1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
// $Id$
// ============================================================================
//
// = LIBRARY
// tests
//
// = FILENAME
// Message_Block_Test.cpp
//
// = DESCRIPTION
// This test program is a torture test that illustrates how
// ACE_Message_Block reference counting works in multi-threaded
// code.
//
// = AUTHOR
// Doug Schmidt and Nanbor Wang
//
// ============================================================================
#include "test_config.h"
#include "ace/Task.h"
#include "ace/Service_Config.h"
#include "ace/Malloc.h"
#include "ace/Profile_Timer.h"
#include "ace/Free_List.h"
// Number of memory allocation strategies used in this test.
static const int ACE_ALLOC_STRATEGY_NO = 2;
// Size of a memory block (multiple of ACE_MALLOC_ALIGN)
static const int ACE_ALLOC_SIZE = 5;
// Amount of memory block preallocated
static const size_t ACE_ALLOC_AMOUNT = 48;
#if defined (ACE_HAS_THREADS)
// Number of iterations to run the test.
static size_t n_iterations = ACE_MAX_ITERATIONS;
static ACE_Lock_Adapter<ACE_SYNCH_MUTEX> lock_adapter_;
// Serialize access to <ACE_Message_Block> reference count, which will
// be decremented from multiple threads.
class Worker_Task : public ACE_Task<ACE_MT_SYNCH>
{
public:
Worker_Task (void);
// Activate the task.
virtual int svc (void);
// Iterate <n_iterations> time printing off a message and "waiting"
// for all other threads to complete this iteration.
virtual int put (ACE_Message_Block *mb, ACE_Time_Value *tv = 0);
// Allows the producer to pass messages to the <Message_Block>.
private:
virtual int close (u_long);
// Close hook.
};
int
Worker_Task::close (u_long)
{
ACE_DEBUG ((LM_DEBUG, "(%t) close of worker\n"));
return 0;
}
// Simply enqueue the Worker_Task into the end of the queue.
int
Worker_Task::put (ACE_Message_Block *mb, ACE_Time_Value *tv)
{
return this->msg_queue ()->enqueue_prio (mb, tv);
}
// Iterate <n_iterations> printing off a message and "waiting" for all
// other threads to complete this iteration.
int
Worker_Task::svc (void)
{
ACE_NEW_THREAD;
// The <ACE_Task::svc_run()> method automatically adds us to the
// <ACE_Service_Config>'s <ACE_Thread_Manager> when the thread
// begins.
ACE_DEBUG ((LM_DEBUG, "(%t) starting svc() method\n"));
// Keep looping, reading a message out of the queue, until we get a
// message with a length == 0, which signals us to quit.
for (int count = 0; ; count++)
{
ACE_Message_Block *mb;
ACE_ASSERT (this->msg_queue ()->dequeue_head (mb) != -1);
int length = mb->length ();
// If there's a next() Task then "logically" copy the message by
// calling <duplicate> and send it on down the pipeline. Note
// that this doesn't actually make a copy of the message
// contents (i.e., the Data_Block portion), it just makes a copy
// of the header and reference counts the data.
if (this->next () != 0)
ACE_ASSERT (this->put_next (mb->duplicate ()) != -1);
// If there's no next() Task to send to, then we'll consume the
// message here.
else if (length > 0)
{
int current_count = ACE_OS::atoi (mb->rd_ptr ());
int i;
ACE_ASSERT (count == current_count);
ACE_DEBUG ((LM_DEBUG, "(%t) enqueueing %d duplicates\n",
current_count));
ACE_Message_Block *dup;
// Enqueue <current_count> duplicates with msg_priority == 1.
for (i = current_count; i > 0; i--)
{
ACE_ALLOCATOR_RETURN (dup, mb->duplicate (), -1);
// Set the priority to be greater than "normal"
// messages. Therefore, all of these messages should go
// to the "front" of the queue, i.e., ahead of all the
// other messages that are being enqueued by other
// threads.
dup->msg_priority (1);
ACE_ASSERT (this->msg_queue ()->enqueue_prio
(dup,
// Don't block indefinitely if we flow control...
(ACE_Time_Value *) &ACE_Time_Value::zero) != -1);
}
ACE_DEBUG ((LM_DEBUG, "(%t) dequeueing %d duplicates\n",
current_count));
// Dequeue the same <current_count> duplicates.
for (i = current_count; i > 0; i--)
{
ACE_ASSERT (this->msg_queue ()->dequeue_head (dup) != -1);
ACE_ASSERT (count == ACE_OS::atoi (dup->rd_ptr ()));
ACE_ASSERT (ACE_OS::strcmp (mb->rd_ptr (), dup->rd_ptr ()) == 0);
ACE_ASSERT (dup->msg_priority () == 1);
dup->release ();
}
ACE_DEBUG ((LM_DEBUG,
"(%t) in iteration %d, length = %d, prio = %d, text = \"%*s\"\n",
count,
length,
mb->msg_priority (),
length - 2, // remove the trailing "\n\0"
mb->rd_ptr ()));
}
// We're responsible for deallocating this.
mb->release ();
if (length == 0)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) in iteration %d, queue len = %d, got NULL message, exiting\n",
count, this->msg_queue ()->message_count ()));
break;
}
}
// Note that the ACE_Task::svc_run () method automatically removes
// us from the Thread_Manager when the thread exits.
return 0;
}
Worker_Task::Worker_Task (void)
{
// Make us an Active Object.
if (this->activate (THR_NEW_LWP) == -1)
ACE_ERROR ((LM_ERROR, "%p\n", "activate failed"));
}
static int
produce (Worker_Task &worker_task,
ACE_Allocator *alloc_strategy)
{
ACE_Message_Block *mb;
// Send <n_iteration> messages through the pipeline.
for (size_t count = 0; count < n_iterations; count++)
{
char buf[BUFSIZ];
ACE_OS::sprintf (buf, "%d\n", count);
int n = ACE_OS::strlen (buf) + 1;
// Allocate a new message.
ACE_NEW_RETURN (mb,
ACE_Message_Block (n, // size
ACE_Message_Block::MB_DATA, // type
0, // cont
0, // data
alloc_strategy, // allocator
&lock_adapter_, // locking strategy
0), // priority
-1);
// Copy buf into the Message_Block and update the wr_ptr ().
mb->copy (buf, n);
// Pass the message to the Worker_Task.
if (worker_task.put (mb,
// Don't block indefinitely if we flow control...
(ACE_Time_Value *) &ACE_Time_Value::zero) == -1)
ACE_ERROR ((LM_ERROR, " (%t) %p\n", "put"));
}
// Send a shutdown message to the waiting threads and exit.
ACE_DEBUG ((LM_DEBUG,
"\n(%t) sending shutdown message\n"));
ACE_NEW_RETURN (mb,
ACE_Message_Block (0, ACE_Message_Block::MB_DATA,
0, 0, alloc_strategy, &lock_adapter_),
-1);
if (worker_task.put (mb) == -1)
ACE_ERROR ((LM_ERROR, " (%t) %p\n", "put"));
ACE_DEBUG ((LM_DEBUG, "\n(%t) end producer\n"));
return 0;
}
typedef char MEMORY_CHUNK[ACE_MALLOC_ALIGN * ACE_ALLOC_SIZE];
ACE_Cached_Allocator<MEMORY_CHUNK,
ACE_SYNCH_MUTEX>
mem_allocator (ACE_ALLOC_AMOUNT);
struct
{
ACE_Allocator *strategy_;
char *name_;
ACE_Profile_Timer::ACE_Elapsed_Time et_;
} alloc_struct[ACE_ALLOC_STRATEGY_NO] =
{
{ NULL, "Default" },
{ &mem_allocator, "Cached Memory" }
};
#if defined (ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION)
template class ACE_Cached_Allocator<MEMORY_CHUNK, ACE_SYNCH_MUTEX>;
template class ACE_Cached_Mem_Pool_Node<MEMORY_CHUNK>;
template class ACE_Locked_Free_List<ACE_Cached_Mem_Pool_Node<MEMORY_CHUNK>, ACE_SYNCH_MUTEX>;
template class ACE_Free_List<ACE_Cached_Mem_Pool_Node<MEMORY_CHUNK> >;
template class ACE_Lock_Adapter<ACE_SYNCH_MUTEX>;
template class ACE_Message_Queue_Iterator<ACE_NULL_SYNCH>;
template class ACE_Message_Queue_Reverse_Iterator<ACE_NULL_SYNCH>;
#elif defined (ACE_HAS_TEMPLATE_INSTANTIATION_PRAGMA)
#pragma instantiate ACE_Cached_Allocator<MEMORY_CHUNK, ACE_SYNCH_MUTEX>
#pragma instantiate ACE_Cached_Mem_Pool_Node<MEMORY_CHUNK>
#pragma instantiate ACE_Locked_Free_List<ACE_Cached_Mem_Pool_Node<MEMORY_CHUNK>, ACE_SYNCH_MUTEX>
#pragma instantiate ACE_Free_List<ACE_Cached_Mem_Pool_Node<MEMORY_CHUNK> >
#pragma instantiate ACE_Lock_Adapter<ACE_SYNCH_MUTEX>
#pragma instantiate ACE_Message_Queue_Iterator<ACE_NULL_SYNCH>
#pragma instantiate ACE_Message_Queue_Reverse_Iterator<ACE_NULL_SYNCH>
#endif /* ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION */
#endif /* ACE_HAS_THREADS */
int
main (int, char *[])
{
ACE_START_TEST ("Message_Block_Test");
#if defined (ACE_HAS_THREADS)
int n_threads = ACE_MAX_THREADS;
ACE_DEBUG ((LM_DEBUG, "(%t) threads = %d\n", n_threads));
ACE_Profile_Timer ptime;
int i;
for (i = 0; i < ACE_ALLOC_STRATEGY_NO; i++)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) Start Message_Block_Test using %s allocation strategy\n",
alloc_struct[i].name_));
// Create the worker tasks.
Worker_Task worker_task[ACE_MAX_THREADS] ;
// Link all the tasks together into a simple pipeline.
for (int j = 1; j < ACE_MAX_THREADS; j++)
worker_task[j - 1].next (&worker_task[j]);
ptime.start ();
// Generate messages and pass them through the pipeline.
produce (worker_task[0], alloc_struct[i].strategy_);
// Wait for all the threads to reach their exit point.
ACE_DEBUG ((LM_DEBUG,
"(%t) waiting for worker tasks to finish...\n"));
ACE_Thread_Manager::instance ()->wait ();
ptime.stop ();
ptime.elapsed_time (alloc_struct[i].et_);
ACE_DEBUG ((LM_DEBUG,
"(%t) destroying worker tasks\n"));
}
for (i = 0; i < ACE_ALLOC_STRATEGY_NO; i++)
ACE_DEBUG ((LM_DEBUG,
"Elapsed time using %s allocation strategy: %f sec\n",
alloc_struct[i].name_, alloc_struct[i].et_.real_time));
ACE_DEBUG ((LM_DEBUG, "(%t) Exiting...\n"));
#else
ACE_ERROR ((LM_ERROR, "threads not supported on this platform\n"));
#endif /* ACE_HAS_THREADS */
ACE_END_TEST;
return 0;
}
|