summaryrefslogtreecommitdiff
path: root/runtime/doc/quickfix.txt
blob: ee61f6a26b05176727c8c21354ef70187111711b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
*quickfix.txt*  For Vim version 7.0aa.  Last change: 2005 Feb 06


		  VIM REFERENCE MANUAL    by Bram Moolenaar


This subject is introduced in section |30.1| of the user manual.

1. Using QuickFix commands		|quickfix|
2. The error window			|quickfix-window|
3. Using more than one list of errors	|quickfix-error-lists|
4. Using :make				|:make_makeprg|
5. Using :grep				|grep|
6. Selecting a compiler			|compiler-select|
7. The error format			|error-file-format|
8. The directory stack			|quickfix-directory-stack|
9. Specific error file formats		|errorformats|

{Vi does not have any of these commands}

The quickfix commands are not available when the |+quickfix| feature was
disabled at compile time.

=============================================================================
1. Using QuickFix commands			*quickfix* *Quickfix* *E42*

Vim has a special mode to speedup the edit-compile-edit cycle.  This is
inspired by the quickfix option of the Manx's Aztec C compiler on the Amiga.
The idea is to save the error messages from the compiler in a file and use Vim
to jump to the errors one by one.  You can examine each problem and fix it,
without having to remember all the error messages.

If you are using Manx's Aztec C compiler on the Amiga look here for how to use
it with Vim: |quickfix-manx|.  If you are using another compiler you should
save the error messages in a file and start Vim with "vim -q filename".  An
easy way to do this is with the |:make| command (see below).  The
'errorformat' option should be set to match the error messages from your
compiler (see |errorformat| below).

The following quickfix commands can be used:

							*:cc*
:cc[!] [nr]		Display error [nr].  If [nr] is omitted, the same
			error is displayed again.  Without [!] this doesn't
			work when jumping to another buffer, the current buffer
			has been changed, there is the only window for the
			buffer and both 'hidden' and 'autowrite' are off.
			When jumping to another buffer with [!] any changes to
			the current buffer are lost, unless 'hidden' is set or
			there is another window for this buffer.
			The 'switchbuf' settings are respected when jumping
			to a buffer.

							*:cn* *:cnext* *E553*
:[count]cn[ext][!]	Display the [count] next error in the list that
			includes a file name.  If there are no file names at
			all, go to the [count] next error.  See |:cc| for
			[!] and 'switchbuf'.

:[count]cN[ext][!]			*:cp* *:cprevious* *:cN* *:cNext*
:[count]cp[revious][!]	Display the [count] previous error in the list that
			includes a file name.  If there are no file names at
			all, go to the [count] previous error.  See |:cc| for
			[!] and 'switchbuf'.

							*:cnf* *:cnfile*
:[count]cnf[ile][!]	Display the first error in the [count] next file in
			the list that includes a file name.  If there are no
			file names at all or if there is no next file, go to
			the [count] next error.  See |:cc| for [!] and
			'switchbuf'.

:[count]cNf[ile][!]			*:cpf* *:cpfile* *:cNf* *:cNfile*
:[count]cpf[ile][!]	Display the last error in the [count] previous file in
			the list that includes a file name.  If there are no
			file names at all or if there is no next file, go to
			the [count] previous error.  See |:cc| for [!] and
			'switchbuf'.

							*:crewind* *:cr*
:cr[ewind][!] [nr]	Display error [nr].  If [nr] is omitted, the FIRST
			error is displayed.  See |:cc|.

							*:cfirst* *:cfir*
:cfir[st][!] [nr]	Same as ":crewind".

							*:clast* *:cla*
:cla[st][!] [nr]	Display error [nr].  If [nr] is omitted, the LAST
			error is displayed.  See |:cc|.

							*:cq* *:cquit*
:cq[uit]		Quit Vim with an error code, so that the compiler
			will not compile the same file again.

							*:cf* *:cfile*
:cf[ile][!] [errorfile]	Read the error file and jump to the first error.
			This is done automatically when Vim is started with
			the -q option.  You can use this command when you
			keep Vim running while compiling.  If you give the
			name of the errorfile, the 'errorfile' option will
			be set to [errorfile].  See |:cc| for [!].

							*:cg* *:cgetfile*
:cg[etfile][!] [errorfile]
			Read the error file.  Just like ":cfile" but don't
			jump to the first error.

						*:cb* *:cbuffer* *E681*
:cb[uffer] [bufnr]	Read the error list from the current buffer.
			When [bufnr] is given it must be the number of a
			loaded buffer.  That buffer will then be used instead
			of the current buffer.
			A range can be specified for the lines to be used.
			Otherwise all lines in the buffer are used.

							*:cl* *:clist*
:cl[ist] [from] [, [to]]
			List all errors that are valid |quickfix-valid|.
			If numbers [from] and/or [to] are given, the respective
			range of errors is listed. A negative number counts
			from the last error backwards, -1 being the last error.
			The 'switchbuf' settings are respected when jumping
			to a buffer.

:cl[ist]! [from] [, [to]]
			List all errors.

If you insert or delete lines, mostly the correct error location is still
found because hidden marks are used.  Sometimes, when the mark has been
deleted for some reason, the message "line changed" is shown to warn you that
the error location may not be correct.  If you quit Vim and start again the
marks are lost and the error locations may not be correct anymore.

