diff options
Diffstat (limited to 'src/VBox/VMM/VMMAll/IEMAllAImplC.cpp')
| -rw-r--r-- | src/VBox/VMM/VMMAll/IEMAllAImplC.cpp | 1159 |
1 files changed, 1146 insertions, 13 deletions
diff --git a/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp b/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp index 3c3ebc19..1391f685 100644 --- a/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp +++ b/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp @@ -4,7 +4,7 @@ */ /* - * Copyright (C) 2011 Oracle Corporation + * Copyright (C) 2011-2013 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; @@ -22,27 +22,1160 @@ #include <VBox/vmm/vm.h> #include <iprt/x86.h> -#if 0 +/******************************************************************************* +* Global Variables * +*******************************************************************************/ +/** + * Parity calculation table. + * + * The generator code: + * @code + * #include <stdio.h> + * + * int main() + * { + * unsigned b; + * for (b = 0; b < 256; b++) + * { + * int cOnes = ( b & 1) + * + ((b >> 1) & 1) + * + ((b >> 2) & 1) + * + ((b >> 3) & 1) + * + ((b >> 4) & 1) + * + ((b >> 5) & 1) + * + ((b >> 6) & 1) + * + ((b >> 7) & 1); + * printf(" /" "* %#04x = %u%u%u%u%u%u%u%ub *" "/ %s,\n", + * b, + * (b >> 7) & 1, + * (b >> 6) & 1, + * (b >> 5) & 1, + * (b >> 4) & 1, + * (b >> 3) & 1, + * (b >> 2) & 1, + * (b >> 1) & 1, + * b & 1, + * cOnes & 1 ? "0" : "X86_EFL_PF"); + * } + * return 0; + * } + * @endcode + */ +static uint8_t const g_afParity[256] = +{ + /* 0000 = 00000000b */ X86_EFL_PF, + /* 0x01 = 00000001b */ 0, + /* 0x02 = 00000010b */ 0, + /* 0x03 = 00000011b */ X86_EFL_PF, + /* 0x04 = 00000100b */ 0, + /* 0x05 = 00000101b */ X86_EFL_PF, + /* 0x06 = 00000110b */ X86_EFL_PF, + /* 0x07 = 00000111b */ 0, + /* 0x08 = 00001000b */ 0, + /* 0x09 = 00001001b */ X86_EFL_PF, + /* 0x0a = 00001010b */ X86_EFL_PF, + /* 0x0b = 00001011b */ 0, + /* 0x0c = 00001100b */ X86_EFL_PF, + /* 0x0d = 00001101b */ 0, + /* 0x0e = 00001110b */ 0, + /* 0x0f = 00001111b */ X86_EFL_PF, + /* 0x10 = 00010000b */ 0, + /* 0x11 = 00010001b */ X86_EFL_PF, + /* 0x12 = 00010010b */ X86_EFL_PF, + /* 0x13 = 00010011b */ 0, + /* 0x14 = 00010100b */ X86_EFL_PF, + /* 0x15 = 00010101b */ 0, + /* 0x16 = 00010110b */ 0, + /* 0x17 = 00010111b */ X86_EFL_PF, + /* 0x18 = 00011000b */ X86_EFL_PF, + /* 0x19 = 00011001b */ 0, + /* 0x1a = 00011010b */ 0, + /* 0x1b = 00011011b */ X86_EFL_PF, + /* 0x1c = 00011100b */ 0, + /* 0x1d = 00011101b */ X86_EFL_PF, + /* 0x1e = 00011110b */ X86_EFL_PF, + /* 0x1f = 00011111b */ 0, + /* 0x20 = 00100000b */ 0, + /* 0x21 = 00100001b */ X86_EFL_PF, + /* 0x22 = 00100010b */ X86_EFL_PF, + /* 0x23 = 00100011b */ 0, + /* 0x24 = 00100100b */ X86_EFL_PF, + /* 0x25 = 00100101b */ 0, + /* 0x26 = 00100110b */ 0, + /* 0x27 = 00100111b */ X86_EFL_PF, + /* 0x28 = 00101000b */ X86_EFL_PF, + /* 0x29 = 00101001b */ 0, + /* 0x2a = 00101010b */ 0, + /* 0x2b = 00101011b */ X86_EFL_PF, + /* 0x2c = 00101100b */ 0, + /* 0x2d = 00101101b */ X86_EFL_PF, + /* 0x2e = 00101110b */ X86_EFL_PF, + /* 0x2f = 00101111b */ 0, + /* 0x30 = 00110000b */ X86_EFL_PF, + /* 0x31 = 00110001b */ 0, + /* 0x32 = 00110010b */ 0, + /* 0x33 = 00110011b */ X86_EFL_PF, + /* 0x34 = 00110100b */ 0, + /* 0x35 = 00110101b */ X86_EFL_PF, + /* 0x36 = 00110110b */ X86_EFL_PF, + /* 0x37 = 00110111b */ 0, + /* 0x38 = 00111000b */ 0, + /* 0x39 = 00111001b */ X86_EFL_PF, + /* 0x3a = 00111010b */ X86_EFL_PF, + /* 0x3b = 00111011b */ 0, + /* 0x3c = 00111100b */ X86_EFL_PF, + /* 0x3d = 00111101b */ 0, + /* 0x3e = 00111110b */ 0, + /* 0x3f = 00111111b */ X86_EFL_PF, + /* 0x40 = 01000000b */ 0, + /* 0x41 = 01000001b */ X86_EFL_PF, + /* 0x42 = 01000010b */ X86_EFL_PF, + /* 0x43 = 01000011b */ 0, + /* 0x44 = 01000100b */ X86_EFL_PF, + /* 0x45 = 01000101b */ 0, + /* 0x46 = 01000110b */ 0, + /* 0x47 = 01000111b */ X86_EFL_PF, + /* 0x48 = 01001000b */ X86_EFL_PF, + /* 0x49 = 01001001b */ 0, + /* 0x4a = 01001010b */ 0, + /* 0x4b = 01001011b */ X86_EFL_PF, + /* 0x4c = 01001100b */ 0, + /* 0x4d = 01001101b */ X86_EFL_PF, + /* 0x4e = 01001110b */ X86_EFL_PF, + /* 0x4f = 01001111b */ 0, + /* 0x50 = 01010000b */ X86_EFL_PF, + /* 0x51 = 01010001b */ 0, + /* 0x52 = 01010010b */ 0, + /* 0x53 = 01010011b */ X86_EFL_PF, + /* 0x54 = 01010100b */ 0, + /* 0x55 = 01010101b */ X86_EFL_PF, + /* 0x56 = 01010110b */ X86_EFL_PF, + /* 0x57 = 01010111b */ 0, + /* 0x58 = 01011000b */ 0, + /* 0x59 = 01011001b */ X86_EFL_PF, + /* 0x5a = 01011010b */ X86_EFL_PF, + /* 0x5b = 01011011b */ 0, + /* 0x5c = 01011100b */ X86_EFL_PF, + /* 0x5d = 01011101b */ 0, + /* 0x5e = 01011110b */ 0, + /* 0x5f = 01011111b */ X86_EFL_PF, + /* 0x60 = 01100000b */ X86_EFL_PF, + /* 0x61 = 01100001b */ 0, + /* 0x62 = 01100010b */ 0, + /* 0x63 = 01100011b */ X86_EFL_PF, + /* 0x64 = 01100100b */ 0, + /* 0x65 = 01100101b */ X86_EFL_PF, + /* 0x66 = 01100110b */ X86_EFL_PF, + /* 0x67 = 01100111b */ 0, + /* 0x68 = 01101000b */ 0, + /* 0x69 = 01101001b */ X86_EFL_PF, + /* 0x6a = 01101010b */ X86_EFL_PF, + /* 0x6b = 01101011b */ 0, + /* 0x6c = 01101100b */ X86_EFL_PF, + /* 0x6d = 01101101b */ 0, + /* 0x6e = 01101110b */ 0, + /* 0x6f = 01101111b */ X86_EFL_PF, + /* 0x70 = 01110000b */ 0, + /* 0x71 = 01110001b */ X86_EFL_PF, + /* 0x72 = 01110010b */ X86_EFL_PF, + /* 0x73 = 01110011b */ 0, + /* 0x74 = 01110100b */ X86_EFL_PF, + /* 0x75 = 01110101b */ 0, + /* 0x76 = 01110110b */ 0, + /* 0x77 = 01110111b */ X86_EFL_PF, + /* 0x78 = 01111000b */ X86_EFL_PF, + /* 0x79 = 01111001b */ 0, + /* 0x7a = 01111010b */ 0, + /* 0x7b = 01111011b */ X86_EFL_PF, + /* 0x7c = 01111100b */ 0, + /* 0x7d = 01111101b */ X86_EFL_PF, + /* 0x7e = 01111110b */ X86_EFL_PF, + /* 0x7f = 01111111b */ 0, + /* 0x80 = 10000000b */ 0, + /* 0x81 = 10000001b */ X86_EFL_PF, + /* 0x82 = 10000010b */ X86_EFL_PF, + /* 0x83 = 10000011b */ 0, + /* 0x84 = 10000100b */ X86_EFL_PF, + /* 0x85 = 10000101b */ 0, + /* 0x86 = 10000110b */ 0, + /* 0x87 = 10000111b */ X86_EFL_PF, + /* 0x88 = 10001000b */ X86_EFL_PF, + /* 0x89 = 10001001b */ 0, + /* 0x8a = 10001010b */ 0, + /* 0x8b = 10001011b */ X86_EFL_PF, + /* 0x8c = 10001100b */ 0, + /* 0x8d = 10001101b */ X86_EFL_PF, + /* 0x8e = 10001110b */ X86_EFL_PF, + /* 0x8f = 10001111b */ 0, + /* 0x90 = 10010000b */ X86_EFL_PF, + /* 0x91 = 10010001b */ 0, + /* 0x92 = 10010010b */ 0, + /* 0x93 = 10010011b */ X86_EFL_PF, + /* 0x94 = 10010100b */ 0, + /* 0x95 = 10010101b */ X86_EFL_PF, + /* 0x96 = 10010110b */ X86_EFL_PF, + /* 0x97 = 10010111b */ 0, + /* 0x98 = 10011000b */ 0, + /* 0x99 = 10011001b */ X86_EFL_PF, + /* 0x9a = 10011010b */ X86_EFL_PF, + /* 0x9b = 10011011b */ 0, + /* 0x9c = 10011100b */ X86_EFL_PF, + /* 0x9d = 10011101b */ 0, + /* 0x9e = 10011110b */ 0, + /* 0x9f = 10011111b */ X86_EFL_PF, + /* 0xa0 = 10100000b */ X86_EFL_PF, + /* 0xa1 = 10100001b */ 0, + /* 0xa2 = 10100010b */ 0, + /* 0xa3 = 10100011b */ X86_EFL_PF, + /* 0xa4 = 10100100b */ 0, + /* 0xa5 = 10100101b */ X86_EFL_PF, + /* 0xa6 = 10100110b */ X86_EFL_PF, + /* 0xa7 = 10100111b */ 0, + /* 0xa8 = 10101000b */ 0, + /* 0xa9 = 10101001b */ X86_EFL_PF, + /* 0xaa = 10101010b */ X86_EFL_PF, + /* 0xab = 10101011b */ 0, + /* 0xac = 10101100b */ X86_EFL_PF, + /* 0xad = 10101101b */ 0, + /* 0xae = 10101110b */ 0, + /* 0xaf = 10101111b */ X86_EFL_PF, + /* 0xb0 = 10110000b */ 0, + /* 0xb1 = 10110001b */ X86_EFL_PF, + /* 0xb2 = 10110010b */ X86_EFL_PF, + /* 0xb3 = 10110011b */ 0, + /* 0xb4 = 10110100b */ X86_EFL_PF, + /* 0xb5 = 10110101b */ 0, + /* 0xb6 = 10110110b */ 0, + /* 0xb7 = 10110111b */ X86_EFL_PF, + /* 0xb8 = 10111000b */ X86_EFL_PF, + /* 0xb9 = 10111001b */ 0, + /* 0xba = 10111010b */ 0, + /* 0xbb = 10111011b */ X86_EFL_PF, + /* 0xbc = 10111100b */ 0, + /* 0xbd = 10111101b */ X86_EFL_PF, + /* 0xbe = 10111110b */ X86_EFL_PF, + /* 0xbf = 10111111b */ 0, + /* 0xc0 = 11000000b */ X86_EFL_PF, + /* 0xc1 = 11000001b */ 0, + /* 0xc2 = 11000010b */ 0, + /* 0xc3 = 11000011b */ X86_EFL_PF, + /* 0xc4 = 11000100b */ 0, + /* 0xc5 = 11000101b */ X86_EFL_PF, + /* 0xc6 = 11000110b */ X86_EFL_PF, + /* 0xc7 = 11000111b */ 0, + /* 0xc8 = 11001000b */ 0, + /* 0xc9 = 11001001b */ X86_EFL_PF, + /* 0xca = 11001010b */ X86_EFL_PF, + /* 0xcb = 11001011b */ 0, + /* 0xcc = 11001100b */ X86_EFL_PF, + /* 0xcd = 11001101b */ 0, + /* 0xce = 11001110b */ 0, + /* 0xcf = 11001111b */ X86_EFL_PF, + /* 0xd0 = 11010000b */ 0, + /* 0xd1 = 11010001b */ X86_EFL_PF, + /* 0xd2 = 11010010b */ X86_EFL_PF, + /* 0xd3 = 11010011b */ 0, + /* 0xd4 = 11010100b */ X86_EFL_PF, + /* 0xd5 = 11010101b */ 0, + /* 0xd6 = 11010110b */ 0, + /* 0xd7 = 11010111b */ X86_EFL_PF, + /* 0xd8 = 11011000b */ X86_EFL_PF, + /* 0xd9 = 11011001b */ 0, + /* 0xda = 11011010b */ 0, + /* 0xdb = 11011011b */ X86_EFL_PF, + /* 0xdc = 11011100b */ 0, + /* 0xdd = 11011101b */ X86_EFL_PF, + /* 0xde = 11011110b */ X86_EFL_PF, + /* 0xdf = 11011111b */ 0, + /* 0xe0 = 11100000b */ 0, + /* 0xe1 = 11100001b */ X86_EFL_PF, + /* 0xe2 = 11100010b */ X86_EFL_PF, + /* 0xe3 = 11100011b */ 0, + /* 0xe4 = 11100100b */ X86_EFL_PF, + /* 0xe5 = 11100101b */ 0, + /* 0xe6 = 11100110b */ 0, + /* 0xe7 = 11100111b */ X86_EFL_PF, + /* 0xe8 = 11101000b */ X86_EFL_PF, + /* 0xe9 = 11101001b */ 0, + /* 0xea = 11101010b */ 0, + /* 0xeb = 11101011b */ X86_EFL_PF, + /* 0xec = 11101100b */ 0, + /* 0xed = 11101101b */ X86_EFL_PF, + /* 0xee = 11101110b */ X86_EFL_PF, + /* 0xef = 11101111b */ 0, + /* 0xf0 = 11110000b */ X86_EFL_PF, + /* 0xf1 = 11110001b */ 0, + /* 0xf2 = 11110010b */ 0, + /* 0xf3 = 11110011b */ X86_EFL_PF, + /* 0xf4 = 11110100b */ 0, + /* 0xf5 = 11110101b */ X86_EFL_PF, + /* 0xf6 = 11110110b */ X86_EFL_PF, + /* 0xf7 = 11110111b */ 0, + /* 0xf8 = 11111000b */ 0, + /* 0xf9 = 11111001b */ X86_EFL_PF, + /* 0xfa = 11111010b */ X86_EFL_PF, + /* 0xfb = 11111011b */ 0, + /* 0xfc = 11111100b */ X86_EFL_PF, + /* 0xfd = 11111101b */ 0, + /* 0xfe = 11111110b */ 0, + /* 0xff = 11111111b */ X86_EFL_PF, +}; + + +/** + * Calculates the signed flag value given a result and it's bit width. + * + * The signed flag (SF) is a duplication of the most significant bit in the + * result. + * + * @returns X86_EFL_SF or 0. + * @param a_uResult Unsigned result value. + * @param a_cBitsWidth The width of the result (8, 16, 32, 64). + */ +#define X86_EFL_CALC_SF(a_uResult, a_cBitsWidth) \ + ( (uint32_t)((a_uResult) >> ((a_cBitsWidth) - X86_EFL_SF_BIT)) & X86_EFL_SF ) + +/** + * Calculates the zero flag value given a result. + * + * The zero flag (ZF) indicates whether the result is zero or not. + * + * @returns X86_EFL_ZF or 0. + * @param a_uResult Unsigned result value. + */ +#define X86_EFL_CALC_ZF(a_uResult) \ + ( (uint32_t)((a_uResult) == 0) << X86_EFL_ZF_BIT ) + +/** + * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after a logical op. + * + * CF and OF are defined to be 0 by logical operations. AF on the other hand is + * undefined. We do not set AF, as that seems to make the most sense (which + * probably makes it the most wrong in real life). + * + * @returns Status bits. + * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update. + * @param a_uResult Unsigned result value. + * @param a_cBitsWidth The width of the result (8, 16, 32, 64). + * @param a_fExtra Additional bits to set. + */ +#define IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(a_pfEFlags, a_uResult, a_cBitsWidth, a_fExtra) \ + do { \ + uint32_t fEflTmp = *(a_pfEFlags); \ + fEflTmp &= ~X86_EFL_STATUS_BITS; \ + fEflTmp |= g_afParity[(a_uResult) & 0xff]; \ + fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \ + fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \ + fEflTmp |= (a_fExtra); \ + *(a_pfEFlags) = fEflTmp; \ + } while (0) + + +#ifdef