChars)), + unsure(cases[begin].target)); + + // We've checked if the length is >= minLength, and then we checked if the length is + // == commonChars. We get to this point if it is >= minLength but not == commonChars. + // Hence we know that it now must be > minLength, i.e. that it's >= minLength + 1. + switchStringRecurse( + data, buffer, length, cases, commonChars, begin + 1, end, minLength + 1, false); + return; + } + + // At this point we know that the string is longer than commonChars, and we've only verified + // commonChars. Use a binary switch on the next unchecked character, i.e. + // string[commonChars]. + + DFG_ASSERT(m_graph, m_node, end >= begin + 2); + + LValue uncheckedChar = m_out.load8ZeroExt32(buffer, m_heaps.characters8[commonChars]); + + Vector<CharacterCase> characterCases; + CharacterCase currentCase(cases[begin].string->at(commonChars), begin, begin + 1); + for (unsigned i = begin + 1; i < end; ++i) { + LChar currentChar = cases[i].string->at(commonChars); + if (currentChar != currentCase.character) { + currentCase.end = i; + characterCases.append(currentCase); + currentCase = CharacterCase(currentChar, i, i + 1); + } else + currentCase.end = i + 1; + } + characterCases.append(currentCase); + + Vector<LBasicBlock> characterBlocks; + for (unsigned i = characterCases.size(); i--;) + characterBlocks.append(m_out.newBlock()); + + Vector<SwitchCase> switchCases; + for (unsigned i = 0; i < characterCases.size(); ++i) { + if (i) + DFG_ASSERT(m_graph, m_node, characterCases[i - 1].character < characterCases[i].character); + switchCases.append(SwitchCase( + m_out.constInt32(characterCases[i].character), characterBlocks[i], Weight())); + } + m_out.switchInstruction(uncheckedChar, switchCases, fallThrough, Weight()); + + LBasicBlock lastNext = m_out.m_nextBlock; + characterBlocks.append(lastNext); // Makes it convenient to set nextBlock. + for (unsigned i = 0; i < characterCases.size(); ++i) { + m_out.appendTo(characterBlocks[i], characterBlocks[i + 1]); + switchStringRecurse( + data, buffer, length, cases, commonChars + 1, + characterCases[i].begin, characterCases[i].end, minLength, allLengthsEqual); + } + + DFG_ASSERT(m_graph, m_node, m_out.m_nextBlock == lastNext); + } + + void switchStringSlow(SwitchData* data, LValue string) + { + // FIXME: We ought to be able to use computed gotos here. We would save the labels of the + // blocks we want to jump to, and then request their addresses after compilation completes. + // https://bugs.webkit.org/show_bug.cgi?id=144369 + + LValue branchOffset = vmCall( + Int32, m_out.operation(operationSwitchStringAndGetBranchOffset), + m_callFrame, m_out.constIntPtr(data->switchTableIndex), string); + + StringJumpTable& table = codeBlock()->stringSwitchJumpTable(data->switchTableIndex); + + Vector<SwitchCase> cases; + std::unordered_set<int32_t> alreadyHandled; // These may be negative, or zero, or probably other stuff, too. We don't want to mess with HashSet's corner cases and we don't really care about throughput here. + for (unsigned i = 0; i < data->cases.size(); ++i) { + // FIXME: The fact that we're using the bytecode's switch table means that the + // following DFG IR transformation would be invalid. + // + // Original code: + // switch (v) { + // case "foo": + // case "bar": + // things(); + // break; + // default: + // break; + // } + // + // New code: + // switch (v) { + // case "foo": + // instrumentFoo(); + // goto _things; + // case "bar": + // instrumentBar(); + // _things: + // things(); + // break; + // default: + // break; + // } + // + // Luckily, we don't currently do any such transformation. But it's kind of silly that + // this is an issue. + // https://bugs.webkit.org/show_bug.cgi?id=144635 + + DFG::SwitchCase myCase = data->cases[i]; + StringJumpTable::StringOffsetTable::iterator iter = + table.offsetTable.find(myCase.value.stringImpl()); + DFG_ASSERT(m_graph, m_node, iter != table.offsetTable.end()); + + if (!alreadyHandled.insert(iter->value.branchOffset).second) + continue; + + cases.append(SwitchCase( + m_out.constInt32(iter->value.branchOffset), + lowBlock(myCase.target.block), Weight(myCase.target.count))); + } + + m_out.switchInstruction( + branchOffset, cases, lowBlock(data->fallThrough.block), + Weight(data->fallThrough.count)); + } + + // Calls the functor at the point of code generation where we know what the result type is. + // You can emit whatever code you like at that point. Expects you to terminate the basic block. + // When buildTypeOf() returns, it will have terminated all basic blocks that it created. So, if + // you aren't using this as the terminator of a high-level block, you should create your own + // contination and set it as the nextBlock (m_out.insertNewBlocksBefore(continuation)) before + // calling this. For example: + // + // LBasicBlock continuation = m_out.newBlock(); + // LBasicBlock lastNext = m_out.insertNewBlocksBefore(continuation); + // buildTypeOf( + // child, value, + // [&] (TypeofType type) { + // do things; + // m_out.jump(continuation); + // }); + // m_out.appendTo(continuation, lastNext); + template<typename Functor> + void buildTypeOf(Edge child, LValue value, const Functor& functor) + { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + + // Implements the following branching structure: + // + // if (is cell) { + // if (is object) { + // if (is function) { + // return function; + // } else if (doesn't have call trap and doesn't masquerade as undefined) { + // return object + // } else { + // return slowPath(); + // } + // } else if (is string) { + // return string + // } else { + // return symbol + // } + // } else if (is number) { + // return number + // } else if (is null) { + // return object + // } else if (is boolean) { + // return boolean + // } else { + // return undefined + // } + + LBasicBlock cellCase = m_out.newBlock(); + LBasicBlock objectCase = m_out.newBlock(); + LBasicBlock functionCase = m_out.newBlock(); + LBasicBlock notFunctionCase = m_out.newBlock(); + LBasicBlock reallyObjectCase = m_out.newBlock(); + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock unreachable = m_out.newBlock(); + LBasicBlock notObjectCase = m_out.newBlock(); + LBasicBlock stringCase = m_out.newBlock(); + LBasicBlock symbolCase = m_out.newBlock(); + LBasicBlock notCellCase = m_out.newBlock(); + LBasicBlock numberCase = m_out.newBlock(); + LBasicBlock notNumberCase = m_out.newBlock(); + LBasicBlock notNullCase = m_out.newBlock(); + LBasicBlock booleanCase = m_out.newBlock(); + LBasicBlock undefinedCase = m_out.newBlock(); + + m_out.branch(isCell(value, provenType(child)), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, objectCase); + m_out.branch(isObject(value, provenType(child)), unsure(objectCase), unsure(notObjectCase)); + + m_out.appendTo(objectCase, functionCase); + m_out.branch( + isFunction(value, provenType(child) & SpecObject), + unsure(functionCase), unsure(notFunctionCase)); + + m_out.appendTo(functionCase, notFunctionCase); + functor(TypeofType::Function); + + m_out.appendTo(notFunctionCase, reallyObjectCase); + m_out.branch( + isExoticForTypeof(value, provenType(child) & (SpecObject - SpecFunction)), + rarely(slowPath), usually(reallyObjectCase)); + + m_out.appendTo(reallyObjectCase, slowPath); + functor(TypeofType::Object); + + m_out.appendTo(slowPath, unreachable); + LValue result = lazySlowPath( + [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + return createLazyCallGenerator( + operationTypeOfObjectAsTypeofType, locations[0].directGPR(), + CCallHelpers::TrustedImmPtr(globalObject), locations[1].directGPR()); + }, value); + Vector<SwitchCase, 3> cases; + cases.append(SwitchCase(m_out.constInt32(static_cast<int32_t>(TypeofType::Undefined)), undefinedCase)); + cases.append(SwitchCase(m_out.constInt32(static_cast<int32_t>(TypeofType::Object)), reallyObjectCase)); + cases.append(SwitchCase(m_out.constInt32(static_cast<int32_t>(TypeofType::Function)), functionCase)); + m_out.switchInstruction(m_out.castToInt32(result), cases, unreachable, Weight()); + + m_out.appendTo(unreachable, notObjectCase); + m_out.unreachable(); + + m_out.appendTo(notObjectCase, stringCase); + m_out.branch( + isString(value, provenType(child) & (SpecCell - SpecObject)), + unsure(stringCase), unsure(symbolCase)); + + m_out.appendTo(stringCase, symbolCase); + functor(TypeofType::String); + + m_out.appendTo(symbolCase, notCellCase); + functor(TypeofType::Symbol); + + m_out.appendTo(notCellCase, numberCase); + m_out.branch( + isNumber(value, provenType(child) & ~SpecCell), + unsure(numberCase), unsure(notNumberCase)); + + m_out.appendTo(numberCase, notNumberCase); + functor(TypeofType::Number); + + m_out.appendTo(notNumberCase, notNullCase); + LValue isNull; + if (provenType(child) & SpecOther) + isNull = m_out.equal(value, m_out.constInt64(ValueNull)); + else + isNull = m_out.booleanFalse; + m_out.branch(isNull, unsure(reallyObjectCase), unsure(notNullCase)); + + m_out.appendTo(notNullCase, booleanCase); + m_out.branch( + isBoolean(value, provenType(child) & ~(SpecCell | SpecFullNumber)), + unsure(booleanCase), unsure(undefinedCase)); + + m_out.appendTo(booleanCase, undefinedCase); + functor(TypeofType::Boolean); + + m_out.appendTo(undefinedCase, lastNext); + functor(TypeofType::Undefined); + } + + LValue doubleToInt32(LValue doubleValue, double low, double high, bool isSigned = true) + { + LBasicBlock greatEnough = m_out.newBlock(); + LBasicBlock withinRange = m_out.newBlock(); + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + Vector<ValueFromBlock, 