If vim is built with |+autocmd| support, two autocommands are available for
running commands before and after a quickfix command (':make', ':grep' and so
on) is executed. See |QuickFixCmdPre| and |QuickFixCmdPost| for details.

=============================================================================
2. The error window					*quickfix-window*

							*:cope* *:copen*
:cope[n] [height]	Open a window to show the current list of errors.
			When [height] is given, the window becomes that high
			(if there is room).  Otherwise the window is made ten
			lines high.
			The window will contain a special buffer, with
			'buftype' equal to "quickfix".  Don't change this!
			If there already is a quickfix window, it will be made
			the current window.  It is not possible to open a
			second quickfix window.

							*:ccl* *:cclose*
:ccl[ose]		Close the quickfix window.

							*:cw* *:cwindow*
:cw[indow] [height]	Open the quickfix window when there are recognized
			errors.  If the window is already open and there are
			no recognized errors, close the window.


Normally the quickfix window is at the bottom of the screen.  If there are
vertical splits, it's at the bottom of the rightmost column of windows.  To
make it always occupy the full width: >
	:botright cwindow
You can move the window around with |window-moving| commands.
For example, to move it to the top: CTRL-W K
The 'winfixheight' option will be set, which means that the window will mostly
keep its height, ignoring 'winheight' and 'equalalways'.  You can change the
height manually (e.g., by dragging the status line above it with the mouse).

In the quickfix window, each line is one error.  The line number is equal to
the error number.  You can use ":.cc" to jump to the error under the cursor.
Hitting the <CR> key or double-clicking the mouse on a line has the same
effect.  The file containing the error is opened in the window above the
quickfix window.  If there already is a window for that file, it is used
instead.  If the buffer in the used window has changed, and the error is in
another file, jumping to the error will fail.  You will first have to make
sure the window contains a buffer which can be abandoned.

When the quickfix window has been filled, two autocommand events are
triggered.  First the 'filetype' option is set to "qf", which triggers the
FileType event.  Then the BufReadPost event is triggered.  This can be used to
perform some action on the listed errors.  Example: >
	au BufReadPost quickfix  setlocal nomodifiable
		\ | silent g/^/s//\=line(".")." "/
		\ | setlocal modifiable
This prepends the line number to each line.  Note the use of "\=" in the
substitute string of the ":s" command, which is used to evaluate an
expression.

Note: Making changes in the quickfix window has no effect on the list of
errors.  'modifiable' is off to avoid making changes.  If you delete or insert
lines anyway, the relation between the text and the error number is messed up.
If you really want to do this, you could write the contents of the quickfix
window to a file and use ":cfile" to have it parsed and used as the new error
list.

=============================================================================
3. Using more than one list of errors			*quickfix-error-lists*

So far has been assumed that there is only one list of errors.  Actually the
ten last used lists are remembered.  When starting a new list, the previous
ones are automatically kept.  Two commands can be used to access older error
lists.  They set one of the existing error lists as the current one.

						*:colder* *:col* *E380*
:col[der] [count]	Go to older error list.  When [count] is given, do
			this [count] times.  When already at the oldest error
			list, an error message is given.

						*:cnewer* *:cnew* *E381*
:cnew[er] [count]	Go to newer error list.  When [count] is given, do
			this [count] times.  When already at the newest error
			list, an error message is given.

When adding a new error list, it becomes the current list.

When ":colder" has been used and ":make" or ":grep" is used to add a new error
list, one newer list is overwritten.  This is especially useful if you are
browsing with ":grep" |grep|.  If you want to keep the more recent error
lists, use ":cnewer 99" first.

=============================================================================
4. Using :make						*:make_makeprg*

							*:mak* *:make*
:mak[e][!] [arguments]	1. If vim was built with |+autocmd|, all relevant
			   |QuickFixCmdPre| autocommands are executed.
			2. If the 'autowrite' option is on, write any changed
			   buffers
			3. An errorfile name is made from 'makeef'.  If
			   'makeef' doesn't contain "##", and a file with this
			   name already exists, it is deleted.
			4. The program given with the 'makeprg' option is
			   started (default "make") with the optional
			   [arguments] and the output is saved in the
			   errorfile (for Unix it is also echoed on the
			   screen).
			5. The errorfile is read using 'errorformat'.
			6. If [!] is not given the first error is jumped to.
			7. The errorfile is deleted.
			8. If vim was built with |+autocmd|, all relevant
			   |QuickFixCmdPost| autocommands are executed.
			9. You can now move through the errors with commands
			   like |:cnext| and |:cprevious|, see above.
			This command does not accept a comment, any "
			characters are considered part of the arguments.

The ":make" command executes the command given with the 'makeprg' option.
This is done by passing the command to the shell given with the 'shell'
option.  This works almost like typing

	":!{makeprg} [arguments] {shellpipe} {errorfile}".

{makeprg} is the string given with the 'makeprg' option.  Any command can be
used, not just "make".  Characters '%' and '#' are expanded as usual on a
command-line.  You can use "%<" to insert the current file name without
extension, or "#<" to insert the alternate file name without extension, for
example: >
   :set makeprg=make\ #<.o

[arguments] is anything that is typed after ":make".
{shellpipe} is the 'shellpipe' option.
{errorfile} is the 'makeef' option, with ## replaced to make it unique.