RT_ARCH_X86 +/* + * There are a few 64-bit on 32-bit things we'd rather do in C. Actually, doing + * it all in C is probably safer atm., optimize what's necessary later, maybe. + */ + + +/* Binary ops */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uDst = *puDst; + uint64_t uResult = uDst + uSrc; + *puDst = uResult; + + /* Calc EFLAGS. */ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; + fEfl |= (uResult < uDst) << X86_EFL_CF_BIT; + fEfl |= g_afParity[uResult & 0xff]; + fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF; + fEfl |= X86_EFL_CALC_ZF(uResult); + fEfl |= X86_EFL_CALC_SF(uResult, 64); + fEfl |= (((uDst ^ uSrc ^ RT_BIT_64(63)) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; + *pfEFlags = fEfl; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + if (!(*pfEFlags & X86_EFL_CF)) + iemAImpl_add_u64(puDst, uSrc, pfEFlags); + else + { + uint64_t uDst = *puDst; + uint64_t uResult = uDst + uSrc + 1; + *puDst = uResult; + + /* Calc EFLAGS. */ + /** @todo verify AF and OF calculations. */ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; + fEfl |= (uResult <= uDst) << X86_EFL_CF_BIT; + fEfl |= g_afParity[uResult & 0xff]; + fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF; + fEfl |= X86_EFL_CALC_ZF(uResult); + fEfl |= X86_EFL_CALC_SF(uResult, 64); + fEfl |= (((uDst ^ uSrc ^ RT_BIT_64(63)) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; + *pfEFlags = fEfl; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uDst = *puDst; + uint64_t uResult = uDst - uSrc; + *puDst = uResult; + + /* Calc EFLAGS. */ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; + fEfl |= (uDst < uSrc) << X86_EFL_CF_BIT; + fEfl |= g_afParity[uResult & 0xff]; + fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF; + fEfl |= X86_EFL_CALC_ZF(uResult); + fEfl |= X86_EFL_CALC_SF(uResult, 64); + fEfl |= (((uDst ^ uSrc) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; + *pfEFlags = fEfl; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + if (!(*pfEFlags & X86_EFL_CF)) + iemAImpl_sub_u64(puDst, uSrc, pfEFlags); + else + { + uint64_t uDst = *puDst; + uint64_t uResult = uDst - uSrc - 1; + *puDst = uResult; + + /* Calc EFLAGS. */ + /** @todo verify AF and OF calculations. */ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; + fEfl |= (uDst <= uSrc) << X86_EFL_CF_BIT; + fEfl |= g_afParity[uResult & 0xff]; + fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF; + fEfl |= X86_EFL_CALC_ZF(uResult); + fEfl |= X86_EFL_CALC_SF(uResult, 64); + fEfl |= (((uDst ^ uSrc) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; + *pfEFlags = fEfl; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uResult = *puDst | uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uResult = *puDst ^ uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uResult = *puDst & uSrc; + *puDst = uResult; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uDstTmp = *puDst; + iemAImpl_sub_u64(&uDstTmp, uSrc, pfEFlags); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_test_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + uint64_t uResult = *puDst & uSrc; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); +} + + +/** 64-bit locked binary operand operation. */ +# define DO_LOCKED_BIN_OP_U64(a_Mnemonic) \ + do { \ + uint64_t uOld = ASMAtomicReadU64(puDst); \ + uint64_t uTmp; \ + uint32_t fEflTmp; \ + do \ + { \ + uTmp = uOld; \ + fEflTmp = *pfEFlags; \ + iemAImpl_ ## a_Mnemonic ## _u64(&uTmp, uSrc, &fEflTmp); \ + } while (ASMAtomicCmpXchgExU64(puDst, uTmp, uOld, &uOld)); \ + *pfEFlags = fEflTmp; \ + } while (0) + + +IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + DO_LOCKED_BIN_OP_U64(adc); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + DO_LOCKED_BIN_OP_U64(adc); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + DO_LOCKED_BIN_OP_U64(sub); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + DO_LOCKED_BIN_OP_U64(sbb); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + DO_LOCKED_BIN_OP_U64(or); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + DO_LOCKED_BIN_OP_U64(xor); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + DO_LOCKED_BIN_OP_U64(and); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *puDst, uint64_t *puReg, uint32_t *pfEFlags)) +{ + uint64_t uDst = *puDst; + uint64_t uResult = uDst; + iemAImpl_add_u64(&uResult, *puReg, pfEFlags); + *puDst = uResult; + *puReg = uDst; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *puDst, uint64_t *puReg, uint32_t *pfEFlags)) +{ + uint64_t uOld = ASMAtomicReadU64(puDst); + uint64_t uTmpDst; + uint32_t fEflTmp; + do + { + uTmpDst = uOld; + fEflTmp = *pfEFlags; + iemAImpl_add_u64(&uTmpDst, *puReg, pfEFlags); + } while (ASMAtomicCmpXchgExU64(puDst, uTmpDst, uOld, &uOld)); + *puReg = uOld; + *pfEFlags = fEflTmp; +} + + +/* Bit operations (same signature as above). */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an + logical operation (AND/OR/whatever). */ + Assert(uSrc < 64); + uint64_t uDst = *puDst; + if (uDst & RT_BIT_64(uSrc)) + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF); + else + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an + logical operation (AND/OR/whatever). */ + Assert(uSrc < 64); + uint64_t fMask = RT_BIT_64(uSrc); + uint64_t uDst = *puDst; + if (uDst & fMask) + { + uDst &= ~fMask; + *puDst = uDst; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF); + } + else + { + uDst |= fMask; + *puDst = uDst; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0); + } +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an + logical operation (AND/OR/whatever). */ + Assert(uSrc < 64); + uint64_t fMask = RT_BIT_64(uSrc); + uint64_t uDst = *puDst; + if (uDst & fMask) + { + uDst &= ~fMask; + *puDst = uDst; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF); + } + else + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an + logical operation (AND/OR/whatever). */ + Assert(uSrc < 64); + uint64_t fMask = RT_BIT_64(uSrc); + uint64_t uDst = *puDst; + if (uDst & fMask) + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF); + else + { + uDst |= fMask; + *puDst = uDst; + IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0); + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + DO_LOCKED_BIN_OP_U64(btc); +} -IEM_DECL_IMPL_DEF(void, iemImpl_add_u8,(uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags)) +IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { - /* incorrect sketch (testing fastcall + gcc) */ - uint8_t u8Dst = *pu8Dst; - uint8_t u8Res = u8Dst + u8Src; - *pu8Dst = u8Res; + DO_LOCKED_BIN_OP_U64(btr); +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + DO_LOCKED_BIN_OP_U64(bts); +} + + +/* bit scan */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, AF, PF, CF. */ + /** @todo check what real CPUs does. */ + if (uSrc) + { + uint8_t iBit; + uint32_t u32Src; + if (uSrc & UINT32_MAX) + { + iBit = 0; + u32Src = uSrc; + } + else + { + iBit = 32; + u32Src = uSrc >> 32; + } + if (!(u32Src & UINT16_MAX)) + { + iBit += 16; + u32Src >>= 16; + } + if (!(u32Src & UINT8_MAX)) + { + iBit += 8; + u32Src >>= 8; + } + if (!(u32Src & 0xf)) + { + iBit += 4; + u32Src >>= 4; + } + if (!(u32Src & 0x3)) + { + iBit += 2; + u32Src >>= 2; + } + if (!(u32Src & 1)) + { + iBit += 1; + Assert(u32Src & 2); + } - if (u8Res) - *pEFlags &= X86_EFL_ZF; + *puDst = iBit; + *pfEFlags &= ~X86_EFL_ZF; + } else - *pEFlags |= X86_EFL_ZF; + *pfEFlags |= X86_EFL_ZF; +} + +IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + /* Note! "undefined" flags: OF, SF, AF, PF, CF. */ + /** @todo check what real CPUs does. */ + if (uSrc) + { + uint8_t iBit; + uint32_t u32Src; + if (uSrc & UINT64_C(0xffffffff00000000)) + { + iBit = 64; + u32Src = uSrc >> 32; + } + else + { + iBit = 32; + u32Src = uSrc; + } + if (!