summaryrefslogtreecommitdiff
path: root/src/VBox/VMM/VMMR0/HMSVMR0.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMR0/HMSVMR0.cpp')
-rw-r--r--src/VBox/VMM/VMMR0/HMSVMR0.cpp4989
1 files changed, 4989 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR0/HMSVMR0.cpp b/src/VBox/VMM/VMMR0/HMSVMR0.cpp
new file mode 100644
index 00000000..c65e143f
--- /dev/null
+++ b/src/VBox/VMM/VMMR0/HMSVMR0.cpp
@@ -0,0 +1,4989 @@
+/* $Id: HMSVMR0.cpp $ */
+/** @file
+ * HM SVM (AMD-V) - Host Context Ring-0.
+ */
+
+/*
+ * Copyright (C) 2013 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ */
+
+/*******************************************************************************
+* Header Files *
+*******************************************************************************/
+#define LOG_GROUP LOG_GROUP_HM
+#include <iprt/asm-amd64-x86.h>
+#include <iprt/thread.h>
+
+#include "HMInternal.h"
+#include <VBox/vmm/vm.h>
+#include "HMSVMR0.h"
+#include <VBox/vmm/pdmapi.h>
+#include <VBox/vmm/dbgf.h>
+#include <VBox/vmm/iom.h>
+#include <VBox/vmm/tm.h>
+
+#ifdef DEBUG_ramshankar
+# define HMSVM_SYNC_FULL_GUEST_STATE
+# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
+# define HMSVM_ALWAYS_TRAP_PF
+# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
+#endif
+
+
+/*******************************************************************************
+* Defined Constants And Macros *
+*******************************************************************************/
+#ifdef VBOX_WITH_STATISTICS
+# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
+ if ((u64ExitCode) == SVM_EXIT_NPF) \
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
+ else \
+ STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
+ } while (0)
+#else
+# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
+#endif
+
+/** If we decide to use a function table approach this can be useful to
+ * switch to a "static DECLCALLBACK(int)". */
+#define HMSVM_EXIT_DECL static int
+
+/** @name Segment attribute conversion between CPU and AMD-V VMCB format.
+ *
+ * The CPU format of the segment attribute is described in X86DESCATTRBITS
+ * which is 16-bits (i.e. includes 4 bits of the segment limit).
+ *
+ * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
+ * only the attribute bits and nothing else). Upper 4-bits are unused.
+ *
+ * @{ */
+#define HMSVM_CPU_2_VMCB_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0xf000) >> 4) )
+#define HMSVM_VMCB_2_CPU_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0x0f00) << 4) )
+/** @} */
+
+/** @name Macros for loading, storing segment registers to/from the VMCB.
+ * @{ */
+#define HMSVM_LOAD_SEG_REG(REG, reg) \
+ do \
+ { \
+ Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
+ Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
+ pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
+ pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
+ pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
+ pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
+ } while (0)
+
+#define HMSVM_SAVE_SEG_REG(REG, reg) \
+ do \
+ { \
+ pMixedCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
+ pMixedCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
+ pMixedCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
+ pMixedCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
+ pMixedCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
+ pMixedCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
+ } while (0)
+/** @} */
+
+/** Macro for checking and returning from the using function for
+ * \#VMEXIT intercepts that maybe caused during delivering of another
+ * event in the guest. */
+#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
+ do \
+ { \
+ int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
+ if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT)) \
+ return VINF_SUCCESS; \
+ else if (RT_UNLIKELY(rc == VINF_EM_RESET)) \
+ return rc; \
+ } while (0)
+
+/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
+ * instruction that exited. */
+#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
+ do { \
+ if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
+ (a_rc) = VINF_EM_DBG_STEPPED; \
+ } while (0)
+
+/** Assert that preemption is disabled or covered by thread-context hooks. */
+#define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
+ || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+/** Assert that we haven't migrated CPUs when thread-context hooks are not
+ * used. */
+#define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
+ || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
+ ("Illegal migration! Entered on CPU %u Current %u\n", \
+ pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
+
+/** Exception bitmap mask for all contributory exceptions.
+ *
+ * Page fault is deliberately excluded here as it's conditional as to whether
+ * it's contributory or benign. Page faults are handled separately.
+ */
+#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
+ | RT_BIT(X86_XCPT_DE))
+
+/** @name VMCB Clean Bits.
+ *
+ * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
+ * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
+ * memory.
+ *
+ * @{ */
+/** All intercepts vectors, TSC offset, PAUSE filter counter. */
+#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
+/** I/O permission bitmap, MSR permission bitmap. */
+#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
+/** ASID. */
+#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
+/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
+V_INTR_VECTOR. */
+#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
+/** Nested Paging: Nested CR3 (nCR3), PAT. */
+#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
+/** Control registers (CR0, CR3, CR4, EFER). */
+#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
+/** Debug registers (DR6, DR7). */
+#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
+/** GDT, IDT limit and base. */
+#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
+/** Segment register: CS, SS, DS, ES limit and base. */
+#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
+/** CR2.*/
+#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
+/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
+#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
+/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
+PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
+#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
+/** Mask of all valid VMCB Clean bits. */
+#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
+ | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
+ | HMSVM_VMCB_CLEAN_ASID \
+ | HMSVM_VMCB_CLEAN_TPR \
+ | HMSVM_VMCB_CLEAN_NP \
+ | HMSVM_VMCB_CLEAN_CRX_EFER \
+ | HMSVM_VMCB_CLEAN_DRX \
+ | HMSVM_VMCB_CLEAN_DT \
+ | HMSVM_VMCB_CLEAN_SEG \
+ | HMSVM_VMCB_CLEAN_CR2 \
+ | HMSVM_VMCB_CLEAN_LBR \
+ | HMSVM_VMCB_CLEAN_AVIC)
+/** @} */
+
+/** @name SVM transient.
+ *
+ * A state structure for holding miscellaneous information across AMD-V
+ * VMRUN/#VMEXIT operation, restored after the transition.
+ *
+ * @{ */
+typedef struct SVMTRANSIENT
+{
+ /** The host's rflags/eflags. */
+ RTCCUINTREG uEflags;
+#if HC_ARCH_BITS == 32
+ uint32_t u32Alignment0;
+#endif
+
+ /** The #VMEXIT exit code (the EXITCODE field in the VMCB). */
+ uint64_t u64ExitCode;
+ /** The guest's TPR value used for TPR shadowing. */
+ uint8_t u8GuestTpr;
+ /** Alignment. */
+ uint8_t abAlignment0[7];
+
+ /** Whether the guest FPU state was active at the time of #VMEXIT. */
+ bool fWasGuestFPUStateActive;
+ /** Whether the guest debug state was active at the time of #VMEXIT. */
+ bool fWasGuestDebugStateActive;
+ /** Whether the hyper debug state was active at the time of #VMEXIT. */
+ bool fWasHyperDebugStateActive;
+ /** Whether the TSC offset mode needs to be updated. */
+ bool fUpdateTscOffsetting;
+ /** Whether the TSC_AUX MSR needs restoring on #VMEXIT. */
+ bool fRestoreTscAuxMsr;
+ /** Whether the #VMEXIT was caused by a page-fault during delivery of a
+ * contributary exception or a page-fault. */
+ bool fVectoringPF;
+} SVMTRANSIENT, *PSVMTRANSIENT;
+AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
+AssertCompileMemberAlignment(SVMTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
+/** @} */
+
+/**
+ * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
+ */
+typedef enum SVMMSREXITREAD
+{
+ /** Reading this MSR causes a VM-exit. */
+ SVMMSREXIT_INTERCEPT_READ = 0xb,
+ /** Reading this MSR does not cause a VM-exit. */
+ SVMMSREXIT_PASSTHRU_READ
+} SVMMSREXITREAD;
+
+/**
+ * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
+ */
+typedef enum SVMMSREXITWRITE
+{
+ /** Writing to this MSR causes a VM-exit. */
+ SVMMSREXIT_INTERCEPT_WRITE = 0xd,
+ /** Writing to this MSR does not cause a VM-exit. */
+ SVMMSREXIT_PASSTHRU_WRITE
+} SVMMSREXITWRITE;
+
+/**
+ * SVM VM-exit handler.
+ *
+ * @returns VBox status code.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pMixedCtx Pointer to the guest-CPU context.
+ * @param pSvmTransient Pointer to the SVM-transient structure.
+ */
+typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
+
+/*******************************************************************************
+* Internal Functions *
+*******************************************************************************/
+static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
+static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
+static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
+
+/** @name VM-exit handlers.
+ * @{
+ */
+static FNSVMEXITHANDLER hmR0SvmExitIntr;
+static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
+static FNSVMEXITHANDLER hmR0SvmExitInvd;
+static FNSVMEXITHANDLER hmR0SvmExitCpuid;
+static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
+static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
+static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
+static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
+static FNSVMEXITHANDLER hmR0SvmExitHlt;
+static FNSVMEXITHANDLER hmR0SvmExitMonitor;
+static FNSVMEXITHANDLER hmR0SvmExitMwait;
+static FNSVMEXITHANDLER hmR0SvmExitShutdown;
+static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
+static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
+static FNSVMEXITHANDLER hmR0SvmExitSetPendingXcptUD;
+static FNSVMEXITHANDLER hmR0SvmExitMsr;
+static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
+static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
+static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
+static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
+static FNSVMEXITHANDLER hmR0SvmExitVIntr;
+static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
+static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
+static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
+static FNSVMEXITHANDLER hmR0SvmExitXcptNM;
+static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
+static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
+/** @} */
+
+DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
+
+/*******************************************************************************
+* Global Variables *
+*******************************************************************************/
+/** Ring-0 memory object for the IO bitmap. */
+RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
+/** Physical address of the IO bitmap. */
+RTHCPHYS g_HCPhysIOBitmap = 0;
+/** Virtual address of the IO bitmap. */
+R0PTRTYPE(void *) g_pvIOBitmap = NULL;
+
+
+/**
+ * Sets up and activates AMD-V on the current CPU.
+ *
+ * @returns VBox status code.
+ * @param pCpu Pointer to the CPU info struct.
+ * @param pVM Pointer to the VM (can be NULL after a resume!).
+ * @param pvCpuPage Pointer to the global CPU page.
+ * @param HCPhysCpuPage Physical address of the global CPU page.
+ * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
+ * @param pvArg Unused on AMD-V.
+ */
+VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
+ void *pvArg)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
+ AssertReturn( HCPhysCpuPage
+ && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
+ AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
+ NOREF(pvArg);
+ NOREF(fEnabledByHost);
+
+ /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
+ RTCCUINTREG uEflags = ASMIntDisableFlags();
+
+ /*
+ * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
+ */
+ uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
+ if (u64HostEfer & MSR_K6_EFER_SVME)
+ {
+ /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
+ if ( pVM
+ && pVM->hm.s.svm.fIgnoreInUseError)
+ {
+ pCpu->fIgnoreAMDVInUseError = true;
+ }
+
+ if (!pCpu->fIgnoreAMDVInUseError)
+ {
+ ASMSetFlags(uEflags);
+ return VERR_SVM_IN_USE;
+ }
+ }
+
+ /* Turn on AMD-V in the EFER MSR. */
+ ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
+
+ /* Write the physical page address where the CPU will store the host state while executing the VM. */
+ ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
+
+ /* Restore interrupts. */
+ ASMSetFlags(uEflags);
+
+ /*
+ * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
+ * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
+ * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
+ * to flush the TLB with before using a new ASID.
+ */
+ pCpu->fFlushAsidBeforeUse = true;
+
+ /*
+ * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
+ */
+ ++pCpu->cTlbFlushes;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Deactivates AMD-V on the current CPU.
+ *
+ * @returns VBox status code.
+ * @param pCpu Pointer to the CPU info struct.
+ * @param pvCpuPage Pointer to the global CPU page.
+ * @param HCPhysCpuPage Physical address of the global CPU page.
+ */
+VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ AssertReturn( HCPhysCpuPage
+ && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
+ AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
+ NOREF(pCpu);
+
+ /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
+ RTCCUINTREG uEflags = ASMIntDisableFlags();
+
+ /* Turn off AMD-V in the EFER MSR. */
+ uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
+ ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
+
+ /* Invalidate host state physical address. */
+ ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
+
+ /* Restore interrupts. */
+ ASMSetFlags(uEflags);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Does global AMD-V initialization (called during module initialization).
+ *
+ * @returns VBox status code.
+ */
+VMMR0DECL(int) SVMR0GlobalInit(void)
+{
+ /*
+ * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
+ * once globally here instead of per-VM.
+ */
+ Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
+ int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
+ g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
+
+ /* Set all bits to intercept all IO accesses. */
+ ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Does global AMD-V termination (called during module termination).
+ */
+VMMR0DECL(void) SVMR0GlobalTerm(void)
+{
+ if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
+ {
+ RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
+ g_pvIOBitmap = NULL;
+ g_HCPhysIOBitmap = 0;
+ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
+ }
+}
+
+
+/**
+ * Frees any allocated per-VCPU structures for a VM.