The placeholder "$*" can be used for the argument list in {makeprog} if the
command needs some additional characters after its arguments.  The $* is
replaced then by all arguments.  Example: >
   :set makeprg=latex\ \\\\nonstopmode\ \\\\input\\{$*}
or simpler >
   :let &mp = 'latex \\nonstopmode \\input\{$*}'
"$*" can be given multiple times, for example: >
   :set makeprg=gcc\ -o\ $*\ $*

The 'shellpipe' option defaults to ">" for the Amiga, MS-DOS and Win32.  This
means that the output of the compiler is saved in a file and not shown on the
screen directly.  For Unix "| tee" is used.  The compiler output is shown on
the screen and saved in a file the same time.  Depending on the shell used
"|& tee" or "2>&1| tee" is the default, so stderr output will be included.

If 'shellpipe' is empty, the {errorfile} part will be omitted.  This is useful
for compilers that write to an errorfile themselves (e.g., Manx's Amiga C).

==============================================================================
5. Using :vimgrep and :grep				*grep* *lid*

Vim has two ways to find matches for a pattern: Internal and external.  The
advantage of the internal grep is that it works on all systems and uses the
powerful Vim search patterns.  An external grep program can be used when the
Vim grep does not do what you want.

The internal method will be slower, because files are read into memory.  The
advantages are:
- Line separators and encoding are automatically recognized, as if a file is
  being edited.
- Uses Vim search patterns.  Multi-line patterns can be used.
- When plugins are enabled: compressed and remote files can be searched.
	|gzip| |netrw|
- When 'hidden' is set the files are kept loaded, thus repeating a search is
  much faster.  Uses a lot of memory though!


5.1 using Vim's internal grep

					*:vim* *:vimgrep* *E682* *E683*
:vim[grep][!] /{pattern}/ {file} ...
			Search for {pattern} in the files {file} ... and set
			the error list to the matches.
			{pattern} if a Vim search pattern.  Instead of
			enclosing it in / any non-ID character |'isident'|
			can be used, so long as it does not appear in
			{pattern}.
			'ignorecase' applies.  To overrule it use |/\c| to
			ignore case or |/\C| to match case.  'smartcase' is
			not used.
			Every second or so the searched file name is displayed
			to give you an idea of the progress made.
			Examples: >
				:vimgrep /an error/ *.c
				:vimgrep /\<FileName\>/ *.h include/*

:vim[grep][!] {pattern} {file} ...
			Like above, but instead of enclosing the pattern in a
			non-ID character use a white-separated pattern.  The
			pattern must start with an ID character.
			Example: >
				:vimgrep Error *.c
<
						*:vimgrepa* *:vimgrepadd*
:vimgrepa[dd][!] [/]{pattern}[/] {file} ...
			Just like ":vimgrep", but instead of making a new list
			of errors the matches are appended to the current
			list.


5.2 External grep

Vim can interface with "grep" and grep-like programs (such as the GNU
id-utils) in a similar way to its compiler integration (see |:make| above).

[Unix trivia: The name for the Unix "grep" command comes from ":g/re/p", where
"re" stands for Regular Expression.]

							    *:gr* *:grep*
:gr[ep][!] [arguments]	Just like ":make", but use 'grepprg' instead of
			'makeprg' and 'grepformat' instead of 'errorformat'.
			When 'grepprg' is "internal" this works like
			|:vimgrep|.  Note that the pattern needs to be
			enclosed in separator characters then.
							*:grepa* *:grepadd*
:grepa[dd][!] [arguments]
			Just like ":grep", but instead of making a new list of
			errors the matches are appended to the current list.
			Example: >
				:grep nothing %
				:bufdo grepadd! something %
<			The first command makes a new error list which is
			empty.  The second command executes "grepadd" for each
			listed buffer.  Note the use of ! to avoid that
			":grepadd" jumps to the first error, which is not
			allowed with |:bufdo|.

5.3 Setting up external grep

If you have a standard "grep" program installed, the :grep command may work
well with the defaults. The syntax is very similar to the standard command: >

	:grep foo *.c

Will search all files with the .c extension for the substring "foo". The
arguments to :grep are passed straight to the "grep" program, so you can use
whatever options your "grep" supports.

By default, :grep invokes grep with the -n option (show file and line
numbers). You can change this with the 'grepprg' option. You will need to set
'grepprg' if:

a)	You are using a program that isn't called "grep"
b)	You have to call grep with a full path
c)	You want to pass other options automatically (e.g. case insensitive
	search.)

Once "grep" has executed, Vim parses the results using the 'grepformat'
option.  This option works in the same way as the 'errorformat' option - see
that for details.  You may need to change 'grepformat' from the default if
your grep outputs in a non-standard format, or you are using some other
program with a special format.

Once the results are parsed, Vim loads the first file containing a match and
jumps to the appropriate line, in the same way that it jumps to a compiler
error in |quickfix| mode.  You can then use the |:cnext|, |:clist|, etc.
commands to see the other matches.