2> results; + + m_out.branch( + m_out.doubleGreaterThanOrEqual(doubleValue, m_out.constDouble(low)), + unsure(greatEnough), unsure(slowPath)); + + LBasicBlock lastNext = m_out.appendTo(greatEnough, withinRange); + m_out.branch( + m_out.doubleLessThanOrEqual(doubleValue, m_out.constDouble(high)), + unsure(withinRange), unsure(slowPath)); + + m_out.appendTo(withinRange, slowPath); + LValue fastResult; + if (isSigned) + fastResult = m_out.doubleToInt(doubleValue); + else + fastResult = m_out.doubleToUInt(doubleValue); + results.append(m_out.anchor(fastResult)); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + results.append(m_out.anchor(m_out.call(Int32, m_out.operation(operationToInt32), doubleValue))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(Int32, results); + } + + LValue doubleToInt32(LValue doubleValue) + { + if (hasSensibleDoubleToInt()) + return sensibleDoubleToInt32(doubleValue); + + double limit = pow(2, 31) - 1; + return doubleToInt32(doubleValue, -limit, limit); + } + + LValue sensibleDoubleToInt32(LValue doubleValue) + { + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue fastResultValue = m_out.doubleToInt(doubleValue); + ValueFromBlock fastResult = m_out.anchor(fastResultValue); + m_out.branch( + m_out.equal(fastResultValue, m_out.constInt32(0x80000000)), + rarely(slowPath), usually(continuation)); + + LBasicBlock lastNext = m_out.appendTo(slowPath, continuation); + ValueFromBlock slowResult = m_out.anchor( + m_out.call(Int32, m_out.operation(operationToInt32SensibleSlow), doubleValue)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(Int32, fastResult, slowResult); + } + + // This is a mechanism for creating a code generator that fills in a gap in the code using our + // own MacroAssembler. This is useful for slow paths that involve a lot of code and we don't want + // to pay the price of B3 optimizing it. A lazy slow path will only be generated if it actually + // executes. On the other hand, a lazy slow path always incurs the cost of two additional jumps. + // Also, the lazy slow path's register allocation state is slaved to whatever B3 did, so you + // have to use a ScratchRegisterAllocator to try to use some unused registers and you may have + // to spill to top of stack if there aren't enough registers available. + // + // Lazy slow paths involve three different stages of execution. Each stage has unique + // capabilities and knowledge. The stages are: + // + // 1) DFG->B3 lowering, i.e. code that runs in this phase. Lowering is the last time you will + // have access to LValues. If there is an LValue that needs to be fed as input to a lazy slow + // path, then you must pass it as an argument here (as one of the varargs arguments after the + // functor). But, lowering doesn't know which registers will be used for those LValues. Hence + // you pass a lambda to lazySlowPath() and that lambda will run during stage (2): + // + // 2) FTLCompile.cpp's fixFunctionBasedOnStackMaps. This code is the only stage at which we know + // the mapping from arguments passed to this method in (1) and the registers that B3 + // selected for those arguments. You don't actually want to generate any code here, since then + // the slow path wouldn't actually be lazily generated. Instead, you want to save the + // registers being used for the arguments and defer code generation to stage (3) by creating + // and returning a LazySlowPath::Generator: + // + // 3) LazySlowPath's generate() method. This code runs in response to the lazy slow path + // executing for the first time. It will call the generator you created in stage (2). + // + // Note that each time you invoke stage (1), stage (2) may be invoked zero, one, or many times. + // Stage (2) will usually be invoked once for stage (1). But, B3 may kill the code, in which + // case stage (2) won't run. B3 may duplicate the code (for example via tail duplication), + // leading to many calls to your stage (2) lambda. Stage (3) may be called zero or once for each + // stage (2). It will be called zero times if the slow path never runs. This is what you hope for + // whenever you use the lazySlowPath() mechanism. + // + // A typical use of lazySlowPath() will look like the example below, which just creates a slow + // path that adds some value to the input and returns it. + // + // // Stage (1) is here. This is your last chance to figure out which LValues to use as inputs. + // // Notice how we pass "input" as an argument to lazySlowPath(). + // LValue input = ...; + // int addend = ...; + // LValue output = lazySlowPath( + // [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + // // Stage (2) is here. This is your last chance to figure out which registers are used + // // for which values. Location zero is always the return value. You can ignore it if + // // you don't want to return anything. Location 1 is the register for the first + // // argument to the lazySlowPath(), i.e. "input". Note that the Location object could + // // also hold an FPR, if you are passing a double. + // GPRReg outputGPR = locations[0].directGPR(); + // GPRReg inputGPR = locations[1].directGPR(); + // return LazySlowPath::createGenerator( + // [=] (CCallHelpers& jit, LazySlowPath::GenerationParams& params) { + // // Stage (3) is here. This is when you generate code. You have access to the + // // registers you collected in stage (2) because this lambda closes over those + // // variables (outputGPR and inputGPR). You also have access to whatever extra + // // data you collected in stage (1), such as the addend in this case. + // jit.add32(TrustedImm32(addend), inputGPR, outputGPR); + // // You have to end by jumping to done. There is nothing to fall through to. + // // You can also jump to the exception handler (see LazySlowPath.h for more + // // info). Note that currently you cannot OSR exit. + // params.doneJumps.append(jit.jump()); + // }); + // }, + // input); + // + // You can basically pass as many inputs as you like, either using this varargs form, or by + // passing a Vector of LValues. + // + // Note that if your slow path is only doing a call, you can use the createLazyCallGenerator() + // helper. For example: + // + // LValue input = ...; + // LValue output = lazySlowPath( + // [=] (const Vector<Location>& locations) -> RefPtr<LazySlowPath::Generator> { + // return createLazyCallGenerator( + // operationDoThings, locations[0].directGPR(), locations[1].directGPR()); + // }, input); + // + // Finally, note that all of the lambdas - both the stage (2) lambda and the stage (3) lambda - + // run after the function that created them returns. Hence, you should not use by-reference + // capture (i.e. [&]) in any of these lambdas. + template<typename Functor, typename... ArgumentTypes> + PatchpointValue* lazySlowPath(const Functor& functor, ArgumentTypes... arguments) + { + return lazySlowPath(functor, Vector<LValue>{ arguments... }); + } + + template<typename Functor> + PatchpointValue* lazySlowPath(const Functor& functor, const Vector<LValue>& userArguments) + { + CodeOrigin origin = m_node->origin.semantic; + + PatchpointValue* result = m_out.patchpoint(B3::Int64); + for (LValue arg : userArguments) + result->append(ConstrainedValue(arg, B3::ValueRep::SomeRegister)); + + RefPtr<PatchpointExceptionHandle> exceptionHandle = + preparePatchpointForExceptions(result); + + result->clobber(RegisterSet::macroScratchRegisters()); + State* state = &m_ftlState; + + result->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams& params) { + Vector<Location> locations; + for (const B3::ValueRep& rep : params) + locations.append(Location::forValueRep(rep)); + + RefPtr<LazySlowPath::Generator> generator = functor(locations); + + CCallHelpers::PatchableJump patchableJump = jit.patchableJump(); + CCallHelpers::Label done = jit.label(); + + RegisterSet usedRegisters = params.unavailableRegisters(); + + RefPtr<ExceptionTarget> exceptionTarget = + exceptionHandle->scheduleExitCreation(params); + + // FIXME: As part of handling exceptions, we need to create a concrete OSRExit here. + // Doing so should automagically register late paths that emit exit thunks. + + params.addLatePath( + [=] (CCallHelpers& jit) { + AllowMacroScratchRegisterUsage allowScratch(jit); + patchableJump.m_jump.link(&jit); + unsigned index = state->jitCode->lazySlowPaths.size(); + state->jitCode->lazySlowPaths.append(nullptr); + jit.pushToSaveImmediateWithoutTouchingRegisters( + CCallHelpers::TrustedImm32(index)); + CCallHelpers::Jump generatorJump = jit.jump(); + + // Note that so long as we're here, we don't really know if our late path + // runs before or after any other late paths that we might depend on, like + // the exception thunk. + + RefPtr<JITCode> jitCode = state->jitCode; + VM* vm = &state->graph.m_vm; + + jit.addLinkTask( + [=] (LinkBuffer& linkBuffer) { + linkBuffer.link( + generatorJump, CodeLocationLabel( + vm->getCTIStub( + lazySlowPathGenerationThunkGenerator).code())); + + CodeLocationJump linkedPatchableJump = CodeLocationJump( + linkBuffer.locationOf(patchableJump)); + CodeLocationLabel linkedDone = linkBuffer.locationOf(done); + + CallSiteIndex callSiteIndex = + jitCode->common.addUniqueCallSiteIndex(origin); + + std::unique_ptr<LazySlowPath> lazySlowPath = + std::make_unique<LazySlowPath>( + linkedPatchableJump, linkedDone, + exceptionTarget->label(linkBuffer), usedRegisters, + callSiteIndex, generator); + + jitCode->lazySlowPaths[index] = WTFMove(lazySlowPath); + }); + }); + }); + return result; + } + + void speculate( + ExitKind kind, FormattedValue lowValue, Node* highValue, LValue failCondition) + { + appendOSRExit(kind, lowValue, highValue, failCondition, m_origin); + } + + void