+ *
+ * @param pVM Pointer to the VM.
+ */
+DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
+{
+ for (uint32_t i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ AssertPtr(pVCpu);
+
+ if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
+ {
+ RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
+ pVCpu->hm.s.svm.pvVmcbHost = 0;
+ pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
+ pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
+ }
+
+ if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
+ {
+ RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
+ pVCpu->hm.s.svm.pvVmcb = 0;
+ pVCpu->hm.s.svm.HCPhysVmcb = 0;
+ pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
+ }
+
+ if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
+ {
+ RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
+ pVCpu->hm.s.svm.pvMsrBitmap = 0;
+ pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
+ pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
+ }
+ }
+}
+
+
+/**
+ * Does per-VM AMD-V initialization.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VM.
+ */
+VMMR0DECL(int) SVMR0InitVM(PVM pVM)
+{
+ int rc = VERR_INTERNAL_ERROR_5;
+
+ /*
+ * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
+ */
+ uint32_t u32Family;
+ uint32_t u32Model;
+ uint32_t u32Stepping;
+ if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
+ {
+ Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
+ pVM->hm.s.svm.fAlwaysFlushTLB = true;
+ }
+
+ /*
+ * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
+ */
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
+ pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
+ pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
+ }
+
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+
+ /*
+ * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
+ * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
+ */
+ rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
+ if (RT_FAILURE(rc))
+ goto failure_cleanup;
+
+ pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
+ pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
+ Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
+ ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
+
+ /*
+ * Allocate one page for the guest-state VMCB.
+ */
+ rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
+ if (RT_FAILURE(rc))
+ goto failure_cleanup;
+
+ pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
+ pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
+ Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
+ ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
+
+ /*
+ * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
+ * SVM to not require one.
+ */
+ rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
+ if (RT_FAILURE(rc))
+ goto failure_cleanup;
+
+ pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
+ pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
+ /* Set all bits to intercept all MSR accesses (changed later on). */
+ ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
+ }
+
+ return VINF_SUCCESS;
+
+failure_cleanup:
+ hmR0SvmFreeStructs(pVM);
+ return rc;
+}
+
+
+/**
+ * Does per-VM AMD-V termination.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VM.
+ */
+VMMR0DECL(int) SVMR0TermVM(PVM pVM)
+{
+ hmR0SvmFreeStructs(pVM);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Sets the permission bits for the specified MSR in the MSRPM.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ * @param uMsr The MSR for which the access permissions are being set.
+ * @param enmRead MSR read permissions.
+ * @param enmWrite MSR write permissions.
+ */
+static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
+{
+ unsigned ulBit;
+ uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
+
+ /*
+ * Layout:
+ * Byte offset MSR range
+ * 0x000 - 0x7ff 0x00000000 - 0x00001fff
+ * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
+ * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
+ * 0x1800 - 0x1fff Reserved
+ */
+ if (uMsr <= 0x00001FFF)
+ {
+ /* Pentium-compatible MSRs. */
+ ulBit = uMsr * 2;
+ }
+ else if ( uMsr >= 0xC0000000
+ && uMsr <= 0xC0001FFF)
+ {
+ /* AMD Sixth Generation x86 Processor MSRs. */
+ ulBit = (uMsr - 0xC0000000) * 2;
+ pbMsrBitmap += 0x800;
+ }
+ else if ( uMsr >= 0xC0010000
+ && uMsr <= 0xC0011FFF)
+ {
+ /* AMD Seventh and Eighth Generation Processor MSRs. */
+ ulBit = (uMsr - 0xC0001000) * 2;
+ pbMsrBitmap += 0x1000;
+ }
+ else
+ {
+ AssertFailed();
+ return;
+ }
+
+ Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
+ if (enmRead == SVMMSREXIT_INTERCEPT_READ)
+ ASMBitSet(pbMsrBitmap, ulBit);
+ else
+ ASMBitClear(pbMsrBitmap, ulBit);
+
+ if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
+ ASMBitSet(pbMsrBitmap, ulBit + 1);
+ else
+ ASMBitClear(pbMsrBitmap, ulBit + 1);
+
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
+}
+
+
+/**
+ * Sets up AMD-V for the specified VM.
+ * This function is only called once per-VM during initalization.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VM.
+ */
+VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ AssertReturn(pVM, VERR_INVALID_PARAMETER);
+ Assert(pVM->hm.s.svm.fSupported);
+
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
+
+ AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
+
+ /* Trap exceptions unconditionally (debug purposes). */
+#ifdef HMSVM_ALWAYS_TRAP_PF
+ pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
+#endif
+#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
+ /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
+ pVmcb->ctrl.u32InterceptException |= 0
+ | RT_BIT(X86_XCPT_BP)
+ | RT_BIT(X86_XCPT_DB)
+ | RT_BIT(X86_XCPT_DE)
+ | RT_BIT(X86_XCPT_NM)
+ | RT_BIT(X86_XCPT_UD)
+ | RT_BIT(X86_XCPT_NP)
+ | RT_BIT(X86_XCPT_SS)
+ | RT_BIT(X86_XCPT_GP)
+ | RT_BIT(X86_XCPT_PF)
+ | RT_BIT(X86_XCPT_MF)
+ ;
+#endif
+
+ /* Set up unconditional intercepts and conditions. */
+ pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a VM-exit. */
+ | SVM_CTRL1_INTERCEPT_NMI /* Non-Maskable Interrupts causes a VM-exit. */
+ | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a VM-exit. */
+ | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a VM-exit. */
+ | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a VM-exit. */
+ | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a VM-exit. */
+ | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a VM-exit. */
+ | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO VM-exits. */
+ | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a VM-exit.*/
+ | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a VM-exit. */
+ | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a VM-exit. */
+ | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
+
+ pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a VM-exit. */
+ | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a VM-exit. */
+ | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a VM-exit. */
+ | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a VM-exit. */
+ | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a VM-exit. */
+ | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a VM-exit. */
+ | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a VM-exit. */
+ | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a VM-exit. */
+ | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a VM-exit. */
+ | SVM_CTRL2_INTERCEPT_MWAIT; /* MWAIT causes a VM-exit. */
+
+ /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
+ pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
+
+ /* CR0, CR4 writes must be intercepted for the same reasons as above. */
+ pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
+
+ /* Intercept all DRx reads and writes by default. Changed later on. */
+ pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
+ pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
+
+ /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
+ pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
+
+ /* Ignore the priority in the TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently
+ deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
+ pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
+
+ /* Set IO and MSR bitmap permission bitmap physical addresses. */
+ pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
+ pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
+
+ /* No LBR virtualization. */
+ pVmcb->ctrl.u64LBRVirt = 0;
+
+ /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
+ pVmcb->ctrl.u64VmcbCleanBits = 0;
+
+ /* The host ASID MBZ, for the guest start with 1. */
+ pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
+
+ /*
+ * Setup the PAT MSR (applicable for Nested Paging only).
+ * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
+ * so choose type 6 for all PAT slots.
+ */
+ pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
+
+ /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
+ pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
+
+ /* Without Nested Paging, we need additionally intercepts. */
+ if (!pVM->hm.s.fNestedPaging)
+ {
+ /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
+ pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
+ pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
+
+ /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
+ pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
+ | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
+
+ /* Page faults must be intercepted to implement shadow paging. */
+ pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
+ }
+
+#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
+ pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_TASK_SWITCH;
+#endif
+
+ /*
+ * The following MSRs are saved/restored automatically during the world-switch.
+ * Don't intercept guest read/write accesses to these MSRs.
+ */
+ hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Invalidates a guest page by guest virtual address.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param GCVirt Guest virtual address of the page to invalidate.
+ */
+VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
+{
+ AssertReturn(pVM, VERR_INVALID_PARAMETER);
+ Assert(pVM->hm.s.svm.fSupported);
+
+ bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
+
+ /* Skip it if a TLB flush is already pending. */
+ if (!fFlushPending)
+ {
+ Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
+
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
+
+#if HC_ARCH_BITS == 32
+ /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
+ if (CPUMIsGuestInLongMode(pVCpu))
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
+ else
+#endif
+ {
+ SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
+ }
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Flushes the appropriate tagged-TLB entries.
+ *
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ */
+static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
+{
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
+
+ /*
+ * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
+ * This can happen both for start & resume due to long jumps back to ring-3.
+ * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
+ * so we cannot reuse the ASIDs without flushing.
+ */
+ bool fNewAsid = false;
+ Assert(pCpu->idCpu != NIL_RTCPUID);
+ if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
+ || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
+ pVCpu->hm.s.fForceTLBFlush = true;
+ fNewAsid = true;
+ }
+
+ /* Set TLB flush state as checked until we return from the world switch. */
+ ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
+
+ /* Check for explicit TLB shootdowns. */
+ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
+ {
+ pVCpu->hm.s.fForceTLBFlush = true;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
+ }
+
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
+
+ if (pVM->hm.s.svm.fAlwaysFlushTLB)
+ {
+ /*
+ * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
+ */
+ pCpu->uCurrentAsid = 1;
+ pVCpu->hm.s.uCurrentAsid = 1;
+ pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
+
+ /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
+ }
+ else if (pVCpu->hm.s.fForceTLBFlush)
+ {
+ /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
+
+ if (fNewAsid)
+ {
+ ++pCpu->uCurrentAsid;
+ bool fHitASIDLimit = false;
+ if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
+ {
+ pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
+ pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
+ fHitASIDLimit = true;
+
+ if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
+ {
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
+ pCpu->fFlushAsidBeforeUse = true;
+ }
+ else
+ {
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
+ pCpu->fFlushAsidBeforeUse = false;
+ }
+ }
+
+ if ( !fHitASIDLimit
+ && pCpu->fFlushAsidBeforeUse)
+ {
+ if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
+ else
+ {
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
+ pCpu->fFlushAsidBeforeUse = false;
+ }
+ }
+
+ pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
+ pVCpu->hm.s.idLastCpu = pCpu->idCpu;
+ pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
+ }
+ else
+ {
+ if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
+ else
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
+ }
+
+ pVCpu->hm.s.fForceTLBFlush = false;
+ }
+ /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
+ * not be executed. See hmQueueInvlPage() where it is commented
+ * out. Support individual entry flushing someday. */
+#if 0
+ else
+ {
+ if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
+ {
+ /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
+ for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
+ SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
+
+ pVCpu->hm.s.TlbShootdown.cPages = 0;
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
+ }
+ }
+#endif
+
+
+ /* Update VMCB with the ASID. */
+ if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
+ {
+ pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
+ }
+
+ AssertMsg(pVCpu->hm.s.idLastCpu == pCpu->idCpu,
+ ("vcpu idLastCpu=%x pcpu idCpu=%x\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu));
+ AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
+ ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
+ AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
+ ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
+ AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
+ ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
+
+#ifdef VBOX_WITH_STATISTICS
+ if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
+ else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
+ || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
+ }
+ else
+ {
+ Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
+ }
+#endif
+}
+
+
+/** @name 64-bit guest on 32-bit host OS helper functions.
+ *
+ * The host CPU is still 64-bit capable but the host OS is running in 32-bit
+ * mode (code segment, paging). These wrappers/helpers perform the necessary
+ * bits for the 32->64 switcher.
+ *
+ * @{ */
+#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
+/**
+ * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
+ *
+ * @returns VBox status code.
+ * @param HCPhysVmcbHost Physical address of host VMCB.
+ * @param HCPhysVmcb Physical address of the VMCB.
+ * @param pCtx Pointer to the guest-CPU context.
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ */
+DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
+{
+ uint32_t aParam[4];
+ aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
+ aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
+ aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
+ aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
+
+ return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]);
+}
+
+
+/**
+ * Executes the specified VMRUN handler in 64-bit mode.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ * @param enmOp The operation to perform.
+ * @param cbParam Number of parameters.
+ * @param paParam Array of 32-bit parameters.
+ */
+VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
+ uint32_t *paParam)
+{
+ AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
+ Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
+
+ /* Disable interrupts. */
+ RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
+
+#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
+ RTCPUID idHostCpu = RTMpCpuId();
+ CPUMR0SetLApic(pVCpu, idHostCpu);
+#endif
+
+ CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
+ CPUMSetHyperEIP(pVCpu, enmOp);
+ for (int i = (int)cbParam - 1; i >= 0; i--)
+ CPUMPushHyper(pVCpu, paParam[i]);
+
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
+ /* Call the switcher. */
+ int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
+
+ /* Restore interrupts. */
+ ASMSetFlags(uOldEFlags);
+ return rc;
+}
+
+#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
+/** @} */
+
+
+/**
+ * Adds an exception to the intercept exception bitmap in the VMCB and updates
+ * the corresponding VMCB Clean bit.
+ *
+ * @param pVmcb Pointer to the VMCB.
+ * @param u32Xcpt The value of the exception (X86_XCPT_*).
+ */
+DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
+{
+ if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
+ {
+ pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+ }
+}
+
+
+/**
+ * Removes an exception from the intercept-exception bitmap in the VMCB and
+ * updates the corresponding VMCB Clean bit.
+ *
+ * @param pVmcb Pointer to the VMCB.
+ * @param u32Xcpt The value of the exception (X86_XCPT_*).
+ */
+DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
+{
+#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
+ if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
+ {
+ pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+ }
+#endif
+}
+
+
+/**
+ * Loads the guest CR0 control register into the guest-state area in the VMCB.
+ * Although the guest CR0 is a separate field in the VMCB we have to consider
+ * the FPU state itself which is shared between the host and the guest.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VMCPU.
+ * @param pVmcb Pointer to the VMCB.
+ * @param pCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmLoadSharedCR0(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
+{
+ /*
+ * Guest CR0.
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
+ {
+ uint64_t u64GuestCR0 = pCtx->cr0;
+
+ /* Always enable caching. */
+ u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
+
+ /*
+ * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
+ */
+ if (!pVM->hm.s.fNestedPaging)
+ {
+ u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
+ u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
+ }
+
+ /*
+ * Guest FPU bits.
+ */
+ bool fInterceptNM = false;
+ bool fInterceptMF = false;
+ u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
+ if (CPUMIsGuestFPUStateActive(pVCpu))
+ {
+ /* Catch floating point exceptions if we need to report them to the guest in a different way. */
+ if (!(u64GuestCR0 & X86_CR0_NE))
+ {
+ Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
+ fInterceptMF = true;
+ }
+ }
+ else
+ {
+ fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
+ u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
+ | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
+ }
+
+ /*
+ * Update the exception intercept bitmap.
+ */
+ if (fInterceptNM)
+ hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
+ else
+ hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
+
+ if (fInterceptMF)
+ hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
+ else
+ hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
+
+ pVmcb->guest.u64CR0 = u64GuestCR0;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
+ }
+}
+
+
+/**
+ * Loads the guest control registers (CR2, CR3, CR4) into the VMCB.
+ *
+ * @returns VBox status code.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pVmcb Pointer to the VMCB.
+ * @param pCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
+{
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+
+ /*
+ * Guest CR2.
+ */
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR2))
+ {
+ pVmcb->guest.u64CR2 = pCtx->cr2;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
+ }
+
+ /*
+ * Guest CR3.
+ */
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
+ {
+ if (pVM->hm.s.fNestedPaging)
+ {
+ PGMMODE enmShwPagingMode;
+#if HC_ARCH_BITS == 32
+ if (CPUMIsGuestInLongModeEx(pCtx))
+ enmShwPagingMode = PGMMODE_AMD64_NX;
+ else
+#endif
+ enmShwPagingMode = PGMGetHostMode(pVM);
+
+ pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
+ Assert(pVmcb->ctrl.u64NestedPagingCR3);
+ pVmcb->guest.u64CR3 = pCtx->cr3;
+ }
+ else
+ pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
+
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
+ }
+
+ /*
+ * Guest CR4.
+ */
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
+ {
+ uint64_t u64GuestCR4 = pCtx->cr4;
+ if (!pVM->hm.s.fNestedPaging)
+ {
+ switch (pVCpu->hm.s.enmShadowMode)
+ {
+ case PGMMODE_REAL:
+ case PGMMODE_PROTECTED: /* Protected mode, no paging. */
+ AssertFailed();
+ return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
+
+ case PGMMODE_32_BIT: /* 32-bit paging. */
+ u64GuestCR4 &= ~X86_CR4_PAE;
+ break;
+
+ case PGMMODE_PAE: /* PAE paging. */
+ case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
+ /** Must use PAE paging as we could use physical memory > 4 GB */
+ u64GuestCR4 |= X86_CR4_PAE;
+ break;
+
+ case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
+ case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
+#ifdef VBOX_ENABLE_64_BITS_GUESTS
+ break;
+#else
+ AssertFailed();
+ return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
+#endif
+
+ default: /* shut up gcc */
+ AssertFailed();
+ return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
+ }
+ }
+
+ pVmcb->guest.u64CR4 = u64GuestCR4;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Loads the guest segment registers into the VMCB.
+ *
+ * @returns VBox status code.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pVmcb Pointer to the VMCB.
+ * @param pCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
+{
+ /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
+ {
+ HMSVM_LOAD_SEG_REG(CS, cs);
+ HMSVM_LOAD_SEG_REG(SS, ss);
+ HMSVM_LOAD_SEG_REG(DS, ds);
+ HMSVM_LOAD_SEG_REG(ES, es);
+ HMSVM_LOAD_SEG_REG(FS, fs);
+ HMSVM_LOAD_SEG_REG(GS, gs);
+
+ pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
+ }
+
+ /* Guest TR. */
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
+ {
+ HMSVM_LOAD_SEG_REG(TR, tr);
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
+ }
+
+ /* Guest LDTR. */
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
+ {
+ HMSVM_LOAD_SEG_REG(LDTR, ldtr);
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
+ }
+
+ /* Guest GDTR. */
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
+ {
+ pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
+ pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
+ }
+
+ /* Guest IDTR. */
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
+ {
+ pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
+ pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
+ }
+}
+
+
+/**
+ * Loads the guest MSRs into the VMCB.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pVmcb Pointer to the VMCB.
+ * @param pCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
+{
+ /* Guest Sysenter MSRs. */
+ pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
+ pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
+ pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
+
+ /*
+ * Guest EFER MSR.
+ * AMD-V requires guest EFER.SVME to be set. Weird. .
+ * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
+ */
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_EFER_MSR))
+ {
+ pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_EFER_MSR);
+ }
+
+ /* 64-bit MSRs. */
+ if (CPUMIsGuestInLongModeEx(pCtx))
+ {
+ pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
+ pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
+ }
+ else
+ {
+ /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
+ if (pCtx->msrEFER & MSR_K6_EFER_LME)
+ {
+ pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
+ }
+ }
+
+
+ /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
+ * be writable in 32-bit mode. Clarify with AMD spec. */
+ pVmcb->guest.u64STAR = pCtx->msrSTAR;
+ pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
+ pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
+ pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
+ pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
+}
+
+
+/**
+ * Loads the guest state into the VMCB and programs the necessary intercepts
+ * accordingly.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pVmcb Pointer to the VMCB.
+ * @param pCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jump zone!!!
+ * @remarks Requires EFLAGS to be up-to-date in the VMCB!
+ */
+static void hmR0SvmLoadSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
+{
+ if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
+ return;
+ Assert((pCtx->dr[6] & X86_DR6_RA1_MASK) == X86_DR6_RA1_MASK); Assert((pCtx->dr[6] & X86_DR6_RAZ_MASK) == 0);
+ Assert((pCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); Assert((pCtx->dr[7] & X86_DR7_RAZ_MASK) == 0);
+
+ bool fInterceptDB = false;
+ bool fInterceptMovDRx = false;
+
+ /*
+ * Anyone single stepping on the host side? If so, we'll have to use the
+ * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
+ * the VMM level like VT-x implementations does.
+ */
+ bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
+ if (fStepping)
+ {
+ pVCpu->hm.s.fClearTrapFlag = true;
+ pVmcb->guest.u64RFlags |= X86_EFL_TF;
+ fInterceptDB = true;
+ fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
+ }
+
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ if (fStepping || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
+ {
+ /*
+ * Use the combined guest and host DRx values found in the hypervisor
+ * register set because the debugger has breakpoints active or someone
+ * is single stepping on the host side.
+ *
+ * Note! DBGF expects a clean DR6 state before executing guest code.
+ */
+#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
+ if ( CPUMIsGuestInLongModeEx(pCtx)
+ && !CPUMIsHyperDebugStateActivePending(pVCpu))
+ {
+ CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
+ Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
+ Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
+ }
+ else
+#endif
+ if (!CPUMIsHyperDebugStateActive(pVCpu))
+ {
+ CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
+ Assert(!CPUMIsGuestDebugStateActive(pVCpu));
+ Assert(CPUMIsHyperDebugStateActive(pVCpu));
+ }
+
+ /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
+ if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
+ || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
+ {
+ pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
+ pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
+ pVCpu->hm.s.fUsingHyperDR7 = true;
+ }
+
+ /** @todo If we cared, we could optimize to allow the guest to read registers
+ * with the same values. */
+ fInterceptDB = true;
+ fInterceptMovDRx = true;
+ Log5(("hmR0SvmLoadSharedDebugState: Loaded hyper DRx\n"));
+ }
+ else
+ {
+ /*
+ * Update DR6, DR7 with the guest values if necessary.
+ */
+ if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
+ || pVmcb->guest.u64DR6 != pCtx->dr[6])
+ {
+ pVmcb->guest.u64DR7 = pCtx->dr[7];
+ pVmcb->guest.u64DR6 = pCtx->dr[6];
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
+ pVCpu->hm.s.fUsingHyperDR7 = false;
+ }
+
+ /*
+ * If the guest has enabled debug registers, we need to load them prior to
+ * executing guest code so they'll trigger at the right time.
+ */
+ if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
+ {
+#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
+ if ( CPUMIsGuestInLongModeEx(pCtx)
+ && !CPUMIsGuestDebugStateActivePending(pVCpu))
+ {
+ CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
+ Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
+ Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
+ }
+ else
+#endif
+ if (!CPUMIsGuestDebugStateActive(pVCpu))
+ {
+ CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
+ Assert(!CPUMIsHyperDebugStateActive(pVCpu));
+ Assert(CPUMIsGuestDebugStateActive(pVCpu));
+ }
+ Log5(("hmR0SvmLoadSharedDebugState: Loaded guest DRx\n"));
+ }
+ /*
+ * If no debugging enabled, we'll lazy load DR0-3. We don't need to
+ * intercept #DB as DR6 is updated in the VMCB.
+ */
+#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
+ else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
+ && !CPUMIsGuestDebugStateActive(pVCpu))
+#else
+ else if (!CPUMIsGuestDebugStateActive(pVCpu))
+#endif
+ {
+ fInterceptMovDRx = true;
+ }
+ }
+
+ /*
+ * Set up the intercepts.
+ */
+ if (fInterceptDB)
+ hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_DB);
+ else
+ hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_DB);
+
+ if (fInterceptMovDRx)
+ {
+ if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
+ || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
+ {
+ pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
+ pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+ }
+ }
+ else
+ {
+ if ( pVmcb->ctrl.u16InterceptRdDRx
+ || pVmcb->ctrl.u16InterceptWrDRx)
+ {
+ pVmcb->ctrl.u16InterceptRdDRx = 0;
+ pVmcb->ctrl.u16InterceptWrDRx = 0;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+ }
+ }
+
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
+}
+
+
+/**
+ * Loads the guest APIC state (currently just the TPR).
+ *
+ * @returns VBox status code.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pVmcb Pointer to the VMCB.
+ * @param pCtx Pointer to the guest-CPU context.
+ */
+static int hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
+{
+ if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
+ return VINF_SUCCESS;
+
+ bool fPendingIntr;
+ uint8_t u8Tpr;
+ int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
+ AssertRCReturn(rc, rc);
+
+ /* Assume that we need to trap all TPR accesses and thus need not check on
+ every #VMEXIT if we should update the TPR. */
+ Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
+ pVCpu->hm.s.svm.fSyncVTpr = false;
+
+ /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
+ if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
+ {
+ pCtx->msrLSTAR = u8Tpr;
+
+ /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
+ if (fPendingIntr)
+ hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
+ else
+ {
+ hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ pVCpu->hm.s.svm.fSyncVTpr = true;
+ }
+ }
+ else
+ {
+ /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
+ pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
+
+ /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
+ if (fPendingIntr)
+ pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
+ else
+ {
+ pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
+ pVCpu->hm.s.svm.fSyncVTpr = true;
+ }
+
+ pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
+ }
+
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
+ return rc;
+}
+
+
+/**
+ * Sets up the appropriate function to run guest code.
+ *
+ * @returns VBox status code.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ if (CPUMIsGuestInLongModeEx(pCtx))
+ {
+#ifndef VBOX_ENABLE_64_BITS_GUESTS
+ return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
+#endif
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
+#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
+ /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
+ pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
+#else
+ /* 64-bit host or hybrid host. */
+ pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
+#endif
+ }
+ else
+ {
+ /* Guest is not in long mode, use the 32-bit handler. */
+ pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Enters the AMD-V session.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCpu Pointer to the CPU info struct.
+ */
+VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
+{
+ AssertPtr(pVM);
+ AssertPtr(pVCpu);
+ Assert(pVM->hm.s.svm.fSupported);
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ NOREF(pCpu);
+
+ LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
+ Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
+
+ pVCpu->hm.s.fLeaveDone = false;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Thread-context callback for AMD-V.
+ *
+ * @param enmEvent The thread-context event.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
+ * @thread EMT(pVCpu)
+ */
+VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
+{
+ switch (enmEvent)
+ {
+ case RTTHREADCTXEVENT_PREEMPTING:
+ {
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
+ VMCPU_ASSERT_EMT(pVCpu);
+
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
+
+ /* No longjmps (log-flush, locks) in this fragile context. */
+ VMMRZCallRing3Disable(pVCpu);
+
+ if (!pVCpu->hm.s.fLeaveDone)
+ {
+ hmR0SvmLeave(pVM, pVCpu, pCtx);
+ pVCpu->hm.s.fLeaveDone = true;
+ }
+
+ /* Leave HM context, takes care of local init (term). */
+ int rc = HMR0LeaveCpu(pVCpu);
+ AssertRC(rc); NOREF(rc);
+
+ /* Restore longjmp state. */
+ VMMRZCallRing3Enable(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatPreemptPreempting);
+ break;
+ }
+
+ case RTTHREADCTXEVENT_RESUMED:
+ {
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
+ VMCPU_ASSERT_EMT(pVCpu);
+
+ /* No longjmps (log-flush, locks) in this fragile context. */
+ VMMRZCallRing3Disable(pVCpu);
+
+ /*
+ * Initialize the bare minimum state required for HM. This takes care of
+ * initializing AMD-V if necessary (onlined CPUs, local init etc.)
+ */
+ int rc = HMR0EnterCpu(pVCpu);
+ AssertRC(rc); NOREF(rc);
+ Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
+
+ pVCpu->hm.s.fLeaveDone = false;
+
+ /* Restore longjmp state. */
+ VMMRZCallRing3Enable(pVCpu);
+ break;
+ }
+
+ default:
+ break;
+ }
+}
+
+
+/**
+ * Saves the host state.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
+{
+ NOREF(pVM);
+ NOREF(pVCpu);
+ /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Loads the guest state into the VMCB. The CPU state will be loaded from these
+ * fields on every successful VM-entry.
+ *
+ * Also sets up the appropriate VMRUN function to execute guest code based on
+ * the guest CPU mode.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
+
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
+
+ int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
+ AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
+
+ hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
+ hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
+
+ pVmcb->guest.u64RIP = pCtx->rip;
+ pVmcb->guest.u64RSP = pCtx->rsp;
+ pVmcb->guest.u64RFlags = pCtx->eflags.u32;
+ pVmcb->guest.u64RAX = pCtx->rax;
+
+ rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
+ AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
+
+ rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
+ AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
+
+ /* Clear any unused and reserved bits. */
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
+ | HM_CHANGED_GUEST_RSP
+ | HM_CHANGED_GUEST_RFLAGS
+ | HM_CHANGED_GUEST_SYSENTER_CS_MSR
+ | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
+ | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
+ | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
+ | HM_CHANGED_SVM_RESERVED2
+ | HM_CHANGED_SVM_RESERVED3);
+
+ /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
+ AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
+ || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
+ ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
+
+ Log4(("Load: CS:RIP=%04x:%RX64 EFL=%#x SS:RSP=%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->ss, pCtx->rsp));
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
+ return rc;
+}
+
+
+/**
+ * Loads the state shared between the host and guest into the
+ * VMCB.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pVmcb Pointer to the VMCB.
+ * @param pCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmLoadSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
+ hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
+
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
+ hmR0SvmLoadSharedDebugState(pVCpu, pVmcb, pCtx);
+
+ AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
+ ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
+}
+
+
+/**
+ * Saves the entire guest state from the VMCB into the
+ * guest-CPU context. Currently there is no residual state left in the CPU that
+ * is not updated in the VMCB.
+ *
+ * @returns VBox status code.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pMixedCtx Pointer to the guest-CPU context. The data may be
+ * out-of-sync. Make sure to update the required fields
+ * before using them.
+ */
+static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
+{
+ Assert(VMMRZCallRing3IsEnabled(pVCpu));
+
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+
+ pMixedCtx->rip = pVmcb->guest.u64RIP;
+ pMixedCtx->rsp = pVmcb->guest.u64RSP;
+ pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
+ pMixedCtx->rax = pVmcb->guest.u64RAX;
+
+ /*
+ * Guest interrupt shadow.
+ */
+ if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
+ EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
+ else
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+
+ /*
+ * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
+ */
+ pMixedCtx->cr2 = pVmcb->guest.u64CR2;
+
+ /*
+ * Guest MSRs.
+ */
+ pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
+ pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
+ pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
+ pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
+ pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
+ pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
+ pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
+ pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
+
+ /*
+ * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
+ */
+ HMSVM_SAVE_SEG_REG(CS, cs);
+ HMSVM_SAVE_SEG_REG(SS, ss);
+ HMSVM_SAVE_SEG_REG(DS, ds);
+ HMSVM_SAVE_SEG_REG(ES, es);
+ HMSVM_SAVE_SEG_REG(FS, fs);
+ HMSVM_SAVE_SEG_REG(GS, gs);
+
+ /*
+ * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
+ * register (yet).
+ */
+ /** @todo SELM might need to be fixed as it too should not care about the
+ * granularity bit. See @bugref{6785}. */
+ if ( !pMixedCtx->cs.Attr.n.u1Granularity
+ && pMixedCtx->cs.Attr.n.u1Present
+ && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
+ {
+ Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
+ pMixedCtx->cs.Attr.n.u1Granularity = 1;
+ }
+
+#ifdef VBOX_STRICT
+# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
+ AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
+ || ( pMixedCtx->reg.Attr.n.u1Granularity \
+ ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
+ : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
+ ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
+ pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
+
+ HMSVM_ASSERT_SEG_GRANULARITY(cs);
+ HMSVM_ASSERT_SEG_GRANULARITY(ss);
+ HMSVM_ASSERT_SEG_GRANULARITY(ds);
+ HMSVM_ASSERT_SEG_GRANULARITY(es);
+ HMSVM_ASSERT_SEG_GRANULARITY(fs);
+ HMSVM_ASSERT_SEG_GRANULARITY(gs);
+
+# undef HMSVM_ASSERT_SEL_GRANULARITY
+#endif
+
+ /*
+ * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
+ * and thus it's possible that when the CPL changes during guest execution that the SS DPL
+ * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
+ * See AMD spec. 15.5.1 "Basic operation".
+ */
+ Assert(!(pVmcb->guest.u8CPL & ~0x3));
+ pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
+
+ /*
+ * Guest Descriptor-Table registers.
+ */
+ HMSVM_SAVE_SEG_REG(TR, tr);
+ HMSVM_SAVE_SEG_REG(LDTR, ldtr);
+ pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
+ pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
+
+ pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
+ pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
+
+ /*
+ * Guest Debug registers.
+ */
+ if (!pVCpu->hm.s.fUsingHyperDR7)
+ {
+ pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
+ pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
+ }
+ else
+ {
+ Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
+ CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
+ }
+
+ /*
+ * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
+ * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
+ */
+ if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
+ && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
+ {
+ CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
+ PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
+ }
+}
+
+
+/**
+ * Does the necessary state syncing before returning to ring-3 for any reason
+ * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
+ *
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pMixedCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jmp zone!!!
+ */
+static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+ Assert(VMMR0IsLogFlushDisabled(pVCpu));
+
+ /*
+ * !!! IMPORTANT !!!
+ * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
+ */
+
+ /* Restore host FPU state if necessary and resync on next R0 reentry .*/
+ if (CPUMIsGuestFPUStateActive(pVCpu))
+ {
+ CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
+ Assert(!CPUMIsGuestFPUStateActive(pVCpu));
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
+ }
+
+ /*
+ * Restore host debug registers if necessary and resync on next R0 reentry.
+ */
+#ifdef VBOX_STRICT
+ if (CPUMIsHyperDebugStateActive(pVCpu))
+ {
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
+ Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
+ }
+#endif
+ if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
+
+ Assert(!CPUMIsHyperDebugStateActive(pVCpu));
+ Assert(!CPUMIsGuestDebugStateActive(pVCpu));
+
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
+
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
+}
+
+
+/**
+ * Leaves the AMD-V session.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ */
+static int hmR0SvmLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ HM_DISABLE_PREEMPT_IF_NEEDED();
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
+ and done this from the SVMR0ThreadCtxCallback(). */
+ if (!pVCpu->hm.s.fLeaveDone)
+ {
+ hmR0SvmLeave(pVM, pVCpu, pCtx);
+ pVCpu->hm.s.fLeaveDone = true;
+ }
+
+ /*
+ * !!! IMPORTANT !!!
+ * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
+ */
+ /* Deregister hook now that we've left HM context before re-enabling preemption. */
+ if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
+ VMMR0ThreadCtxHooksDeregister(pVCpu);
+
+ /* Leave HM context. This takes care of local init (term). */
+ int rc = HMR0LeaveCpu(pVCpu);
+
+ HM_RESTORE_PREEMPT_IF_NEEDED();
+ return rc;
+}
+
+
+/**
+ * Does the necessary state syncing before doing a longjmp to ring-3.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jmp zone!!!
+ */
+static int hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ return hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
+}
+
+
+/**
+ * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
+ * any remaining host state) before we longjump to ring-3 and possibly get
+ * preempted.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ * @param enmOperation The operation causing the ring-3 longjump.
+ * @param pvUser The user argument (pointer to the possibly
+ * out-of-date guest-CPU context).
+ */
+DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
+{
+ if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
+ {
+ /*
+ * !!! IMPORTANT !!!
+ * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
+ * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
+ */
+ VMMRZCallRing3RemoveNotification(pVCpu);
+ VMMRZCallRing3Disable(pVCpu);
+ HM_DISABLE_PREEMPT_IF_NEEDED();
+
+ /* Restore host FPU state if necessary and resync on next R0 reentry .*/
+ if (CPUMIsGuestFPUStateActive(pVCpu))
+ CPUMR0SaveGuestFPU(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
+
+ /* Restore host debug registers if necessary and resync on next R0 reentry. */
+ CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
+
+ /* Deregister hook now that we've left HM context before re-enabling preemption. */
+ if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
+ VMMR0ThreadCtxHooksDeregister(pVCpu);
+
+ /* Leave HM context. This takes care of local init (term). */
+ HMR0LeaveCpu(pVCpu);
+
+ HM_RESTORE_PREEMPT_IF_NEEDED();
+ return VINF_SUCCESS;
+ }
+
+ Assert(pVCpu);
+ Assert(pvUser);
+ Assert(VMMRZCallRing3IsEnabled(pVCpu));
+ HMSVM_ASSERT_PREEMPT_SAFE();
+
+ VMMRZCallRing3Disable(pVCpu);
+ Assert(VMMR0IsLogFlushDisabled(pVCpu));
+
+ Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
+ int rc = hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
+ AssertRCReturn(rc, rc);
+
+ VMMRZCallRing3Enable(pVCpu);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Take necessary actions before going back to ring-3.
+ *
+ * An action requires us to go back to ring-3. This function does the necessary
+ * steps before we can safely return to ring-3. This is not the same as longjmps
+ * to ring-3, this is voluntary.
+ *
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ * @param rcExit The reason for exiting to ring-3. Can be
+ * VINF_VMM_UNKNOWN_RING3_CALL.
+ */
+static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
+{
+ Assert(pVM);
+ Assert(pVCpu);
+ Assert(pCtx);
+ HMSVM_ASSERT_PREEMPT_SAFE();
+
+ /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
+ VMMRZCallRing3Disable(pVCpu);
+ Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
+
+ /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
+ if (pVCpu->hm.s.Event.fPending)
+ {
+ hmR0SvmPendingEventToTrpmTrap(pVCpu);
+ Assert(!pVCpu->hm.s.Event.fPending);
+ }
+
+ /* Sync. the necessary state for going back to ring-3. */
+ hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
+ STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
+
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
+ | CPUM_CHANGED_LDTR
+ | CPUM_CHANGED_GDTR
+ | CPUM_CHANGED_IDTR
+ | CPUM_CHANGED_TR
+ | CPUM_CHANGED_HIDDEN_SEL_REGS);
+ if ( pVM->hm.s.fNestedPaging
+ && CPUMIsGuestPagingEnabledEx(pCtx))
+ {
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
+ }
+
+ /* Make sure we've undo the trap flag if we tried to single step something. */
+ if (pVCpu->hm.s.fClearTrapFlag)
+ {
+ pCtx->eflags.Bits.u1TF = 0;
+ pVCpu->hm.s.fClearTrapFlag = false;
+ }
+
+ /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
+ if (rcExit != VINF_EM_RAW_INTERRUPT)
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
+
+ /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
+ VMMRZCallRing3RemoveNotification(pVCpu);
+ VMMRZCallRing3Enable(pVCpu);
+}
+
+
+/**
+ * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
+ * intercepts.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu)
+{
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ if (TMCpuTickCanUseRealTSC(pVCpu, &pVmcb->ctrl.u64TSCOffset))
+ {
+ uint64_t u64CurTSC = ASMReadTSC();
+ if (u64CurTSC + pVmcb->ctrl.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu))
+ {
+ pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
+ pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
+ }
+ else
+ {
+ pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
+ pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
+ }
+ }
+ else
+ {
+ pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
+ pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
+ }
+
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+}
+
+
+/**
+ * Sets an event as a pending event to be injected into the guest.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pEvent Pointer to the SVM event.
+ * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
+ * page-fault.
+ *
+ * @remarks Statistics counter assumes this is a guest event being reflected to
+ * the guest i.e. 'StatInjectPendingReflect' is incremented always.
+ */
+DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
+{
+ Assert(!pVCpu->hm.s.Event.fPending);
+ Assert(pEvent->n.u1Valid);
+
+ pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
+ pVCpu->hm.s.Event.fPending = true;
+ pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
+
+ Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
+ pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
+}
+
+
+/**
+ * Injects an event into the guest upon VMRUN by updating the relevant field
+ * in the VMCB.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pVmcb Pointer to the guest VMCB.
+ * @param pCtx Pointer to the guest-CPU context.
+ * @param pEvent Pointer to the event.
+ *
+ * @remarks No-long-jump zone!!!
+ * @remarks Requires CR0!
+ */
+DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
+{
+ pVmcb->ctrl.EventInject.u = pEvent->u;
+ STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
+
+ Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
+ pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
+}
+
+
+
+/**
+ * Converts any TRPM trap into a pending HM event. This is typically used when
+ * entering from ring-3 (not longjmp returns).
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ */
+static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
+{
+ Assert(TRPMHasTrap(pVCpu));
+ Assert(!pVCpu->hm.s.Event.fPending);
+
+ uint8_t uVector;
+ TRPMEVENT enmTrpmEvent;
+ RTGCUINT uErrCode;
+ RTGCUINTPTR GCPtrFaultAddress;
+ uint8_t cbInstr;
+
+ int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
+ AssertRC(rc);
+
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u8Vector = uVector;
+
+ /* Refer AMD spec. 15.20 "Event Injection" for the format. */
+ if (enmTrpmEvent == TRPM_TRAP)
+ {
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ switch (uVector)
+ {
+ case X86_XCPT_PF:
+ case X86_XCPT_DF:
+ case X86_XCPT_TS:
+ case X86_XCPT_NP:
+ case X86_XCPT_SS:
+ case X86_XCPT_GP:
+ case X86_XCPT_AC:
+ {
+ Event.n.u1ErrorCodeValid = 1;
+ Event.n.u32ErrorCode = uErrCode;
+ break;
+ }
+ }
+ }
+ else if (enmTrpmEvent == TRPM_HARDWARE_INT)
+ {
+ if (uVector == X86_XCPT_NMI)
+ Event.n.u3Type = SVM_EVENT_NMI;
+ else
+ Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
+ }
+ else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
+ Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
+ else
+ AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
+
+ rc = TRPMResetTrap(pVCpu);
+ AssertRC(rc);
+
+ Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
+ !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
+
+ hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
+ STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
+}
+
+
+/**
+ * Converts any pending SVM event into a TRPM trap. Typically used when leaving
+ * AMD-V to execute any instruction.
+ *
+ * @param pvCpu Pointer to the VMCPU.
+ */
+static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
+{
+ Assert(pVCpu->hm.s.Event.fPending);
+ Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
+
+ SVMEVENT Event;
+ Event.u = pVCpu->hm.s.Event.u64IntInfo;
+
+ uint8_t uVector = Event.n.u8Vector;
+ uint8_t uVectorType = Event.n.u3Type;
+
+ TRPMEVENT enmTrapType;
+ switch (uVectorType)
+ {
+ case SVM_EVENT_EXTERNAL_IRQ:
+ case SVM_EVENT_NMI:
+ enmTrapType = TRPM_HARDWARE_INT;
+ break;
+ case SVM_EVENT_SOFTWARE_INT:
+ enmTrapType = TRPM_SOFTWARE_INT;
+ break;
+ case SVM_EVENT_EXCEPTION:
+ enmTrapType = TRPM_TRAP;
+ break;
+ default:
+ AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
+ enmTrapType = TRPM_32BIT_HACK;
+ break;
+ }
+
+ Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
+
+ int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
+ AssertRC(rc);
+
+ if (Event.n.u1ErrorCodeValid)
+ TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
+
+ if ( uVectorType == SVM_EVENT_EXCEPTION
+ && uVector == X86_XCPT_PF)
+ {
+ TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
+ Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
+ }
+ else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
+ {
+ AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
+ || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
+ ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
+ TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
+ }
+ pVCpu->hm.s.Event.fPending = false;
+}
+
+
+/**
+ * Gets the guest's interrupt-shadow.
+ *
+ * @returns The guest's interrupt-shadow.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jump zone!!!
+ * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
+ */
+DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ /*
+ * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
+ * inhibit interrupts or clear any existing interrupt-inhibition.
+ */
+ uint32_t uIntrState = 0;
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ {
+ if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
+ {
+ /*
+ * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
+ * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
+ */
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+ }
+ else
+ uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
+ }
+ return uIntrState;
+}
+
+
+/**
+ * Sets the virtual interrupt intercept control in the VMCB which
+ * instructs AMD-V to cause a #VMEXIT as soon as the guest is in a state to
+ * receive interrupts.
+ *
+ * @param pVmcb Pointer to the VMCB.
+ */
+DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
+{
+ if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
+ {
+ pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
+ pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
+ pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
+
+ Log4(("Setting VINTR intercept\n"));
+ }
+}
+
+
+/**
+ * Evaluates the event to be delivered to the guest and sets it as the pending
+ * event.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ */
+static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ Assert(!pVCpu->hm.s.Event.fPending);
+ Log4Func(("\n"));
+
+ const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
+ const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+
+ SVMEVENT Event;
+ Event.u = 0;
+ /** @todo SMI. SMIs take priority over NMIs. */
+ if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
+ {
+ if (!fIntShadow)
+ {
+ Log4(("Pending NMI\n"));
+
+ Event.n.u1Valid = 1;
+ Event.n.u8Vector = X86_XCPT_NMI;
+ Event.n.u3Type = SVM_EVENT_NMI;
+
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
+ }
+ else
+ hmR0SvmSetVirtIntrIntercept(pVmcb);
+ }
+ else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
+ {
+ /*
+ * Check if the guest can receive external interrupts (PIC/APIC). Once we do PDMGetInterrupt() we -must- deliver
+ * the interrupt ASAP. We must not execute any guest code until we inject the interrupt which is why it is
+ * evaluated here and not set as pending, solely based on the force-flags.
+ */
+ if ( !fBlockInt
+ && !fIntShadow)
+ {
+ uint8_t u8Interrupt;
+ int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
+ if (RT_SUCCESS(rc))
+ {
+ Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
+
+ Event.n.u1Valid = 1;
+ Event.n.u8Vector = u8Interrupt;
+ Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
+
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+ }
+ else
+ {
+ /** @todo Does this actually happen? If not turn it into an assertion. */
+ Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
+ }
+ }
+ else
+ hmR0SvmSetVirtIntrIntercept(pVmcb);
+ }
+}
+
+
+/**
+ * Injects any pending events into the guest if the guest is in a state to
+ * receive them.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ */
+static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ Assert(!TRPMHasTrap(pVCpu));
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+ Log4Func(("\n"));
+
+ const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
+ const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+
+ if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
+ {
+ SVMEVENT Event;
+ Event.u = pVCpu->hm.s.Event.u64IntInfo;
+ Assert(Event.n.u1Valid);
+#ifdef VBOX_STRICT
+ if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
+ {
+ Assert(!fBlockInt);
+ Assert(!fIntShadow);
+ }
+ else if (Event.n.u3Type == SVM_EVENT_NMI)
+ Assert(!fIntShadow);
+#endif
+
+ Log4(("Injecting pending HM event.\n"));
+ hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
+ pVCpu->hm.s.Event.fPending = false;
+
+#ifdef VBOX_WITH_STATISTICS
+ if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
+ else
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
+#endif
+ }
+
+ /* Update the guest interrupt shadow in the VMCB. */
+ pVmcb->ctrl.u64IntShadow = !!fIntShadow;
+}
+
+
+/**
+ * Reports world-switch error and dumps some useful debug info.
+ *
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param rcVMRun The return code from VMRUN (or
+ * VERR_SVM_INVALID_GUEST_STATE for invalid
+ * guest-state).
+ * @param pCtx Pointer to the guest-CPU context.
+ */
+static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
+{
+ HMSVM_ASSERT_PREEMPT_SAFE();
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+
+ if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
+ {
+ HMDumpRegs(pVM, pVCpu, pCtx);
+#ifdef VBOX_STRICT
+ Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
+ Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
+ Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
+ Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
+ Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
+ Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
+ Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
+ Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
+ Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
+ Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
+ Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
+
+ Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
+ Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
+ Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
+
+ Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
+ Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
+ Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
+ Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
+ Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
+ Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
+ Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
+ Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
+ Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
+ Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
+
+ Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
+ Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
+ Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
+ Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
+ Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
+ Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
+ Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
+ Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
+ Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
+ Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
+ Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
+ Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
+ Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
+ Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
+ Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
+ Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
+ Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
+
+ Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
+ Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
+
+ Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
+ Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
+ Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
+ Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
+ Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
+ Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
+ Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
+ Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
+ Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
+ Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
+ Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
+ Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
+ Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
+ Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
+ Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
+ Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
+ Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
+ Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
+ Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
+ Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
+
+ Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
+ Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
+
+ Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
+ Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
+ Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
+ Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
+
+ Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
+ Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
+
+ Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
+ Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
+ Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
+ Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
+
+ Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
+ Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
+ Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
+ Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
+ Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
+ Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
+ Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
+
+ Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
+ Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
+ Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
+ Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
+
+ Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
+ Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
+ Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
+
+ Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
+ Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
+ Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
+ Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
+ Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
+ Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
+ Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
+ Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
+ Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
+ Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
+ Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
+ Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
+#endif
+ }
+ else
+ Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
+}
+
+
+/**
+ * Check per-VM and per-VCPU force flag actions that require us to go back to
+ * ring-3 for one reason or another.
+ *
+ * @returns VBox status code (information status code included).
+ * @retval VINF_SUCCESS if we don't have any actions that require going back to
+ * ring-3.
+ * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
+ * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
+ * interrupts)
+ * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
+ * all EMTs to be in ring-3.
+ * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
+ * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
+ * to the EM loop.
+ *
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ */
+static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ Assert(VMMRZCallRing3IsEnabled(pVCpu));
+
+ /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
+ Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
+ Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
+
+ if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
+ ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
+ || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
+ ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
+ {
+ /* Pending PGM C3 sync. */
+ if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
+ {
+ int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
+ if (rc != VINF_SUCCESS)
+ {
+ Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
+ return rc;
+ }
+ }
+
+ /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
+ /* -XXX- what was that about single stepping? */
+ if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
+ || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
+ int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
+ Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
+ return rc;
+ }
+
+ /* Pending VM request packets, such as hardware interrupts. */
+ if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
+ || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
+ {
+ Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
+ return VINF_EM_PENDING_REQUEST;
+ }
+
+ /* Pending PGM pool flushes. */
+ if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
+ {
+ Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
+ return VINF_PGM_POOL_FLUSH_PENDING;
+ }
+
+ /* Pending DMA requests. */
+ if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
+ {
+ Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
+ return VINF_EM_RAW_TO_R3;
+ }
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Does the preparations before executing guest code in AMD-V.
+ *
+ * This may cause longjmps to ring-3 and may even result in rescheduling to the
+ * recompiler. We must be cautious what we do here regarding committing
+ * guest-state information into the the VMCB assuming we assuredly execute the
+ * guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
+ * clearing the common-state (TRPM/forceflags), we must undo those changes so
+ * that the recompiler can (and should) use them when it resumes guest
+ * execution. Otherwise such operations must be done when we can no longer
+ * exit to ring-3.
+ *
+ * @returns VBox status code (informational status codes included).
+ * @retval VINF_SUCCESS if we can proceed with running the guest.
+ * @retval VINF_* scheduling changes, we have to go back to ring-3.
+ *
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ */
+static int hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_ASSERT_PREEMPT_SAFE();
+
+ /* Check force flag actions that might require us to go back to ring-3. */
+ int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
+ if (rc != VINF_SUCCESS)
+ return rc;
+
+ if (TRPMHasTrap(pVCpu))
+ hmR0SvmTrpmTrapToPendingEvent(pVCpu);
+ else if (!pVCpu->hm.s.Event.fPending)
+ hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
+
+#ifdef HMSVM_SYNC_FULL_GUEST_STATE
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
+#endif
+
+ /* Load the guest bits that are not shared with the host in any way since we can longjmp or get preempted. */
+ rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
+ AssertRCReturn(rc, rc);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
+
+ /*
+ * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
+ * so we can update it on the way back if the guest changed the TPR.
+ */
+ if (pVCpu->hm.s.svm.fSyncVTpr)
+ {
+ if (pVM->hm.s.fTPRPatchingActive)
+ pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
+ else
+ {
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
+ }
+ }
+
+ /*
+ * No longjmps to ring-3 from this point on!!!
+ * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
+ * This also disables flushing of the R0-logger instance (if any).
+ */
+ VMMRZCallRing3Disable(pVCpu);
+
+ /*
+ * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
+ * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
+ *
+ * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
+ * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
+ *
+ * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
+ * executing guest code.
+ */
+ pSvmTransient->uEflags = ASMIntDisableFlags();
+ if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
+ || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
+ {
+ ASMSetFlags(pSvmTransient->uEflags);
+ VMMRZCallRing3Enable(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
+ return VINF_EM_RAW_TO_R3;
+ }
+ if (RTThreadPreemptIsPending(NIL_RTTHREAD))
+ {
+ ASMSetFlags(pSvmTransient->uEflags);
+ VMMRZCallRing3Enable(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
+ return VINF_EM_RAW_INTERRUPT;
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Prepares to run guest code in AMD-V and we've committed to doing so. This
+ * means there is no backing out to ring-3 or anywhere else at this
+ * point.
+ *
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ *
+ * @remarks Called with preemption disabled.
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+ Assert(VMMR0IsLogFlushDisabled(pVCpu));
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
+ VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
+
+ hmR0SvmInjectPendingEvent(pVCpu, pCtx);
+
+ /* Load the state shared between host and guest (FPU, debug). */
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
+ hmR0SvmLoadSharedState(pVCpu, pVmcb, pCtx);
+ HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
+ AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
+
+ /* Setup TSC offsetting. */
+ if ( pSvmTransient->fUpdateTscOffsetting
+ || HMR0GetCurrentCpu()->idCpu != pVCpu->hm.s.idLastCpu)
+ {
+ hmR0SvmUpdateTscOffsetting(pVCpu);
+ pSvmTransient->fUpdateTscOffsetting = false;
+ }
+
+ /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
+ if (HMR0GetCurrentCpu()->idCpu != pVCpu->hm.s.idLastCpu)
+ pVmcb->ctrl.u64VmcbCleanBits = 0;
+
+ /* Store status of the shared guest-host state at the time of VMRUN. */
+#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
+ if (CPUMIsGuestInLongModeEx(pCtx))
+ {
+ pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
+ pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
+ }
+ else
+#endif
+ {
+ pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
+ pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
+ }
+ pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
+
+ /* Flush the appropriate tagged-TLB entries. */
+ ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
+ hmR0SvmFlushTaggedTlb(pVCpu);
+ Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
+
+ STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
+
+ TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
+ to start executing. */
+
+ /*
+ * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
+ * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
+ *
+ * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
+ */
+ if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
+ && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
+ {
+ /** @todo r=bird: I cannot find any place where the guest TSC_AUX value is
+ * saved. */
+ hmR0SvmSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
+ uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
+ if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
+ ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
+ pSvmTransient->fRestoreTscAuxMsr = true;
+ }
+ else
+ {
+ hmR0SvmSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
+ pSvmTransient->fRestoreTscAuxMsr = false;
+ }
+
+ /* If VMCB Clean bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
+ if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
+ pVmcb->ctrl.u64VmcbCleanBits = 0;
+}
+
+
+/**
+ * Wrapper for running the guest code in AMD-V.
+ *
+ * @returns VBox strict status code.
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ /*
+ * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
+ * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
+ * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
+ */
+#ifdef VBOX_WITH_KERNEL_USING_XMM
+ return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
+ pVCpu->hm.s.svm.pfnVMRun);
+#else
+ return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
+#endif
+}
+
+
+/**
+ * Performs some essential restoration of state after running guest code in
+ * AMD-V.
+ *
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
+ * out-of-sync. Make sure to update the required fields
+ * before using them.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ * @param rcVMRun Return code of VMRUN.
+ *
+ * @remarks Called with interrupts disabled.
+ * @remarks No-long-jump zone!!! This function will however re-enable longjmps
+ * unconditionally when it is safe to do so.
+ */
+static void hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
+{
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+
+ ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
+ ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
+
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
+
+ if (pSvmTransient->fRestoreTscAuxMsr)
+ {
+ uint64_t u64GuestTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
+ CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAux);
+ if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
+ ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
+ }
+
+ if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
+ {
+ /** @todo Find a way to fix hardcoding a guestimate. */
+ TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset - 0x400);
+ }
+
+ STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
+ TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
+ VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
+
+ Assert(!(ASMGetFlags() & X86_EFL_IF));
+ ASMSetFlags(pSvmTransient->uEflags); /* Enable interrupts. */
+ VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
+
+ /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
+ if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
+ {
+ Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
+ return;
+ }
+
+ pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
+ pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
+ hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
+
+ if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
+ {
+ if (pVCpu->hm.s.svm.fSyncVTpr)
+ {
+ /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
+ if ( pVM->hm.s.fTPRPatchingActive
+ && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
+ {
+ int rc = PDMApicSetTPR(pVCpu, pMixedCtx->msrLSTAR & 0xff);
+ AssertRC(rc);
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
+ }
+ else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
+ {
+ int rc = PDMApicSetTPR(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
+ AssertRC(rc);
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
+ }
+ }
+ }
+}
+
+
+/**
+ * Runs the guest code using AMD-V.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ */
+VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ Assert(VMMRZCallRing3IsEnabled(pVCpu));
+ HMSVM_ASSERT_PREEMPT_SAFE();
+ VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
+
+ SVMTRANSIENT SvmTransient;
+ SvmTransient.fUpdateTscOffsetting = true;
+ uint32_t cLoops = 0;
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ int rc = VERR_INTERNAL_ERROR_5;
+
+ for (;; cLoops++)
+ {
+ Assert(!HMR0SuspendPending());
+ HMSVM_ASSERT_CPU_SAFE();
+
+ /* Preparatory work for running guest code, this may force us to return
+ to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
+ rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
+ if (rc != VINF_SUCCESS)
+ break;
+
+ hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
+ rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
+
+ /* Restore any residual host-state and save any bits shared between host
+ and guest into the guest-CPU state. Re-enables interrupts! */
+ hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
+
+ if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
+ || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
+ {
+ if (rc == VINF_SUCCESS)
+ rc = VERR_SVM_INVALID_GUEST_STATE;
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
+ hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
+ break;
+ }
+
+ /* Handle the #VMEXIT. */
+ HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
+ STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
+ rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
+ if (rc != VINF_SUCCESS)
+ break;
+ else if (cLoops > pVM->hm.s.cMaxResumeLoops)
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
+ rc = VINF_EM_RAW_INTERRUPT;
+ break;
+ }
+ }
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
+ if (rc == VERR_EM_INTERPRETER)
+ rc = VINF_EM_RAW_EMULATE_INSTR;
+ else if (rc == VINF_EM_RESET)
+ rc = VINF_EM_TRIPLE_FAULT;
+
+ /* Prepare to return to ring-3. This will remove longjmp notifications. */
+ hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
+ Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
+ return rc;
+}
+
+
+/**
+ * Handles a #VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
+ *
+ * @returns VBox status code (informational status codes included).
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ */
+DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
+ Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
+
+ /*
+ * The ordering of the case labels is based on most-frequently-occurring VM-exits for most guests under
+ * normal workloads (for some definition of "normal").
+ */
+ uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
+ switch (pSvmTransient->u64ExitCode)
+ {
+ case SVM_EXIT_NPF:
+ return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_IOIO:
+ return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_RDTSC:
+ return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_RDTSCP:
+ return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_CPUID:
+ return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
+ return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
+ return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
+ return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
+ return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_MONITOR:
+ return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_MWAIT:
+ return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_HLT:
+ return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_READ_CR0:
+ case SVM_EXIT_READ_CR3:
+ case SVM_EXIT_READ_CR4:
+ return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_WRITE_CR0:
+ case SVM_EXIT_WRITE_CR3:
+ case SVM_EXIT_WRITE_CR4:
+ case SVM_EXIT_WRITE_CR8:
+ return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_VINTR:
+ return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_INTR:
+ case SVM_EXIT_FERR_FREEZE:
+ case SVM_EXIT_NMI:
+ return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_MSR:
+ return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_INVLPG:
+ return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_WBINVD:
+ return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_INVD:
+ return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_RDPMC:
+ return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
+
+ default:
+ {
+ switch (pSvmTransient->u64ExitCode)
+ {
+ case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
+ case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
+ case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
+ case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
+ return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
+ case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
+ case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
+ case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
+ return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_TASK_SWITCH:
+ return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_VMMCALL:
+ return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_SHUTDOWN:
+ return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
+
+ case SVM_EXIT_SMI:
+ case SVM_EXIT_INIT:
+ {
+ /*
+ * We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
+ * we want to know about it so log the exit code and bail.
+ */
+ AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
+ pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
+ return VERR_SVM_UNEXPECTED_EXIT;
+ }
+
+ case SVM_EXIT_INVLPGA:
+ case SVM_EXIT_RSM:
+ case SVM_EXIT_VMRUN:
+ case SVM_EXIT_VMLOAD:
+ case SVM_EXIT_VMSAVE:
+ case SVM_EXIT_STGI:
+ case SVM_EXIT_CLGI:
+ case SVM_EXIT_SKINIT:
+ return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
+
+#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
+ case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
+ /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
+ case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
+ case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
+ case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
+ case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
+ case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
+ /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
+ case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
+ case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
+ case SVM_EXIT_EXCEPTION_A: /* X86_XCPT_TS */
+ case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
+ case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
+ case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
+ /* SVM_EXIT_EXCEPTION_E: */ /* X86_XCPT_PF - Handled above. */
+ /* SVM_EXIT_EXCEPTION_10: */ /* X86_XCPT_MF - Handled above. */
+ case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_AC */
+ case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_MC */
+ case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_XF */
+ case SVM_EXIT_EXCEPTION_F: /* Reserved */
+ case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16:
+ case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
+ case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C:
+ case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
+ {
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
+
+ switch (Event.n.u8Vector)
+ {
+ case X86_XCPT_DE:
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
+ break;
+
+ case X86_XCPT_BP:
+ /** Saves the wrong EIP on the stack (pointing to the int3) instead of the
+ * next instruction. */
+ /** @todo Investigate this later. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
+ break;
+
+ case X86_XCPT_UD:
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
+ break;
+
+ case X86_XCPT_NP:
+ Event.n.u1ErrorCodeValid = 1;
+ Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
+ break;
+
+ case X86_XCPT_SS:
+ Event.n.u1ErrorCodeValid = 1;
+ Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
+ break;
+
+ case X86_XCPT_GP:
+ Event.n.u1ErrorCodeValid = 1;
+ Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
+ break;
+
+ default:
+ AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
+ pVCpu->hm.s.u32HMError = Event.n.u8Vector;
+ return VERR_SVM_UNEXPECTED_XCPT_EXIT;
+ }
+
+ Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+ return VINF_SUCCESS;
+ }
+#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
+
+ default:
+ {
+ AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
+ pVCpu->hm.s.u32HMError = u32ExitCode;
+ return VERR_SVM_UNKNOWN_EXIT;
+ }
+ }
+ }
+ }
+ return VERR_INTERNAL_ERROR_5; /* Should never happen. */
+}
+
+
+#ifdef DEBUG
+/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
+# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
+ RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
+
+# define HMSVM_ASSERT_PREEMPT_CPUID() \
+ do \
+ { \
+ RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
+ AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
+ } while (0)
+
+# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
+ do { \
+ AssertPtr(pVCpu); \
+ AssertPtr(pCtx); \
+ AssertPtr(pSvmTransient); \
+ Assert(ASMIntAreEnabled()); \
+ HMSVM_ASSERT_PREEMPT_SAFE(); \
+ HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
+ Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
+ HMSVM_ASSERT_PREEMPT_SAFE(); \
+ if (VMMR0IsLogFlushDisabled(pVCpu)) \
+ HMSVM_ASSERT_PREEMPT_CPUID(); \
+ } while (0)
+#else /* Release builds */
+# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { } while (0)
+#endif
+
+
+/**
+ * Worker for hmR0SvmInterpretInvlpg().
+ *
+ * @return VBox status code.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCpu Pointer to the disassembler state.
+ * @param pRegFrame Pointer to the register frame.
+ */
+static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
+{
+ DISQPVPARAMVAL Param1;
+ RTGCPTR GCPtrPage;
+
+ int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
+ if (RT_FAILURE(rc))
+ return VERR_EM_INTERPRETER;
+
+ if ( Param1.type == DISQPV_TYPE_IMMEDIATE
+ || Param1.type == DISQPV_TYPE_ADDRESS)
+ {
+ if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
+ return VERR_EM_INTERPRETER;
+
+ GCPtrPage = Param1.val.val64;
+ VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, pRegFrame, GCPtrPage);
+ rc = VBOXSTRICTRC_VAL(rc2);
+ }
+ else
+ {
+ Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
+ rc = VERR_EM_INTERPRETER;
+ }
+
+ return rc;
+}
+
+
+/**
+ * Interprets INVLPG.
+ *
+ * @returns VBox status code.
+ * @retval VINF_* Scheduling instructions.
+ * @retval VERR_EM_INTERPRETER Something we can't cope with.
+ * @retval VERR_* Fatal errors.
+ *
+ * @param pVM Pointer to the VM.
+ * @param pRegFrame Pointer to the register frame.
+ *
+ * @remarks Updates the RIP if the instruction was executed successfully.
+ */
+static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
+{
+ /* Only allow 32 & 64 bit code. */
+ if (CPUMGetGuestCodeBits(pVCpu) != 16)
+ {
+ PDISSTATE pDis = &pVCpu->hm.s.DisState;
+ int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
+ if ( RT_SUCCESS(rc)
+ && pDis->pCurInstr->uOpcode == OP_INVLPG)
+ {
+ rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
+ if (RT_SUCCESS(rc))
+ pRegFrame->rip += pDis->cbInstr;
+ return rc;
+ }
+ else
+ Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
+ }
+ return VERR_EM_INTERPRETER;
+}
+
+
+/**
+ * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ */
+DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
+{
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_UD;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Sets a debug (#DB) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ */
+DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
+{
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_DB;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Sets a page fault (#PF) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ * @param u32ErrCode The error-code for the page-fault.
+ * @param uFaultAddress The page fault address (CR2).
+ *
+ * @remarks This updates the guest CR2 with @a uFaultAddress!
+ */
+DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
+{
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_PF;
+ Event.n.u1ErrorCodeValid = 1;
+ Event.n.u32ErrorCode = u32ErrCode;
+
+ /* Update CR2 of the guest. */
+ if (pCtx->cr2 != uFaultAddress)
+ {
+ pCtx->cr2 = uFaultAddress;
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR2);
+ }
+
+ hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
+}
+
+
+/**
+ * Sets a device-not-available (#NM) exception as pending-for-injection into the
+ * VM.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ */
+DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
+{
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_NM;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Sets a math-fault (#MF) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ */
+DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
+{
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_MF;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Sets a double fault (#DF) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ */
+DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
+{
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_DF;
+ Event.n.u1ErrorCodeValid = 1;
+ Event.n.u32ErrorCode = 0;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
+ * guests. This simply looks up the patch record at EIP and does the required.
+ *
+ * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
+ * like how we want it to be (e.g. not followed by shr 4 as is usually done for
+ * TPR). See hmR3ReplaceTprInstr() for the details.
+ *
+ * @returns VBox status code.
+ * @param pVM Pointer to the VM.
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ */
+static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
+ for (;;)
+ {
+ bool fPending;
+ uint8_t u8Tpr;
+
+ PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
+ if (!pPatch)
+ break;
+
+ switch (pPatch->enmType)
+ {
+ case HMTPRINSTR_READ:
+ {
+ int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
+ AssertRC(rc);
+
+ rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
+ AssertRC(rc);
+ pCtx->rip += pPatch->cbOp;
+ break;
+ }
+
+ case HMTPRINSTR_WRITE_REG:
+ case HMTPRINSTR_WRITE_IMM:
+ {
+ if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
+ {
+ uint32_t u32Val;
+ int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
+ AssertRC(rc);
+ u8Tpr = u32Val;
+ }
+ else
+ u8Tpr = (uint8_t)pPatch->uSrcOperand;
+
+ int rc2 = PDMApicSetTPR(pVCpu, u8Tpr);
+ AssertRC(rc2);
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
+
+ pCtx->rip += pPatch->cbOp;
+ break;
+ }
+
+ default:
+ AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
+ pVCpu->hm.s.u32HMError = pPatch->enmType;
+ return VERR_SVM_UNEXPECTED_PATCH_TYPE;
+ }
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Determines if an exception is a contributory exception. Contributory
+ * exceptions are ones which can cause double-faults. Page-fault is
+ * intentionally not included here as it's a conditional contributory exception.
+ *
+ * @returns true if the exception is contributory, false otherwise.
+ * @param uVector The exception vector.
+ */
+DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
+{
+ switch (uVector)
+ {
+ case X86_XCPT_GP:
+ case X86_XCPT_SS:
+ case X86_XCPT_NP:
+ case X86_XCPT_TS:
+ case X86_XCPT_DE:
+ return true;
+ default:
+ break;
+ }
+ return false;
+}
+
+
+/**
+ * Handle a condition that occurred while delivering an event through the guest
+ * IDT.
+ *
+ * @returns VBox status code (informational error codes included).
+ * @retval VINF_SUCCESS if we should continue handling the VM-exit.
+ * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
+ * continue execution of the guest which will delivery the #DF.
+ * @retval VINF_EM_RESET if we detected a triple-fault condition.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ int rc = VINF_SUCCESS;
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+
+ /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
+ * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
+ if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
+ {
+ uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
+
+ typedef enum
+ {
+ SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
+ SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
+ SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
+ SVMREFLECTXCPT_NONE /* Nothing to reflect. */
+ } SVMREFLECTXCPT;
+
+ SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
+ if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
+ {
+ if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
+ {
+ uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
+
+#ifdef VBOX_STRICT
+ if ( hmR0SvmIsContributoryXcpt(uIdtVector)
+ && uExitVector == X86_XCPT_PF)
+ {
+ Log4(("IDT: Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
+ }
+#endif
+ if ( uExitVector == X86_XCPT_PF
+ && uIdtVector == X86_XCPT_PF)
+ {
+ pSvmTransient->fVectoringPF = true;
+ Log4(("IDT: Vectoring #PF uCR2=%#RX64\n", pCtx->cr2));
+ }
+ else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
+ && hmR0SvmIsContributoryXcpt(uExitVector)
+ && ( hmR0SvmIsContributoryXcpt(uIdtVector)
+ || uIdtVector == X86_XCPT_PF))
+ {
+ enmReflect = SVMREFLECTXCPT_DF;
+ Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
+ uIdtVector, uExitVector));
+ }
+ else if (uIdtVector == X86_XCPT_DF)
+ {
+ enmReflect = SVMREFLECTXCPT_TF;
+ Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n",
+ pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
+ }
+ else
+ enmReflect = SVMREFLECTXCPT_XCPT;
+ }
+ else
+ {
+ /*
+ * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
+ * exception to the guest after handling the VM-exit.
+ */
+ enmReflect = SVMREFLECTXCPT_XCPT;
+ }
+ }
+ else if (pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
+ {
+ /* Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
+ enmReflect = SVMREFLECTXCPT_XCPT;
+ }
+
+ switch (enmReflect)
+ {
+ case SVMREFLECTXCPT_XCPT:
+ {
+ Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
+ hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
+
+ /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
+ Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
+ !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
+ break;
+ }
+
+ case SVMREFLECTXCPT_DF:
+ {
+ hmR0SvmSetPendingXcptDF(pVCpu);
+ rc = VINF_HM_DOUBLE_FAULT;
+ break;
+ }
+
+ case SVMREFLECTXCPT_TF:
+ {
+ rc = VINF_EM_RESET;
+ break;
+ }
+
+ default:
+ Assert(rc == VINF_SUCCESS);
+ break;
+ }
+ }
+ Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
+ return rc;
+}
+
+
+/**
+ * Advances the guest RIP in the if the NRIP_SAVE feature is supported by the
+ * CPU, otherwise advances the RIP by @a cb bytes.
+ *
+ * @param pVCpu Pointer to the VMCPU.
+ * @param pCtx Pointer to the guest-CPU context.
+ * @param cb RIP increment value in bytes.
+ *
+ * @remarks Use this function only from #VMEXIT's where the NRIP value is valid
+ * when NRIP_SAVE is supported by the CPU!
+ */
+DECLINLINE(void) hmR0SvmUpdateRip(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
+{
+ if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
+ {
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ pCtx->rip = pVmcb->ctrl.u64NextRIP;
+ }
+ else
+ pCtx->rip += cb;
+}
+
+
+/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
+/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
+/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
+
+/** @name VM-exit handlers.
+ * @{
+ */
+
+/**
+ * #VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
+ * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
+ */
+HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+
+ if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
+ STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
+ else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
+
+ /*
+ * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
+ * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
+ * interrupt it is until the host actually take the interrupt.
+ *
+ * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
+ * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
+ */
+ return VINF_EM_RAW_INTERRUPT;
+}
+
+
+/**
+ * #VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+
+ hmR0SvmUpdateRip(pVCpu, pCtx, 2);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
+ int rc = VINF_SUCCESS;
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+
+ hmR0SvmUpdateRip(pVCpu, pCtx, 2);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
+ int rc = VINF_SUCCESS;
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ {
+ hmR0SvmUpdateRip(pVCpu, pCtx, 2);
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+ else
+ {
+ AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
+ rc = VERR_EM_INTERPRETER;
+ }
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ {
+ hmR0SvmUpdateRip(pVCpu, pCtx, 2);
+ pSvmTransient->fUpdateTscOffsetting = true;
+
+ /* Single step check. */
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+ else
+ {
+ AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
+ rc = VERR_EM_INTERPRETER;
+ }
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ {
+ hmR0SvmUpdateRip(pVCpu, pCtx, 3);
+ pSvmTransient->fUpdateTscOffsetting = true;
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+ else
+ {
+ AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
+ rc = VERR_EM_INTERPRETER;
+ }
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ {
+ hmR0SvmUpdateRip(pVCpu, pCtx, 2);
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+ else
+ {
+ AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
+ rc = VERR_EM_INTERPRETER;
+ }
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ Assert(!pVM->hm.s.fNestedPaging);
+
+ /** @todo Decode Assist. */
+ int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx)); /* Updates RIP if successful. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
+ Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ hmR0SvmUpdateRip(pVCpu, pCtx, 1);
+ int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ {
+ hmR0SvmUpdateRip(pVCpu, pCtx, 3);
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+ else
+ {
+ AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
+ rc = VERR_EM_INTERPRETER;
+ }
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
+ int rc = VBOXSTRICTRC_VAL(rc2);
+ if ( rc == VINF_EM_HALT
+ || rc == VINF_SUCCESS)
+ {
+ hmR0SvmUpdateRip(pVCpu, pCtx, 3);
+
+ if ( rc == VINF_EM_HALT
+ && EMMonitorWaitShouldContinue(pVCpu, pCtx))
+ {
+ rc = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+ else
+ {
+ AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
+ rc = VERR_EM_INTERPRETER;
+ }
+ AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
+ ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN).
+ * Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ return VINF_EM_RESET;
+}
+
+
+/**
+ * #VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+
+ Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
+
+ /** @todo Decode Assist. */
+ VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
+ int rc = VBOXSTRICTRC_VAL(rc2);
+ AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
+ ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
+ Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ /** @todo Decode Assist. */
+ VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
+ int rc = VBOXSTRICTRC_VAL(rc2);
+ if (rc == VINF_SUCCESS)
+ {
+ /* RIP has been updated by EMInterpretInstruction(). */
+ Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
+ switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
+ {
+ case 0: /* CR0. */
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
+ break;
+
+ case 3: /* CR3. */
+ Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
+ break;
+
+ case 4: /* CR4. */
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
+ break;
+
+ case 8: /* CR8 (TPR). */
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
+ break;
+
+ default:
+ AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x CRx=%#RX64\n",
+ pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
+ break;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+ else
+ Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for instructions that result in a #UD exception delivered to
+ * the guest.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ hmR0SvmSetPendingXcptUD(pVCpu);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * #VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+
+ int rc;
+ if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
+
+ /* Handle TPR patching; intercepted LSTAR write. */
+ if ( pVM->hm.s.fTPRPatchingActive
+ && pCtx->ecx == MSR_K8_LSTAR)
+ {
+ if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
+ {
+ /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
+ int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
+ AssertRC(rc2);
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
+ }
+ hmR0SvmUpdateRip(pVCpu, pCtx, 2);
+ rc = VINF_SUCCESS;
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ return rc;
+ }
+
+ if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
+ {
+ rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ {
+ pCtx->rip = pVmcb->ctrl.u64NextRIP;
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+ else
+ AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
+ }
+ else
+ {
+ rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
+ if (RT_UNLIKELY(rc != VINF_SUCCESS))
+ AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
+ /* RIP updated by EMInterpretInstruction(). */
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+
+ /* If this is an X2APIC WRMSR access, update the APIC state as well. */
+ if ( pCtx->ecx >= MSR_IA32_X2APIC_START
+ && pCtx->ecx <= MSR_IA32_X2APIC_END)
+ {
+ /*
+ * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
+ * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
+ * EMInterpretWrmsr() changes it.
+ */
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
+ }
+ else if (pCtx->ecx == MSR_K6_EFER)
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_EFER_MSR);
+ else if (pCtx->ecx == MSR_IA32_TSC)
+ pSvmTransient->fUpdateTscOffsetting = true;
+ }
+ else
+ {
+ /* MSR Read access. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
+ Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
+
+ if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
+ {
+ rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ {
+ pCtx->rip = pVmcb->ctrl.u64NextRIP;
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+ else
+ AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
+ }
+ else
+ {
+ rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
+ if (RT_UNLIKELY(rc != VINF_SUCCESS))
+ AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
+ /* RIP updated by EMInterpretInstruction(). */
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+ }
+
+ /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
+
+ /* We should -not- get this VM-exit if the guest's debug registers were active. */
+ if (pSvmTransient->fWasGuestDebugStateActive)
+ {
+ AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
+ pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
+ return VERR_SVM_UNEXPECTED_EXIT;
+ }
+
+ /*
+ * Lazy DR0-3 loading.
+ */
+ if (!pSvmTransient->fWasHyperDebugStateActive)
+ {
+ Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
+ Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
+
+ /* Don't intercept DRx read and writes. */
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ pVmcb->ctrl.u16InterceptRdDRx = 0;
+ pVmcb->ctrl.u16InterceptWrDRx = 0;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+
+ /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
+ VMMRZCallRing3Disable(pVCpu);
+ HM_DISABLE_PREEMPT_IF_NEEDED();
+
+ /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
+ CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
+ Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
+
+ HM_RESTORE_PREEMPT_IF_NEEDED();
+ VMMRZCallRing3Enable(pVCpu);
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Interpret the read/writing of DRx.
+ */
+ /** @todo Decode assist. */
+ VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
+ Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ {
+ /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
+ /** @todo CPUM should set this flag! */
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+ else
+ Assert(rc == VERR_EM_INTERPRETER);
+ return VBOXSTRICTRC_TODO(rc);
+}
+
+
+/**
+ * #VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
+ int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
+ STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+
+ /* I/O operation lookup arrays. */
+ static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
+ static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
+ the result (in AL/AX/EAX). */
+ Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
+
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+
+ /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
+ SVMIOIOEXIT IoExitInfo;
+ IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
+ uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
+ uint32_t cbValue = s_aIOSize[uIOWidth];
+ uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
+
+ if (RT_UNLIKELY(!cbValue))
+ {
+ AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
+ return VERR_EM_INTERPRETER;
+ }
+
+ VBOXSTRICTRC rcStrict;
+ if (IoExitInfo.n.u1STR)
+ {
+ /* INS/OUTS - I/O String instruction. */
+ PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
+
+ /** @todo Huh? why can't we use the segment prefix information given by AMD-V
+ * in EXITINFO1? Investigate once this thing is up and running. */
+
+ rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
+ {
+ rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
+ (DISCPUMODE)pDis->uAddrMode, cbValue);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
+ }
+ else
+ {
+ rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
+ (DISCPUMODE)pDis->uAddrMode, cbValue);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
+ }
+ }
+ else
+ rcStrict = VINF_EM_RAW_EMULATE_INSTR;
+ }
+ else
+ {
+ /* IN/OUT - I/O instruction. */
+ Assert(!IoExitInfo.n.u1REP);
+
+ if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
+ {
+ rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
+ if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
+ HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
+ }
+ else
+ {
+ uint32_t u32Val = 0;
+
+ rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
+ if (IOM_SUCCESS(rcStrict))
+ {
+ /* Save result of I/O IN instr. in AL/AX/EAX. */
+ pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
+ }
+ else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
+ HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
+ }
+ }
+
+ if (IOM_SUCCESS(rcStrict))
+ {
+ /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
+ pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
+
+ /*
+ * If any I/O breakpoints are armed, we need to check if one triggered
+ * and take appropriate action.
+ * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
+ */
+ /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
+ * execution engines about whether hyper BPs and such are pending. */
+ uint32_t const uDr7 = pCtx->dr[7];
+ if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
+ && X86_DR7_ANY_RW_IO(uDr7)
+ && (pCtx->cr4 & X86_CR4_DE))
+ || DBGFBpIsHwIoArmed(pVM)))
+ {
+ /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
+ VMMRZCallRing3Disable(pVCpu);
+ HM_DISABLE_PREEMPT_IF_NEEDED();
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
+ CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
+
+ VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
+ if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
+ {
+ /* Raise #DB. */
+ pVmcb->guest.u64DR6 = pCtx->dr[6];
+ pVmcb->guest.u64DR7 = pCtx->dr[7];
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
+ hmR0SvmSetPendingXcptDB(pVCpu);
+ }
+ /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
+ else if ( rcStrict2 != VINF_SUCCESS
+ && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
+ rcStrict = rcStrict2;
+
+ HM_RESTORE_PREEMPT_IF_NEEDED();
+ VMMRZCallRing3Enable(pVCpu);
+ }
+
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ }
+
+#ifdef VBOX_STRICT
+ if (rcStrict == VINF_IOM_R3_IOPORT_READ)
+ Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
+ else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
+ Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
+ else
+ {
+ /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
+ * statuses, that the VMM device and some others may return. See
+ * IOM_SUCCESS() for guidance. */
+ AssertMsg( RT_FAILURE(rcStrict)
+ || rcStrict == VINF_SUCCESS
+ || rcStrict == VINF_EM_RAW_EMULATE_INSTR
+ || rcStrict == VINF_EM_DBG_BREAKPOINT
+ || rcStrict == VINF_EM_RAW_GUEST_TRAP
+ || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+ }
+#endif
+ return VBOXSTRICTRC_TODO(rcStrict);
+}
+
+
+/**
+ * #VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional
+ * #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ Assert(pVM->hm.s.fNestedPaging);
+
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
+
+ /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
+ RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
+
+ Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
+
+#ifdef VBOX_HM_WITH_GUEST_PATCHING
+ /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
+ if ( pVM->hm.s.fTRPPatchingAllowed
+ && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == 0x80 /* TPR offset. */
+ && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
+ || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
+ && !CPUMIsGuestInLongModeEx(pCtx)
+ && !CPUMGetGuestCPL(pVCpu)
+ && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
+ {
+ RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
+ GCPhysApicBase &= PAGE_BASE_GC_MASK;
+
+ if (GCPhysFaultAddr == GCPhysApicBase + 0x80)
+ {
+ /* Only attempt to patch the instruction once. */
+ PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
+ if (!pPatch)
+ return VINF_EM_HM_PATCH_TPR_INSTR;
+ }
+ }
+#endif
+
+ /*
+ * Determine the nested paging mode.
+ */
+ PGMMODE enmNestedPagingMode;
+#if HC_ARCH_BITS == 32
+ if (CPUMIsGuestInLongModeEx(pCtx))
+ enmNestedPagingMode = PGMMODE_AMD64_NX;
+ else
+#endif
+ enmNestedPagingMode = PGMGetHostMode(pVM);
+
+ /*
+ * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
+ */
+ int rc;
+ Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
+ if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
+ {
+ VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
+ u32ErrCode);
+ rc = VBOXSTRICTRC_VAL(rc2);
+
+ /*
+ * If we succeed, resume guest execution.
+ * If we fail in interpreting the instruction because we couldn't get the guest physical address
+ * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
+ * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
+ * weird case. See @bugref{6043}.
+ */
+ if ( rc == VINF_SUCCESS
+ || rc == VERR_PAGE_TABLE_NOT_PRESENT
+ || rc == VERR_PAGE_NOT_PRESENT)
+ {
+ /* Successfully handled MMIO operation. */
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
+ rc = VINF_SUCCESS;
+ }
+ return rc;
+ }
+
+ TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
+ rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
+ TRPMResetTrap(pVCpu);
+
+ Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
+
+ /*
+ * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
+ */
+ if ( rc == VINF_SUCCESS
+ || rc == VERR_PAGE_TABLE_NOT_PRESENT
+ || rc == VERR_PAGE_NOT_PRESENT)
+ {
+ /* We've successfully synced our shadow page tables. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
+ rc = VINF_SUCCESS;
+ }
+
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one before reentry. */
+ pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
+
+ /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
+ pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_VINTR;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
+
+ /* Deliver the pending interrupt via hmR0SvmPreRunGuest()->hmR0SvmInjectEventVmcb() and resume guest execution. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * #VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+
+#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
+ Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
+#endif
+
+ /* Check if this task-switch occurred while delivery an event through the guest IDT. */
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
+ && pVCpu->hm.s.Event.fPending)
+ {
+ /*
+ * AMD-V does not provide us with the original exception but we have it in u64IntInfo since we
+ * injected the event during VM-entry. Software interrupts and exceptions will be regenerated
+ * when the recompiler restarts the instruction.
+ */
+ SVMEVENT Event;
+ Event.u = pVCpu->hm.s.Event.u64IntInfo;
+ if ( Event.n.u3Type == SVM_EVENT_EXCEPTION
+ || Event.n.u3Type == SVM_EVENT_SOFTWARE_INT)
+ {
+ pVCpu->hm.s.Event.fPending = false;
+ }
+ else
+ Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery. Kept pending u8Vector=%#x\n", Event.n.u8Vector));
+ }
+
+ /** @todo Emulate task switch someday, currently just going back to ring-3 for
+ * emulation. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
+ return VERR_EM_INTERPRETER;
+}
+
+
+/**
+ * #VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+
+ int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ else
+ hmR0SvmSetPendingXcptUD(pVCpu);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * #VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_E). Conditional
+ * #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
+
+ /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
+ RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+
+#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
+ if (pVM->hm.s.fNestedPaging)
+ {
+ pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
+ if (!pSvmTransient->fVectoringPF)
+ {
+ /* A genuine guest #PF, reflect it to the guest. */
+ hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
+ Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
+ uFaultAddress, u32ErrCode));
+ }
+ else
+ {
+ /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
+ hmR0SvmSetPendingXcptDF(pVCpu);
+ Log4(("Pending #DF due to vectoring #PF. NP\n"));
+ }
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
+ return VINF_SUCCESS;
+ }
+#endif
+
+ Assert(!pVM->hm.s.fNestedPaging);
+
+#ifdef VBOX_HM_WITH_GUEST_PATCHING
+ /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
+ if ( pVM->hm.s.fTRPPatchingAllowed
+ && (uFaultAddress & 0xfff) == 0x80 /* TPR offset. */
+ && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
+ && !CPUMIsGuestInLongModeEx(pCtx)
+ && !CPUMGetGuestCPL(pVCpu)
+ && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
+ {
+ RTGCPHYS GCPhysApicBase;
+ GCPhysApicBase = pCtx->msrApicBase;
+ GCPhysApicBase &= PAGE_BASE_GC_MASK;
+
+ /* Check if the page at the fault-address is the APIC base. */
+ RTGCPHYS GCPhysPage;
+ int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
+ if ( rc2 == VINF_SUCCESS
+ && GCPhysPage == GCPhysApicBase)
+ {
+ /* Only attempt to patch the instruction once. */
+ PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
+ if (!pPatch)
+ return VINF_EM_HM_PATCH_TPR_INSTR;
+ }
+ }
+#endif
+
+ Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
+ pCtx->rip, u32ErrCode, pCtx->cr3));
+
+ TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
+ int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
+
+ Log4(("#PF rc=%Rrc\n", rc));
+
+ if (rc == VINF_SUCCESS)
+ {
+ /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
+ TRPMResetTrap(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
+ return rc;
+ }
+ else if (rc == VINF_EM_RAW_GUEST_TRAP)
+ {
+ pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
+
+ if (!pSvmTransient->fVectoringPF)
+ {
+ /* It's a guest page fault and needs to be reflected to the guest. */
+ u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
+ TRPMResetTrap(pVCpu);
+ hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
+ }
+ else
+ {
+ /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
+ TRPMResetTrap(pVCpu);
+ hmR0SvmSetPendingXcptDF(pVCpu);
+ Log4(("#PF: Pending #DF due to vectoring #PF\n"));
+ }
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
+ return VINF_SUCCESS;
+ }
+
+ TRPMResetTrap(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
+ return rc;
+}
+
+
+/**
+ * #VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
+ * Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
+
+ /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
+ VMMRZCallRing3Disable(pVCpu);
+ HM_DISABLE_PREEMPT_IF_NEEDED();
+
+ int rc;
+ /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
+ if (pSvmTransient->fWasGuestFPUStateActive)
+ {
+ rc = VINF_EM_RAW_GUEST_TRAP;
+ Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
+ }
+ else
+ {
+#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
+ Assert(!pSvmTransient->fWasGuestFPUStateActive);
+#endif
+ rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
+ Assert(rc == VINF_EM_RAW_GUEST_TRAP || (rc == VINF_SUCCESS && CPUMIsGuestFPUStateActive(pVCpu)));
+ }
+
+ HM_RESTORE_PREEMPT_IF_NEEDED();
+ VMMRZCallRing3Enable(pVCpu);
+
+ if (rc == VINF_SUCCESS)
+ {
+ /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
+ HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
+ }
+ else
+ {
+ /* Forward #NM to the guest. */
+ Assert(rc == VINF_EM_RAW_GUEST_TRAP);
+ hmR0SvmSetPendingXcptNM(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * #VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_10).
+ * Conditional #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
+
+ if (!(pCtx->cr0 & X86_CR0_NE))
+ {
+ /* Old-style FPU error reporting needs some extra work. */
+ /** @todo don't fall back to the recompiler, but do it manually. */
+ return VERR_EM_INTERPRETER;
+ }
+
+ hmR0SvmSetPendingXcptMF(pVCpu);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * #VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
+ * #VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
+
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
+
+ /* If we set the trap flag above, we have to clear it. */
+ if (pVCpu->hm.s.fClearTrapFlag)
+ {
+ pVCpu->hm.s.fClearTrapFlag = false;
+ pCtx->eflags.Bits.u1TF = 0;
+ }
+
+ /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
+ DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
+ PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
+ if (rc == VINF_EM_RAW_GUEST_TRAP)
+ {
+ Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
+ if (CPUMIsHyperDebugStateActive(pVCpu))
+ CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
+
+ /* Reflect the exception back to the guest. */
+ hmR0SvmSetPendingXcptDB(pVCpu);
+ rc = VINF_SUCCESS;
+ }
+
+ /*
+ * Update DR6.
+ */
+ if (CPUMIsHyperDebugStateActive(pVCpu))
+ {
+ Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
+ pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
+ pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
+ }
+ else
+ {
+ AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
+ Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
+ }
+
+ return rc;
+}
+
+/** @} */
+