5.4 Using :grep with id-utils

You can set up :grep to work with the GNU id-utils like this: >

	:set grepprg=lid\ -Rgrep\ -s
	:set grepformat=%f:%l:%m

then >
	:grep (regexp)

works just as you'd expect.
(provided you remembered to mkid first :)


5.5 Browsing source code with :vimgrep or :grep

Using the stack of error lists that Vim keeps, you can browse your files to
look for functions and the functions they call.  For example, suppose that you
have to add an argument to the read_file() function.  You enter this command: >

	:vimgrep /\<read_file\>/ *.c

You use ":cn" to go along the list of matches and add the argument.  At one
place you have to get the new argument from a higher level function msg(), and
need to change that one too.  Thus you use: >

	:vimgrep /\<msg\>/ *.c

While changing the msg() functions, you find another function that needs to
get the argument from a higher level.  You can again use ":vimgrep" to find
these functions.  Once you are finished with one function, you can use >

	:colder

to go back to the previous one.

This works like browsing a tree: ":vimgrep" goes one level deeper, creating a
list of branches.  ":colder" goes back to the previous level.  You can mix
this use of ":vimgrep" and "colder" to browse all the locations in a tree-like
way.  If you do this consistently, you will find all locations without the
need to write down a "todo" list.

=============================================================================
6. Selecting a compiler					*compiler-select*

						*:comp* *:compiler* *E666*
:comp[iler][!] {name}		Set options to work with compiler {name}.
				Without the "!" options are set for the
				current buffer.  With "!" global options are
				set.
				If you use ":compiler foo" in "file.foo" and
				then ":compiler! bar" in another buffer, Vim
				will keep on using "foo" in "file.foo".
				{not available when compiled without the
				|+eval| feature}


The Vim plugins in the "compiler" directory will set options to use the
selected compiler.  For ":compiler" local options are set, for ":compiler!"
global options.
							*current_compiler*
To support older Vim versions, the plugins always use "current_compiler" and
not "b:current_compiler".  What the command actually does is the following:

- Delete the "current_compiler" and "b:current_compiler" variables.
- Define the "CompilerSet" user command.  With "!" it does ":set", without "!"
  it does ":setlocal".
- Execute ":runtime! compiler/{name}.vim".  The plugins are expected to set
  options with "CompilerSet" and set the "current_compiler" variable to the
  name of the compiler.
- Delete the "CompilerSet user command.
- Set "b:current_compiler" to the value of "current_compiler".
- Without "!" the old value of "current_compiler" is restored.


For writing a compiler plugin, see |write-compiler-plugin|.


MANX AZTEC C				*quickfix-manx* *compiler-manx*

To use Vim with Manx's Aztec C compiler on the Amiga you should do the
following:
- Set the CCEDIT environment variable with the command: >
	mset "CCEDIT=vim -q"
- Compile with the -qf option.  If the compiler finds any errors, Vim is
  started and the cursor is positioned on the first error.  The error message
  will be displayed on the last line.  You can go to other errors with the
  commands mentioned above.  You can fix the errors and write the file(s).
- If you exit Vim normally the compiler will re-compile the same file.  If you
  exit with the :cq command, the compiler will terminate.  Do this if you
  cannot fix the error, or if another file needs to be compiled first.

There are some restrictions to the Quickfix mode on the Amiga.  The
compiler only writes the first 25 errors to the errorfile (Manx's
documentation does not say how to get more).  If you want to find the others,
you will have to fix a few errors and exit the editor.  After recompiling,
up to 25 remaining errors will be found.

If Vim was started from the compiler, the :sh and some :!  commands will not
work, because Vim is then running in the same process as the compiler and
stdin (standard input) will not be interactive.


PYUNIT COMPILER						*compiler-pyunit*

This is not actually a compiler, but a unit testing framework for the
Python language. It is included into standard Python distribution
starting from version 2.0. For older versions, you can get it from
http://pyunit.sourceforge.net.

When you run your tests with the help of the framework, possible errors
are parsed by Vim and presented for you in quick-fix mode.

Unfortunately, there is no standard way to run the tests.
The alltests.py script seems to be used quite often, that's all.
Useful values for the 'makeprg' options therefore are:
 setlocal makeprg=./alltests.py " Run a testsuite
 setlocal makeprg=python %      " Run a single testcase

Also see http://vim.sourceforge.net/tip_view.php?tip_id=280.


TEX COMPILER						*compiler-tex*

Included in the distribution compiler for TeX ($VIMRUNTIME/compiler/tex.vim)
uses make command if possible. If the compiler finds a file named "Makefile"
or "makefile" in the current directory, it supposes that you want to process
your *TeX files with make, and the makefile does the right work. In this case
compiler sets 'errorformat' for *TeX output and leaves 'makeprg' untouched. If
neither "Makefile" nor "makefile" is found, the compiler will not use make.
You can force the compiler to ignore makefiles by defining
b:tex_ignore_makefile or g:tex_ignore_makefile variable (they are checked for
existence only).

If the compiler chose not to use make, it need to choose a right program for
processing your input. If b:tex_flavor or g:tex_flavor (in this precedence)
variable exists, it defines TeX flavor for :make (actually, this is the name
of executed command), and if both variables do not exist, it defaults to
"latex". For example, while editing chapter2.tex \input-ed from mypaper.tex
written in AMS-TeX: >

	:let b:tex_flavor = 'amstex'
	:compiler tex
<	[editing...] >
	:make mypaper

Note that you must specify a name of the file to process as an argument (to
process the right file when editing \input-ed or \include-ed file; portable
solution for substituting % for no arguments is welcome). This is not in the
semantics of make, where you specify a target, not source, but you may specify
filename without extension ".tex" and mean this as "make filename.dvi or
filename.pdf or filename.some_result_extension according to compiler".