terminate(ExitKind kind) + { + speculate(kind, noValue(), nullptr, m_out.booleanTrue); + didAlreadyTerminate(); + } + + void didAlreadyTerminate() + { + m_state.setIsValid(false); + } + + void typeCheck( + FormattedValue lowValue, Edge highValue, SpeculatedType typesPassedThrough, + LValue failCondition, ExitKind exitKind = BadType) + { + appendTypeCheck(lowValue, highValue, typesPassedThrough, failCondition, exitKind); + } + + void appendTypeCheck( + FormattedValue lowValue, Edge highValue, SpeculatedType typesPassedThrough, + LValue failCondition, ExitKind exitKind) + { + if (!m_interpreter.needsTypeCheck(highValue, typesPassedThrough)) + return; + ASSERT(mayHaveTypeCheck(highValue.useKind())); + appendOSRExit(exitKind, lowValue, highValue.node(), failCondition, m_origin); + m_interpreter.filter(highValue, typesPassedThrough); + } + + LValue lowInt32(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use)); + + if (edge->hasConstant()) { + JSValue value = edge->asJSValue(); + if (!value.isInt32()) { + terminate(Uncountable); + return m_out.int32Zero; + } + return m_out.constInt32(value.asInt32()); + } + + LoweredNodeValue value = m_int32Values.get(edge.node()); + if (isValid(value)) + return value.value(); + + value = m_strictInt52Values.get(edge.node()); + if (isValid(value)) + return strictInt52ToInt32(edge, value.value()); + + value = m_int52Values.get(edge.node()); + if (isValid(value)) + return strictInt52ToInt32(edge, int52ToStrictInt52(value.value())); + + value = m_jsValueValues.get(edge.node()); + if (isValid(value)) { + LValue boxedResult = value.value(); + FTL_TYPE_CHECK( + jsValueValue(boxedResult), edge, SpecInt32Only, isNotInt32(boxedResult)); + LValue result = unboxInt32(boxedResult); + setInt32(edge.node(), result); + return result; + } + + DFG_ASSERT(m_graph, m_node, !(provenType(edge) & SpecInt32Only)); + terminate(Uncountable); + return m_out.int32Zero; + } + + enum Int52Kind { StrictInt52, Int52 }; + LValue lowInt52(Edge edge, Int52Kind kind) + { + DFG_ASSERT(m_graph, m_node, edge.useKind() == Int52RepUse); + + LoweredNodeValue value; + + switch (kind) { + case Int52: + value = m_int52Values.get(edge.node()); + if (isValid(value)) + return value.value(); + + value = m_strictInt52Values.get(edge.node()); + if (isValid(value)) + return strictInt52ToInt52(value.value()); + break; + + case StrictInt52: + value = m_strictInt52Values.get(edge.node()); + if (isValid(value)) + return value.value(); + + value = m_int52Values.get(edge.node()); + if (isValid(value)) + return int52ToStrictInt52(value.value()); + break; + } + + DFG_ASSERT(m_graph, m_node, !provenType(edge)); + terminate(Uncountable); + return m_out.int64Zero; + } + + LValue lowInt52(Edge edge) + { + return lowInt52(edge, Int52); + } + + LValue lowStrictInt52(Edge edge) + { + return lowInt52(edge, StrictInt52); + } + + bool betterUseStrictInt52(Node* node) + { + return !isValid(m_int52Values.get(node)); + } + bool betterUseStrictInt52(Edge edge) + { + return betterUseStrictInt52(edge.node()); + } + template<typename T> + Int52Kind bestInt52Kind(T node) + { + return betterUseStrictInt52(node) ? StrictInt52 : Int52; + } + Int52Kind opposite(Int52Kind kind) + { + switch (kind) { + case Int52: + return StrictInt52; + case StrictInt52: + return Int52; + } + DFG_CRASH(m_graph, m_node, "Bad use kind"); + return Int52; + } + + LValue lowWhicheverInt52(Edge edge, Int52Kind& kind) + { + kind = bestInt52Kind(edge); + return lowInt52(edge, kind); + } + + LValue lowCell(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + DFG_ASSERT(m_graph, m_node, mode == ManualOperandSpeculation || DFG::isCell(edge.useKind())); + + if (edge->op() == JSConstant) { + FrozenValue* value = edge->constant(); + if (!value->value().isCell()) { + terminate(Uncountable); + return m_out.intPtrZero; + } + return frozenPointer(value); + } + + LoweredNodeValue value = m_jsValueValues.get(edge.node()); + if (isValid(value)) { + LValue uncheckedValue = value.value(); + FTL_TYPE_CHECK( + jsValueValue(uncheckedValue), edge, SpecCell, isNotCell(uncheckedValue)); + return uncheckedValue; + } + + DFG_ASSERT(m_graph, m_node, !(provenType(edge) & SpecCell)); + terminate(Uncountable); + return m_out.intPtrZero; + } + + LValue lowObject(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == ObjectUse); + + LValue result = lowCell(edge, mode); + speculateObject(edge, result); + return result; + } + + LValue lowRegExpObject(Edge edge) + { + LValue result = lowCell(edge); + speculateRegExpObject(edge, result); + return result; + } + + LValue lowMapObject(Edge edge) + { + LValue result = lowCell(edge); + speculateMapObject(edge, result); + return result; + } + + LValue lowSetObject(Edge edge) + { + LValue result = lowCell(edge); + speculateSetObject(edge, result); + return result; + } + + LValue lowString(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == StringUse || edge.useKind() == KnownStringUse || edge.useKind() == StringIdentUse); + + LValue result = lowCell(edge, mode); + speculateString(edge, result); + return result; + } + + LValue lowStringIdent(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == StringIdentUse); + + LValue string = lowString(edge, mode); + LValue stringImpl = m_out.loadPtr(string, m_heaps.JSString_value); + speculateStringIdent(edge, string, stringImpl); + return stringImpl; + } + + LValue lowSymbol(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == SymbolUse); + + LValue result = lowCell(edge, mode); + speculateSymbol(edge, result); + return result; + } + + LValue lowNonNullObject(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == ObjectUse); + + LValue result = lowCell(edge, mode); + speculateNonNullObject(edge, result); + return result; + } + + LValue lowBoolean(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == BooleanUse || edge.useKind() == KnownBooleanUse); + + if (edge->hasConstant()) { + JSValue value = edge->asJSValue(); + if (!value.isBoolean()) { + terminate(Uncountable); + return m_out.booleanFalse; + } + return m_out.constBool(value.asBoolean()); + } + + LoweredNodeValue value = m_booleanValues.get(edge.node()); + if (isValid(value)) + return value.value(); + + value = m_jsValueValues.get(edge.node()); + if (isValid(value)) { + LValue unboxedResult = value.value(); + FTL_TYPE_CHECK( + jsValueValue(unboxedResult), edge, SpecBoolean, isNotBoolean(unboxedResult)); + LValue result = unboxBoolean(unboxedResult); + setBoolean(edge.node(), result); + return result; + } + + DFG_ASSERT(m_graph, m_node, !(provenType(edge) & SpecBoolean)); + terminate(Uncountable); + return m_out.booleanFalse; + } + + LValue lowDouble(Edge edge) + { + DFG_ASSERT(m_graph, m_node, isDouble(edge.useKind())); + + LoweredNodeValue value = m_doubleValues.get(edge.node()); + if (isValid(value)) + return value.value(); + DFG_ASSERT(m_graph, m_node, !provenType(edge)); + terminate(Uncountable); + return m_out.doubleZero; + } + + LValue lowJSValue(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + DFG_ASSERT(m_graph, m_node, mode == ManualOperandSpeculation || edge.useKind() == UntypedUse); + DFG_ASSERT(m_graph, m_node, !isDouble(edge.useKind())); + DFG_ASSERT(m_graph, m_node, edge.useKind() != Int52RepUse); + + if (edge->hasConstant()) + return m_out.constInt64(JSValue::encode(edge->asJSValue())); + + LoweredNodeValue value = m_jsValueValues.get(edge.node()); + if (isValid(value)) + return value.value(); + + value = m_int32Values.get(edge.node()); + if (isValid(value)) { + LValue result = boxInt32(value.value()); + setJSValue(edge.node(), result); + return result; + } + + value = m_booleanValues.get(edge.node()); + if (isValid(value)) { + LValue result = boxBoolean(value.value()); + setJSValue(edge.node(), result); + return result; + } + + DFG_CRASH(m_graph, m_node, "Value not defined"); + return 0; + } + + LValue lowNotCell(Edge edge) + { + LValue result = lowJSValue(edge, ManualOperandSpeculation); + FTL_TYPE_CHECK(jsValueValue(result), edge, ~SpecCell, isCell(result)); + return result; + } + + LValue lowStorage(Edge edge) + { + LoweredNodeValue value = m_storageValues.get(edge.node()); + if (isValid(value)) + return value.value(); + + LValue result = lowCell(edge); + setStorage(edge.node(), result); + return result; + } + + LValue lowMapBucket(Edge edge) + { + LoweredNodeValue value = m_mapBucketValues.get(edge.node()); + if (isValid(value)) + return value.value(); + + LValue result = lowCell(edge); + setStorage(edge.node(), result); + return result; + } + + LValue strictInt52ToInt32(Edge edge, LValue value) + { + LValue result = m_out.castToInt32(value); + FTL_TYPE_CHECK( + noValue(), edge, SpecInt32Only, + m_out.notEqual(m_out.signExt32To64(result), value)); + setInt32(edge.node(), result); + return result; + } + + LValue strictInt52ToDouble(LValue value) + { + return m_out.intToDouble(value); + } + + LValue strictInt52ToJSValue(LValue value) + { + LBasicBlock isInt32 = m_out.newBlock(); + LBasicBlock isDouble = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + Vector<ValueFromBlock, 2> results; + + LValue int32Value = m_out.castToInt32(value); + m_out.branch( + m_out.equal(m_out.signExt32To64(int32Value), value), + unsure(isInt32), unsure(isDouble)); + + LBasicBlock lastNext = m_out.appendTo(isInt32, isDouble); + + results.append(m_out.anchor(boxInt32(int32Value))); + m_out.jump(continuation); + + m_out.appendTo(isDouble, continuation); + + results.append(m_out.anchor(boxDouble(m_out.intToDouble(value)))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(Int64, results); + } + + LValue strictInt52ToInt52(LValue