(u32Src & UINT32_C(0xffff0000))) + { + iBit -= 16; + u32Src <<= 16; + } + if (!(u32Src & UINT32_C(0xff000000))) + { + iBit -= 8; + u32Src <<= 8; + } + if (!(u32Src & UINT32_C(0xf0000000))) + { + iBit -= 4; + u32Src <<= 4; + } + if (!(u32Src & UINT32_C(0xc0000000))) + { + iBit -= 2; + u32Src <<= 2; + } + if (!(u32Src & UINT32_C(0x10000000))) + { + iBit -= 1; + u32Src <<= 1; + Assert(u32Src & RT_BIT_64(63)); + } + + *puDst = iBit; + *pfEFlags &= ~X86_EFL_ZF; + } + else + *pfEFlags |= X86_EFL_ZF; +} + + +/* Unary operands. */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64,(uint64_t *puDst, uint32_t *pfEFlags)) +{ + uint64_t uDst = *puDst; + uint64_t uResult = uDst + 1; + *puDst = uResult; + + /* + * Calc EFLAGS. + * CF is NOT modified for hysterical raisins (allegedly for carrying and + * borrowing in arithmetic loops on intel 8008). + */ + uint32_t fEfl = *pfEFlags & ~(X86_EFL_STATUS_BITS & ~X86_EFL_CF); + fEfl |= g_afParity[uResult & 0xff]; + fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF; + fEfl |= X86_EFL_CALC_ZF(uResult); + fEfl |= X86_EFL_CALC_SF(uResult, 64); + fEfl |= (((uDst ^ RT_BIT_64(63)) & uResult) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; + *pfEFlags = fEfl; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64,(uint64_t *puDst, uint32_t *pfEFlags)) +{ + uint64_t uDst = *puDst; + uint64_t uResult = uDst - 1; + *puDst = uResult; + + /* + * Calc EFLAGS. + * CF is NOT modified for hysterical raisins (allegedly for carrying and + * borrowing in arithmetic loops on intel 8008). + */ + uint32_t fEfl = *pfEFlags & ~(X86_EFL_STATUS_BITS & ~X86_EFL_CF); + fEfl |= g_afParity[uResult & 0xff]; + fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF; + fEfl |= X86_EFL_CALC_ZF(uResult); + fEfl |= X86_EFL_CALC_SF(uResult, 64); + fEfl |= ((uDst & (uResult ^ RT_BIT_64(63))) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; + *pfEFlags = fEfl; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64,(uint64_t *puDst, uint32_t *pfEFlags)) +{ + uint64_t uDst = *puDst; + uint64_t uResult = ~uDst; + *puDst = uResult; + /* EFLAGS are not modified. */ +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64,(uint64_t *puDst, uint32_t *pfEFlags)) +{ + uint64_t uDst = 0; + uint64_t uSrc = *puDst; + uint64_t uResult = uDst - uSrc; + *puDst = uResult; + + /* Calc EFLAGS. */ + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; + fEfl |= (uSrc != 0) << X86_EFL_CF_BIT; + fEfl |= g_afParity[uResult & 0xff]; + fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF; + fEfl |= X86_EFL_CALC_ZF(uResult); + fEfl |= X86_EFL_CALC_SF(uResult, 64); + fEfl |= ((uSrc & uResult) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; + *pfEFlags = fEfl; +} + + +/** 64-bit locked unary operand operation. */ +# define DO_LOCKED_UNARY_OP_U64(a_Mnemonic) \ + do { \ + uint64_t uOld = ASMAtomicReadU64(puDst); \ + uint64_t uTmp; \ + uint32_t fEflTmp; \ + do \ + { \ + uTmp = uOld; \ + fEflTmp = *pfEFlags; \ + iemAImpl_ ## a_Mnemonic ## _u64(&uTmp, &fEflTmp); \ + } while (ASMAtomicCmpXchgExU64(puDst, uTmp, uOld, &uOld)); \ + *pfEFlags = fEflTmp; \ + } while (0) + +IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags)) +{ + DO_LOCKED_UNARY_OP_U64(inc); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags)) +{ + DO_LOCKED_UNARY_OP_U64(dec); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags)) +{ + DO_LOCKED_UNARY_OP_U64(not); +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags)) +{ + DO_LOCKED_UNARY_OP_U64(neg); +} + + +/* Shift and rotate. */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_rol_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) +{ + cShift &= 63; + if (cShift) + { + uint64_t uDst = *puDst; + uint64_t uResult; + uResult = uDst << cShift; + uResult |= uDst >> (64 - cShift); + *puDst = uResult; + + /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement + it the same way as for 1 bit shifts. */ + AssertCompile(X86_EFL_CF_BIT == 0); + uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF); + uint32_t fCarry = (uResult & 1); + fEfl |= fCarry; + fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT; + *pfEFlags = fEfl; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_ror_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) +{ + cShift &= 63; + if (cShift) + { + uint64_t uDst = *puDst; + uint64_t uResult; + uResult = uDst >> cShift; + uResult |= uDst << (64 - cShift); + *puDst = uResult; + + /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement + it the same way as for 1 bit shifts (OF = OF XOR New-CF). */ + AssertCompile(X86_EFL_CF_BIT == 0); + uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF); + uint32_t fCarry = (uResult >> 63) & X86_EFL_CF; + fEfl |= fCarry; + fEfl |= (((uResult >> 62) ^ fCarry) << X86_EFL_OF_BIT) & X86_EFL_OF; + *pfEFlags = fEfl; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_rcl_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) +{ + cShift &= 63; + if (cShift) + { + uint32_t fEfl = *pfEFlags; + uint64_t uDst = *puDst; + uint64_t uResult; + uResult = uDst << cShift; + AssertCompile(X86_EFL_CF_BIT == 0); + if (cShift > 1) + uResult |= uDst >> (65 - cShift); + uResult |= (uint64_t)(fEfl & X86_EFL_CF) << (cShift - 1); + *puDst = uResult; + + /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement + it the same way as for 1 bit shifts. */ + uint32_t fCarry = (uDst >> (64 - cShift)) & X86_EFL_CF; + fEfl &= ~(X86_EFL_CF | X86_EFL_OF); + fEfl |= fCarry; + fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT; + *pfEFlags = fEfl; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_rcr_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) +{ + cShift &= 63; + if (cShift) + { + uint32_t fEfl = *pfEFlags; + uint64_t uDst = *puDst; + uint64_t uResult; + uResult = uDst >> cShift; + AssertCompile(X86_EFL_CF_BIT == 0); + if (cShift > 1) + uResult |= uDst << (65 - cShift); + uResult |= (uint64_t)(fEfl & X86_EFL_CF) << (64 - cShift); + *puDst = uResult; + + /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement + it the same way as for 1 bit shifts. */ + uint32_t fCarry = (uDst >> (cShift - 1)) & X86_EFL_CF; + fEfl &= ~(X86_EFL_CF | X86_EFL_OF); + fEfl |= fCarry; + fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT; + *pfEFlags = fEfl; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_shl_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) +{ + cShift &= 63; + if (cShift) + { + uint64_t uDst = *puDst; + uint64_t uResult = uDst << cShift; + *puDst = uResult; + + /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement + it the same way as for 1 bit shifts. The AF bit is undefined, we + always set it to zero atm. */ + AssertCompile(X86_EFL_CF_BIT == 0); + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; + uint32_t fCarry = (uDst >> (64 - cShift)) & X86_EFL_CF; + fEfl |= fCarry; + fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT; + fEfl |= X86_EFL_CALC_SF(uResult, 64); + fEfl |= X86_EFL_CALC_ZF(uResult); + fEfl |= g_afParity[uResult & 0xff]; + *pfEFlags = fEfl; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_shr_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) +{ + cShift &= 63; + if (cShift) + { + uint64_t uDst = *puDst; + uint64_t uResult = uDst >> cShift; + *puDst = uResult; + + /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement + it the same way as for 1 bit shifts. The AF bit is undefined, we + always set it to zero atm. */ + AssertCompile(X86_EFL_CF_BIT == 0); + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; + fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; + fEfl |= (uDst >> 63) << X86_EFL_OF_BIT; + fEfl |= X86_EFL_CALC_SF(uResult, 64); + fEfl |= X86_EFL_CALC_ZF(uResult); + fEfl |= g_afParity[uResult & 0xff]; + *pfEFlags = fEfl; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_sar_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) +{ + cShift &= 63; + if (cShift) + { + uint64_t uDst = *puDst; + uint64_t uResult = (int64_t)uDst >> cShift; + *puDst = uResult; + + /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement + it the same way as for 1 bit shifts (0). The AF bit is undefined, + we always set it to zero atm. */ + AssertCompile(X86_EFL_CF_BIT == 0); + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; + fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; + fEfl |= X86_EFL_CALC_SF(uResult, 64); + fEfl |= X86_EFL_CALC_ZF(uResult); + fEfl |= g_afParity[uResult & 0xff]; + *pfEFlags = fEfl; + } +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_shld_u64,(uint64_t *puDst, uint64_t uSrc, uint8_t cShift, uint32_t *pfEFlags)) +{ + cShift &= 63; + if (cShift) + { + uint64_t uDst = *puDst; + uint64_t uResult; + uResult = uDst << cShift; + uResult |= uSrc >> (64 - cShift); + *puDst = uResult; + + /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement + it the same way as for 1 bit shifts. The AF bit is undefined, + we always set it to zero atm. */ + AssertCompile(X86_EFL_CF_BIT == 0); + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; + fEfl |= (uDst >> (64 - cShift)) & X86_EFL_CF; + fEfl |= (uint32_t)((uDst >> 63) ^ (uint32_t)(uResult >> 63)) << X86_EFL_OF_BIT; + fEfl |= X86_EFL_CALC_SF(uResult, 64); + fEfl |= X86_EFL_CALC_ZF(uResult); + fEfl |= g_afParity[uResult & 0xff]; + *pfEFlags = fEfl; + } } -IEM_DECL_IMPL_DEF(void, iemImpl_add_u8_locked,(uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags)) + +IEM_DECL_IMPL_DEF(void, iemAImpl_shrd_u64,(uint64_t *puDst, uint64_t uSrc, uint8_t cShift, uint32_t *pfEFlags)) { - iemImpl_add_u8(pu8Dst, u8Src, pEFlags); + cShift &= 63; + if (cShift) + { + uint64_t uDst = *puDst; + uint64_t uResult; + uResult = uDst >> cShift; + uResult |= uSrc << (64 - cShift); + *puDst = uResult; + + /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement + it the same way as for 1 bit shifts. The AF bit is undefined, + we always set it to zero atm. */ + AssertCompile(X86_EFL_CF_BIT == 0); + uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; + fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; + fEfl |= (uint32_t)((uDst >> 63) ^ (uint32_t)(uResult >> 63)) << X86_EFL_OF_BIT; + fEfl |= X86_EFL_CALC_SF(uResult, 64); + fEfl |= X86_EFL_CALC_ZF(uResult); + fEfl |= g_afParity[uResult & 0xff]; + *pfEFlags = fEfl; + } } -#endif +/* misc */ + +IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64,(uint64_t *puMem, uint64_t *puReg)) +{ + /* XCHG implies LOCK. */ + uint64_t uOldMem = *puMem; + while (!ASMAtomicCmpXchgExU64(puMem, *puReg, uOldMem, &uOldMem)) + ASMNopPause(); + *puReg = uOldMem; +} + + +/* multiplication and division */ + +IEM_DECL_IMPL_DEF(int, iemAImpl_mul_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Factor, uint32_t *pfEFlags)) +{ + AssertFailed(); + return -1; +} + + +IEM_DECL_IMPL_DEF(int, iemAImpl_imul_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Factor, uint32_t *pfEFlags)) +{ + AssertFailed(); + return -1; +} + + +IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) +{ + AssertFailed(); +} + + + +IEM_DECL_IMPL_DEF(int, iemAImpl_div_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Divisor, uint32_t *pfEFlags)) +{ + AssertFailed(); + return -1; +} + + +IEM_DECL_IMPL_DEF(int, iemAImpl_idiv_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Divisor, uint32_t *pfEFlags)) +{ + AssertFailed(); + return -1; +} + + +#endif /* RT_ARCH_X86 */ + + +IEM_DECL_IMPL_DEF(void, iemAImpl_arpl,(uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pfEFlags)) +{ + if ((*pu16Dst & X86_SEL_RPL) < (u16Src & X86_SEL_RPL)) + { + *pu16Dst &= X86_SEL_MASK_OFF_RPL; + *pu16Dst |= u16Src & X86_SEL_RPL; + + *pfEFlags |= X86_EFL_ZF; + } + else + *pfEFlags &= ~X86_EFL_ZF; +} |