Note: tex command line syntax is set to usable both for MikTeX (suggestion
by Srinath Avadhanula) and teTeX (checked by Artem Chuprina). Suggestion
from |errorformat-LaTeX| is too complex to keep it working for different
shells and OSes and also does not allow to use other available TeX options,
if any. If your TeX doesn't support "-interaction=nonstopmode", please
report it with different means to express \nonstopmode from the command line.

=============================================================================
7. The error format					*error-file-format*

					*errorformat* *E372* *E373* *E374*
						*E375* *E376* *E377* *E378*
The 'errorformat' option specifies a list of formats that are recognized.  The
first format that matches with an error message is used.  You can add several
formats for different messages your compiler produces, or even entries for
multiple compilers.  See |efm-entries|.

Each entry in 'errorformat' is a scanf-like string that describes the format.
First, you need to know how scanf works.  Look in the documentation of your
C compiler.  Below you find the % items that Vim understands.  Others are
invalid.

Special characters in 'errorformat' are comma and backslash.  See
|efm-entries| for how to deal with them.  Note that a literal "%" is matched
by "%%", thus it is not escaped with a backslash.

Note: By default the difference between upper and lowercase is ignored.  If
you want to match case, add "\C" to the pattern |/\C|.


Basic items

	%f		file name (finds a string)
	%l		line number (finds a number)
	%c		column number (finds a number representing character
			column of the error, (1 <tab> == 1 character column))
	%v		virtual column number (finds a number representing
			screen column of the error (1 <tab> == 8 screen
			columns)
	%t		error type (finds a single character)
	%n		error number (finds a number)
	%m		error message (finds a string)
	%r		matches the "rest" of a single-line file message %O/P/Q
	%p		pointer line (finds a sequence of '-', '.' or ' ' and
			uses the length for the column number)
	%*{conv}	any scanf non-assignable conversion
	%%		the single '%' character

The "%f" conversion depends on the current 'isfname' setting.

The "%f" and "%m" conversions have to detect the end of the string.  They
should be followed by a character that cannot be in the string.  Everything
up to that character is included in the string.  But when the next character
is a '%' or a backslash, "%f" will look for any 'isfname' character and "%m"
finds anything.  If the "%f" or "%m" is at the end, everything up to the end
of the line is included.

On MS-DOS, MS-Windows and OS/2 a leading "C:" will be included in "%f", even
when using "%f:".  This means that a file name which is a single alphabetical
letter will not be detected.

The "%p" conversion is normally followed by a "^".  It's used for compilers
that output a line like: >
	    ^
or >
   ---------^
to indicate the column of the error.  This is to be used in a multi-line error
message.  See |errorformat-javac| for a  useful example.


Changing directory

The following uppercase conversion characters specify the type of special
format strings.  At most one of them may be given as a prefix at the begin
of a single comma-separated format pattern.
Some compilers produce messages that consist of directory names that have to
be prepended to each file name read by %f (example: GNU make). The following
codes can be used to scan these directory names; they will be stored in an
internal directory stack.					*E379*
	%D		"enter directory" format string; expects a following
			  %f that finds the directory name
	%X		"leave directory" format string; expects following %f

When defining an "enter directory" or "leave directory" format, the "%D" or
"%X" has to be given at the start of that substring. Vim tracks the directory
changes and prepends the current directory to each erroneous file found with a
relative path.  See |quickfix-directory-stack| for details, tips and
limitations.


Multi-line messages				*errorformat-multi-line*

It is possible to read the output of programs that produce multi-line
messages, ie. error strings that consume more than one line.  Possible
prefixes are:
	%E		start of a multi-line error message
	%W		start of a multi-line warning message
	%I		start of a multi-line informational message
	%A		start of a multi-line message (unspecified type)
	%C		continuation of a multi-line message
	%Z		end of a multi-line message
These can be used with '+' and '-', see |efm-ignore| below.

Example: Your compiler happens to write out errors in the following format
(leading line numbers not being part of the actual output):

     1	Error 275
     2	line 42
     3	column 3
     4	' ' expected after '--'

The appropriate error format string has to look like this: >
   :set efm=%EError\ %n,%Cline\ %l,%Ccolumn\ %c,%Z%m

And the |:clist| error message generated for this error is:

 1:42 col 3 error 275:  ' ' expected after '--'

Another example: Think of a Python interpreter that produces the following
error message (line numbers are not part of the actual output):

     1	==============================================================
     2	FAIL: testGetTypeIdCachesResult (dbfacadeTest.DjsDBFacadeTest)
     3	--------------------------------------------------------------
     4	Traceback (most recent call last):
     5	  File "unittests/dbfacadeTest.py", line 89, in testFoo
     6	    self.assertEquals(34, dtid)
     7	  File "/usr/lib/python2.2/unittest.py", line 286, in
     8	 failUnlessEqual
     9	    raise self.failureException, \
    10	AssertionError: 34 != 33
    11
    12	--------------------------------------------------------------
    13	Ran 27 tests in 0.063s

Say you want |:clist| write the relevant information of this message only,
namely:
 5 unittests/dbfacadeTest.py:89:  AssertionError: 34 != 33

Then the error format string could be defined as follows: >
  :set efm=%C\ %.%#,%A\ \ File\ \"%f\"\\,\ line\ %l%.%#,%Z%[%^\ ]%\\@=%m

Note that the %C string is given before the %A here: since the expression
' %.%#' (which stands for the regular expression ' .*') matches every line
starting with a space, followed by any characters to the end of the line,
it also hides line 7 which would trigger a separate error message otherwise.
Error format strings are always parsed pattern by pattern until the first
match occurs.