value) + { + return m_out.shl(value, m_out.constInt64(JSValue::int52ShiftAmount)); + } + + LValue int52ToStrictInt52(LValue value) + { + return m_out.aShr(value, m_out.constInt64(JSValue::int52ShiftAmount)); + } + + LValue isInt32(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecInt32Only)) + return proven; + return m_out.aboveOrEqual(jsValue, m_tagTypeNumber); + } + LValue isNotInt32(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~SpecInt32Only)) + return proven; + return m_out.below(jsValue, m_tagTypeNumber); + } + LValue unboxInt32(LValue jsValue) + { + return m_out.castToInt32(jsValue); + } + LValue boxInt32(LValue value) + { + return m_out.add(m_out.zeroExt(value, Int64), m_tagTypeNumber); + } + + LValue isCellOrMisc(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecCell | SpecMisc)) + return proven; + return m_out.testIsZero64(jsValue, m_tagTypeNumber); + } + LValue isNotCellOrMisc(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~(SpecCell | SpecMisc))) + return proven; + return m_out.testNonZero64(jsValue, m_tagTypeNumber); + } + + LValue unboxDouble(LValue jsValue) + { + return m_out.bitCast(m_out.add(jsValue, m_tagTypeNumber), Double); + } + LValue boxDouble(LValue doubleValue) + { + return m_out.sub(m_out.bitCast(doubleValue, Int64), m_tagTypeNumber); + } + + LValue jsValueToStrictInt52(Edge edge, LValue boxedValue) + { + LBasicBlock intCase = m_out.newBlock(); + LBasicBlock doubleCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue isNotInt32; + if (!m_interpreter.needsTypeCheck(edge, SpecInt32Only)) + isNotInt32 = m_out.booleanFalse; + else if (!m_interpreter.needsTypeCheck(edge, ~SpecInt32Only)) + isNotInt32 = m_out.booleanTrue; + else + isNotInt32 = this->isNotInt32(boxedValue); + m_out.branch(isNotInt32, unsure(doubleCase), unsure(intCase)); + + LBasicBlock lastNext = m_out.appendTo(intCase, doubleCase); + + ValueFromBlock intToInt52 = m_out.anchor( + m_out.signExt32To64(unboxInt32(boxedValue))); + m_out.jump(continuation); + + m_out.appendTo(doubleCase, continuation); + + LValue possibleResult = m_out.call( + Int64, m_out.operation(operationConvertBoxedDoubleToInt52), boxedValue); + FTL_TYPE_CHECK( + jsValueValue(boxedValue), edge, SpecInt32Only | SpecAnyIntAsDouble, + m_out.equal(possibleResult, m_out.constInt64(JSValue::notInt52))); + + ValueFromBlock doubleToInt52 = m_out.anchor(possibleResult); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + return m_out.phi(Int64, intToInt52, doubleToInt52); + } + + LValue doubleToStrictInt52(Edge edge, LValue value) + { + LValue possibleResult = m_out.call( + Int64, m_out.operation(operationConvertDoubleToInt52), value); + FTL_TYPE_CHECK_WITH_EXIT_KIND(Int52Overflow, + doubleValue(value), edge, SpecAnyIntAsDouble, + m_out.equal(possibleResult, m_out.constInt64(JSValue::notInt52))); + + return possibleResult; + } + + LValue convertDoubleToInt32(LValue value, bool shouldCheckNegativeZero) + { + LValue integerValue = m_out.doubleToInt(value); + LValue integerValueConvertedToDouble = m_out.intToDouble(integerValue); + LValue valueNotConvertibleToInteger = m_out.doubleNotEqualOrUnordered(value, integerValueConvertedToDouble); + speculate(Overflow, FormattedValue(DataFormatDouble, value), m_node, valueNotConvertibleToInteger); + + if (shouldCheckNegativeZero) { + LBasicBlock valueIsZero = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + m_out.branch(m_out.isZero32(integerValue), unsure(valueIsZero), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(valueIsZero, continuation); + + LValue doubleBitcastToInt64 = m_out.bitCast(value, Int64); + LValue signBitSet = m_out.lessThan(doubleBitcastToInt64, m_out.constInt64(0)); + + speculate(NegativeZero, FormattedValue(DataFormatDouble, value), m_node, signBitSet); + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + } + return integerValue; + } + + LValue isNumber(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecFullNumber)) + return proven; + return isNotCellOrMisc(jsValue); + } + LValue isNotNumber(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~SpecFullNumber)) + return proven; + return isCellOrMisc(jsValue); + } + + LValue isNotCell(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~SpecCell)) + return proven; + return m_out.testNonZero64(jsValue, m_tagMask); + } + + LValue isCell(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecCell)) + return proven; + return m_out.testIsZero64(jsValue, m_tagMask); + } + + LValue isNotMisc(LValue value, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~SpecMisc)) + return proven; + return m_out.above(value, m_out.constInt64(TagBitTypeOther | TagBitBool | TagBitUndefined)); + } + + LValue isMisc(LValue value, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecMisc)) + return proven; + return m_out.logicalNot(isNotMisc(value)); + } + + LValue isNotBoolean(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~SpecBoolean)) + return proven; + return m_out.testNonZero64( + m_out.bitXor(jsValue, m_out.constInt64(ValueFalse)), + m_out.constInt64(~1)); + } + LValue isBoolean(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecBoolean)) + return proven; + return m_out.logicalNot(isNotBoolean(jsValue)); + } + LValue unboxBoolean(LValue jsValue) + { + // We want to use a cast that guarantees that B3 knows that even the integer + // value is just 0 or 1. But for now we do it the dumb way. + return m_out.notZero64(m_out.bitAnd(jsValue, m_out.constInt64(1))); + } + LValue boxBoolean(LValue value) + { + return m_out.select( + value, m_out.constInt64(ValueTrue), m_out.constInt64(ValueFalse)); + } + + LValue isNotOther(LValue value, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~SpecOther)) + return proven; + return m_out.notEqual( + m_out.bitAnd(value, m_out.constInt64(~TagBitUndefined)), + m_out.constInt64(ValueNull)); + } + LValue isOther(LValue value, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecOther)) + return proven; + return m_out.equal( + m_out.bitAnd(value, m_out.constInt64(~TagBitUndefined)), + m_out.constInt64(ValueNull)); + } + + LValue isProvenValue(SpeculatedType provenType, SpeculatedType wantedType) + { + if (!(provenType & ~wantedType)) + return m_out.booleanTrue; + if (!(provenType & wantedType)) + return m_out.booleanFalse; + return nullptr; + } + + void speculate(Edge edge) + { + switch (edge.useKind()) { + case UntypedUse: + break; + case KnownInt32Use: + case KnownStringUse: + case KnownPrimitiveUse: + case DoubleRepUse: + case Int52RepUse: + ASSERT(!m_interpreter.needsTypeCheck(edge)); + break; + case Int32Use: + speculateInt32(edge); + break; + case CellUse: + speculateCell(edge); + break; + case CellOrOtherUse: + speculateCellOrOther(edge); + break; + case KnownCellUse: + ASSERT(!m_interpreter.needsTypeCheck(edge)); + break; + case AnyIntUse: + speculateAnyInt(edge); + break; + case ObjectUse: + speculateObject(edge); + break; + case ArrayUse: + speculateArray(edge); + break; + case FunctionUse: + speculateFunction(edge); + break; + case ObjectOrOtherUse: + speculateObjectOrOther(edge); + break; + case FinalObjectUse: + speculateFinalObject(edge); + break; + case RegExpObjectUse: + speculateRegExpObject(edge); + break; + case ProxyObjectUse: + speculateProxyObject(edge); + break; + case DerivedArrayUse: + speculateDerivedArray(edge); + break; + case MapObjectUse: + speculateMapObject(edge); + break; + case SetObjectUse: + speculateSetObject(edge); + break; + case StringUse: + speculateString(edge); + break; + case StringOrOtherUse: + speculateStringOrOther(edge); + break; + case StringIdentUse: + speculateStringIdent(edge); + break; + case SymbolUse: + speculateSymbol(edge); + break; + case StringObjectUse: + speculateStringObject(edge); + break; + case StringOrStringObjectUse: + speculateStringOrStringObject(edge); + break; + case NumberUse: + speculateNumber(edge); + break; + case RealNumberUse: + speculateRealNumber(edge); + break; + case DoubleRepRealUse: + speculateDoubleRepReal(edge); + break; + case DoubleRepAnyIntUse: + speculateDoubleRepAnyInt(edge); + break; + case BooleanUse: + speculateBoolean(edge); + break; + case NotStringVarUse: + speculateNotStringVar(edge); + break; + case NotCellUse: + speculateNotCell(edge); + break; + case OtherUse: + speculateOther(edge); + break; + case MiscUse: + speculateMisc(edge); + break; + default: + DFG_CRASH(m_graph, m_node, "Unsupported speculation use kind"); + } + } + + void speculate(Node*, Edge edge) + { + speculate(edge); + } + + void speculateInt32(Edge edge) + { + lowInt32(edge); + } + + void speculateCell(Edge edge) + { + lowCell(edge); + } + + void speculateNotCell(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge)) + return; + lowNotCell(edge); + } + + void speculateCellOrOther(Edge edge) + { + LValue value = lowJSValue(edge, ManualOperandSpeculation); + + LBasicBlock isNotCell = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(isCell(value, provenType(edge)), unsure(continuation), unsure(isNotCell)); + + LBasicBlock lastNext = m_out.appendTo(isNotCell, continuation); + FTL_TYPE_CHECK(jsValueValue(value), edge, SpecCell | SpecOther, isNotOther(value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void speculateAnyInt(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge)) + return; + + jsValueToStrictInt52(edge, lowJSValue(edge, ManualOperandSpeculation)); + } + + LValue isCellWithType(LValue cell, JSType queriedType, SpeculatedType speculatedTypeForQuery, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, speculatedTypeForQuery)) + return proven; + return m_out.equal( + m_out.load8ZeroExt32(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt32(queriedType)); + } + + LValue