Separate file name			*errorformat-separate-filename*

These prefixes are useful if the file name is given once and multiple messages
follow that refer to this file name.
	%O		single-line file message: overread the matched part
	%P		single-line file message: push file %f onto the stack
	%Q		single-line file message: pop the last file from stack

Example: Given a compiler that produces the following error logfile (without
leading line numbers):

     1	[a1.tt]
     2	(1,17)  error: ';' missing
     3	(21,2)  warning: variable 'z' not defined
     4	(67,3)  error: end of file found before string ended
     5
     6	[a2.tt]
     7
     8	[a3.tt]
     9	NEW compiler v1.1
    10	(2,2)   warning: variable 'x' not defined
    11	(67,3)  warning: 's' already defined

This logfile lists several messages for each file enclosed in [...] which are
properly parsed by an error format like this: >
  :set efm=%+P[%f],(%l\\,%c)%*[\ ]%t%*[^:]:\ %m,%-Q

A call of |:clist| writes them accordingly with their correct filenames:

  2 a1.tt:1 col 17 error: ';' missing
  3 a1.tt:21 col 2 warning: variable 'z' not defined
  4 a1.tt:67 col 3 error: end of file found before string ended
  8 a3.tt:2 col 2 warning: variable 'x' not defined
  9 a3.tt:67 col 3 warning: 's' already defined

Unlike the other prefixes that all match against whole lines, %P, %Q and %O
can be used to match several patterns in the same line. Thus it is possible
to parse even nested files like in the following line:
  {"file1" {"file2" error1} error2 {"file3" error3 {"file4" error4 error5}}}
The %O then parses over strings that do not contain any push/pop file name
information.  See |errorformat-LaTeX| for an extended example.


Ignoring and using whole messages			*efm-ignore*

The codes '+' or '-' can be combined with the uppercase codes above; in that
case they have to precede the letter, eg. '%+A' or '%-G':
	%-		do not include the matching multi-line in any output
	%+		include the whole matching line in the %m error string

One prefix is only useful in combination with '+' or '-', namely %G. It parses
over lines containing general information like compiler version strings or
other headers that can be skipped.
	%-G		ignore this message
	%+G		general message


Pattern matching

The scanf()-like "%*[]" notation is supported for backward-compatibility
with previous versions of Vim.  However, it is also possible to specify
(nearly) any Vim supported regular expression in format strings.
Since meta characters of the regular expression language can be part of
ordinary matching strings or file names (and therefore internally have to
be escaped), meta symbols have to be written with leading '%':
	%\		the single '\' character. Note that this has to be
			escaped ("%\\") in ":set errorformat=" definitions.
	%.		the single '.' character.
	%#		the single '*'(!) character.
	%^		the single '^' character.
	%$		the single '$' character.
	%[		the single '[' character for a [] character range.
	%~		the single '~' character.
When using character classes in expressions (see |/\i| for an overview),
terms containing the "\+" quantifier can be written in the scanf() "%*"
notation. Example: "%\\d%\\+" ("\d\+", "any number") is equivalent to "%*\\d".
Important note: The \(...\) grouping of sub-matches can not be used in format
specifications because it is reserved for internal conversions.


Multiple entries in 'errorformat'			*efm-entries*

To be able to detect output from several compilers, several format patterns
may be put in 'errorformat', separated by commas (note: blanks after the comma
are ignored).  The first pattern that has a complete match is used.  If no
match is found, matching parts from the last one will be used, although the
file name is removed and the error message is set to the whole message.  If
there is a pattern that may match output from several compilers (but not in a
right way), put it after one that is more restrictive.

To include a comma in a pattern precede it with a backslash (you have to type
two in a ":set" command).  To include a backslash itself give two backslashes
(you have to type four in a ":set" command).  You also need to put a backslash
before a space for ":set".


Valid matches						*quickfix-valid*

If a line does not completely match one of the entries in 'errorformat', the
whole line is put in the error message and the entry is marked "not valid"
These lines are skipped with the ":cn" and ":cp" commands (unless there is
no valid line at all).  You can use ":cl!" to display all the error messages.

If the error format does not contain a file name Vim cannot switch to the
correct file.  You will have to do this by hand.


Examples

The format of the file from the Amiga Aztec compiler is:

	filename>linenumber:columnnumber:errortype:errornumber:errormessage

	filename	name of the file in which the error was detected
	linenumber	line number where the error was detected
	columnnumber	column number where the error was detected
	errortype	type of the error, normally a single 'E' or 'W'
	errornumber	number of the error (for lookup in the manual)
	errormessage	description of the error

This can be matched with this 'errorformat' entry:
	%f>%l:%c:%t:%n:%m

Some examples for C compilers that produce single-line error outputs:
%f:%l:\ %t%*[^0123456789]%n:\ %m	for Manx/Aztec C error messages
					(scanf() doesn't understand [0-9])
%f\ %l\ %t%*[^0-9]%n:\ %m		for SAS C
\"%f\"\\,%*[^0-9]%l:\ %m		for generic C compilers
%f:%l:\ %m				for GCC
%f:%l:\ %m,%Dgmake[%*\\d]:\ Entering\ directory\ `%f',
%Dgmake[%*\\d]:\ Leaving\ directory\ `%f'
					for GCC with gmake (concat the lines!)
%f(%l)\ :\ %*[^:]:\ %m			old SCO C compiler (pre-OS5)
%f(%l)\ :\ %t%*[^0-9]%n:\ %m		idem, with error type and number
%f:%l:\ %m,In\ file\ included\ from\ %f:%l:,\^I\^Ifrom\ %f:%l%m
					for GCC, with some extras

Extended examples for the handling of multi-line messages are given below,
see |errorformat-Jikes| and |errorformat-LaTeX|.

Note the backslash in front of a space and double quote.  It is required for
the :set command.  There are two backslashes in front of a comma, one for the
:set command and one to avoid recognizing the comma as a separator of error
formats.


Filtering messages

If you have a compiler that produces error messages that do not fit in the
format string, you could write a program that translates the error messages
into this format.  You can use this program with the ":make" command by
changing the 'makeprg' option.  For example: >
   :set mp=make\ \\\|&\ error_filter
The backslashes before the pipe character are required to avoid it to be
recognized as a command separator.  The backslash before each space is
required for the set command.

=============================================================================
8. The directory stack				*quickfix-directory-stack*

Quickfix maintains a stack for saving all used directories parsed from the
make output. For GNU-make this is rather simple, as it always prints the
absolute path of all directories it enters and leaves. Regardless if this is
done via a 'cd' command in the makefile or with the parameter "-C dir" (change
to directory before reading the makefile). It may be useful to use the switch
"-w" to force GNU-make to print out the working directory before and after
processing.

Maintaining the correct directory is more complicated if you don't use
GNU-make. AIX-make for example doesn't print any information about its working
directory. Then you need to enhance the makefile. In the makefile of LessTif
there is a command which echoes "Making {target} in {dir}". The special
problem here is that it doesn't print informations on leaving the directory
and that it doesn't print the absolute path.

To solve the problem with relative paths and missing "leave directory"
messages Vim uses following algorithm:

1) Check if the given directory is a subdirectory of the current directory.
   If this is true, store it as the current directory.
2) If it is not a subdir of the current directory, try if this is a
   subdirectory of one of the upper directories.
3) If the directory still isn't found, it is assumed to be a subdirectory
   of Vim's current directory.

Additionally it is checked for every file, if it really exists in the
identified directory.  If not, it is searched in all other directories of the
directory stack (NOT the directory subtree!). If it is still not found, it is
assumed that it is in Vim's current directory.

There are limitation in this algorithm. This examples assume that make just
prints information about entering a directory in the form "Making all in dir".

1) Assume you have following directories and files:
   ./dir1
   ./dir1/file1.c
   ./file1.c

   If make processes the directory "./dir1" before the current directory and
   there is an error in the file "./file1.c", you will end up with the file
   "./dir1/file.c" loaded by Vim.

   This can only be solved with a "leave directory" message.

2) Assume you have following directories and files:
   ./dir1
   ./dir1/dir2
   ./dir2

   You get the following:

   Make output			  Directory interpreted by Vim
   ------------------------	  ----------------------------
   Making all in dir1		  ./dir1
   Making all in dir2		  ./dir1/dir2
   Making all in dir2		  ./dir1/dir2

   This can be solved by printing absolute directories in the "enter directory"
   message or by printing "leave directory" messages..

To avoid this problems, ensure to print absolute directory names and "leave
directory" messages.

Examples for Makefiles:

Unix:
    libs:
	    for dn in $(LIBDIRS); do				\
		(cd $$dn; echo "Entering dir '$$(pwd)'"; make); \
		echo "Leaving dir";				\
	    done

Add
    %DEntering\ dir\ '%f',%XLeaving\ dir
to your 'errorformat' to handle the above output.

Note that Vim doesn't check if the directory name in a "leave directory"
messages is the current directory. This is why you could just use the message
"Leaving dir".

=============================================================================
9. Specific error file formats			*errorformats*

						*errorformat-Jikes*
Jikes(TM), a source-to-bytecode Java compiler published by IBM Research,
produces simple multi-line error messages.

An 'errorformat' string matching the produced messages is shown below.
The following lines can be placed in the user's |vimrc| to overwrite Vim's
recognized default formats, or see |:set+=| how to install this format
additionally to the default. >

  :set efm=%A%f:%l:%c:%*\\d:%*\\d:,
	\%C%*\\s%trror:%m,
	\%+C%*[^:]%trror:%m,
	\%C%*\\s%tarning:%m,
	\%C%m
<
Jikes(TM) produces a single-line error message when invoked with the option
"+E", and can be matched with the following: >