isTypedArrayView(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, SpecTypedArrayView)) + return proven; + LValue jsType = m_out.sub( + m_out.load8ZeroExt32(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt32(Int8ArrayType)); + return m_out.belowOrEqual( + jsType, + m_out.constInt32(Float64ArrayType - Int8ArrayType)); + } + + LValue isObject(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, SpecObject)) + return proven; + return m_out.aboveOrEqual( + m_out.load8ZeroExt32(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt32(ObjectType)); + } + + LValue isNotObject(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, ~SpecObject)) + return proven; + return m_out.below( + m_out.load8ZeroExt32(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt32(ObjectType)); + } + + LValue isNotString(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, ~SpecString)) + return proven; + return m_out.notEqual( + m_out.load32(cell, m_heaps.JSCell_structureID), + m_out.constInt32(vm().stringStructure->id())); + } + + LValue isString(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, SpecString)) + return proven; + return m_out.equal( + m_out.load32(cell, m_heaps.JSCell_structureID), + m_out.constInt32(vm().stringStructure->id())); + } + + LValue isNotSymbol(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, ~SpecSymbol)) + return proven; + return m_out.notEqual( + m_out.load32(cell, m_heaps.JSCell_structureID), + m_out.constInt32(vm().symbolStructure->id())); + } + + LValue isSymbol(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, SpecSymbol)) + return proven; + return m_out.equal( + m_out.load32(cell, m_heaps.JSCell_structureID), + m_out.constInt32(vm().symbolStructure->id())); + } + + LValue isArrayType(LValue cell, ArrayMode arrayMode) + { + switch (arrayMode.type()) { + case Array::Int32: + case Array::Double: + case Array::Contiguous: { + LValue indexingType = m_out.load8ZeroExt32(cell, m_heaps.JSCell_indexingTypeAndMisc); + + switch (arrayMode.arrayClass()) { + case Array::OriginalArray: + DFG_CRASH(m_graph, m_node, "Unexpected original array"); + return 0; + + case Array::Array: + return m_out.equal( + m_out.bitAnd(indexingType, m_out.constInt32(IsArray | IndexingShapeMask)), + m_out.constInt32(IsArray | arrayMode.shapeMask())); + + case Array::NonArray: + case Array::OriginalNonArray: + return m_out.equal( + m_out.bitAnd(indexingType, m_out.constInt32(IsArray | IndexingShapeMask)), + m_out.constInt32(arrayMode.shapeMask())); + + case Array::PossiblyArray: + return m_out.equal( + m_out.bitAnd(indexingType, m_out.constInt32(IndexingShapeMask)), + m_out.constInt32(arrayMode.shapeMask())); + } + + DFG_CRASH(m_graph, m_node, "Corrupt array class"); + } + + case Array::DirectArguments: + return m_out.equal( + m_out.load8ZeroExt32(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt32(DirectArgumentsType)); + + case Array::ScopedArguments: + return m_out.equal( + m_out.load8ZeroExt32(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt32(ScopedArgumentsType)); + + default: + return m_out.equal( + m_out.load8ZeroExt32(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt32(typeForTypedArrayType(arrayMode.typedArrayType()))); + } + } + + LValue isFunction(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, SpecFunction)) + return proven; + return isType(cell, JSFunctionType); + } + LValue isNotFunction(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, ~SpecFunction)) + return proven; + return isNotType(cell, JSFunctionType); + } + + LValue isExoticForTypeof(LValue cell, SpeculatedType type = SpecFullTop) + { + if (!(type & SpecObjectOther)) + return m_out.booleanFalse; + return m_out.testNonZero32( + m_out.load8ZeroExt32(cell, m_heaps.JSCell_typeInfoFlags), + m_out.constInt32(MasqueradesAsUndefined | TypeOfShouldCallGetCallData)); + } + + LValue isType(LValue cell, JSType type) + { + return m_out.equal( + m_out.load8ZeroExt32(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt32(type)); + } + + LValue isNotType(LValue cell, JSType type) + { + return m_out.logicalNot(isType(cell, type)); + } + + void speculateObject(Edge edge, LValue cell) + { + FTL_TYPE_CHECK(jsValueValue(cell), edge, SpecObject, isNotObject(cell)); + } + + void speculateObject(Edge edge) + { + speculateObject(edge, lowCell(edge)); + } + + void speculateArray(Edge edge, LValue cell) + { + FTL_TYPE_CHECK( + jsValueValue(cell), edge, SpecArray, isNotType(cell, ArrayType)); + } + + void speculateArray(Edge edge) + { + speculateArray(edge, lowCell(edge)); + } + + void speculateFunction(Edge edge, LValue cell) + { + FTL_TYPE_CHECK(jsValueValue(cell), edge, SpecFunction, isNotFunction(cell)); + } + + void speculateFunction(Edge edge) + { + speculateFunction(edge, lowCell(edge)); + } + + void speculateObjectOrOther(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge)) + return; + + LValue value = lowJSValue(edge, ManualOperandSpeculation); + + LBasicBlock cellCase = m_out.newBlock(); + LBasicBlock primitiveCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(isNotCell(value, provenType(edge)), unsure(primitiveCase), unsure(cellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, primitiveCase); + + FTL_TYPE_CHECK( + jsValueValue(value), edge, (~SpecCell) | SpecObject, isNotObject(value)); + + m_out.jump(continuation); + + m_out.appendTo(primitiveCase, continuation); + + FTL_TYPE_CHECK( + jsValueValue(value), edge, SpecCell | SpecOther, isNotOther(value)); + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void speculateFinalObject(Edge edge, LValue cell) + { + FTL_TYPE_CHECK( + jsValueValue(cell), edge, SpecFinalObject, isNotType(cell, FinalObjectType)); + } + + void speculateFinalObject(Edge edge) + { + speculateFinalObject(edge, lowCell(edge)); + } + + void speculateRegExpObject(Edge edge, LValue cell) + { + FTL_TYPE_CHECK( + jsValueValue(cell), edge, SpecRegExpObject, isNotType(cell, RegExpObjectType)); + } + + void speculateRegExpObject(Edge edge) + { + speculateRegExpObject(edge, lowCell(edge)); + } + + void speculateProxyObject(Edge edge, LValue cell) + { + FTL_TYPE_CHECK( + jsValueValue(cell), edge, SpecProxyObject, isNotType(cell, ProxyObjectType)); + } + + void speculateProxyObject(Edge edge) + { + speculateProxyObject(edge, lowCell(edge)); + } + + void speculateDerivedArray(Edge edge, LValue cell) + { + FTL_TYPE_CHECK( + jsValueValue(cell), edge, SpecDerivedArray, isNotType(cell, DerivedArrayType)); + } + + void speculateDerivedArray(Edge edge) + { + speculateDerivedArray(edge, lowCell(edge)); + } + + void speculateMapObject(Edge edge, LValue cell) + { + FTL_TYPE_CHECK( + jsValueValue(cell), edge, SpecMapObject, isNotType(cell, JSMapType)); + } + + void speculateMapObject(Edge edge) + { + speculateMapObject(edge, lowCell(edge)); + } + + void speculateSetObject(Edge edge, LValue cell) + { + FTL_TYPE_CHECK( + jsValueValue(cell), edge, SpecSetObject, isNotType(cell, JSSetType)); + } + + void speculateSetObject(Edge edge) + { + speculateSetObject(edge, lowCell(edge)); + } + + void speculateString(Edge edge, LValue cell) + { + FTL_TYPE_CHECK(jsValueValue(cell), edge, SpecString | ~SpecCell, isNotString(cell)); + } + + void speculateString(Edge edge) + { + speculateString(edge, lowCell(edge)); + } + + void speculateStringOrOther(Edge edge, LValue value) + { + LBasicBlock cellCase = m_out.newBlock(); + LBasicBlock notCellCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(isCell(value, provenType(edge)), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, notCellCase); + + FTL_TYPE_CHECK(jsValueValue(value), edge, (~SpecCell) | SpecString, isNotString(value)); + + m_out.jump(continuation); + m_out.appendTo(notCellCase, continuation); + + FTL_TYPE_CHECK(jsValueValue(value), edge, SpecCell | SpecOther, isNotOther(value)); + + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + } + + void speculateStringOrOther(Edge edge) + { + speculateStringOrOther(edge, lowJSValue(edge, ManualOperandSpeculation)); + } + + void speculateStringIdent(Edge edge, LValue string, LValue stringImpl) + { + if (!m_interpreter.needsTypeCheck(edge, SpecStringIdent | ~SpecString)) + return; + + speculate(BadType, jsValueValue(string), edge.node(), m_out.isNull(stringImpl)); + speculate( + BadType, jsValueValue(string), edge.node(), + m_out.testIsZero32( + m_out.load32(stringImpl, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIsAtomic()))); + m_interpreter.filter(edge, SpecStringIdent | ~SpecString); + } + + void speculateStringIdent(Edge edge) + { + lowStringIdent(edge); + } + + void speculateStringObject(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge, SpecStringObject)) + return; + + speculateStringObjectForCell(edge, lowCell(edge)); + m_interpreter.filter(edge, SpecStringObject); + } + + void speculateStringOrStringObject(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge, SpecString | SpecStringObject)) + return; + + LBasicBlock notString = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue structureID = m_out.load32(lowCell(edge), m_heaps.JSCell_structureID); + m_out.branch( + m_out.equal(structureID, m_out.constInt32(vm().stringStructure->id())), + unsure(continuation), unsure(notString)); + + LBasicBlock lastNext = m_out.appendTo(notString, continuation); + speculateStringObjectForStructureID(edge, structureID); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + m_interpreter.filter(edge, SpecString | SpecStringObject); + } + + void speculateStringObjectForCell(Edge edge, LValue cell) + { + speculateStringObjectForStructureID(edge, m_out.load32(cell, m_heaps.JSCell_structureID)); + } + + void speculateStringObjectForStructureID(Edge edge, LValue structureID) + { + RegisteredStructure stringObjectStructure = + m_graph.registerStructure(m_graph.globalObjectFor(m_node->origin.semantic)->stringObjectStructure()); + + if (abstractStructure(edge).isSubsetOf(RegisteredStructureSet(stringObjectStructure))) + return; + + speculate( + NotStringObject, noValue(), 0, + m_out.notEqual(structureID, weakStructureID(stringObjectStructure))); + } + + void speculateSymbol(Edge edge, LValue cell) + { + FTL_TYPE_CHECK(jsValueValue(cell), edge, SpecSymbol | ~SpecCell, isNotSymbol(cell)); + } + + void speculateSymbol(Edge edge) + { + speculateSymbol(edge, lowCell(edge)); + } + + void speculateNonNullObject(Edge edge, LValue cell) + { + FTL_TYPE_CHECK(jsValueValue(cell), edge, SpecObject, isNotObject(cell)); + if (masqueradesAsUndefinedWatchpointIsStillValid()) + return; + + speculate( + BadType, jsValueValue(cell), edge.node(), + m_out.testNonZero32( + m_out.load8ZeroExt32(cell, m_heaps.JSCell_typeInfoFlags), + m_out.constInt32(MasqueradesAsUndefined))); + } + + void speculateNumber(Edge edge) + { + LValue value = lowJSValue(edge, ManualOperandSpeculation); + FTL_TYPE_CHECK(jsValueValue(value), edge, SpecBytecodeNumber, isNotNumber(value)); + } + + void speculateRealNumber(Edge edge) + { + // Do an early return here because lowDouble() can create a lot of control flow. + if (!m_interpreter.needsTypeCheck(edge)) + return; + + LValue value = lowJSValue(edge, ManualOperandSpeculation); + LValue doubleValue = unboxDouble(value); + + LBasicBlock intCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + m_out.doubleEqual(doubleValue, doubleValue), + usually(continuation), rarely(intCase)); + + LBasicBlock lastNext = m_out.appendTo(intCase, continuation); + + typeCheck( + jsValueValue(value), m_node->child1(), SpecBytecodeRealNumber, + isNotInt32(value, provenType(m_node->child1()) & ~SpecFullDouble)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void speculateDoubleRepReal(Edge edge) + { + // Do an early return here because lowDouble() can create a lot of control flow. + if (!m_interpreter.needsTypeCheck(edge)) + return; + + LValue value = lowDouble(edge); + FTL_TYPE_CHECK( + doubleValue(value), edge, SpecDoubleReal, + m_out.doubleNotEqualOrUnordered(value, value)); + } + + void speculateDoubleRepAnyInt(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge)) + return; + + doubleToStrictInt52(edge, lowDouble(edge)); + } + + void speculateBoolean(Edge edge) + { + lowBoolean(edge); + } + + void speculateNotStringVar(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge, ~SpecStringVar)) + return; + + LValue value = lowJSValue(edge, ManualOperandSpeculation); + + LBasicBlock isCellCase = m_out.newBlock(); + LBasicBlock isStringCase = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch(isCell(value, provenType(edge)), unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, isStringCase); + m_out.branch(isString(value, provenType(edge)), unsure(isStringCase), unsure(continuation)); + + m_out.appendTo(isStringCase, continuation); + speculateStringIdent(edge, value, m_out.loadPtr(value, m_heaps.JSString_value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void speculateOther(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge)) + return; + + LValue value = lowJSValue(edge, ManualOperandSpeculation); + typeCheck(jsValueValue(value), edge, SpecOther, isNotOther(value)); + } + + void speculateMisc(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge)) + return; + + LValue value = lowJSValue(edge, ManualOperandSpeculation); + typeCheck(jsValueValue(value), edge, SpecMisc, isNotMisc(value)); + } + + void speculateTypedArrayIsNotNeutered(LValue base) + { + LBasicBlock isWasteful = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LValue mode = m_out.load32(base, m_heaps.JSArrayBufferView_mode); + m_out.branch(m_out.equal(mode, m_out.constInt32(WastefulTypedArray)), + unsure(isWasteful), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isWasteful, continuation); + LValue vector = m_out.loadPtr(base, m_heaps.JSArrayBufferView_vector); + speculate(Uncountable, jsValueValue(vector), m_node, m_out.isZero64(vector)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + bool masqueradesAsUndefinedWatchpointIsStillValid() + { + return m_graph.masqueradesAsUndefinedWatchpointIsStillValid(m_node->origin.semantic); + } + + LValue loadCellState(LValue base) + { + return m_out.load8ZeroExt32(base, m_heaps.JSCell_cellState); + } + + void emitStoreBarrier(LValue base, bool isFenced) + { + LBasicBlock recheckPath = nullptr; + if (isFenced) + recheckPath = m_out.newBlock(); + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(isFenced ? recheckPath : slowPath); + + LValue threshold; + if (isFenced) + threshold = m_out.load32(m_out.absolute(vm().heap.addressOfBarrierThreshold())); + else + threshold = m_out.constInt32(blackThreshold); + + m_out.branch( + m_out.above(loadCellState(base), threshold), + usually(continuation), rarely(isFenced ? recheckPath : slowPath)); + + if (isFenced) { + m_out.appendTo(recheckPath, slowPath); + + m_out.fence(&m_heaps.root, &m_heaps.JSCell_cellState); + + m_out.branch( + m_out.above(loadCellState(base), m_out.constInt32(blackThreshold)), + usually(continuation), rarely(slowPath)); + } + + m_out.appendTo(slowPath, continuation); + + LValue call = vmCall(Void, m_out.operation(operationWriteBarrierSlowPath), m_callFrame, base); + m_heaps.decorateCCallRead(&m_heaps.root, call); + m_heaps.decorateCCallWrite(&m_heaps.JSCell_cellState, call); + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void mutatorFence() + { + if (isX86()) { + m_out.fence(&m_heaps.root, nullptr); + return; + } + + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + m_out.branch( + m_out.load8ZeroExt32(m_out.absolute(vm().heap.addressOfMutatorShouldBeFenced())), + rarely(slowPath), usually(continuation)); + + m_out.appendTo(slowPath, continuation); + + m_out.fence(&m_heaps.root, nullptr); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void nukeStructureAndSetButterfly(LValue butterfly, LValue object) + { + if (isX86()) { + m_out.store32( + m_out.bitOr( + m_out.load32(object, m_heaps.JSCell_structureID), + m_out.constInt32(nukedStructureIDBit())), + object, m_heaps.JSCell_structureID); + m_out.fence(&m_heaps.root, nullptr); + m_out.storePtr(butterfly, object, m_heaps.JSObject_butterfly); + m_out.fence(&m_heaps.root, nullptr); + return; + } + + LBasicBlock fastPath = m_out.newBlock(); + LBasicBlock slowPath = m_out.newBlock(); + LBasicBlock continuation = m_out.newBlock(); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(fastPath); + + m_out.branch( + m_out.load8ZeroExt32(m_out.absolute(vm().heap.addressOfMutatorShouldBeFenced())), + rarely(slowPath), usually(fastPath)); + + m_out.appendTo(fastPath, slowPath); + + m_out.storePtr(butterfly, object, m_heaps.JSObject_butterfly); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + + m_out.store32( + m_out.bitOr( + m_out.load32(object, m_heaps.JSCell_structureID), + m_out.constInt32(nukedStructureIDBit())), + object, m_heaps.JSCell_structureID); + m_out.fence(&m_heaps.root, nullptr); + m_out.storePtr(butterfly, object, m_heaps.JSObject_butterfly); + m_out.fence(&m_heaps.root, nullptr); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + template<typename... Args> + LValue vmCall(LType type, LValue function, Args... args) + { + callPreflight(); + LValue result = m_out.call(type, function, args...); + callCheck(); + return result; + } + + void callPreflight(CodeOrigin codeOrigin) + { + CallSiteIndex callSiteIndex = m_ftlState.jitCode->common.addCodeOrigin(codeOrigin); + m_out.store32( + m_out.constInt32(callSiteIndex.bits()), + tagFor(CallFrameSlot::argumentCount)); + } + + void callPreflight() + { + callPreflight(codeOriginDescriptionOfCallSite()); + } + + CodeOrigin codeOriginDescriptionOfCallSite() const + { + CodeOrigin codeOrigin = m_node->origin.semantic; + if (m_node->op() == TailCallInlinedCaller + || m_node->op() == TailCallVarargsInlinedCaller + || m_node->op() == TailCallForwardVarargsInlinedCaller + || m_node->op() == DirectTailCallInlinedCaller) { + // This case arises when you have a situation like this: + // foo makes a call to bar, bar is inlined in foo. bar makes a call + // to baz and baz is inlined in bar. And then baz makes a tail-call to jaz, + // and jaz is inlined in baz. We want the callframe for jaz to appear to + // have caller be bar. + codeOrigin = *codeOrigin.inlineCallFrame->getCallerSkippingTailCalls(); + } + + return codeOrigin; + } + + void callCheck() + { + if (Options::useExceptionFuzz()) + m_out.call(Void, m_out.operation(operationExceptionFuzz), m_callFrame); + + LValue exception = m_out.load64(m_out.absolute(vm().addressOfException())); + LValue hadException = m_out.notZero64(exception); + + CodeOrigin opCatchOrigin; + HandlerInfo* exceptionHandler; + if (m_graph.willCatchExceptionInMachineFrame(m_origin.forExit, opCatchOrigin, exceptionHandler)) { + bool exitOK = true; + bool isExceptionHandler = true; + appendOSRExit( + ExceptionCheck, noValue(), nullptr, hadException, + m_origin.withForExitAndExitOK(opCatchOrigin, exitOK), isExceptionHandler); + return; + } + + LBasicBlock continuation = m_out.newBlock(); + + m_out.branch( + hadException, rarely(m_handleExceptions), usually(continuation)); + + m_out.appendTo(continuation); + } + + RefPtr<PatchpointExceptionHandle> preparePatchpointForExceptions(PatchpointValue* value) + { + CodeOrigin opCatchOrigin; + HandlerInfo* exceptionHandler; + bool willCatchException = m_graph.willCatchExceptionInMachineFrame(m_origin.forExit, opCatchOrigin, exceptionHandler); + if (!willCatchException) + return PatchpointExceptionHandle::defaultHandle(m_ftlState); + + if (verboseCompilationEnabled()) { + dataLog(" Patchpoint exception OSR exit #", m_ftlState.jitCode->osrExitDescriptors.size(), " with availability: ", availabilityMap(), "\n"); + if (!m_availableRecoveries.isEmpty()) + dataLog(" Available recoveries: ", listDump(m_availableRecoveries), "\n"); + } + + bool exitOK = true; + NodeOrigin origin = m_origin.withForExitAndExitOK(opCatchOrigin, exitOK); + + OSRExitDescriptor* exitDescriptor = appendOSRExitDescriptor(noValue(), nullptr); + + // Compute the offset into the StackmapGenerationParams where we will find the exit arguments + // we are about to append. We need to account for both the children we've already added, and + // for the possibility of a result value if the patchpoint is not void. + unsigned offset = value->numChildren(); + if (value->type() != Void) + offset++; + + // Use LateColdAny to ensure that the stackmap arguments interfere with the patchpoint's + // result and with any late-clobbered registers. + value->appendVectorWithRep( + buildExitArguments(exitDescriptor, opCatchOrigin, noValue()), + ValueRep::LateColdAny); + + return PatchpointExceptionHandle::create( + m_ftlState, exitDescriptor, origin, offset, *exceptionHandler); + } + + LBasicBlock lowBlock(DFG::BasicBlock* block) + { + return m_blocks.get(block); + } + + OSRExitDescriptor* appendOSRExitDescriptor(FormattedValue lowValue, Node* highValue) + { + return &m_ftlState.jitCode->osrExitDescriptors.alloc( + lowValue.format(), m_graph.methodOfGettingAValueProfileFor(m_node, highValue), + availabilityMap().m_locals.numberOfArguments(), + availabilityMap().m_locals.numberOfLocals()); + } + + void appendOSRExit( + ExitKind kind, FormattedValue lowValue, Node* highValue, LValue failCondition, + NodeOrigin origin, bool isExceptionHandler = false) + { + if (verboseCompilationEnabled()) { + dataLog(" OSR exit #", m_ftlState.jitCode->osrExitDescriptors.size(), " with availability: ", availabilityMap(), "\n"); + if (!m_availableRecoveries.isEmpty()) + dataLog(" Available recoveries: ", listDump(m_availableRecoveries), "\n"); + } + + DFG_ASSERT(m_graph, m_node, origin.exitOK); + + if (!isExceptionHandler + && Options::useOSRExitFuzz() + && canUseOSRExitFuzzing(m_graph.baselineCodeBlockFor(m_node->origin.semantic)) + && doOSRExitFuzzing()) { + LValue numberOfFuzzChecks = m_out.add( + m_out.load32(m_out.absolute(&g_numberOfOSRExitFuzzChecks)), + m_out.int32One); + + m_out.store32(numberOfFuzzChecks, m_out.absolute(&g_numberOfOSRExitFuzzChecks)); + + if (unsigned atOrAfter = Options::fireOSRExitFuzzAtOrAfter()) { + failCondition = m_out.bitOr( + failCondition, + m_out.aboveOrEqual(numberOfFuzzChecks, m_out.constInt32(atOrAfter))); + } + if (unsigned at = Options::fireOSRExitFuzzAt()) { + failCondition = m_out.bitOr( + failCondition, + m_out.equal(numberOfFuzzChecks, m_out.constInt32(at))); + } + } + + if (failCondition == m_out.booleanFalse) + return; + + blessSpeculation( + m_out.speculate(failCondition), kind, lowValue, highValue, origin); + } + + void blessSpeculation(CheckValue* value, ExitKind kind, FormattedValue lowValue, Node* highValue, NodeOrigin origin) + { + OSRExitDescriptor* exitDescriptor = appendOSRExitDescriptor(lowValue, highValue); + + value->appendColdAnys(buildExitArguments(exitDescriptor, origin.forExit, lowValue)); + + State* state = &m_ftlState; + value->setGenerator( + [=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) { + exitDescriptor->emitOSRExit( + *state, kind, origin, jit, params, 0); + }); + } + + StackmapArgumentList buildExitArguments( + OSRExitDescriptor* exitDescriptor, CodeOrigin exitOrigin, FormattedValue lowValue, + unsigned offsetOfExitArgumentsInStackmapLocations = 0) + { + StackmapArgumentList result; + buildExitArguments( + exitDescriptor, exitOrigin, result, lowValue, offsetOfExitArgumentsInStackmapLocations); + return result; + } + + void buildExitArguments( + OSRExitDescriptor* exitDescriptor, CodeOrigin exitOrigin, StackmapArgumentList& arguments, FormattedValue lowValue, + unsigned offsetOfExitArgumentsInStackmapLocations = 0) + { + if (!!lowValue) + arguments.append(lowValue.value()); + + AvailabilityMap availabilityMap = this->availabilityMap(); + availabilityMap.pruneByLiveness(m_graph, exitOrigin); + + HashMap<Node*, ExitTimeObjectMaterialization*> map; + availabilityMap.forEachAvailability( + [&] (Availability availability) { + if (!availability.shouldUseNode()) + return; + + Node* node = availability.node(); + if (!node->isPhantomAllocation()) + return; + + auto result = map.add(node, nullptr); + if (result.isNewEntry) { + result.iterator->value = + exitDescriptor->m_materializations.add(node->op(), node->origin.semantic); + } + }); + + for (unsigned i = 0; i < exitDescriptor->m_values.size(); ++i) { + int operand = exitDescriptor->m_values.operandForIndex(i); + + Availability availability = availabilityMap.m_locals[i]; + + if (Options::validateFTLOSRExitLiveness() + && m_graph.m_plan.mode != FTLForOSREntryMode) { + + if (availability.isDead() && m_graph.isLiveInBytecode(VirtualRegister(operand), exitOrigin)) + DFG_CRASH(m_graph, m_node, toCString("Live bytecode local not available: operand = ", VirtualRegister(operand), ", availability = ", availability, ", origin = ", exitOrigin).data()); + } + ExitValue exitValue = exitValueForAvailability(arguments, map, availability); + if (exitValue.hasIndexInStackmapLocations()) + exitValue.adjustStackmapLocationsIndexByOffset(offsetOfExitArgumentsInStackmapLocations); + exitDescriptor->m_values[i] = exitValue; + } + + for (auto heapPair : availabilityMap.m_heap) { + Node* node = heapPair.key.base(); + ExitTimeObjectMaterialization* materialization = map.get(node); + ExitValue exitValue = exitValueForAvailability(arguments, map, heapPair.value); + if (exitValue.hasIndexInStackmapLocations()) + exitValue.adjustStackmapLocationsIndexByOffset(offsetOfExitArgumentsInStackmapLocations); + materialization->add( + heapPair.key.descriptor(), + exitValue); + } + + if (verboseCompilationEnabled()) { + dataLog(" Exit values: ", exitDescriptor->m_values, "\n"); + if (!exitDescriptor->m_materializations.isEmpty()) { + dataLog(" Materializations: \n"); + for (ExitTimeObjectMaterialization* materialization : exitDescriptor->m_materializations) + dataLog(" ", pointerDump(materialization), "\n"); + } + } + } + + ExitValue exitValueForAvailability( + StackmapArgumentList& arguments, const HashMap<Node*, ExitTimeObjectMaterialization*>& map, + Availability availability) + { + FlushedAt flush = availability.flushedAt(); + switch (flush.format()) { + case DeadFlush: + case ConflictingFlush: + if (availability.hasNode()) + return exitValueForNode(arguments, map, availability.node()); + + // This means that the value is dead. It could be dead in bytecode or it could have + // been killed by our DCE, which can sometimes kill things even if they were live in + // bytecode. + return ExitValue::dead(); + + case FlushedJSValue: + case FlushedCell: + case FlushedBoolean: + return ExitValue::inJSStack(flush.virtualRegister()); + + case FlushedInt32: + return ExitValue::inJSStackAsInt32(flush.virtualRegister()); + + case FlushedInt52: + return ExitValue::inJSStackAsInt52(flush.virtualRegister()); + + case FlushedDouble: + return ExitValue::inJSStackAsDouble(flush.virtualRegister()); + } + + DFG_CRASH(m_graph, m_node, "Invalid flush format"); + return ExitValue::dead(); + } + + ExitValue exitValueForNode( + StackmapArgumentList& arguments, const HashMap<Node*, ExitTimeObjectMaterialization*>& map, + Node* node) + { + // NOTE: In FTL->B3, we cannot generate code here, because m_output is positioned after the + // stackmap value. Like all values, the stackmap value cannot use a child that is defined after + // it. + + ASSERT(node->shouldGenerate()); + ASSERT(node->hasResult()); + + if (node) { + switch (node->op()) { + case BottomValue: + // This might arise in object materializations. I actually doubt that it would, + // but it seems worthwhile to be conservative. + return ExitValue::dead(); + + case JSConstant: + case Int52Constant: + case DoubleConstant: + return ExitValue::constant(node->asJSValue()); + + default: + if (node->isPhantomAllocation()) + return ExitValue::materializeNewObject(map.get(node)); + break; + } + } + + for (unsigned i = 0; i < m_availableRecoveries.size(); ++i) { + AvailableRecovery recovery = m_availableRecoveries[i]; + if (recovery.node() != node) + continue; + ExitValue result = ExitValue::recovery( + recovery.opcode(), arguments.size(), arguments.size() + 1, + recovery.format()); + arguments.append(recovery.left()); + arguments.append(recovery.right()); + return result; + } + + LoweredNodeValue value = m_int32Values.get(node); + if (isValid(value)) + return exitArgument(arguments, DataFormatInt32, value.value()); + + value = m_int52Values.get(node); + if (isValid(value)) + return exitArgument(arguments, DataFormatInt52, value.value()); + + value = m_strictInt52Values.get(node); + if (isValid(value)) + return exitArgument(arguments, DataFormatStrictInt52, value.value()); + + value = m_booleanValues.get(node); + if (isValid(value)) + return exitArgument(arguments, DataFormatBoolean, value.value()); + + value = m_jsValueValues.get(node); + if (isValid(value)) + return exitArgument(arguments, DataFormatJS, value.value()); + + value = m_doubleValues.get(node); + if (isValid(value)) + return exitArgument(arguments, DataFormatDouble, value.value()); + + DFG_CRASH(m_graph, m_node, toCString("Cannot find value for node: ", node).data()); + return ExitValue::dead(); + } + + ExitValue exitArgument(StackmapArgumentList& arguments, DataFormat format, LValue value) + { + ExitValue result = ExitValue::exitArgument(ExitArgument(format, arguments.size())); + arguments.append(value); + return result; + } + + ExitValue exitValueForTailCall(StackmapArgumentList& arguments, Node* node) + { + ASSERT(node->shouldGenerate()); + ASSERT(node->hasResult()); + + switch (node->op()) { + case JSConstant: + case Int52Constant: + case DoubleConstant: + return ExitValue::constant(node->asJSValue()); + + default: + break; + } + + LoweredNodeValue value = m_jsValueValues.get(node); + if (isValid(value)) + return exitArgument(arguments, DataFormatJS, value.value()); + + value = m_int32Values.get(node); + if (isValid(value)) + return exitArgument(arguments, DataFormatJS, boxInt32(value.value())); + + value = m_booleanValues.get(node); + if (isValid(value)) + return exitArgument(arguments, DataFormatJS, boxBoolean(value.value())); + + // Doubles and Int52 have been converted by ValueRep() + DFG_CRASH(m_graph, m_node, toCString("Cannot find value for node: ", node).data()); + } + + void addAvailableRecovery( + Node* node, RecoveryOpcode opcode, LValue left, LValue right, DataFormat format) + { + m_availableRecoveries.append(AvailableRecovery(node, opcode, left, right, format)); + } + + void addAvailableRecovery( + Edge edge, RecoveryOpcode opcode, LValue left, LValue right, DataFormat format) + { + addAvailableRecovery(edge.node(), opcode, left, right, format); + } + + void setInt32(Node* node, LValue value) + { + m_int32Values.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setInt52(Node* node, LValue value) + { + m_int52Values.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setStrictInt52(Node* node, LValue value) + { + m_strictInt52Values.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setInt52(Node* node, LValue value, Int52Kind kind) + { + switch (kind) { + case Int52: + setInt52(node, value); + return; + + case StrictInt52: + setStrictInt52(node, value); + return; + } + + DFG_CRASH(m_graph, m_node, "Corrupt int52 kind"); + } + void setJSValue(Node* node, LValue value) + { + m_jsValueValues.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setBoolean(Node* node, LValue value) + { + m_booleanValues.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setStorage(Node* node, LValue value) + { + m_storageValues.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setMapBucket(Node* node, LValue value) + { + m_mapBucketValues.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setDouble(Node* node, LValue value) + { + m_doubleValues.set(node, LoweredNodeValue(value, m_highBlock)); + } + + void setInt32(LValue value) + { + setInt32(m_node, value); + } + void setInt52(LValue value) + { + setInt52(m_node, value); + } + void setStrictInt52(LValue value) + { + setStrictInt52(m_node, value); + } + void setInt52(LValue value, Int52Kind kind) + { + setInt52(m_node, value, kind); + } + void setJSValue(LValue value) + { + setJSValue(m_node, value); + } + void setBoolean(LValue value) + { + setBoolean(m_node, value); + } + void setStorage(LValue value) + { + setStorage(m_node, value); + } + void setMapBucket(LValue value) + { + setMapBucket(m_node, value); + } + void setDouble(LValue value) + { + setDouble(m_node, value); + } + + bool isValid(const LoweredNodeValue& value) + { + if (!value) + return false; + if (!m_graph.m_dominators->dominates(value.block(), m_highBlock)) + return false; + return true; + } + + void addWeakReference(JSCell* target) + { + m_graph.m_plan.weakReferences.addLazily(target); + } + + LValue loadStructure(LValue value) + { + LValue tableIndex = m_out.load32(value, m_heaps.JSCell_structureID); + LValue tableBase = m_out.loadPtr( + m_out.absolute(vm().heap.structureIDTable().base())); + TypedPointer address = m_out.baseIndex( + m_heaps.structureTable, tableBase, m_out.zeroExtPtr(tableIndex)); + return m_out.loadPtr(address); + } + + LValue weakPointer(JSCell* pointer) + { + // There are weird relationships in how optimized CodeBlocks + // point to other CodeBlocks. We don't want to have them be + // part of the weak pointer set. For example, an optimized CodeBlock + // having a weak pointer to itself will cause it to get collected. + RELEASE_ASSERT(!jsDynamicCast<CodeBlock*>(vm(), pointer)); + + addWeakReference(pointer); + return m_out.weakPointer(m_graph, pointer); + } + + LValue frozenPointer(FrozenValue* value) + { + return m_out.weakPointer(value); + } + + LValue weakStructureID(RegisteredStructure structure) + { + return m_out.constInt32(structure->id()); + } + + LValue weakStructure(RegisteredStructure structure) + { + ASSERT(!!structure.get()); + return m_out.weakPointer(m_graph, structure.get()); + } + + TypedPointer addressFor(LValue base, int operand, ptrdiff_t offset = 0) + { + return m_out.address(base, m_heaps.variables[operand], offset); + } + TypedPointer payloadFor(LValue base, int operand) + { + return addressFor(base, operand, PayloadOffset); + } + TypedPointer tagFor(LValue base, int operand) + { + return addressFor(base, operand, TagOffset); + } + TypedPointer addressFor(int operand, ptrdiff_t offset = 0) + { + return addressFor(VirtualRegister(operand), offset); + } + TypedPointer addressFor(VirtualRegister operand, ptrdiff_t offset = 0) + { + if (operand.isLocal()) + return addressFor(m_captured, operand.offset(), offset); + return addressFor(m_callFrame, operand.offset(), offset); + } + TypedPointer payloadFor(int operand) + { + return payloadFor(VirtualRegister(operand)); + } + TypedPointer payloadFor(VirtualRegister operand) + { + return addressFor(operand, PayloadOffset); + } + TypedPointer tagFor(int operand) + { + return tagFor(VirtualRegister(operand)); + } + TypedPointer tagFor(VirtualRegister operand) + { + return addressFor(operand, TagOffset); + } + + AbstractValue abstractValue(Node* node) + { + return m_state.forNode(node); + } + AbstractValue abstractValue(Edge edge) + { + return abstractValue(edge.node()); + } + + SpeculatedType provenType(Node* node) + { + return abstractValue(node).m_type; + } + SpeculatedType provenType(Edge edge) + { + return provenType(edge.node()); + } + + JSValue provenValue(Node* node) + { + return abstractValue(node).m_value; + } + JSValue provenValue(Edge edge) + { + return provenValue(edge.node()); + } + + StructureAbstractValue abstractStructure(Node* node) + { + return abstractValue(node).m_structure; + } + StructureAbstractValue abstractStructure(Edge edge) + { + return abstractStructure(edge.node()); + } + +#if ENABLE(MASM_PROBE) + void probe(std::function<void (CCallHelpers::ProbeContext*)> probeFunc) + { + UNUSED_PARAM(probeFunc); + } +#endif + + void crash() + { + crash(m_highBlock, m_node); + } + void crash(DFG::BasicBlock* block, Node* node) + { + BlockIndex blockIndex = block->index; + unsigned nodeIndex = node ? node->index() : UINT_MAX; +#if ASSERT_DISABLED + m_out.patchpoint(Void)->setGenerator( + [=] (CCallHelpers& jit, const StackmapGenerationParams&) { + AllowMacroScratchRegisterUsage allowScratch(jit); + + jit.move(CCallHelpers::TrustedImm32(blockIndex), GPRInfo::regT0); + jit.move(CCallHelpers::TrustedImm32(nodeIndex), GPRInfo::regT1); + if (node) + jit.move(CCallHelpers::TrustedImm32(node->op()), GPRInfo::regT2); + jit.abortWithReason(FTLCrash); + }); +#else + m_out.call( + Void, + m_out.constIntPtr(ftlUnreachable), + // We don't want the CodeBlock to have a weak pointer to itself because + // that would cause it to always get collected. + m_out.constIntPtr(bitwise_cast<intptr_t>(codeBlock())), m_out.constInt32(blockIndex), + m_out.constInt32(nodeIndex)); +#endif + m_out.unreachable(); + } + + AvailabilityMap& availabilityMap() { return m_availabilityCalculator.m_availability; } + + VM& vm() { return m_graph.m_vm; } + CodeBlock* codeBlock() { return m_graph.m_codeBlock; } + + Graph& m_graph; + State& m_ftlState; + AbstractHeapRepository m_heaps; + Output m_out; + Procedure& m_proc; + + LBasicBlock m_prologue; + LBasicBlock m_handleExceptions; + HashMap<DFG::BasicBlock*, LBasicBlock> m_blocks; + + LValue m_callFrame; + LValue m_captured; + LValue m_tagTypeNumber; + LValue m_tagMask; + + HashMap<Node*, LoweredNodeValue> m_int32Values; + HashMap<Node*, LoweredNodeValue> m_strictInt52Values; + HashMap<Node*, LoweredNodeValue> m_int52Values; + HashMap<Node*, LoweredNodeValue> m_jsValueValues; + HashMap<Node*, LoweredNodeValue> m_booleanValues; + HashMap<Node*, LoweredNodeValue> m_storageValues; + HashMap<Node*, LoweredNodeValue> m_mapBucketValues; + HashMap<Node*, LoweredNodeValue> m_doubleValues; + + // This is a bit of a hack. It prevents B3 from having to do CSE on loading of arguments. + // It's nice to have these optimizations on our end because we can guarantee them a bit better. + // Probably also saves B3 compile time. + HashMap<Node*, LValue> m_loadedArgumentValues; + + HashMap<Node*, LValue> m_phis; + + LocalOSRAvailabilityCalculator m_availabilityCalculator; + + Vector<AvailableRecovery, 3> m_availableRecoveries; + + InPlaceAbstractState m_state; + AbstractInterpreter<InPlaceAbstractState> m_interpreter; + DFG::BasicBlock* m_highBlock; + DFG::BasicBlock* m_nextHighBlock; + LBasicBlock m_nextLowBlock; + + NodeOrigin m_origin; + unsigned m_nodeIndex; + Node* m_node; +}; + +} // anonymous namespace + +void lowerDFGToB3(State& state) +{ + LowerDFGToB3 lowering(state); + lowering.lower(); +} + +} } // namespace JSC::FTL + +#endif // ENABLE(FTL_JIT) + |