  :set efm=%f:%l:%v:%*\\d:%*\\d:%*\\s%m
<
						*errorformat-javac*
This 'errorformat' has been reported to work well for javac, which outputs a
line with "^" to indicate the column of the error: >
  :set efm=%A%f:%l:\ %m,%-Z%p^,%-C%.%#
or: >
  :set efm=%A%f:%l:\ %m,%+Z%p^,%+C%.%#,%-G%.%#
<
						*errorformat-ant*
For ant (http://jakarta.apache.org/) the above errorformat has to be modified
to honour the leading [javac] in front of each javac output line: >
  :set efm=%A\ %#[javac]\ %f:%l:\ %m,%-Z\ %#[javac]\ %p^,%-C%.%#

The 'errorformat' can also be configured to handle ant together with either
javac or jikes.  If you're using jikes, you should tell ant to use jikes' +E
command line switch which forces jikes to generate one-line error messages.
This is what the second line (of a build.xml file) below does: >
  <property name = "build.compiler"       value = "jikes"/>
  <property name = "build.compiler.emacs" value = "true"/>

The 'errorformat' which handles ant with both javac and jikes is: >
  :set efm=\ %#[javac]\ %#%f:%l:%c:%*\\d:%*\\d:\ %t%[%^:]%#:%m,
	   \%A\ %#[javac]\ %f:%l:\ %m,%-Z\ %#[javac]\ %p^,%-C%.%#
<
						*errorformat-jade*
parsing jade (see http://www.jclark.com/) errors is simple: >
  :set efm=jade:%f:%l:%c:%t:%m
<
						*errorformat-LaTeX*
The following is an example how an 'errorformat' string can be specified
for the (La)TeX typesetting system which displays error messages over
multiple lines.  The output of ":clist" and ":cc" etc. commands displays
multi-lines in a single line, leading white space is removed.
It should be easy to adopt the above LaTeX errorformat to any compiler output
consisting of multi-line errors.

The commands can be placed in a |vimrc| file or some other Vim script file,
eg. a script containing LaTeX related stuff which is loaded only when editing
LaTeX sources.
Make sure to copy all lines of the example (in the given order), afterwards
remove the comment lines.  For the '\' notation at the start of some lines see
|line-continuation|.

		First prepare 'makeprg' such that LaTeX will report multiple
		errors; do not stop when the first error has occurred: >
 :set makeprg=latex\ \\\\nonstopmode\ \\\\input\\{$*}
<
		Start of multi-line error messages: >
 :set efm=%E!\ LaTeX\ %trror:\ %m,
	\%E!\ %m,
<		Start of multi-line warning messages; the first two also
		include the line number. Meaning of some regular expressions:
		  - "%.%#"  (".*")   matches a (possibly empty) string
		  - "%*\\d" ("\d\+") matches a number >
	\%+WLaTeX\ %.%#Warning:\ %.%#line\ %l%.%#,
	\%+W%.%#\ at\ lines\ %l--%*\\d,
	\%WLaTeX\ %.%#Warning:\ %m,
<		Possible continuations of error/warning messages; the first
		one also includes the line number: >
	\%Cl.%l\ %m,
	\%+C\ \ %m.,
	\%+C%.%#-%.%#,
	\%+C%.%#[]%.%#,
	\%+C[]%.%#,
	\%+C%.%#%[{}\\]%.%#,
	\%+C<%.%#>%.%#,
	\%C\ \ %m,
<		Lines that match the following patterns do not contain any
		important information; do not include them in messages: >
	\%-GSee\ the\ LaTeX%m,
	\%-GType\ \ H\ <return>%m,
	\%-G\ ...%.%#,
	\%-G%.%#\ (C)\ %.%#,
	\%-G(see\ the\ transcript%.%#),
<		Generally exclude any empty or whitespace-only line from
		being displayed: >
	\%-G\\s%#,
<		The LaTeX output log does not specify the names of erroneous
		source files per line; rather they are given globally,
		enclosed in parentheses.
		The following patterns try to match these names and store
		them in an internal stack.  The patterns possibly scan over
		the same input line (one after another), the trailing "%r"
		conversion indicates the "rest" of the line that will be
		parsed in the next go until the end of line is reached.

		Overread a file name enclosed in '('...')'; do not push it
		on a stack since the file apparently does not contain any
		error: >
	\%+O(%f)%r,
<		Push a file name onto the stack. The name is given after '(': >
	\%+P(%f%r,
	\%+P\ %\\=(%f%r,
	\%+P%*[^()](%f%r,
	\%+P[%\\d%[^()]%#(%f%r,
<		Pop the last stored file name when a ')' is scanned: >
	\%+Q)%r,
	\%+Q%*[^()])%r,
	\%+Q[%\\d%*[^()])%r

Note that in some cases file names in the LaTeX output log cannot be parsed
properly.  The parser might have been messed up by unbalanced parentheses
then.  The above example tries to catch the most relevant cases only.
You can customize the given setting to suit your own purposes, for example,
all the annoying "Overfull ..." warnings could be excluded from being
recognized as an error.
Alternatively to filtering the LaTeX compiler output, it is also possible
to directly read the *.log file that is produced by the [La]TeX compiler.
This contains even more useful information about possible error causes.
However, to properly parse such a complex file, an external filter should
be used.  See the description further above how to make such a filter known
by Vim.

						*errorformat-Perl*
In $VIMRUNTIME/tools you can find the efm_perl.pl script, which filters Perl
error messages into a format that quickfix mode will understand.  See the
start of the file about how to use it.



 vim:tw=78:ts=8:ft=help:norl: