1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
|
*eval.txt* For Vim version 7.1. Last change: 2008 Feb 20
VIM REFERENCE MANUAL by Bram Moolenaar
Expression evaluation *expression* *expr* *E15* *eval*
Using expressions is introduced in chapter 41 of the user manual |usr_41.txt|.
Note: Expression evaluation can be disabled at compile time. If this has been
done, the features in this document are not available. See |+eval| and
|no-eval-feature|.
1. Variables |variables|
1.1 Variable types
1.2 Function references |Funcref|
1.3 Lists |Lists|
1.4 Dictionaries |Dictionaries|
1.5 More about variables |more-variables|
2. Expression syntax |expression-syntax|
3. Internal variable |internal-variables|
4. Builtin Functions |functions|
5. Defining functions |user-functions|
6. Curly braces names |curly-braces-names|
7. Commands |expression-commands|
8. Exception handling |exception-handling|
9. Examples |eval-examples|
10. No +eval feature |no-eval-feature|
11. The sandbox |eval-sandbox|
12. Textlock |textlock|
{Vi does not have any of these commands}
==============================================================================
1. Variables *variables*
1.1 Variable types ~
*E712*
There are five types of variables:
Number A 32 bit signed number.
Examples: -123 0x10 0177
String A NUL terminated string of 8-bit unsigned characters (bytes).
Examples: "ab\txx\"--" 'x-z''a,c'
Funcref A reference to a function |Funcref|.
Example: function("strlen")
List An ordered sequence of items |List|.
Example: [1, 2, ['a', 'b']]
Dictionary An associative, unordered array: Each entry has a key and a
value. |Dictionary|
Example: {'blue': "#0000ff", 'red': "#ff0000"}
The Number and String types are converted automatically, depending on how they
are used.
Conversion from a Number to a String is by making the ASCII representation of
the Number. Examples: >
Number 123 --> String "123"
Number 0 --> String "0"
Number -1 --> String "-1"
Conversion from a String to a Number is done by converting the first digits
to a number. Hexadecimal "0xf9" and Octal "017" numbers are recognized. If
the String doesn't start with digits, the result is zero. Examples: >
String "456" --> Number 456
String "6bar" --> Number 6
String "foo" --> Number 0
String "0xf1" --> Number 241
String "0100" --> Number 64
String "-8" --> Number -8
String "+8" --> Number 0
To force conversion from String to Number, add zero to it: >
:echo "0100" + 0
< 64 ~
To avoid a leading zero to cause octal conversion, or for using a different
base, use |str2nr()|.
For boolean operators Numbers are used. Zero is FALSE, non-zero is TRUE.
Note that in the command >
:if "foo"
"foo" is converted to 0, which means FALSE. To test for a non-empty string,
use strlen(): >
:if strlen("foo")
< *E745* *E728* *E703* *E729* *E730* *E731*
List, Dictionary and Funcref types are not automatically converted.
*E706*
You will get an error if you try to change the type of a variable. You need
to |:unlet| it first to avoid this error. String and Number are considered
equivalent though. Consider this sequence of commands: >
:let l = "string"
:let l = 44 " changes type from String to Number
:let l = [1, 2, 3] " error!
1.2 Function references ~
*Funcref* *E695* *E718*
A Funcref variable is obtained with the |function()| function. It can be used
in an expression in the place of a function name, before the parenthesis
around the arguments, to invoke the function it refers to. Example: >
:let Fn = function("MyFunc")
:echo Fn()
< *E704* *E705* *E707*
A Funcref variable must start with a capital, "s:", "w:", "t:" or "b:". You
cannot have both a Funcref variable and a function with the same name.
A special case is defining a function and directly assigning its Funcref to a
Dictionary entry. Example: >
:function dict.init() dict
: let self.val = 0
:endfunction
The key of the Dictionary can start with a lower case letter. The actual
function name is not used here. Also see |numbered-function|.
A Funcref can also be used with the |:call| command: >
:call Fn()
:call dict.init()
The name of the referenced function can be obtained with |string()|. >
:let func = string(Fn)
You can use |call()| to invoke a Funcref and use a list variable for the
arguments: >
:let r = call(Fn, mylist)
1.3 Lists ~
*List* *Lists* *E686*
A List is an ordered sequence of items. An item can be of any type. Items
can be accessed by their index number. Items can be added and removed at any
position in the sequence.
List creation ~
*E696* *E697*
A List is created with a comma separated list of items in square brackets.
Examples: >
:let mylist = [1, two, 3, "four"]
:let emptylist = []
An item can be any expression. Using a List for an item creates a
List of Lists: >
:let nestlist = [[11, 12], [21, 22], [31, 32]]
An extra comma after the last item is ignored.
List index ~
*list-index* *E684*
An item in the List can be accessed by putting the index in square brackets
after the List. Indexes are zero-based, thus the first item has index zero. >
:let item = mylist[0] " get the first item: 1
:let item = mylist[2] " get the third item: 3
When the resulting item is a list this can be repeated: >
:let item = nestlist[0][1] " get the first list, second item: 12
<
A negative index is counted from the end. Index -1 refers to the last item in
the List, -2 to the last but one item, etc. >
:let last = mylist[-1] " get the last item: "four"
To avoid an error for an invalid index use the |get()| function. When an item
is not available it returns zero or the default value you specify: >
:echo get(mylist, idx)
:echo get(mylist, idx, "NONE")
List concatenation ~
Two lists can be concatenated with the "+" operator: >
:let longlist = mylist + [5, 6]
:let mylist += [7, 8]
To prepend or append an item turn the item into a list by putting [] around
it. To change a list in-place see |list-modification| below.
Sublist ~
A part of the List can be obtained by specifying the first and last index,
separated by a colon in square brackets: >
:let shortlist = mylist[2:-1] " get List [3, "four"]
Omitting the first index is similar to zero. Omitting the last index is
similar to -1. >
:let endlist = mylist[2:] " from item 2 to the end: [3, "four"]
:let shortlist = mylist[2:2] " List with one item: [3]
:let otherlist = mylist[:] " make a copy of the List
If the first index is beyond the last item of the List or the second item is
before the first item, the result is an empty list. There is no error
message.
If the second index is equal to or greater than the length of the list the
length minus one is used: >
:let mylist = [0, 1, 2, 3]
:echo mylist[2:8] " result: [2, 3]
NOTE: mylist[s:e] means using the variable "s:e" as index. Watch out for
using a single letter variable before the ":". Insert a space when needed:
mylist[s : e].
List identity ~
*list-identity*
When variable "aa" is a list and you assign it to another variable "bb", both
variables refer to the same list. Thus changing the list "aa" will also
change "bb": >
:let aa = [1, 2, 3]
:let bb = aa
:call add(aa, 4)
:echo bb
< [1, 2, 3, 4]
Making a copy of a list is done with the |copy()| function. Using [:] also
works, as explained above. This creates a shallow copy of the list: Changing
a list item in the list will also change the item in the copied list: >
:let aa = [[1, 'a'], 2, 3]
:let bb = copy(aa)
:call add(aa, 4)
:let aa[0][1] = 'aaa'
:echo aa
< [[1, aaa], 2, 3, 4] >
:echo bb
< [[1, aaa], 2, 3]
To make a completely independent list use |deepcopy()|. This also makes a
copy of the values in the list, recursively. Up to a hundred levels deep.
The operator "is" can be used to check if two variables refer to the same
List. "isnot" does the opposite. In contrast "==" compares if two lists have
the same value. >
:let alist = [1, 2, 3]
:let blist = [1, 2, 3]
:echo alist is blist
< 0 >
:echo alist == blist
< 1
Note about comparing lists: Two lists are considered equal if they have the
same length and all items compare equal, as with using "==". There is one
exception: When comparing a number with a string they are considered
different. There is no automatic type conversion, as with using "==" on
variables. Example: >
echo 4 == "4"
< 1 >
echo [4] == ["4"]
< 0
Thus comparing Lists is more strict than comparing numbers and strings. You
can compare simple values this way too by putting them in a string: >
:let a = 5
:let b = "5"
echo a == b
< 1 >
echo [a] == [b]
< 0
List unpack ~
To unpack the items in a list to individual variables, put the variables in
square brackets, like list items: >
:let [var1, var2] = mylist
When the number of variables does not match the number of items in the list
this produces an error. To handle any extra items from the list append ";"
and a variable name: >
:let [var1, var2; rest] = mylist
This works like: >
:let var1 = mylist[0]
:let var2 = mylist[1]
:let rest = mylist[2:]
Except that there is no error if there are only two items. "rest" will be an
empty list then.
List modification ~
*list-modification*
To change a specific item of a list use |:let| this way: >
:let list[4] = "four"
:let listlist[0][3] = item
To change part of a list you can specify the first and last item to be
modified. The value must at least have the number of items in the range: >
:let list[3:5] = [3, 4, 5]
Adding and removing items from a list is done with functions. Here are a few
examples: >
:call insert(list, 'a') " prepend item 'a'
:call insert(list, 'a', 3) " insert item 'a' before list[3]
:call add(list, "new") " append String item
:call add(list, [1, 2]) " append a List as one new item
:call extend(list, [1, 2]) " extend the list with two more items
:let i = remove(list, 3) " remove item 3
:unlet list[3] " idem
:let l = remove(list, 3, -1) " remove items 3 to last item
:unlet list[3 : ] " idem
:call filter(list, 'v:val !~ "x"') " remove items with an 'x'
Changing the order of items in a list: >
:call sort(list) " sort a list alphabetically
:call reverse(list) " reverse the order of items
For loop ~
The |:for| loop executes commands for each item in a list. A variable is set
to each item in the list in sequence. Example: >
:for item in mylist
: call Doit(item)
:endfor
This works like: >
:let index = 0
:while index < len(mylist)
: let item = mylist[index]
: :call Doit(item)
: let index = index + 1
:endwhile
Note that all items in the list should be of the same type, otherwise this
results in error |E706|. To avoid this |:unlet| the variable at the end of
the loop.
If all you want to do is modify each item in the list then the |map()|
function will be a simpler method than a for loop.
Just like the |:let| command, |:for| also accepts a list of variables. This
requires the argument to be a list of lists. >
:for [lnum, col] in [[1, 3], [2, 8], [3, 0]]
: call Doit(lnum, col)
:endfor
This works like a |:let| command is done for each list item. Again, the types
must remain the same to avoid an error.
It is also possible to put remaining items in a List variable: >
:for [i, j; rest] in listlist
: call Doit(i, j)
: if !empty(rest)
: echo "remainder: " . string(rest)
: endif
:endfor
List functions ~
*E714*
Functions that are useful with a List: >
:let r = call(funcname, list) " call a function with an argument list
:if empty(list) " check if list is empty
:let l = len(list) " number of items in list
:let big = max(list) " maximum value in list
:let small = min(list) " minimum value in list
:let xs = count(list, 'x') " count nr of times 'x' appears in list
:let i = index(list, 'x') " index of first 'x' in list
:let lines = getline(1, 10) " get ten text lines from buffer
:call append('$', lines) " append text lines in buffer
:let list = split("a b c") " create list from items in a string
:let string = join(list, ', ') " create string from list items
:let s = string(list) " String representation of list
:call map(list, '">> " . v:val') " prepend ">> " to each item
Don't forget that a combination of features can make things simple. For
example, to add up all the numbers in a list: >
:exe 'let sum = ' . join(nrlist, '+')
1.4 Dictionaries ~
*Dictionaries* *Dictionary*
A Dictionary is an associative array: Each entry has a key and a value. The
entry can be located with the key. The entries are stored without a specific
ordering.
Dictionary creation ~
*E720* *E721* *E722* *E723*
A Dictionary is created with a comma separated list of entries in curly
braces. Each entry has a key and a value, separated by a colon. Each key can
only appear once. Examples: >
:let mydict = {1: 'one', 2: 'two', 3: 'three'}
:let emptydict = {}
< *E713* *E716* *E717*
A key is always a String. You can use a Number, it will be converted to a
String automatically. Thus the String '4' and the number 4 will find the same
entry. Note that the String '04' and the Number 04 are different, since the
Number will be converted to the String '4'.
A value can be any expression. Using a Dictionary for a value creates a
nested Dictionary: >
:let nestdict = {1: {11: 'a', 12: 'b'}, 2: {21: 'c'}}
An extra comma after the last entry is ignored.
Accessing entries ~
The normal way to access an entry is by putting the key in square brackets: >
:let val = mydict["one"]
:let mydict["four"] = 4
You can add new entries to an existing Dictionary this way, unlike Lists.
For keys that consist entirely of letters, digits and underscore the following
form can be used |expr-entry|: >
:let val = mydict.one
:let mydict.four = 4
Since an entry can be any type, also a List and a Dictionary, the indexing and
key lookup can be repeated: >
:echo dict.key[idx].key
Dictionary to List conversion ~
You may want to loop over the entries in a dictionary. For this you need to
turn the Dictionary into a List and pass it to |:for|.
Most often you want to loop over the keys, using the |keys()| function: >
:for key in keys(mydict)
: echo key . ': ' . mydict[key]
:endfor
The List of keys is unsorted. You may want to sort them first: >
:for key in sort(keys(mydict))
To loop over the values use the |values()| function: >
:for v in values(mydict)
: echo "value: " . v
:endfor
If you want both the key and the value use the |items()| function. It returns
a List in which each item is a List with two items, the key and the value: >
:for [key, value] in items(mydict)
: echo key . ': ' . value
:endfor
Dictionary identity ~
*dict-identity*
Just like Lists you need to use |copy()| and |deepcopy()| to make a copy of a
Dictionary. Otherwise, assignment results in referring to the same
Dictionary: >
:let onedict = {'a': 1, 'b': 2}
:let adict = onedict
:let adict['a'] = 11
:echo onedict['a']
11
Two Dictionaries compare equal if all the key-value pairs compare equal. For
more info see |list-identity|.
Dictionary modification ~
*dict-modification*
To change an already existing entry of a Dictionary, or to add a new entry,
use |:let| this way: >
:let dict[4] = "four"
:let dict['one'] = item
Removing an entry from a Dictionary is done with |remove()| or |:unlet|.
Three ways to remove the entry with key "aaa" from dict: >
:let i = remove(dict, 'aaa')
:unlet dict.aaa
:unlet dict['aaa']
Merging a Dictionary with another is done with |extend()|: >
:call extend(adict, bdict)
This extends adict with all entries from bdict. Duplicate keys cause entries
in adict to be overwritten. An optional third argument can change this.
Note that the order of entries in a Dictionary is irrelevant, thus don't
expect ":echo adict" to show the items from bdict after the older entries in
adict.
Weeding out entries from a Dictionary can be done with |filter()|: >
:call filter(dict, 'v:val =~ "x"')
This removes all entries from "dict" with a value not matching 'x'.
Dictionary function ~
*Dictionary-function* *self* *E725*
When a function is defined with the "dict" attribute it can be used in a
special way with a dictionary. Example: >
:function Mylen() dict
: return len(self.data)
:endfunction
:let mydict = {'data': [0, 1, 2, 3], 'len': function("Mylen")}
:echo mydict.len()
This is like a method in object oriented programming. The entry in the
Dictionary is a |Funcref|. The local variable "self" refers to the dictionary
the function was invoked from.
It is also possible to add a function without the "dict" attribute as a
Funcref to a Dictionary, but the "self" variable is not available then.
*numbered-function* *anonymous-function*
To avoid the extra name for the function it can be defined and directly
assigned to a Dictionary in this way: >
:let mydict = {'data': [0, 1, 2, 3]}
:function mydict.len() dict
: return len(self.data)
:endfunction
:echo mydict.len()
The function will then get a number and the value of dict.len is a |Funcref|
that references this function. The function can only be used through a
|Funcref|. It will automatically be deleted when there is no |Funcref|
remaining that refers to it.
It is not necessary to use the "dict" attribute for a numbered function.
Functions for Dictionaries ~
*E715*
Functions that can be used with a Dictionary: >
:if has_key(dict, 'foo') " TRUE if dict has entry with key "foo"
:if empty(dict) " TRUE if dict is empty
:let l = len(dict) " number of items in dict
:let big = max(dict) " maximum value in dict
:let small = min(dict) " minimum value in dict
:let xs = count(dict, 'x') " count nr of times 'x' appears in dict
:let s = string(dict) " String representation of dict
:call map(dict, '">> " . v:val') " prepend ">> " to each item
1.5 More about variables ~
*more-variables*
If you need to know the type of a variable or expression, use the |type()|
function.
When the '!' flag is included in the 'viminfo' option, global variables that
start with an uppercase letter, and don't contain a lowercase letter, are
stored in the viminfo file |viminfo-file|.
When the 'sessionoptions' option contains "global", global variables that
start with an uppercase letter and contain at least one lowercase letter are
stored in the session file |session-file|.
variable name can be stored where ~
my_var_6 not
My_Var_6 session file
MY_VAR_6 viminfo file
It's possible to form a variable name with curly braces, see
|curly-braces-names|.
==============================================================================
2. Expression syntax *expression-syntax*
Expression syntax summary, from least to most significant:
|expr1| expr2 ? expr1 : expr1 if-then-else
|expr2| expr3 || expr3 .. logical OR
|expr3| expr4 && expr4 .. logical AND
|expr4| expr5 == expr5 equal
expr5 != expr5 not equal
expr5 > expr5 greater than
expr5 >= expr5 greater than or equal
expr5 < expr5 smaller than
expr5 <= expr5 smaller than or equal
expr5 =~ expr5 regexp matches
expr5 !~ expr5 regexp doesn't match
expr5 ==? expr5 equal, ignoring case
expr5 ==# expr5 equal, match case
etc. As above, append ? for ignoring case, # for
matching case
expr5 is expr5 same |List| instance
expr5 isnot expr5 different |List| instance
|expr5| expr6 + expr6 .. number addition or list concatenation
expr6 - expr6 .. number subtraction
expr6 . expr6 .. string concatenation
|expr6| expr7 * expr7 .. number multiplication
expr7 / expr7 .. number division
expr7 % expr7 .. number modulo
|expr7| ! expr7 logical NOT
- expr7 unary minus
+ expr7 unary plus
|expr8| expr8[expr1] byte of a String or item of a |List|
expr8[expr1 : expr1] substring of a String or sublist of a |List|
expr8.name entry in a |Dictionary|
expr8(expr1, ...) function call with |Funcref| variable
|expr9| number number constant
"string" string constant, backslash is special
'string' string constant, ' is doubled
[expr1, ...] |List|
{expr1: expr1, ...} |Dictionary|
&option option value
(expr1) nested expression
variable internal variable
va{ria}ble internal variable with curly braces
$VAR environment variable
@r contents of register 'r'
function(expr1, ...) function call
func{ti}on(expr1, ...) function call with curly braces
".." indicates that the operations in this level can be concatenated.
Example: >
&nu || &list && &shell == "csh"
All expressions within one level are parsed from left to right.
expr1 *expr1* *E109*
-----
expr2 ? expr1 : expr1
The expression before the '?' is evaluated to a number. If it evaluates to
non-zero, the result is the value of the expression between the '?' and ':',
otherwise the result is the value of the expression after the ':'.
Example: >
:echo lnum == 1 ? "top" : lnum
Since the first expression is an "expr2", it cannot contain another ?:. The
other two expressions can, thus allow for recursive use of ?:.
Example: >
:echo lnum == 1 ? "top" : lnum == 1000 ? "last" : lnum
To keep this readable, using |line-continuation| is suggested: >
:echo lnum == 1
:\ ? "top"
:\ : lnum == 1000
:\ ? "last"
:\ : lnum
You should always put a space before the ':', otherwise it can be mistaken for
use in a variable such as "a:1".
expr2 and expr3 *expr2* *expr3*
---------------
*expr-barbar* *expr-&&*
The "||" and "&&" operators take one argument on each side. The arguments
are (converted to) Numbers. The result is:
input output ~
n1 n2 n1 || n2 n1 && n2 ~
zero zero zero zero
zero non-zero non-zero zero
non-zero zero non-zero zero
non-zero non-zero non-zero non-zero
The operators can be concatenated, for example: >
&nu || &list && &shell == "csh"
Note that "&&" takes precedence over "||", so this has the meaning of: >
&nu || (&list && &shell == "csh")
Once the result is known, the expression "short-circuits", that is, further
arguments are not evaluated. This is like what happens in C. For example: >
let a = 1
echo a || b
This is valid even if there is no variable called "b" because "a" is non-zero,
so the result must be non-zero. Similarly below: >
echo exists("b") && b == "yes"
This is valid whether "b" has been defined or not. The second clause will
only be evaluated if "b" has been defined.
expr4 *expr4*
-----
expr5 {cmp} expr5
Compare two expr5 expressions, resulting in a 0 if it evaluates to false, or 1
if it evaluates to true.
*expr-==* *expr-!=* *expr->* *expr->=*
*expr-<* *expr-<=* *expr-=~* *expr-!~*
*expr-==#* *expr-!=#* *expr->#* *expr->=#*
*expr-<#* *expr-<=#* *expr-=~#* *expr-!~#*
*expr-==?* *expr-!=?* *expr->?* *expr->=?*
*expr-<?* *expr-<=?* *expr-=~?* *expr-!~?*
*expr-is*
use 'ignorecase' match case ignore case ~
equal == ==# ==?
not equal != !=# !=?
greater than > ># >?
greater than or equal >= >=# >=?
smaller than < <# <?
smaller than or equal <= <=# <=?
regexp matches =~ =~# =~?
regexp doesn't match !~ !~# !~?
same instance is
different instance isnot
Examples:
"abc" ==# "Abc" evaluates to 0
"abc" ==? "Abc" evaluates to 1
"abc" == "Abc" evaluates to 1 if 'ignorecase' is set, 0 otherwise
*E691* *E692*
A |List| can only be compared with a |List| and only "equal", "not equal" and
"is" can be used. This compares the values of the list, recursively.
Ignoring case means case is ignored when comparing item values.
*E735* *E736*
A |Dictionary| can only be compared with a |Dictionary| and only "equal", "not
equal" and "is" can be used. This compares the key/values of the |Dictionary|
recursively. Ignoring case means case is ignored when comparing item values.
*E693* *E694*
A |Funcref| can only be compared with a |Funcref| and only "equal" and "not
equal" can be used. Case is never ignored.
When using "is" or "isnot" with a |List| this checks if the expressions are
referring to the same |List| instance. A copy of a |List| is different from
the original |List|. When using "is" without a |List| it is equivalent to
using "equal", using "isnot" equivalent to using "not equal". Except that a
different type means the values are different. "4 == '4'" is true, "4 is '4'"
is false.
When comparing a String with a Number, the String is converted to a Number,
and the comparison is done on Numbers. This means that "0 == 'x'" is TRUE,
because 'x' converted to a Number is zero.
When comparing two Strings, this is done with strcmp() or stricmp(). This
results in the mathematical difference (comparing byte values), not
necessarily the alphabetical difference in the local language.
When using the operators with a trailing '#", or the short version and
'ignorecase' is off, the comparing is done with strcmp(): case matters.
When using the operators with a trailing '?', or the short version and
'ignorecase' is set, the comparing is done with stricmp(): case is ignored.
'smartcase' is not used.
The "=~" and "!~" operators match the lefthand argument with the righthand
argument, which is used as a pattern. See |pattern| for what a pattern is.
This matching is always done like 'magic' was set and 'cpoptions' is empty, no
matter what the actual value of 'magic' or 'cpoptions' is. This makes scripts
portable. To avoid backslashes in the regexp pattern to be doubled, use a
single-quote string, see |literal-string|.
Since a string is considered to be a single line, a multi-line pattern
(containing \n, backslash-n) will not match. However, a literal NL character
can be matched like an ordinary character. Examples:
"foo\nbar" =~ "\n" evaluates to 1
"foo\nbar" =~ "\\n" evaluates to 0
expr5 and expr6 *expr5* *expr6*
---------------
expr6 + expr6 .. Number addition or |List| concatenation *expr-+*
expr6 - expr6 .. Number subtraction *expr--*
expr6 . expr6 .. String concatenation *expr-.*
For |Lists| only "+" is possible and then both expr6 must be a list. The
result is a new list with the two lists Concatenated.
expr7 * expr7 .. number multiplication *expr-star*
expr7 / expr7 .. number division *expr-/*
expr7 % expr7 .. number modulo *expr-%*
For all, except ".", Strings are converted to Numbers.
Note the difference between "+" and ".":
"123" + "456" = 579
"123" . "456" = "123456"
When the righthand side of '/' is zero, the result is 0x7fffffff.
When the righthand side of '%' is zero, the result is 0.
None of these work for |Funcref|s.
expr7 *expr7*
-----
! expr7 logical NOT *expr-!*
- expr7 unary minus *expr-unary--*
+ expr7 unary plus *expr-unary-+*
For '!' non-zero becomes zero, zero becomes one.
For '-' the sign of the number is changed.
For '+' the number is unchanged.
A String will be converted to a Number first.
These three can be repeated and mixed. Examples:
!-1 == 0
!!8 == 1
--9 == 9
expr8 *expr8*
-----
expr8[expr1] item of String or |List| *expr-[]* *E111*
If expr8 is a Number or String this results in a String that contains the
expr1'th single byte from expr8. expr8 is used as a String, expr1 as a
Number. Note that this doesn't recognize multi-byte encodings.
Index zero gives the first character. This is like it works in C. Careful:
text column numbers start with one! Example, to get the character under the
cursor: >
:let c = getline(".")[col(".") - 1]
If the length of the String is less than the index, the result is an empty
String. A negative index always results in an empty string (reason: backwards
compatibility). Use [-1:] to get the last byte.
If expr8 is a |List| then it results the item at index expr1. See |list-index|
for possible index values. If the index is out of range this results in an
error. Example: >
:let item = mylist[-1] " get last item
Generally, if a |List| index is equal to or higher than the length of the
|List|, or more negative than the length of the |List|, this results in an
error.
expr8[expr1a : expr1b] substring or sublist *expr-[:]*
If expr8 is a Number or String this results in the substring with the bytes
from expr1a to and including expr1b. expr8 is used as a String, expr1a and
expr1b are used as a Number. Note that this doesn't recognize multi-byte
encodings.
If expr1a is omitted zero is used. If expr1b is omitted the length of the
string minus one is used.
A negative number can be used to measure from the end of the string. -1 is
the last character, -2 the last but one, etc.
If an index goes out of range for the string characters are omitted. If
expr1b is smaller than expr1a the result is an empty string.
Examples: >
:let c = name[-1:] " last byte of a string
:let c = name[-2:-2] " last but one byte of a string
:let s = line(".")[4:] " from the fifth byte to the end
:let s = s[:-3] " remove last two bytes
If expr8 is a |List| this results in a new |List| with the items indicated by
the indexes expr1a and expr1b. This works like with a String, as explained
just above, except that indexes out of range cause an error. Examples: >
:let l = mylist[:3] " first four items
:let l = mylist[4:4] " List with one item
:let l = mylist[:] " shallow copy of a List
Using expr8[expr1] or expr8[expr1a : expr1b] on a |Funcref| results in an
error.
expr8.name entry in a |Dictionary| *expr-entry*
If expr8 is a |Dictionary| and it is followed by a dot, then the following
name will be used as a key in the |Dictionary|. This is just like:
expr8[name].
The name must consist of alphanumeric characters, just like a variable name,
but it may start with a number. Curly braces cannot be used.
There must not be white space before or after the dot.
Examples: >
:let dict = {"one": 1, 2: "two"}
:echo dict.one
:echo dict .2
Note that the dot is also used for String concatenation. To avoid confusion
always put spaces around the dot for String concatenation.
expr8(expr1, ...) |Funcref| function call
When expr8 is a |Funcref| type variable, invoke the function it refers to.
*expr9*
number
------
number number constant *expr-number*
Decimal, Hexadecimal (starting with 0x or 0X), or Octal (starting with 0).
string *expr-string* *E114*
------
"string" string constant *expr-quote*
Note that double quotes are used.
A string constant accepts these special characters:
\... three-digit octal number (e.g., "\316")
\.. two-digit octal number (must be followed by non-digit)
\. one-digit octal number (must be followed by non-digit)
\x.. byte specified with two hex numbers (e.g., "\x1f")
\x. byte specified with one hex number (must be followed by non-hex char)
\X.. same as \x..
\X. same as \x.
\u.... character specified with up to 4 hex numbers, stored according to the
current value of 'encoding' (e.g., "\u02a4")
\U.... same as \u....
\b backspace <BS>
\e escape <Esc>
\f formfeed <FF>
\n newline <NL>
\r return <CR>
\t tab <Tab>
\\ backslash
\" double quote
\<xxx> Special key named "xxx". e.g. "\<C-W>" for CTRL-W.
Note that "\xff" is stored as the byte 255, which may be invalid in some
encodings. Use "\u00ff" to store character 255 according to the current value
of 'encoding'.
Note that "\000" and "\x00" force the end of the string.
literal-string *literal-string* *E115*
---------------
'string' string constant *expr-'*
Note that single quotes are used.
This string is taken as it is. No backslashes are removed or have a special
meaning. The only exception is that two quotes stand for one quote.
Single quoted strings are useful for patterns, so that backslashes do not need
to be doubled. These two commands are equivalent: >
if a =~ "\\s*"
if a =~ '\s*'
option *expr-option* *E112* *E113*
------
&option option value, local value if possible
&g:option global option value
&l:option local option value
Examples: >
echo "tabstop is " . &tabstop
if &insertmode
Any option name can be used here. See |options|. When using the local value
and there is no buffer-local or window-local value, the global value is used
anyway.
register *expr-register* *@r*
--------
@r contents of register 'r'
The result is the contents of the named register, as a single string.
Newlines are inserted where required. To get the contents of the unnamed
register use @" or @@. See |registers| for an explanation of the available
registers.
When using the '=' register you get the expression itself, not what it
evaluates to. Use |eval()| to evaluate it.
nesting *expr-nesting* *E110*
-------
(expr1) nested expression
environment variable *expr-env*
--------------------
$VAR environment variable
The String value of any environment variable. When it is not defined, the
result is an empty string.
*expr-env-expand*
Note that there is a difference between using $VAR directly and using
expand("$VAR"). Using it directly will only expand environment variables that
are known inside the current Vim session. Using expand() will first try using
the environment variables known inside the current Vim session. If that
fails, a shell will be used to expand the variable. This can be slow, but it
does expand all variables that the shell knows about. Example: >
:echo $version
:echo expand("$version")
The first one probably doesn't echo anything, the second echoes the $version
variable (if your shell supports it).
internal variable *expr-variable*
-----------------
variable internal variable
See below |internal-variables|.
function call *expr-function* *E116* *E118* *E119* *E120*
-------------
function(expr1, ...) function call
See below |functions|.
==============================================================================
3. Internal variable *internal-variables* *E121*
*E461*
An internal variable name can be made up of letters, digits and '_'. But it
cannot start with a digit. It's also possible to use curly braces, see
|curly-braces-names|.
An internal variable is created with the ":let" command |:let|.
An internal variable is explicitly destroyed with the ":unlet" command
|:unlet|.
Using a name that is not an internal variable or refers to a variable that has
been destroyed results in an error.
There are several name spaces for variables. Which one is to be used is
specified by what is prepended:
(nothing) In a function: local to a function; otherwise: global
|buffer-variable| b: Local to the current buffer.
|window-variable| w: Local to the current window.
|tabpage-variable| t: Local to the current tab page.
|global-variable| g: Global.
|local-variable| l: Local to a function.
|script-variable| s: Local to a |:source|'ed Vim script.
|function-argument| a: Function argument (only inside a function).
|vim-variable| v: Global, predefined by Vim.
The scope name by itself can be used as a |Dictionary|. For example, to
delete all script-local variables: >
:for k in keys(s:)
: unlet s:[k]
:endfor
<
*buffer-variable* *b:var*
A variable name that is preceded with "b:" is local to the current buffer.
Thus you can have several "b:foo" variables, one for each buffer.
This kind of variable is deleted when the buffer is wiped out or deleted with
|:bdelete|.
One local buffer variable is predefined:
*b:changedtick-variable* *changetick*
b:changedtick The total number of changes to the current buffer. It is
incremented for each change. An undo command is also a change
in this case. This can be used to perform an action only when
the buffer has changed. Example: >
:if my_changedtick != b:changedtick
: let my_changedtick = b:changedtick
: call My_Update()
:endif
<
*window-variable* *w:var*
A variable name that is preceded with "w:" is local to the current window. It
is deleted when the window is closed.
*tabpage-variable* *t:var*
A variable name that is preceded with "t:" is local to the current tab page,
It is deleted when the tab page is closed. {not available when compiled
without the +windows feature}
*global-variable* *g:var*
Inside functions global variables are accessed with "g:". Omitting this will
access a variable local to a function. But "g:" can also be used in any other
place if you like.
*local-variable* *l:var*
Inside functions local variables are accessed without prepending anything.
But you can also prepend "l:" if you like. However, without prepending "l:"
you may run into reserved variable names. For example "count". By itself it
refers to "v:count". Using "l:count" you can have a local variable with the
same name.
*script-variable* *s:var*
In a Vim script variables starting with "s:" can be used. They cannot be
accessed from outside of the scripts, thus are local to the script.
They can be used in:
- commands executed while the script is sourced
- functions defined in the script
- autocommands defined in the script
- functions and autocommands defined in functions and autocommands which were
defined in the script (recursively)
- user defined commands defined in the script
Thus not in:
- other scripts sourced from this one
- mappings
- etc.
Script variables can be used to avoid conflicts with global variable names.
Take this example: >
let s:counter = 0
function MyCounter()
let s:counter = s:counter + 1
echo s:counter
endfunction
command Tick call MyCounter()
You can now invoke "Tick" from any script, and the "s:counter" variable in
that script will not be changed, only the "s:counter" in the script where
"Tick" was defined is used.
Another example that does the same: >
let s:counter = 0
command Tick let s:counter = s:counter + 1 | echo s:counter
When calling a function and invoking a user-defined command, the context for
script variables is set to the script where the function or command was
defined.
The script variables are also available when a function is defined inside a
function that is defined in a script. Example: >
let s:counter = 0
function StartCounting(incr)
if a:incr
function MyCounter()
let s:counter = s:counter + 1
endfunction
else
function MyCounter()
let s:counter = s:counter - 1
endfunction
endif
endfunction
This defines the MyCounter() function either for counting up or counting down
when calling StartCounting(). It doesn't matter from where StartCounting() is
called, the s:counter variable will be accessible in MyCounter().
When the same script is sourced again it will use the same script variables.
They will remain valid as long as Vim is running. This can be used to
maintain a counter: >
if !exists("s:counter")
let s:counter = 1
echo "script executed for the first time"
else
let s:counter = s:counter + 1
echo "script executed " . s:counter . " times now"
endif
Note that this means that filetype plugins don't get a different set of script
variables for each buffer. Use local buffer variables instead |b:var|.
Predefined Vim variables: *vim-variable* *v:var*
*v:beval_col* *beval_col-variable*
v:beval_col The number of the column, over which the mouse pointer is.
This is the byte index in the |v:beval_lnum| line.
Only valid while evaluating the 'balloonexpr' option.
*v:beval_bufnr* *beval_bufnr-variable*
v:beval_bufnr The number of the buffer, over which the mouse pointer is. Only
valid while evaluating the 'balloonexpr' option.
*v:beval_lnum* *beval_lnum-variable*
v:beval_lnum The number of the line, over which the mouse pointer is. Only
valid while evaluating the 'balloonexpr' option.
*v:beval_text* *beval_text-variable*
v:beval_text The text under or after the mouse pointer. Usually a word as
it is useful for debugging a C program. 'iskeyword' applies,
but a dot and "->" before the position is included. When on a
']' the text before it is used, including the matching '[' and
word before it. When on a Visual area within one line the
highlighted text is used.
Only valid while evaluating the 'balloonexpr' option.
*v:beval_winnr* *beval_winnr-variable*
v:beval_winnr The number of the window, over which the mouse pointer is. Only
valid while evaluating the 'balloonexpr' option.
*v:char* *char-variable*
v:char Argument for evaluating 'formatexpr'.
*v:charconvert_from* *charconvert_from-variable*
v:charconvert_from
The name of the character encoding of a file to be converted.
Only valid while evaluating the 'charconvert' option.
*v:charconvert_to* *charconvert_to-variable*
v:charconvert_to
The name of the character encoding of a file after conversion.
Only valid while evaluating the 'charconvert' option.
*v:cmdarg* *cmdarg-variable*
v:cmdarg This variable is used for two purposes:
1. The extra arguments given to a file read/write command.
Currently these are "++enc=" and "++ff=". This variable is
set before an autocommand event for a file read/write
command is triggered. There is a leading space to make it
possible to append this variable directly after the
read/write command. Note: The "+cmd" argument isn't
included here, because it will be executed anyway.
2. When printing a PostScript file with ":hardcopy" this is
the argument for the ":hardcopy" command. This can be used
in 'printexpr'.
*v:cmdbang* *cmdbang-variable*
v:cmdbang Set like v:cmdarg for a file read/write command. When a "!"
was used the value is 1, otherwise it is 0. Note that this
can only be used in autocommands. For user commands |<bang>|
can be used.
*v:count* *count-variable*
v:count The count given for the last Normal mode command. Can be used
to get the count before a mapping. Read-only. Example: >
:map _x :<C-U>echo "the count is " . v:count<CR>
< Note: The <C-U> is required to remove the line range that you
get when typing ':' after a count.
Also used for evaluating the 'formatexpr' option.
"count" also works, for backwards compatibility.
*v:count1* *count1-variable*
v:count1 Just like "v:count", but defaults to one when no count is
used.
*v:ctype* *ctype-variable*
v:ctype The current locale setting for characters of the runtime
environment. This allows Vim scripts to be aware of the
current locale encoding. Technical: it's the value of
LC_CTYPE. When not using a locale the value is "C".
This variable can not be set directly, use the |:language|
command.
See |multi-lang|.
*v:dying* *dying-variable*
v:dying Normally zero. When a deadly signal is caught it's set to
one. When multiple signals are caught the number increases.
Can be used in an autocommand to check if Vim didn't
terminate normally. {only works on Unix}
Example: >
:au VimLeave * if v:dying | echo "\nAAAAaaaarrrggghhhh!!!\n" | endif
<
*v:errmsg* *errmsg-variable*
v:errmsg Last given error message. It's allowed to set this variable.
Example: >
:let v:errmsg = ""
:silent! next
:if v:errmsg != ""
: ... handle error
< "errmsg" also works, for backwards compatibility.
*v:exception* *exception-variable*
v:exception The value of the exception most recently caught and not
finished. See also |v:throwpoint| and |throw-variables|.
Example: >
:try
: throw "oops"
:catch /.*/
: echo "caught" v:exception
:endtry
< Output: "caught oops".
*v:fcs_reason* *fcs_reason-variable*
v:fcs_reason The reason why the |FileChangedShell| event was triggered.
Can be used in an autocommand to decide what to do and/or what
to set v:fcs_choice to. Possible values:
deleted file no longer exists
conflict file contents, mode or timestamp was
changed and buffer is modified
changed file contents has changed
mode mode of file changed
time only file timestamp changed
*v:fcs_choice* *fcs_choice-variable*
v:fcs_choice What should happen after a |FileChangedShell| event was
triggered. Can be used in an autocommand to tell Vim what to
do with the affected buffer:
reload Reload the buffer (does not work if
the file was deleted).
ask Ask the user what to do, as if there
was no autocommand. Except that when
only the timestamp changed nothing
will happen.
<empty> Nothing, the autocommand should do
everything that needs to be done.
The default is empty. If another (invalid) value is used then
Vim behaves like it is empty, there is no warning message.
*v:fname_in* *fname_in-variable*
v:fname_in The name of the input file. Valid while evaluating:
option used for ~
'charconvert' file to be converted
'diffexpr' original file
'patchexpr' original file
'printexpr' file to be printed
And set to the swap file name for |SwapExists|.
*v:fname_out* *fname_out-variable*
v:fname_out The name of the output file. Only valid while
evaluating:
option used for ~
'charconvert' resulting converted file (*)
'diffexpr' output of diff
'patchexpr' resulting patched file
(*) When doing conversion for a write command (e.g., ":w
file") it will be equal to v:fname_in. When doing conversion
for a read command (e.g., ":e file") it will be a temporary
file and different from v:fname_in.
*v:fname_new* *fname_new-variable*
v:fname_new The name of the new version of the file. Only valid while
evaluating 'diffexpr'.
*v:fname_diff* *fname_diff-variable*
v:fname_diff The name of the diff (patch) file. Only valid while
evaluating 'patchexpr'.
*v:folddashes* *folddashes-variable*
v:folddashes Used for 'foldtext': dashes representing foldlevel of a closed
fold.
Read-only in the |sandbox|. |fold-foldtext|
*v:foldlevel* *foldlevel-variable*
v:foldlevel Used for 'foldtext': foldlevel of closed fold.
Read-only in the |sandbox|. |fold-foldtext|
*v:foldend* *foldend-variable*
v:foldend Used for 'foldtext': last line of closed fold.
Read-only in the |sandbox|. |fold-foldtext|
*v:foldstart* *foldstart-variable*
v:foldstart Used for 'foldtext': first line of closed fold.
Read-only in the |sandbox|. |fold-foldtext|
*v:insertmode* *insertmode-variable*
v:insertmode Used for the |InsertEnter| and |InsertChange| autocommand
events. Values:
i Insert mode
r Replace mode
v Virtual Replace mode
*v:key* *key-variable*
v:key Key of the current item of a |Dictionary|. Only valid while
evaluating the expression used with |map()| and |filter()|.
Read-only.
*v:lang* *lang-variable*
v:lang The current locale setting for messages of the runtime
environment. This allows Vim scripts to be aware of the
current language. Technical: it's the value of LC_MESSAGES.
The value is system dependent.
This variable can not be set directly, use the |:language|
command.
It can be different from |v:ctype| when messages are desired
in a different language than what is used for character
encoding. See |multi-lang|.
*v:lc_time* *lc_time-variable*
v:lc_time The current locale setting for time messages of the runtime
environment. This allows Vim scripts to be aware of the
current language. Technical: it's the value of LC_TIME.
This variable can not be set directly, use the |:language|
command. See |multi-lang|.
*v:lnum* *lnum-variable*
v:lnum Line number for the 'foldexpr' |fold-expr| and 'indentexpr'
expressions, tab page number for 'guitablabel' and
'guitabtooltip'. Only valid while one of these expressions is
being evaluated. Read-only when in the |sandbox|.
*v:mouse_win* *mouse_win-variable*
v:mouse_win Window number for a mouse click obtained with |getchar()|.
First window has number 1, like with |winnr()|. The value is
zero when there was no mouse button click.
*v:mouse_lnum* *mouse_lnum-variable*
v:mouse_lnum Line number for a mouse click obtained with |getchar()|.
This is the text line number, not the screen line number. The
value is zero when there was no mouse button click.
*v:mouse_col* *mouse_col-variable*
v:mouse_col Column number for a mouse click obtained with |getchar()|.
This is the screen column number, like with |virtcol()|. The
value is zero when there was no mouse button click.
*v:operator* *operator-variable*
v:operator The last operator given in Normal mode. This is a single
character except for commands starting with <g> or <z>,
in which case it is two characters. Best used alongside
|v:prevcount| and |v:register|. Useful if you want to cancel
Operator-pending mode and then use the operator, e.g.: >
:omap O <Esc>:call MyMotion(v:operator)<CR>
< The value remains set until another operator is entered, thus
don't expect it to be empty.
v:operator is not set for |:delete|, |:yank| or other Ex
commands.
Read-only.
*v:prevcount* *prevcount-variable*
v:prevcount The count given for the last but one Normal mode command.
This is the v:count value of the previous command. Useful if
you want to cancel Visual or Operator-pending mode and then
use the count, e.g.: >
:vmap % <Esc>:call MyFilter(v:prevcount)<CR>
< Read-only.
*v:profiling* *profiling-variable*
v:profiling Normally zero. Set to one after using ":profile start".
See |profiling|.
*v:progname* *progname-variable*
v:progname Contains the name (with path removed) with which Vim was
invoked. Allows you to do special initialisations for "view",
"evim" etc., or any other name you might symlink to Vim.
Read-only.
*v:register* *register-variable*
v:register The name of the register supplied to the last normal mode
command. Empty if none were supplied. |getreg()| |setreg()|
*v:scrollstart* *scrollstart-variable*
v:scrollstart String describing the script or function that caused the
screen to scroll up. It's only set when it is empty, thus the
first reason is remembered. It is set to "Unknown" for a
typed command.
This can be used to find out why your script causes the
hit-enter prompt.
*v:servername* *servername-variable*
v:servername The resulting registered |x11-clientserver| name if any.
Read-only.
*v:shell_error* *shell_error-variable*
v:shell_error Result of the last shell command. When non-zero, the last
shell command had an error. When zero, there was no problem.
This only works when the shell returns the error code to Vim.
The value -1 is often used when the command could not be
executed. Read-only.
Example: >
:!mv foo bar
:if v:shell_error
: echo 'could not rename "foo" to "bar"!'
:endif
< "shell_error" also works, for backwards compatibility.
*v:statusmsg* *statusmsg-variable*
v:statusmsg Last given status message. It's allowed to set this variable.
*v:swapname* *swapname-variable*
v:swapname Only valid when executing |SwapExists| autocommands: Name of
the swap file found. Read-only.
*v:swapchoice* *swapchoice-variable*
v:swapchoice |SwapExists| autocommands can set this to the selected choice
for handling an existing swap file:
'o' Open read-only
'e' Edit anyway
'r' Recover
'd' Delete swapfile
'q' Quit
'a' Abort
The value should be a single-character string. An empty value
results in the user being asked, as would happen when there is
no SwapExists autocommand. The default is empty.
*v:swapcommand* *swapcommand-variable*
v:swapcommand Normal mode command to be executed after a file has been
opened. Can be used for a |SwapExists| autocommand to have
another Vim open the file and jump to the right place. For
example, when jumping to a tag the value is ":tag tagname\r".
For ":edit +cmd file" the value is ":cmd\r".
*v:termresponse* *termresponse-variable*
v:termresponse The escape sequence returned by the terminal for the |t_RV|
termcap entry. It is set when Vim receives an escape sequence
that starts with ESC [ or CSI and ends in a 'c', with only
digits, ';' and '.' in between.
When this option is set, the TermResponse autocommand event is
fired, so that you can react to the response from the
terminal.
The response from a new xterm is: "<Esc>[ Pp ; Pv ; Pc c". Pp
is the terminal type: 0 for vt100 and 1 for vt220. Pv is the
patch level (since this was introduced in patch 95, it's
always 95 or bigger). Pc is always zero.
{only when compiled with |+termresponse| feature}
*v:this_session* *this_session-variable*
v:this_session Full filename of the last loaded or saved session file. See
|:mksession|. It is allowed to set this variable. When no
session file has been saved, this variable is empty.
"this_session" also works, for backwards compatibility.
*v:throwpoint* *throwpoint-variable*
v:throwpoint The point where the exception most recently caught and not
finished was thrown. Not set when commands are typed. See
also |v:exception| and |throw-variables|.
Example: >
:try
: throw "oops"
:catch /.*/
: echo "Exception from" v:throwpoint
:endtry
< Output: "Exception from test.vim, line 2"
*v:val* *val-variable*
v:val Value of the current item of a |List| or |Dictionary|. Only
valid while evaluating the expression used with |map()| and
|filter()|. Read-only.
*v:version* *version-variable*
v:version Version number of Vim: Major version number times 100 plus
minor version number. Version 5.0 is 500. Version 5.1 (5.01)
is 501. Read-only. "version" also works, for backwards
compatibility.
Use |has()| to check if a certain patch was included, e.g.: >
if has("patch123")
< Note that patch numbers are specific to the version, thus both
version 5.0 and 5.1 may have a patch 123, but these are
completely different.
*v:warningmsg* *warningmsg-variable*
v:warningmsg Last given warning message. It's allowed to set this variable.
==============================================================================
4. Builtin Functions *functions*
See |function-list| for a list grouped by what the function is used for.
(Use CTRL-] on the function name to jump to the full explanation.)
USAGE RESULT DESCRIPTION ~
add( {list}, {item}) List append {item} to |List| {list}
append( {lnum}, {string}) Number append {string} below line {lnum}
append( {lnum}, {list}) Number append lines {list} below line {lnum}
argc() Number number of files in the argument list
argidx() Number current index in the argument list
argv( {nr}) String {nr} entry of the argument list
argv( ) List the argument list
browse( {save}, {title}, {initdir}, {default})
String put up a file requester
browsedir( {title}, {initdir}) String put up a directory requester
bufexists( {expr}) Number TRUE if buffer {expr} exists
buflisted( {expr}) Number TRUE if buffer {expr} is listed
bufloaded( {expr}) Number TRUE if buffer {expr} is loaded
bufname( {expr}) String Name of the buffer {expr}
bufnr( {expr}) Number Number of the buffer {expr}
bufwinnr( {expr}) Number window number of buffer {expr}
byte2line( {byte}) Number line number at byte count {byte}
byteidx( {expr}, {nr}) Number byte index of {nr}'th char in {expr}
call( {func}, {arglist} [, {dict}])
any call {func} with arguments {arglist}
changenr() Number current change number
char2nr( {expr}) Number ASCII value of first char in {expr}
cindent( {lnum}) Number C indent for line {lnum}
clearmatches() None clear all matches
col( {expr}) Number column nr of cursor or mark
complete({startcol}, {matches}) String set Insert mode completion
complete_add( {expr}) Number add completion match
complete_check() Number check for key typed during completion
confirm( {msg} [, {choices} [, {default} [, {type}]]])
Number number of choice picked by user
copy( {expr}) any make a shallow copy of {expr}
count( {list}, {expr} [, {start} [, {ic}]])
Number count how many {expr} are in {list}
cscope_connection( [{num} , {dbpath} [, {prepend}]])
Number checks existence of cscope connection
cursor( {lnum}, {col} [, {coladd}])
Number move cursor to {lnum}, {col}, {coladd}
cursor( {list}) Number move cursor to position in {list}
deepcopy( {expr}) any make a full copy of {expr}
delete( {fname}) Number delete file {fname}
did_filetype() Number TRUE if FileType autocommand event used
diff_filler( {lnum}) Number diff filler lines about {lnum}
diff_hlID( {lnum}, {col}) Number diff highlighting at {lnum}/{col}
empty( {expr}) Number TRUE if {expr} is empty
escape( {string}, {chars}) String escape {chars} in {string} with '\'
eval( {string}) any evaluate {string} into its value
eventhandler( ) Number TRUE if inside an event handler
executable( {expr}) Number 1 if executable {expr} exists
exists( {expr}) Number TRUE if {expr} exists
extend({expr1}, {expr2} [, {expr3}])
List/Dict insert items of {expr2} into {expr1}
expand( {expr}) String expand special keywords in {expr}
feedkeys( {string} [, {mode}]) Number add key sequence to typeahead buffer
filereadable( {file}) Number TRUE if {file} is a readable file
filewritable( {file}) Number TRUE if {file} is a writable file
filter( {expr}, {string}) List/Dict remove items from {expr} where
{string} is 0
finddir( {name}[, {path}[, {count}]])
String find directory {name} in {path}
findfile( {name}[, {path}[, {count}]])
String find file {name} in {path}
fnamemodify( {fname}, {mods}) String modify file name
foldclosed( {lnum}) Number first line of fold at {lnum} if closed
foldclosedend( {lnum}) Number last line of fold at {lnum} if closed
foldlevel( {lnum}) Number fold level at {lnum}
foldtext( ) String line displayed for closed fold
foldtextresult( {lnum}) String text for closed fold at {lnum}
foreground( ) Number bring the Vim window to the foreground
function( {name}) Funcref reference to function {name}
garbagecollect( [at_exit]) none free memory, breaking cyclic references
get( {list}, {idx} [, {def}]) any get item {idx} from {list} or {def}
get( {dict}, {key} [, {def}]) any get item {key} from {dict} or {def}
getbufline( {expr}, {lnum} [, {end}])
List lines {lnum} to {end} of buffer {expr}
getbufvar( {expr}, {varname}) any variable {varname} in buffer {expr}
getchar( [expr]) Number get one character from the user
getcharmod( ) Number modifiers for the last typed character
getcmdline() String return the current command-line
getcmdpos() Number return cursor position in command-line
getcmdtype() String return the current command-line type
getcwd() String the current working directory
getfperm( {fname}) String file permissions of file {fname}
getfsize( {fname}) Number size in bytes of file {fname}
getfontname( [{name}]) String name of font being used
getftime( {fname}) Number last modification time of file
getftype( {fname}) String description of type of file {fname}
getline( {lnum}) String line {lnum} of current buffer
getline( {lnum}, {end}) List lines {lnum} to {end} of current buffer
getloclist({nr}) List list of location list items
getmatches() List list of current matches
getpid() Number process ID of Vim
getpos( {expr}) List position of cursor, mark, etc.
getqflist() List list of quickfix items
getreg( [{regname} [, 1]]) String contents of register
getregtype( [{regname}]) String type of register
gettabwinvar( {tabnr}, {winnr}, {name})
any {name} in {winnr} in tab page {tabnr}
getwinposx() Number X coord in pixels of GUI Vim window
getwinposy() Number Y coord in pixels of GUI Vim window
getwinvar( {nr}, {varname}) any variable {varname} in window {nr}
glob( {expr}) String expand file wildcards in {expr}
globpath( {path}, {expr}) String do glob({expr}) for all dirs in {path}
has( {feature}) Number TRUE if feature {feature} supported
has_key( {dict}, {key}) Number TRUE if {dict} has entry {key}
haslocaldir() Number TRUE if current window executed |:lcd|
hasmapto( {what} [, {mode} [, {abbr}]])
Number TRUE if mapping to {what} exists
histadd( {history},{item}) String add an item to a history
histdel( {history} [, {item}]) String remove an item from a history
histget( {history} [, {index}]) String get the item {index} from a history
histnr( {history}) Number highest index of a history
hlexists( {name}) Number TRUE if highlight group {name} exists
hlID( {name}) Number syntax ID of highlight group {name}
hostname() String name of the machine Vim is running on
iconv( {expr}, {from}, {to}) String convert encoding of {expr}
indent( {lnum}) Number indent of line {lnum}
index( {list}, {expr} [, {start} [, {ic}]])
Number index in {list} where {expr} appears
input( {prompt} [, {text} [, {completion}]])
String get input from the user
inputdialog( {p} [, {t} [, {c}]]) String like input() but in a GUI dialog
inputlist( {textlist}) Number let the user pick from a choice list
inputrestore() Number restore typeahead
inputsave() Number save and clear typeahead
inputsecret( {prompt} [, {text}]) String like input() but hiding the text
insert( {list}, {item} [, {idx}]) List insert {item} in {list} [before {idx}]
isdirectory( {directory}) Number TRUE if {directory} is a directory
islocked( {expr}) Number TRUE if {expr} is locked
items( {dict}) List key-value pairs in {dict}
join( {list} [, {sep}]) String join {list} items into one String
keys( {dict}) List keys in {dict}
len( {expr}) Number the length of {expr}
libcall( {lib}, {func}, {arg}) String call {func} in library {lib} with {arg}
libcallnr( {lib}, {func}, {arg}) Number idem, but return a Number
line( {expr}) Number line nr of cursor, last line or mark
line2byte( {lnum}) Number byte count of line {lnum}
lispindent( {lnum}) Number Lisp indent for line {lnum}
localtime() Number current time
map( {expr}, {string}) List/Dict change each item in {expr} to {expr}
maparg( {name}[, {mode} [, {abbr}]])
String rhs of mapping {name} in mode {mode}
mapcheck( {name}[, {mode} [, {abbr}]])
String check for mappings matching {name}
match( {expr}, {pat}[, {start}[, {count}]])
Number position where {pat} matches in {expr}
matchadd( {group}, {pattern}[, {priority}[, {id}]])
Number highlight {pattern} with {group}
matcharg( {nr}) List arguments of |:match|
matchdelete( {id}) Number delete match identified by {id}
matchend( {expr}, {pat}[, {start}[, {count}]])
Number position where {pat} ends in {expr}
matchlist( {expr}, {pat}[, {start}[, {count}]])
List match and submatches of {pat} in {expr}
matchstr( {expr}, {pat}[, {start}[, {count}]])
String {count}'th match of {pat} in {expr}
max({list}) Number maximum value of items in {list}
min({list}) Number minimum value of items in {list}
mkdir({name} [, {path} [, {prot}]])
Number create directory {name}
mode() String current editing mode
nextnonblank( {lnum}) Number line nr of non-blank line >= {lnum}
nr2char( {expr}) String single char with ASCII value {expr}
pathshorten( {expr}) String shorten directory names in a path
prevnonblank( {lnum}) Number line nr of non-blank line <= {lnum}
printf( {fmt}, {expr1}...) String format text
pumvisible() Number whether popup menu is visible
range( {expr} [, {max} [, {stride}]])
List items from {expr} to {max}
readfile({fname} [, {binary} [, {max}]])
List get list of lines from file {fname}
reltime( [{start} [, {end}]]) List get time value
reltimestr( {time}) String turn time value into a String
remote_expr( {server}, {string} [, {idvar}])
String send expression
remote_foreground( {server}) Number bring Vim server to the foreground
remote_peek( {serverid} [, {retvar}])
Number check for reply string
remote_read( {serverid}) String read reply string
remote_send( {server}, {string} [, {idvar}])
String send key sequence
remove( {list}, {idx} [, {end}]) any remove items {idx}-{end} from {list}
remove( {dict}, {key}) any remove entry {key} from {dict}
rename( {from}, {to}) Number rename (move) file from {from} to {to}
repeat( {expr}, {count}) String repeat {expr} {count} times
resolve( {filename}) String get filename a shortcut points to
reverse( {list}) List reverse {list} in-place
search( {pattern} [, {flags} [, {stopline} [, {timeout}]]])
Number search for {pattern}
searchdecl({name} [, {global} [, {thisblock}]])
Number search for variable declaration
searchpair( {start}, {middle}, {end} [, {flags} [, {skip} [...]]])
Number search for other end of start/end pair
searchpairpos( {start}, {middle}, {end} [, {flags} [, {skip} [...]]])
List search for other end of start/end pair
searchpos( {pattern} [, {flags} [, {stopline} [, {timeout}]]])
List search for {pattern}
server2client( {clientid}, {string})
Number send reply string
serverlist() String get a list of available servers
setbufvar( {expr}, {varname}, {val}) set {varname} in buffer {expr} to {val}
setcmdpos( {pos}) Number set cursor position in command-line
setline( {lnum}, {line}) Number set line {lnum} to {line}
setloclist( {nr}, {list}[, {action}])
Number modify location list using {list}
setmatches( {list}) Number restore a list of matches
setpos( {expr}, {list}) none set the {expr} position to {list}
setqflist( {list}[, {action}]) Number modify quickfix list using {list}
setreg( {n}, {v}[, {opt}]) Number set register to value and type
settabwinvar( {tabnr}, {winnr}, {varname}, {val}) set {varname} in window
{winnr} in tab page {tabnr} to {val}
setwinvar( {nr}, {varname}, {val}) set {varname} in window {nr} to {val}
shellescape( {string}) String escape {string} for use as shell
command argument
simplify( {filename}) String simplify filename as much as possible
sort( {list} [, {func}]) List sort {list}, using {func} to compare
soundfold( {word}) String sound-fold {word}
spellbadword() String badly spelled word at cursor
spellsuggest( {word} [, {max} [, {capital}]])
List spelling suggestions
split( {expr} [, {pat} [, {keepempty}]])
List make |List| from {pat} separated {expr}
str2nr( {expr} [, {base}]) Number convert string to number
strftime( {format}[, {time}]) String time in specified format
stridx( {haystack}, {needle}[, {start}])
Number index of {needle} in {haystack}
string( {expr}) String String representation of {expr} value
strlen( {expr}) Number length of the String {expr}
strpart( {src}, {start}[, {len}])
String {len} characters of {src} at {start}
strridx( {haystack}, {needle} [, {start}])
Number last index of {needle} in {haystack}
strtrans( {expr}) String translate string to make it printable
submatch( {nr}) String specific match in ":substitute"
substitute( {expr}, {pat}, {sub}, {flags})
String all {pat} in {expr} replaced with {sub}
synID( {lnum}, {col}, {trans}) Number syntax ID at {lnum} and {col}
synIDattr( {synID}, {what} [, {mode}])
String attribute {what} of syntax ID {synID}
synIDtrans( {synID}) Number translated syntax ID of {synID}
synstack({lnum}, {col}) List stack of syntax IDs at {lnum} and {col}
system( {expr} [, {input}]) String output of shell command/filter {expr}
tabpagebuflist( [{arg}]) List list of buffer numbers in tab page
tabpagenr( [{arg}]) Number number of current or last tab page
tabpagewinnr( {tabarg}[, {arg}])
Number number of current window in tab page
taglist( {expr}) List list of tags matching {expr}
tagfiles() List tags files used
tempname() String name for a temporary file
tolower( {expr}) String the String {expr} switched to lowercase
toupper( {expr}) String the String {expr} switched to uppercase
tr( {src}, {fromstr}, {tostr}) String translate chars of {src} in {fromstr}
to chars in {tostr}
type( {name}) Number type of variable {name}
values( {dict}) List values in {dict}
virtcol( {expr}) Number screen column of cursor or mark
visualmode( [expr]) String last visual mode used
winbufnr( {nr}) Number buffer number of window {nr}
wincol() Number window column of the cursor
winheight( {nr}) Number height of window {nr}
winline() Number window line of the cursor
winnr( [{expr}]) Number number of current window
winrestcmd() String returns command to restore window sizes
winrestview({dict}) None restore view of current window
winsaveview() Dict save view of current window
winwidth( {nr}) Number width of window {nr}
writefile({list}, {fname} [, {binary}])
Number write list of lines to file {fname}
add({list}, {expr}) *add()*
Append the item {expr} to |List| {list}. Returns the
resulting |List|. Examples: >
:let alist = add([1, 2, 3], item)
:call add(mylist, "woodstock")
< Note that when {expr} is a |List| it is appended as a single
item. Use |extend()| to concatenate |Lists|.
Use |insert()| to add an item at another position.
append({lnum}, {expr}) *append()*
When {expr} is a |List|: Append each item of the |List| as a
text line below line {lnum} in the current buffer.
Otherwise append {expr} as one text line below line {lnum} in
the current buffer.
{lnum} can be zero to insert a line before the first one.
Returns 1 for failure ({lnum} out of range or out of memory),
0 for success. Example: >
:let failed = append(line('$'), "# THE END")
:let failed = append(0, ["Chapter 1", "the beginning"])
<
*argc()*
argc() The result is the number of files in the argument list of the
current window. See |arglist|.
*argidx()*
argidx() The result is the current index in the argument list. 0 is
the first file. argc() - 1 is the last one. See |arglist|.
*argv()*
argv([{nr}]) The result is the {nr}th file in the argument list of the
current window. See |arglist|. "argv(0)" is the first one.
Example: >
:let i = 0
:while i < argc()
: let f = escape(argv(i), '. ')
: exe 'amenu Arg.' . f . ' :e ' . f . '<CR>'
: let i = i + 1
:endwhile
< Without the {nr} argument a |List| with the whole |arglist| is
returned.
*browse()*
browse({save}, {title}, {initdir}, {default})
Put up a file requester. This only works when "has("browse")"
returns non-zero (only in some GUI versions).
The input fields are:
{save} when non-zero, select file to write
{title} title for the requester
{initdir} directory to start browsing in
{default} default file name
When the "Cancel" button is hit, something went wrong, or
browsing is not possible, an empty string is returned.
*browsedir()*
browsedir({title}, {initdir})
Put up a directory requester. This only works when
"has("browse")" returns non-zero (only in some GUI versions).
On systems where a directory browser is not supported a file
browser is used. In that case: select a file in the directory
to be used.
The input fields are:
{title} title for the requester
{initdir} directory to start browsing in
When the "Cancel" button is hit, something went wrong, or
browsing is not possible, an empty string is returned.
bufexists({expr}) *bufexists()*
The result is a Number, which is non-zero if a buffer called
{expr} exists.
If the {expr} argument is a number, buffer numbers are used.
If the {expr} argument is a string it must match a buffer name
exactly. The name can be:
- Relative to the current directory.
- A full path.
- The name of a buffer with 'filetype' set to "nofile".
- A URL name.
Unlisted buffers will be found.
Note that help files are listed by their short name in the
output of |:buffers|, but bufexists() requires using their
long name to be able to find them.
Use "bufexists(0)" to test for the existence of an alternate
file name.
*buffer_exists()*
Obsolete name: buffer_exists().
buflisted({expr}) *buflisted()*
The result is a Number, which is non-zero if a buffer called
{expr} exists and is listed (has the 'buflisted' option set).
The {expr} argument is used like with |bufexists()|.
bufloaded({expr}) *bufloaded()*
The result is a Number, which is non-zero if a buffer called
{expr} exists and is loaded (shown in a window or hidden).
The {expr} argument is used like with |bufexists()|.
bufname({expr}) *bufname()*
The result is the name of a buffer, as it is displayed by the
":ls" command.
If {expr} is a Number, that buffer number's name is given.
Number zero is the alternate buffer for the current window.
If {expr} is a String, it is used as a |file-pattern| to match
with the buffer names. This is always done like 'magic' is
set and 'cpoptions' is empty. When there is more than one
match an empty string is returned.
"" or "%" can be used for the current buffer, "#" for the
alternate buffer.
A full match is preferred, otherwise a match at the start, end
or middle of the buffer name is accepted. If you only want a
full match then put "^" at the start and "$" at the end of the
pattern.
Listed buffers are found first. If there is a single match
with a listed buffer, that one is returned. Next unlisted
buffers are searched for.
If the {expr} is a String, but you want to use it as a buffer
number, force it to be a Number by adding zero to it: >
:echo bufname("3" + 0)
< If the buffer doesn't exist, or doesn't have a name, an empty
string is returned. >
bufname("#") alternate buffer name
bufname(3) name of buffer 3
bufname("%") name of current buffer
bufname("file2") name of buffer where "file2" matches.
< *buffer_name()*
Obsolete name: buffer_name().
*bufnr()*
bufnr({expr} [, {create}])
The result is the number of a buffer, as it is displayed by
the ":ls" command. For the use of {expr}, see |bufname()|
above.
If the buffer doesn't exist, -1 is returned. Or, if the
{create} argument is present and not zero, a new, unlisted,
buffer is created and its number is returned.
bufnr("$") is the last buffer: >
:let last_buffer = bufnr("$")
< The result is a Number, which is the highest buffer number
of existing buffers. Note that not all buffers with a smaller
number necessarily exist, because ":bwipeout" may have removed
them. Use bufexists() to test for the existence of a buffer.
*buffer_number()*
Obsolete name: buffer_number().
*last_buffer_nr()*
Obsolete name for bufnr("$"): last_buffer_nr().
bufwinnr({expr}) *bufwinnr()*
The result is a Number, which is the number of the first
window associated with buffer {expr}. For the use of {expr},
see |bufname()| above. If buffer {expr} doesn't exist or
there is no such window, -1 is returned. Example: >
echo "A window containing buffer 1 is " . (bufwinnr(1))
< The number can be used with |CTRL-W_w| and ":wincmd w"
|:wincmd|.
Only deals with the current tab page.
byte2line({byte}) *byte2line()*
Return the line number that contains the character at byte
count {byte} in the current buffer. This includes the
end-of-line character, depending on the 'fileformat' option
for the current buffer. The first character has byte count
one.
Also see |line2byte()|, |go| and |:goto|.
{not available when compiled without the |+byte_offset|
feature}
byteidx({expr}, {nr}) *byteidx()*
Return byte index of the {nr}'th character in the string
{expr}. Use zero for the first character, it returns zero.
This function is only useful when there are multibyte
characters, otherwise the returned value is equal to {nr}.
Composing characters are counted as a separate character.
Example : >
echo matchstr(str, ".", byteidx(str, 3))
< will display the fourth character. Another way to do the
same: >
let s = strpart(str, byteidx(str, 3))
echo strpart(s, 0, byteidx(s, 1))
< If there are less than {nr} characters -1 is returned.
If there are exactly {nr} characters the length of the string
is returned.
call({func}, {arglist} [, {dict}]) *call()* *E699*
Call function {func} with the items in |List| {arglist} as
arguments.
{func} can either be a |Funcref| or the name of a function.
a:firstline and a:lastline are set to the cursor line.
Returns the return value of the called function.
{dict} is for functions with the "dict" attribute. It will be
used to set the local variable "self". |Dictionary-function|
changenr() *changenr()*
Return the number of the most recent change. This is the same
number as what is displayed with |:undolist| and can be used
with the |:undo| command.
When a change was made it is the number of that change. After
redo it is the number of the redone change. After undo it is
one less than the number of the undone change.
char2nr({expr}) *char2nr()*
Return number value of the first char in {expr}. Examples: >
char2nr(" ") returns 32
char2nr("ABC") returns 65
< The current 'encoding' is used. Example for "utf-8": >
char2nr("á") returns 225
char2nr("á"[0]) returns 195
< nr2char() does the opposite.
cindent({lnum}) *cindent()*
Get the amount of indent for line {lnum} according the C
indenting rules, as with 'cindent'.
The indent is counted in spaces, the value of 'tabstop' is
relevant. {lnum} is used just like in |getline()|.
When {lnum} is invalid or Vim was not compiled the |+cindent|
feature, -1 is returned.
See |C-indenting|.
clearmatches() *clearmatches()*
Clears all matches previously defined by |matchadd()| and the
|:match| commands.
*col()*
col({expr}) The result is a Number, which is the byte index of the column
position given with {expr}. The accepted positions are:
. the cursor position
$ the end of the cursor line (the result is the
number of characters in the cursor line plus one)
'x position of mark x (if the mark is not set, 0 is
returned)
Additionally {expr} can be [lnum, col]: a |List| with the line
and column number. Most useful when the column is "$", to get
the las column of a specific line. When "lnum" or "col" is
out of range then col() returns zero.
To get the line number use |line()|. To get both use
|getpos()|.
For the screen column position use |virtcol()|.
Note that only marks in the current file can be used.
Examples: >
col(".") column of cursor
col("$") length of cursor line plus one
col("'t") column of mark t
col("'" . markname) column of mark markname
< The first column is 1. 0 is returned for an error.
For an uppercase mark the column may actually be in another
buffer.
For the cursor position, when 'virtualedit' is active, the
column is one higher if the cursor is after the end of the
line. This can be used to obtain the column in Insert mode: >
:imap <F2> <C-O>:let save_ve = &ve<CR>
\<C-O>:set ve=all<CR>
\<C-O>:echo col(".") . "\n" <Bar>
\let &ve = save_ve<CR>
<
complete({startcol}, {matches}) *complete()* *E785*
Set the matches for Insert mode completion.
Can only be used in Insert mode. You need to use a mapping
with CTRL-R = |i_CTRL-R|. It does not work after CTRL-O or
with an expression mapping.
{startcol} is the byte offset in the line where the completed
text start. The text up to the cursor is the original text
that will be replaced by the matches. Use col('.') for an
empty string. "col('.') - 1" will replace one character by a
match.
{matches} must be a |List|. Each |List| item is one match.
See |complete-items| for the kind of items that are possible.
Note that the after calling this function you need to avoid
inserting anything that would completion to stop.
The match can be selected with CTRL-N and CTRL-P as usual with
Insert mode completion. The popup menu will appear if
specified, see |ins-completion-menu|.
Example: >
inoremap <F5> <C-R>=ListMonths()<CR>
func! ListMonths()
call complete(col('.'), ['January', 'February', 'March',
\ 'April', 'May', 'June', 'July', 'August', 'September',
\ 'October', 'November', 'December'])
return ''
endfunc
< This isn't very useful, but it shows how it works. Note that
an empty string is returned to avoid a zero being inserted.
complete_add({expr}) *complete_add()*
Add {expr} to the list of matches. Only to be used by the
function specified with the 'completefunc' option.
Returns 0 for failure (empty string or out of memory),
1 when the match was added, 2 when the match was already in
the list.
See |complete-functions| for an explanation of {expr}. It is
the same as one item in the list that 'omnifunc' would return.
complete_check() *complete_check()*
Check for a key typed while looking for completion matches.
This is to be used when looking for matches takes some time.
Returns non-zero when searching for matches is to be aborted,
zero otherwise.
Only to be used by the function specified with the
'completefunc' option.
*confirm()*
confirm({msg} [, {choices} [, {default} [, {type}]]])
Confirm() offers the user a dialog, from which a choice can be
made. It returns the number of the choice. For the first
choice this is 1.
Note: confirm() is only supported when compiled with dialog
support, see |+dialog_con| and |+dialog_gui|.
{msg} is displayed in a |dialog| with {choices} as the
alternatives. When {choices} is missing or empty, "&OK" is
used (and translated).
{msg} is a String, use '\n' to include a newline. Only on
some systems the string is wrapped when it doesn't fit.
{choices} is a String, with the individual choices separated
by '\n', e.g. >
confirm("Save changes?", "&Yes\n&No\n&Cancel")
< The letter after the '&' is the shortcut key for that choice.
Thus you can type 'c' to select "Cancel". The shortcut does
not need to be the first letter: >
confirm("file has been modified", "&Save\nSave &All")
< For the console, the first letter of each choice is used as
the default shortcut key.
The optional {default} argument is the number of the choice
that is made if the user hits <CR>. Use 1 to make the first
choice the default one. Use 0 to not set a default. If
{default} is omitted, 1 is used.
The optional {type} argument gives the type of dialog. This
is only used for the icon of the Win32 GUI. It can be one of
these values: "Error", "Question", "Info", "Warning" or
"Generic". Only the first character is relevant. When {type}
is omitted, "Generic" is used.
If the user aborts the dialog by pressing <Esc>, CTRL-C,
or another valid interrupt key, confirm() returns 0.
An example: >
:let choice = confirm("What do you want?", "&Apples\n&Oranges\n&Bananas", 2)
:if choice == 0
: echo "make up your mind!"
:elseif choice == 3
: echo "tasteful"
:else
: echo "I prefer bananas myself."
:endif
< In a GUI dialog, buttons are used. The layout of the buttons
depends on the 'v' flag in 'guioptions'. If it is included,
the buttons are always put vertically. Otherwise, confirm()
tries to put the buttons in one horizontal line. If they
don't fit, a vertical layout is used anyway. For some systems
the horizontal layout is always used.
*copy()*
copy({expr}) Make a copy of {expr}. For Numbers and Strings this isn't
different from using {expr} directly.
When {expr} is a |List| a shallow copy is created. This means
that the original |List| can be changed without changing the
copy, and vise versa. But the items are identical, thus
changing an item changes the contents of both |Lists|. Also
see |deepcopy()|.
count({comp}, {expr} [, {ic} [, {start}]]) *count()*
Return the number of times an item with value {expr} appears
in |List| or |Dictionary| {comp}.
If {start} is given then start with the item with this index.
{start} can only be used with a |List|.
When {ic} is given and it's non-zero then case is ignored.
*cscope_connection()*
cscope_connection([{num} , {dbpath} [, {prepend}]])
Checks for the existence of a |cscope| connection. If no
parameters are specified, then the function returns:
0, if cscope was not available (not compiled in), or
if there are no cscope connections;
1, if there is at least one cscope connection.
If parameters are specified, then the value of {num}
determines how existence of a cscope connection is checked:
{num} Description of existence check
----- ------------------------------
0 Same as no parameters (e.g., "cscope_connection()").
1 Ignore {prepend}, and use partial string matches for
{dbpath}.
2 Ignore {prepend}, and use exact string matches for
{dbpath}.
3 Use {prepend}, use partial string matches for both
{dbpath} and {prepend}.
4 Use {prepend}, use exact string matches for both
{dbpath} and {prepend}.
Note: All string comparisons are case sensitive!
Examples. Suppose we had the following (from ":cs show"): >
# pid database name prepend path
0 27664 cscope.out /usr/local
<
Invocation Return Val ~
---------- ---------- >
cscope_connection() 1
cscope_connection(1, "out") 1
cscope_connection(2, "out") 0
cscope_connection(3, "out") 0
cscope_connection(3, "out", "local") 1
cscope_connection(4, "out") 0
cscope_connection(4, "out", "local") 0
cscope_connection(4, "cscope.out", "/usr/local") 1
<
cursor({lnum}, {col} [, {off}]) *cursor()*
cursor({list})
Positions the cursor at the column (byte count) {col} in the
line {lnum}. The first column is one.
When there is one argument {list} this is used as a |List|
with two or three items {lnum}, {col} and {off}. This is like
the return value of |getpos()|, but without the first item.
Does not change the jumplist.
If {lnum} is greater than the number of lines in the buffer,
the cursor will be positioned at the last line in the buffer.
If {lnum} is zero, the cursor will stay in the current line.
If {col} is greater than the number of bytes in the line,
the cursor will be positioned at the last character in the
line.
If {col} is zero, the cursor will stay in the current column.
When 'virtualedit' is used {off} specifies the offset in
screen columns from the start of the character. E.g., a
position within a <Tab> or after the last character.
deepcopy({expr}[, {noref}]) *deepcopy()* *E698*
Make a copy of {expr}. For Numbers and Strings this isn't
different from using {expr} directly.
When {expr} is a |List| a full copy is created. This means
that the original |List| can be changed without changing the
copy, and vise versa. When an item is a |List|, a copy for it
is made, recursively. Thus changing an item in the copy does
not change the contents of the original |List|.
When {noref} is omitted or zero a contained |List| or
|Dictionary| is only copied once. All references point to
this single copy. With {noref} set to 1 every occurrence of a
|List| or |Dictionary| results in a new copy. This also means
that a cyclic reference causes deepcopy() to fail.
*E724*
Nesting is possible up to 100 levels. When there is an item
that refers back to a higher level making a deep copy with
{noref} set to 1 will fail.
Also see |copy()|.
delete({fname}) *delete()*
Deletes the file by the name {fname}. The result is a Number,
which is 0 if the file was deleted successfully, and non-zero
when the deletion failed.
Use |remove()| to delete an item from a |List|.
*did_filetype()*
did_filetype() Returns non-zero when autocommands are being executed and the
FileType event has been triggered at least once. Can be used
to avoid triggering the FileType event again in the scripts
that detect the file type. |FileType|
When editing another file, the counter is reset, thus this
really checks if the FileType event has been triggered for the
current buffer. This allows an autocommand that starts
editing another buffer to set 'filetype' and load a syntax
file.
diff_filler({lnum}) *diff_filler()*
Returns the number of filler lines above line {lnum}.
These are the lines that were inserted at this point in
another diff'ed window. These filler lines are shown in the
display but don't exist in the buffer.
{lnum} is used like with |getline()|. Thus "." is the current
line, "'m" mark m, etc.
Returns 0 if the current window is not in diff mode.
diff_hlID({lnum}, {col}) *diff_hlID()*
Returns the highlight ID for diff mode at line {lnum} column
{col} (byte index). When the current line does not have a
diff change zero is returned.
{lnum} is used like with |getline()|. Thus "." is the current
line, "'m" mark m, etc.
{col} is 1 for the leftmost column, {lnum} is 1 for the first
line.
The highlight ID can be used with |synIDattr()| to obtain
syntax information about the highlighting.
empty({expr}) *empty()*
Return the Number 1 if {expr} is empty, zero otherwise.
A |List| or |Dictionary| is empty when it does not have any
items. A Number is empty when its value is zero.
For a long |List| this is much faster then comparing the
length with zero.
escape({string}, {chars}) *escape()*
Escape the characters in {chars} that occur in {string} with a
backslash. Example: >
:echo escape('c:\program files\vim', ' \')
< results in: >
c:\\program\ files\\vim
< *eval()*
eval({string}) Evaluate {string} and return the result. Especially useful to
turn the result of |string()| back into the original value.
This works for Numbers, Strings and composites of them.
Also works for |Funcref|s that refer to existing functions.
eventhandler() *eventhandler()*
Returns 1 when inside an event handler. That is that Vim got
interrupted while waiting for the user to type a character,
e.g., when dropping a file on Vim. This means interactive
commands cannot be used. Otherwise zero is returned.
executable({expr}) *executable()*
This function checks if an executable with the name {expr}
exists. {expr} must be the name of the program without any
arguments.
executable() uses the value of $PATH and/or the normal
searchpath for programs. *PATHEXT*
On MS-DOS and MS-Windows the ".exe", ".bat", etc. can
optionally be included. Then the extensions in $PATHEXT are
tried. Thus if "foo.exe" does not exist, "foo.exe.bat" can be
found. If $PATHEXT is not set then ".exe;.com;.bat;.cmd" is
used. A dot by itself can be used in $PATHEXT to try using
the name without an extension. When 'shell' looks like a
Unix shell, then the name is also tried without adding an
extension.
On MS-DOS and MS-Windows it only checks if the file exists and
is not a directory, not if it's really executable.
On MS-Windows an executable in the same directory as Vim is
always found. Since this directory is added to $PATH it
should also work to execute it |win32-PATH|.
The result is a Number:
1 exists
0 does not exist
-1 not implemented on this system
*exists()*
exists({expr}) The result is a Number, which is non-zero if {expr} is
defined, zero otherwise. The {expr} argument is a string,
which contains one of these:
&option-name Vim option (only checks if it exists,
not if it really works)
+option-name Vim option that works.
$ENVNAME environment variable (could also be
done by comparing with an empty
string)
*funcname built-in function (see |functions|)
or user defined function (see
|user-functions|).
varname internal variable (see
|internal-variables|). Also works
for |curly-braces-names|, |Dictionary|
entries, |List| items, etc. Beware
that this may cause functions to be
invoked cause an error message for an
invalid expression.
:cmdname Ex command: built-in command, user
command or command modifier |:command|.
Returns:
1 for match with start of a command
2 full match with a command
3 matches several user commands
To check for a supported command
always check the return value to be 2.
:2match The |:2match| command.
:3match The |:3match| command.
#event autocommand defined for this event
#event#pattern autocommand defined for this event and
pattern (the pattern is taken
literally and compared to the
autocommand patterns character by
character)
#group autocommand group exists
#group#event autocommand defined for this group and
event.
#group#event#pattern
autocommand defined for this group,
event and pattern.
##event autocommand for this event is
supported.
For checking for a supported feature use |has()|.
Examples: >
exists("&shortname")
exists("$HOSTNAME")
exists("*strftime")
exists("*s:MyFunc")
exists("bufcount")
exists(":Make")
exists("#CursorHold")
exists("#BufReadPre#*.gz")
exists("#filetypeindent")
exists("#filetypeindent#FileType")
exists("#filetypeindent#FileType#*")
exists("##ColorScheme")
< There must be no space between the symbol (&/$/*/#) and the
name.
There must be no extra characters after the name, although in
a few cases this is ignored. That may become more strict in
the future, thus don't count on it!
Working example: >
exists(":make")
< NOT working example: >
exists(":make install")
< Note that the argument must be a string, not the name of the
variable itself. For example: >
exists(bufcount)
< This doesn't check for existence of the "bufcount" variable,
but gets the value of "bufcount", and checks if that exists.
expand({expr} [, {flag}]) *expand()*
Expand wildcards and the following special keywords in {expr}.
The result is a String.
When there are several matches, they are separated by <NL>
characters. [Note: in version 5.0 a space was used, which
caused problems when a file name contains a space]
If the expansion fails, the result is an empty string. A name
for a non-existing file is not included.
When {expr} starts with '%', '#' or '<', the expansion is done
like for the |cmdline-special| variables with their associated
modifiers. Here is a short overview:
% current file name
# alternate file name
#n alternate file name n
<cfile> file name under the cursor
<afile> autocmd file name
<abuf> autocmd buffer number (as a String!)
<amatch> autocmd matched name
<sfile> sourced script file name
<cword> word under the cursor
<cWORD> WORD under the cursor
<client> the {clientid} of the last received
message |server2client()|
Modifiers:
:p expand to full path
:h head (last path component removed)
:t tail (last path component only)
:r root (one extension removed)
:e extension only
Example: >
:let &tags = expand("%:p:h") . "/tags"
< Note that when expanding a string that starts with '%', '#' or
'<', any following text is ignored. This does NOT work: >
:let doesntwork = expand("%:h.bak")
< Use this: >
:let doeswork = expand("%:h") . ".bak"
< Also note that expanding "<cfile>" and others only returns the
referenced file name without further expansion. If "<cfile>"
is "~/.cshrc", you need to do another expand() to have the
"~/" expanded into the path of the home directory: >
:echo expand(expand("<cfile>"))
<
There cannot be white space between the variables and the
following modifier. The |fnamemodify()| function can be used
to modify normal file names.
When using '%' or '#', and the current or alternate file name
is not defined, an empty string is used. Using "%:p" in a
buffer with no name, results in the current directory, with a
'/' added.
When {expr} does not start with '%', '#' or '<', it is
expanded like a file name is expanded on the command line.
'suffixes' and 'wildignore' are used, unless the optional
{flag} argument is given and it is non-zero. Names for
non-existing files are included. The "**" item can be used to
search in a directory tree. For example, to find all "README"
files in the current directory and below: >
:echo expand("**/README")
<
Expand() can also be used to expand variables and environment
variables that are only known in a shell. But this can be
slow, because a shell must be started. See |expr-env-expand|.
The expanded variable is still handled like a list of file
names. When an environment variable cannot be expanded, it is
left unchanged. Thus ":echo expand('$FOOBAR')" results in
"$FOOBAR".
See |glob()| for finding existing files. See |system()| for
getting the raw output of an external command.
extend({expr1}, {expr2} [, {expr3}]) *extend()*
{expr1} and {expr2} must be both |Lists| or both
|Dictionaries|.
If they are |Lists|: Append {expr2} to {expr1}.
If {expr3} is given insert the items of {expr2} before item
{expr3} in {expr1}. When {expr3} is zero insert before the
first item. When {expr3} is equal to len({expr1}) then
{expr2} is appended.
Examples: >
:echo sort(extend(mylist, [7, 5]))
:call extend(mylist, [2, 3], 1)
< Use |add()| to concatenate one item to a list. To concatenate
two lists into a new list use the + operator: >
:let newlist = [1, 2, 3] + [4, 5]
<
If they are |Dictionaries|:
Add all entries from {expr2} to {expr1}.
If a key exists in both {expr1} and {expr2} then {expr3} is
used to decide what to do:
{expr3} = "keep": keep the value of {expr1}
{expr3} = "force": use the value of {expr2}
{expr3} = "error": give an error message *E737*
When {expr3} is omitted then "force" is assumed.
{expr1} is changed when {expr2} is not empty. If necessary
make a copy of {expr1} first.
{expr2} remains unchanged.
Returns {expr1}.
feedkeys({string} [, {mode}]) *feedkeys()*
Characters in {string} are queued for processing as if they
come from a mapping or were typed by the user. They are added
to the end of the typeahead buffer, thus if a mapping is still
being executed these characters come after them.
The function does not wait for processing of keys contained in
{string}.
To include special keys into {string}, use double-quotes
and "\..." notation |expr-quote|. For example,
feedkeys("\<CR>") simulates pressing of the <Enter> key. But
feedkeys('\<CR>') pushes 5 characters.
If {mode} is absent, keys are remapped.
{mode} is a String, which can contain these character flags:
'm' Remap keys. This is default.
'n' Do not remap keys.
't' Handle keys as if typed; otherwise they are handled as
if coming from a mapping. This matters for undo,
opening folds, etc.
Return value is always 0.
filereadable({file}) *filereadable()*
The result is a Number, which is TRUE when a file with the
name {file} exists, and can be read. If {file} doesn't exist,
or is a directory, the result is FALSE. {file} is any
expression, which is used as a String.
If you don't care about the file being readable you can use
|glob()|.
*file_readable()*
Obsolete name: file_readable().
filewritable({file}) *filewritable()*
The result is a Number, which is 1 when a file with the
name {file} exists, and can be written. If {file} doesn't
exist, or is not writable, the result is 0. If (file) is a
directory, and we can write to it, the result is 2.
filter({expr}, {string}) *filter()*
{expr} must be a |List| or a |Dictionary|.
For each item in {expr} evaluate {string} and when the result
is zero remove the item from the |List| or |Dictionary|.
Inside {string} |v:val| has the value of the current item.
For a |Dictionary| |v:key| has the key of the current item.
Examples: >
:call filter(mylist, 'v:val !~ "OLD"')
< Removes the items where "OLD" appears. >
:call filter(mydict, 'v:key >= 8')
< Removes the items with a key below 8. >
:call filter(var, 0)
< Removes all the items, thus clears the |List| or |Dictionary|.
Note that {string} is the result of expression and is then
used as an expression again. Often it is good to use a
|literal-string| to avoid having to double backslashes.
The operation is done in-place. If you want a |List| or
|Dictionary| to remain unmodified make a copy first: >
:let l = filter(copy(mylist), 'v:val =~ "KEEP"')
< Returns {expr}, the |List| or |Dictionary| that was filtered.
When an error is encountered while evaluating {string} no
further items in {expr} are processed.
finddir({name}[, {path}[, {count}]]) *finddir()*
Find directory {name} in {path}. Supports both downwards and
upwards recursive directory searches. See |file-searching|
for the syntax of {path}.
Returns the path of the first found match. When the found
directory is below the current directory a relative path is
returned. Otherwise a full path is returned.
If {path} is omitted or empty then 'path' is used.
If the optional {count} is given, find {count}'s occurrence of
{name} in {path} instead of the first one.
When {count} is negative return all the matches in a |List|.
This is quite similar to the ex-command |:find|.
{only available when compiled with the +file_in_path feature}
findfile({name}[, {path}[, {count}]]) *findfile()*
Just like |finddir()|, but find a file instead of a directory.
Uses 'suffixesadd'.
Example: >
:echo findfile("tags.vim", ".;")
< Searches from the directory of the current file upwards until
it finds the file "tags.vim".
fnamemodify({fname}, {mods}) *fnamemodify()*
Modify file name {fname} according to {mods}. {mods} is a
string of characters like it is used for file names on the
command line. See |filename-modifiers|.
Example: >
:echo fnamemodify("main.c", ":p:h")
< results in: >
/home/mool/vim/vim/src
< Note: Environment variables and "~" don't work in {fname}, use
|expand()| first then.
foldclosed({lnum}) *foldclosed()*
The result is a Number. If the line {lnum} is in a closed
fold, the result is the number of the first line in that fold.
If the line {lnum} is not in a closed fold, -1 is returned.
foldclosedend({lnum}) *foldclosedend()*
The result is a Number. If the line {lnum} is in a closed
fold, the result is the number of the last line in that fold.
If the line {lnum} is not in a closed fold, -1 is returned.
foldlevel({lnum}) *foldlevel()*
The result is a Number, which is the foldlevel of line {lnum}
in the current buffer. For nested folds the deepest level is
returned. If there is no fold at line {lnum}, zero is
returned. It doesn't matter if the folds are open or closed.
When used while updating folds (from 'foldexpr') -1 is
returned for lines where folds are still to be updated and the
foldlevel is unknown. As a special case the level of the
previous line is usually available.
*foldtext()*
foldtext() Returns a String, to be displayed for a closed fold. This is
the default function used for the 'foldtext' option and should
only be called from evaluating 'foldtext'. It uses the
|v:foldstart|, |v:foldend| and |v:folddashes| variables.
The returned string looks like this: >
+-- 45 lines: abcdef
< The number of dashes depends on the foldlevel. The "45" is
the number of lines in the fold. "abcdef" is the text in the
first non-blank line of the fold. Leading white space, "//"
or "/*" and the text from the 'foldmarker' and 'commentstring'
options is removed.
{not available when compiled without the |+folding| feature}
foldtextresult({lnum}) *foldtextresult()*
Returns the text that is displayed for the closed fold at line
{lnum}. Evaluates 'foldtext' in the appropriate context.
When there is no closed fold at {lnum} an empty string is
returned.
{lnum} is used like with |getline()|. Thus "." is the current
line, "'m" mark m, etc.
Useful when exporting folded text, e.g., to HTML.
{not available when compiled without the |+folding| feature}
*foreground()*
foreground() Move the Vim window to the foreground. Useful when sent from
a client to a Vim server. |remote_send()|
On Win32 systems this might not work, the OS does not always
allow a window to bring itself to the foreground. Use
|remote_foreground()| instead.
{only in the Win32, Athena, Motif and GTK GUI versions and the
Win32 console version}
function({name}) *function()* *E700*
Return a |Funcref| variable that refers to function {name}.
{name} can be a user defined function or an internal function.
garbagecollect([at_exit]) *garbagecollect()*
Cleanup unused |Lists| and |Dictionaries| that have circular
references. There is hardly ever a need to invoke this
function, as it is automatically done when Vim runs out of
memory or is waiting for the user to press a key after
'updatetime'. Items without circular references are always
freed when they become unused.
This is useful if you have deleted a very big |List| and/or
|Dictionary| with circular references in a script that runs
for a long time.
When the optional "at_exit" argument is one, garbage
collection will also be done when exiting Vim, if it wasn't
done before. This is useful when checking for memory leaks.
get({list}, {idx} [, {default}]) *get()*
Get item {idx} from |List| {list}. When this item is not
available return {default}. Return zero when {default} is
omitted.
get({dict}, {key} [, {default}])
Get item with key {key} from |Dictionary| {dict}. When this
item is not available return {default}. Return zero when
{default} is omitted.
*getbufline()*
getbufline({expr}, {lnum} [, {end}])
Return a |List| with the lines starting from {lnum} to {end}
(inclusive) in the buffer {expr}. If {end} is omitted, a
|List| with only the line {lnum} is returned.
For the use of {expr}, see |bufname()| above.
For {lnum} and {end} "$" can be used for the last line of the
buffer. Otherwise a number must be used.
When {lnum} is smaller than 1 or bigger than the number of
lines in the buffer, an empty |List| is returned.
When {end} is greater than the number of lines in the buffer,
it is treated as {end} is set to the number of lines in the
buffer. When {end} is before {lnum} an empty |List| is
returned.
This function works only for loaded buffers. For unloaded and
non-existing buffers, an empty |List| is returned.
Example: >
:let lines = getbufline(bufnr("myfile"), 1, "$")
getbufvar({expr}, {varname}) *getbufvar()*
The result is the value of option or local buffer variable
{varname} in buffer {expr}. Note that the name without "b:"
must be used.
This also works for a global or buffer-local option, but it
doesn't work for a global variable, window-local variable or
window-local option.
For the use of {expr}, see |bufname()| above.
When the buffer or variable doesn't exist an empty string is
returned, there is no error message.
Examples: >
:let bufmodified = getbufvar(1, "&mod")
:echo "todo myvar = " . getbufvar("todo", "myvar")
<
getchar([expr]) *getchar()*
Get a single character from the user or input stream.
If [expr] is omitted, wait until a character is available.
If [expr] is 0, only get a character when one is available.
Return zero otherwise.
If [expr] is 1, only check if a character is available, it is
not consumed. Return zero if no character available.
Without {expr} and when {expr} is 0 a whole character or
special key is returned. If it is an 8-bit character, the
result is a number. Use nr2char() to convert it to a String.
Otherwise a String is returned with the encoded character.
For a special key it's a sequence of bytes starting with 0x80
(decimal: 128). This is the same value as the string
"\<Key>", e.g., "\<Left>". The returned value is also a
String when a modifier (shift, control, alt) was used that is
not included in the character.
When {expr} is 1 only the first byte is returned. For a
one-byte character it is the character itself as a number.
Use nr2char() to convert it to a String.
When the user clicks a mouse button, the mouse event will be
returned. The position can then be found in |v:mouse_col|,
|v:mouse_lnum| and |v:mouse_win|. This example positions the
mouse as it would normally happen: >
let c = getchar()
if c == "\<LeftMouse>" && v:mouse_win > 0
exe v:mouse_win . "wincmd w"
exe v:mouse_lnum
exe "normal " . v:mouse_col . "|"
endif
<
There is no prompt, you will somehow have to make clear to the
user that a character has to be typed.
There is no mapping for the character.
Key codes are replaced, thus when the user presses the <Del>
key you get the code for the <Del> key, not the raw character
sequence. Examples: >
getchar() == "\<Del>"
getchar() == "\<S-Left>"
< This example redefines "f" to ignore case: >
:nmap f :call FindChar()<CR>
:function FindChar()
: let c = nr2char(getchar())
: while col('.') < col('$') - 1
: normal l
: if getline('.')[col('.') - 1] ==? c
: break
: endif
: endwhile
:endfunction
getcharmod() *getcharmod()*
The result is a Number which is the state of the modifiers for
the last obtained character with getchar() or in another way.
These values are added together:
2 shift
4 control
8 alt (meta)
16 mouse double click
32 mouse triple click
64 mouse quadruple click
128 Macintosh only: command
Only the modifiers that have not been included in the
character itself are obtained. Thus Shift-a results in "A"
with no modifier.
getcmdline() *getcmdline()*
Return the current command-line. Only works when the command
line is being edited, thus requires use of |c_CTRL-\_e| or
|c_CTRL-R_=|.
Example: >
:cmap <F7> <C-\>eescape(getcmdline(), ' \')<CR>
< Also see |getcmdtype()|, |getcmdpos()| and |setcmdpos()|.
getcmdpos() *getcmdpos()*
Return the position of the cursor in the command line as a
byte count. The first column is 1.
Only works when editing the command line, thus requires use of
|c_CTRL-\_e| or |c_CTRL-R_=|. Returns 0 otherwise.
Also see |getcmdtype()|, |setcmdpos()| and |getcmdline()|.
getcmdtype() *getcmdtype()*
Return the current command-line type. Possible return values
are:
: normal Ex command
> debug mode command |debug-mode|
/ forward search command
? backward search command
@ |input()| command
- |:insert| or |:append| command
Only works when editing the command line, thus requires use of
|c_CTRL-\_e| or |c_CTRL-R_=|. Returns an empty string
otherwise.
Also see |getcmdpos()|, |setcmdpos()| and |getcmdline()|.
*getcwd()*
getcwd() The result is a String, which is the name of the current
working directory.
getfsize({fname}) *getfsize()*
The result is a Number, which is the size in bytes of the
given file {fname}.
If {fname} is a directory, 0 is returned.
If the file {fname} can't be found, -1 is returned.
If the size of {fname} is too big to fit in a Number then -2
is returned.
getfontname([{name}]) *getfontname()*
Without an argument returns the name of the normal font being
used. Like what is used for the Normal highlight group
|hl-Normal|.
With an argument a check is done whether {name} is a valid
font name. If not then an empty string is returned.
Otherwise the actual font name is returned, or {name} if the
GUI does not support obtaining the real name.
Only works when the GUI is running, thus not in your vimrc or
gvimrc file. Use the |GUIEnter| autocommand to use this
function just after the GUI has started.
Note that the GTK 2 GUI accepts any font name, thus checking
for a valid name does not work.
getfperm({fname}) *getfperm()*
The result is a String, which is the read, write, and execute
permissions of the given file {fname}.
If {fname} does not exist or its directory cannot be read, an
empty string is returned.
The result is of the form "rwxrwxrwx", where each group of
"rwx" flags represent, in turn, the permissions of the owner
of the file, the group the file belongs to, and other users.
If a user does not have a given permission the flag for this
is replaced with the string "-". Example: >
:echo getfperm("/etc/passwd")
< This will hopefully (from a security point of view) display
the string "rw-r--r--" or even "rw-------".
getftime({fname}) *getftime()*
The result is a Number, which is the last modification time of
the given file {fname}. The value is measured as seconds
since 1st Jan 1970, and may be passed to strftime(). See also
|localtime()| and |strftime()|.
If the file {fname} can't be found -1 is returned.
getftype({fname}) *getftype()*
The result is a String, which is a description of the kind of
file of the given file {fname}.
If {fname} does not exist an empty string is returned.
Here is a table over different kinds of files and their
results:
Normal file "file"
Directory "dir"
Symbolic link "link"
Block device "bdev"
Character device "cdev"
Socket "socket"
FIFO "fifo"
All other "other"
Example: >
getftype("/home")
< Note that a type such as "link" will only be returned on
systems that support it. On some systems only "dir" and
"file" are returned.
*getline()*
getline({lnum} [, {end}])
Without {end} the result is a String, which is line {lnum}
from the current buffer. Example: >
getline(1)
< When {lnum} is a String that doesn't start with a
digit, line() is called to translate the String into a Number.
To get the line under the cursor: >
getline(".")
< When {lnum} is smaller than 1 or bigger than the number of
lines in the buffer, an empty string is returned.
When {end} is given the result is a |List| where each item is
a line from the current buffer in the range {lnum} to {end},
including line {end}.
{end} is used in the same way as {lnum}.
Non-existing lines are silently omitted.
When {end} is before {lnum} an empty |List| is returned.
Example: >
:let start = line('.')
:let end = search("^$") - 1
:let lines = getline(start, end)
< To get lines from another buffer see |getbufline()|
getloclist({nr}) *getloclist()*
Returns a list with all the entries in the location list for
window {nr}. When {nr} is zero the current window is used.
For a location list window, the displayed location list is
returned. For an invalid window number {nr}, an empty list is
returned. Otherwise, same as getqflist().
getmatches() *getmatches()*
Returns a |List| with all matches previously defined by
|matchadd()| and the |:match| commands. |getmatches()| is
useful in combination with |setmatches()|, as |setmatches()|
can restore a list of matches saved by |getmatches()|.
Example: >
:echo getmatches()
< [{'group': 'MyGroup1', 'pattern': 'TODO',
'priority': 10, 'id': 1}, {'group': 'MyGroup2',
'pattern': 'FIXME', 'priority': 10, 'id': 2}] >
:let m = getmatches()
:call clearmatches()
:echo getmatches()
< [] >
:call setmatches(m)
:echo getmatches()
< [{'group': 'MyGroup1', 'pattern': 'TODO',
'priority': 10, 'id': 1}, {'group': 'MyGroup2',
'pattern': 'FIXME', 'priority': 10, 'id': 2}] >
:unlet m
<
getqflist() *getqflist()*
Returns a list with all the current quickfix errors. Each
list item is a dictionary with these entries:
bufnr number of buffer that has the file name, use
bufname() to get the name
lnum line number in the buffer (first line is 1)
col column number (first column is 1)
vcol non-zero: "col" is visual column
zero: "col" is byte index
nr error number
pattern search pattern used to locate the error
text description of the error
type type of the error, 'E', '1', etc.
valid non-zero: recognized error message
When there is no error list or it's empty an empty list is
returned. Quickfix list entries with non-existing buffer
number are returned with "bufnr" set to zero.
Useful application: Find pattern matches in multiple files and
do something with them: >
:vimgrep /theword/jg *.c
:for d in getqflist()
: echo bufname(d.bufnr) ':' d.lnum '=' d.text
:endfor
getreg([{regname} [, 1]]) *getreg()*
The result is a String, which is the contents of register
{regname}. Example: >
:let cliptext = getreg('*')
< getreg('=') returns the last evaluated value of the expression
register. (For use in maps.)
getreg('=', 1) returns the expression itself, so that it can
be restored with |setreg()|. For other registers the extra
argument is ignored, thus you can always give it.
If {regname} is not specified, |v:register| is used.
getregtype([{regname}]) *getregtype()*
The result is a String, which is type of register {regname}.
The value will be one of:
"v" for |characterwise| text
"V" for |linewise| text
"<CTRL-V>{width}" for |blockwise-visual| text
0 for an empty or unknown register
<CTRL-V> is one character with value 0x16.
If {regname} is not specified, |v:register| is used.
gettabwinvar({tabnr}, {winnr}, {varname}) *gettabwinvar()*
Get the value of window-local variable {varname} in window
{winnr} in tab page {tabnr}.
When {varname} starts with "&" get the value of a window-local
option.
Tabs are numbered starting with one. For the current tabpage
use |getwinvar()|.
When {winnr} is zero the current window is used.
This also works for a global option, buffer-local option and
window-local option, but it doesn't work for a global variable
or buffer-local variable.
When {varname} is empty a dictionary with all window-local
variables is returned.
Note that {varname} must be the name without "w:".
Examples: >
:let list_is_on = gettabwinvar(1, 2, '&list')
:echo "myvar = " . gettabwinvar(3, 1, 'myvar')
<
*getwinposx()*
getwinposx() The result is a Number, which is the X coordinate in pixels of
the left hand side of the GUI Vim window. The result will be
-1 if the information is not available.
*getwinposy()*
getwinposy() The result is a Number, which is the Y coordinate in pixels of
the top of the GUI Vim window. The result will be -1 if the
information is not available.
getwinvar({winnr}, {varname}) *getwinvar()*
Like |gettabwinvar()| for the current tabpage.
Examples: >
:let list_is_on = getwinvar(2, '&list')
:echo "myvar = " . getwinvar(1, 'myvar')
<
*glob()*
glob({expr}) Expand the file wildcards in {expr}. See |wildcards| for the
use of special characters.
The result is a String.
When there are several matches, they are separated by <NL>
characters.
If the expansion fails, the result is an empty string.
A name for a non-existing file is not included.
For most systems backticks can be used to get files names from
any external command. Example: >
:let tagfiles = glob("`find . -name tags -print`")
:let &tags = substitute(tagfiles, "\n", ",", "g")
< The result of the program inside the backticks should be one
item per line. Spaces inside an item are allowed.
See |expand()| for expanding special Vim variables. See
|system()| for getting the raw output of an external command.
globpath({path}, {expr}) *globpath()*
Perform glob() on all directories in {path} and concatenate
the results. Example: >
:echo globpath(&rtp, "syntax/c.vim")
< {path} is a comma-separated list of directory names. Each
directory name is prepended to {expr} and expanded like with
glob(). A path separator is inserted when needed.
To add a comma inside a directory name escape it with a
backslash. Note that on MS-Windows a directory may have a
trailing backslash, remove it if you put a comma after it.
If the expansion fails for one of the directories, there is no
error message.
The 'wildignore' option applies: Names matching one of the
patterns in 'wildignore' will be skipped.
The "**" item can be used to search in a directory tree.
For example, to find all "README.txt" files in the directories
in 'runtimepath' and below: >
:echo globpath(&rtp, "**/README.txt")
<
*has()*
has({feature}) The result is a Number, which is 1 if the feature {feature} is
supported, zero otherwise. The {feature} argument is a
string. See |feature-list| below.
Also see |exists()|.
has_key({dict}, {key}) *has_key()*
The result is a Number, which is 1 if |Dictionary| {dict} has
an entry with key {key}. Zero otherwise.
haslocaldir() *haslocaldir()*
The result is a Number, which is 1 when the current
window has set a local path via |:lcd|, and 0 otherwise.
hasmapto({what} [, {mode} [, {abbr}]]) *hasmapto()*
The result is a Number, which is 1 if there is a mapping that
contains {what} in somewhere in the rhs (what it is mapped to)
and this mapping exists in one of the modes indicated by
{mode}.
When {abbr} is there and it is non-zero use abbreviations
instead of mappings. Don't forget to specify Insert and/or
Command-line mode.
Both the global mappings and the mappings local to the current
buffer are checked for a match.
If no matching mapping is found 0 is returned.
The following characters are recognized in {mode}:
n Normal mode
v Visual mode
o Operator-pending mode
i Insert mode
l Language-Argument ("r", "f", "t", etc.)
c Command-line mode
When {mode} is omitted, "nvo" is used.
This function is useful to check if a mapping already exists
to a function in a Vim script. Example: >
:if !hasmapto('\ABCdoit')
: map <Leader>d \ABCdoit
:endif
< This installs the mapping to "\ABCdoit" only if there isn't
already a mapping to "\ABCdoit".
histadd({history}, {item}) *histadd()*
Add the String {item} to the history {history} which can be
one of: *hist-names*
"cmd" or ":" command line history
"search" or "/" search pattern history
"expr" or "=" typed expression history
"input" or "@" input line history
If {item} does already exist in the history, it will be
shifted to become the newest entry.
The result is a Number: 1 if the operation was successful,
otherwise 0 is returned.
Example: >
:call histadd("input", strftime("%Y %b %d"))
:let date=input("Enter date: ")
< This function is not available in the |sandbox|.
histdel({history} [, {item}]) *histdel()*
Clear {history}, i.e. delete all its entries. See |hist-names|
for the possible values of {history}.
If the parameter {item} is given as String, this is seen
as regular expression. All entries matching that expression
will be removed from the history (if there are any).
Upper/lowercase must match, unless "\c" is used |/\c|.
If {item} is a Number, it will be interpreted as index, see
|:history-indexing|. The respective entry will be removed
if it exists.
The result is a Number: 1 for a successful operation,
otherwise 0 is returned.
Examples:
Clear expression register history: >
:call histdel("expr")
<
Remove all entries starting with "*" from the search history: >
:call histdel("/", '^\*')
<
The following three are equivalent: >
:call histdel("search", histnr("search"))
:call histdel("search", -1)
:call histdel("search", '^'.histget("search", -1).'$')
<
To delete the last search pattern and use the last-but-one for
the "n" command and 'hlsearch': >
:call histdel("search", -1)
:let @/ = histget("search", -1)
histget({history} [, {index}]) *histget()*
The result is a String, the entry with Number {index} from
{history}. See |hist-names| for the possible values of
{history}, and |:history-indexing| for {index}. If there is
no such entry, an empty String is returned. When {index} is
omitted, the most recent item from the history is used.
Examples:
Redo the second last search from history. >
:execute '/' . histget("search", -2)
< Define an Ex command ":H {num}" that supports re-execution of
the {num}th entry from the output of |:history|. >
:command -nargs=1 H execute histget("cmd", 0+<args>)
<
histnr({history}) *histnr()*
The result is the Number of the current entry in {history}.
See |hist-names| for the possible values of {history}.
If an error occurred, -1 is returned.
Example: >
:let inp_index = histnr("expr")
<
hlexists({name}) *hlexists()*
The result is a Number, which is non-zero if a highlight group
called {name} exists. This is when the group has been
defined in some way. Not necessarily when highlighting has
been defined for it, it may also have been used for a syntax
item.
*highlight_exists()*
Obsolete name: highlight_exists().
*hlID()*
hlID({name}) The result is a Number, which is the ID of the highlight group
with name {name}. When the highlight group doesn't exist,
zero is returned.
This can be used to retrieve information about the highlight
group. For example, to get the background color of the
"Comment" group: >
:echo synIDattr(synIDtrans(hlID("Comment")), "bg")
< *highlightID()*
Obsolete name: highlightID().
hostname() *hostname()*
The result is a String, which is the name of the machine on
which Vim is currently running. Machine names greater than
256 characters long are truncated.
iconv({expr}, {from}, {to}) *iconv()*
The result is a String, which is the text {expr} converted
from encoding {from} to encoding {to}.
When the conversion fails an empty string is returned.
The encoding names are whatever the iconv() library function
can accept, see ":!man 3 iconv".
Most conversions require Vim to be compiled with the |+iconv|
feature. Otherwise only UTF-8 to latin1 conversion and back
can be done.
This can be used to display messages with special characters,
no matter what 'encoding' is set to. Write the message in
UTF-8 and use: >
echo iconv(utf8_str, "utf-8", &enc)
< Note that Vim uses UTF-8 for all Unicode encodings, conversion
from/to UCS-2 is automatically changed to use UTF-8. You
cannot use UCS-2 in a string anyway, because of the NUL bytes.
{only available when compiled with the +multi_byte feature}
*indent()*
indent({lnum}) The result is a Number, which is indent of line {lnum} in the
current buffer. The indent is counted in spaces, the value
of 'tabstop' is relevant. {lnum} is used just like in
|getline()|.
When {lnum} is invalid -1 is returned.
index({list}, {expr} [, {start} [, {ic}]]) *index()*
Return the lowest index in |List| {list} where the item has a
value equal to {expr}.
If {start} is given then start looking at the item with index
{start} (may be negative for an item relative to the end).
When {ic} is given and it is non-zero, ignore case. Otherwise
case must match.
-1 is returned when {expr} is not found in {list}.
Example: >
:let idx = index(words, "the")
:if index(numbers, 123) >= 0
input({prompt} [, {text} [, {completion}]]) *input()*
The result is a String, which is whatever the user typed on
the command-line. The parameter is either a prompt string, or
a blank string (for no prompt). A '\n' can be used in the
prompt to start a new line.
The highlighting set with |:echohl| is used for the prompt.
The input is entered just like a command-line, with the same
editing commands and mappings. There is a separate history
for lines typed for input().
Example: >
:if input("Coffee or beer? ") == "beer"
: echo "Cheers!"
:endif
<
If the optional {text} is present and not empty, this is used
for the default reply, as if the user typed this. Example: >
:let color = input("Color? ", "white")
< The optional {completion} argument specifies the type of
completion supported for the input. Without it completion is
not performed. The supported completion types are the same as
that can be supplied to a user-defined command using the
"-complete=" argument. Refer to |:command-completion| for
more information. Example: >
let fname = input("File: ", "", "file")
<
NOTE: This function must not be used in a startup file, for
the versions that only run in GUI mode (e.g., the Win32 GUI).
Note: When input() is called from within a mapping it will
consume remaining characters from that mapping, because a
mapping is handled like the characters were typed.
Use |inputsave()| before input() and |inputrestore()|
after input() to avoid that. Another solution is to avoid
that further characters follow in the mapping, e.g., by using
|:execute| or |:normal|.
Example with a mapping: >
:nmap \x :call GetFoo()<CR>:exe "/" . Foo<CR>
:function GetFoo()
: call inputsave()
: let g:Foo = input("enter search pattern: ")
: call inputrestore()
:endfunction
inputdialog({prompt} [, {text} [, {cancelreturn}]]) *inputdialog()*
Like input(), but when the GUI is running and text dialogs are
supported, a dialog window pops up to input the text.
Example: >
:let n = inputdialog("value for shiftwidth", &sw)
:if n != ""
: let &sw = n
:endif
< When the dialog is cancelled {cancelreturn} is returned. When
omitted an empty string is returned.
Hitting <Enter> works like pressing the OK button. Hitting
<Esc> works like pressing the Cancel button.
NOTE: Command-line completion is not supported.
inputlist({textlist}) *inputlist()*
{textlist} must be a |List| of strings. This |List| is
displayed, one string per line. The user will be prompted to
enter a number, which is returned.
The user can also select an item by clicking on it with the
mouse. For the first string 0 is returned. When clicking
above the first item a negative number is returned. When
clicking on the prompt one more than the length of {textlist}
is returned.
Make sure {textlist} has less then 'lines' entries, otherwise
it won't work. It's a good idea to put the entry number at
the start of the string. And put a prompt in the first item.
Example: >
let color = inputlist(['Select color:', '1. red',
\ '2. green', '3. blue'])
inputrestore() *inputrestore()*
Restore typeahead that was saved with a previous inputsave().
Should be called the same number of times inputsave() is
called. Calling it more often is harmless though.
Returns 1 when there is nothing to restore, 0 otherwise.
inputsave() *inputsave()*
Preserve typeahead (also from mappings) and clear it, so that
a following prompt gets input from the user. Should be
followed by a matching inputrestore() after the prompt. Can
be used several times, in which case there must be just as
many inputrestore() calls.
Returns 1 when out of memory, 0 otherwise.
inputsecret({prompt} [, {text}]) *inputsecret()*
This function acts much like the |input()| function with but
two exceptions:
a) the user's response will be displayed as a sequence of
asterisks ("*") thereby keeping the entry secret, and
b) the user's response will not be recorded on the input
|history| stack.
The result is a String, which is whatever the user actually
typed on the command-line in response to the issued prompt.
NOTE: Command-line completion is not supported.
insert({list}, {item} [, {idx}]) *insert()*
Insert {item} at the start of |List| {list}.
If {idx} is specified insert {item} before the item with index
{idx}. If {idx} is zero it goes before the first item, just
like omitting {idx}. A negative {idx} is also possible, see
|list-index|. -1 inserts just before the last item.
Returns the resulting |List|. Examples: >
:let mylist = insert([2, 3, 5], 1)
:call insert(mylist, 4, -1)
:call insert(mylist, 6, len(mylist))
< The last example can be done simpler with |add()|.
Note that when {item} is a |List| it is inserted as a single
item. Use |extend()| to concatenate |Lists|.
isdirectory({directory}) *isdirectory()*
The result is a Number, which is non-zero when a directory
with the name {directory} exists. If {directory} doesn't
exist, or isn't a directory, the result is FALSE. {directory}
is any expression, which is used as a String.
islocked({expr}) *islocked()* *E786*
The result is a Number, which is non-zero when {expr} is the
name of a locked variable.
{expr} must be the name of a variable, |List| item or
|Dictionary| entry, not the variable itself! Example: >
:let alist = [0, ['a', 'b'], 2, 3]
:lockvar 1 alist
:echo islocked('alist') " 1
:echo islocked('alist[1]') " 0
< When {expr} is a variable that does not exist you get an error
message. Use |exists()| to check for existence.
items({dict}) *items()*
Return a |List| with all the key-value pairs of {dict}. Each
|List| item is a list with two items: the key of a {dict}
entry and the value of this entry. The |List| is in arbitrary
order.
join({list} [, {sep}]) *join()*
Join the items in {list} together into one String.
When {sep} is specified it is put in between the items. If
{sep} is omitted a single space is used.
Note that {sep} is not added at the end. You might want to
add it there too: >
let lines = join(mylist, "\n") . "\n"
< String items are used as-is. |Lists| and |Dictionaries| are
converted into a string like with |string()|.
The opposite function is |split()|.
keys({dict}) *keys()*
Return a |List| with all the keys of {dict}. The |List| is in
arbitrary order.
*len()* *E701*
len({expr}) The result is a Number, which is the length of the argument.
When {expr} is a String or a Number the length in bytes is
used, as with |strlen()|.
When {expr} is a |List| the number of items in the |List| is
returned.
When {expr} is a |Dictionary| the number of entries in the
|Dictionary| is returned.
Otherwise an error is given.
*libcall()* *E364* *E368*
libcall({libname}, {funcname}, {argument})
Call function {funcname} in the run-time library {libname}
with single argument {argument}.
This is useful to call functions in a library that you
especially made to be used with Vim. Since only one argument
is possible, calling standard library functions is rather
limited.
The result is the String returned by the function. If the
function returns NULL, this will appear as an empty string ""
to Vim.
If the function returns a number, use libcallnr()!
If {argument} is a number, it is passed to the function as an
int; if {argument} is a string, it is passed as a
null-terminated string.
This function will fail in |restricted-mode|.
libcall() allows you to write your own 'plug-in' extensions to
Vim without having to recompile the program. It is NOT a
means to call system functions! If you try to do so Vim will
very probably crash.
For Win32, the functions you write must be placed in a DLL
and use the normal C calling convention (NOT Pascal which is
used in Windows System DLLs). The function must take exactly
one parameter, either a character pointer or a long integer,
and must return a character pointer or NULL. The character
pointer returned must point to memory that will remain valid
after the function has returned (e.g. in static data in the
DLL). If it points to allocated memory, that memory will
leak away. Using a static buffer in the function should work,
it's then freed when the DLL is unloaded.
WARNING: If the function returns a non-valid pointer, Vim may
crash! This also happens if the function returns a number,
because Vim thinks it's a pointer.
For Win32 systems, {libname} should be the filename of the DLL
without the ".DLL" suffix. A full path is only required if
the DLL is not in the usual places.
For Unix: When compiling your own plugins, remember that the
object code must be compiled as position-independent ('PIC').
{only in Win32 on some Unix versions, when the |+libcall|
feature is present}
Examples: >
:echo libcall("libc.so", "getenv", "HOME")
:echo libcallnr("/usr/lib/libc.so", "getpid", "")
<
*libcallnr()*
libcallnr({libname}, {funcname}, {argument})
Just like libcall(), but used for a function that returns an
int instead of a string.
{only in Win32 on some Unix versions, when the |+libcall|
feature is present}
Example (not very useful...): >
:call libcallnr("libc.so", "printf", "Hello World!\n")
:call libcallnr("libc.so", "sleep", 10)
<
*line()*
line({expr}) The result is a Number, which is the line number of the file
position given with {expr}. The accepted positions are:
. the cursor position
$ the last line in the current buffer
'x position of mark x (if the mark is not set, 0 is
returned)
w0 first line visible in current window
w$ last line visible in current window
Note that a mark in another file can be used. The line number
then applies to another buffer.
To get the column number use |col()|. To get both use
|getpos()|.
Examples: >
line(".") line number of the cursor
line("'t") line number of mark t
line("'" . marker) line number of mark marker
< *last-position-jump*
This autocommand jumps to the last known position in a file
just after opening it, if the '" mark is set: >
:au BufReadPost * if line("'\"") > 0 && line("'\"") <= line("$") | exe "normal g'\"" | endif
line2byte({lnum}) *line2byte()*
Return the byte count from the start of the buffer for line
{lnum}. This includes the end-of-line character, depending on
the 'fileformat' option for the current buffer. The first
line returns 1.
This can also be used to get the byte count for the line just
below the last line: >
line2byte(line("$") + 1)
< This is the file size plus one.
When {lnum} is invalid, or the |+byte_offset| feature has been
disabled at compile time, -1 is returned.
Also see |byte2line()|, |go| and |:goto|.
lispindent({lnum}) *lispindent()*
Get the amount of indent for line {lnum} according the lisp
indenting rules, as with 'lisp'.
The indent is counted in spaces, the value of 'tabstop' is
relevant. {lnum} is used just like in |getline()|.
When {lnum} is invalid or Vim was not compiled the
|+lispindent| feature, -1 is returned.
localtime() *localtime()*
Return the current time, measured as seconds since 1st Jan
1970. See also |strftime()| and |getftime()|.
map({expr}, {string}) *map()*
{expr} must be a |List| or a |Dictionary|.
Replace each item in {expr} with the result of evaluating
{string}.
Inside {string} |v:val| has the value of the current item.
For a |Dictionary| |v:key| has the key of the current item.
Example: >
:call map(mylist, '"> " . v:val . " <"')
< This puts "> " before and " <" after each item in "mylist".
Note that {string} is the result of an expression and is then
used as an expression again. Often it is good to use a
|literal-string| to avoid having to double backslashes. You
still have to double ' quotes
The operation is done in-place. If you want a |List| or
|Dictionary| to remain unmodified make a copy first: >
:let tlist = map(copy(mylist), ' & . "\t"')
< Returns {expr}, the |List| or |Dictionary| that was filtered.
When an error is encountered while evaluating {string} no
further items in {expr} are processed.
maparg({name}[, {mode} [, {abbr}]]) *maparg()*
Return the rhs of mapping {name} in mode {mode}. When there
is no mapping for {name}, an empty String is returned.
{mode} can be one of these strings:
"n" Normal
"v" Visual
"o" Operator-pending
"i" Insert
"c" Cmd-line
"l" langmap |language-mapping|
"" Normal, Visual and Operator-pending
When {mode} is omitted, the modes for "" are used.
When {abbr} is there and it is non-zero use abbreviations
instead of mappings.
The {name} can have special key names, like in the ":map"
command. The returned String has special characters
translated like in the output of the ":map" command listing.
The mappings local to the current buffer are checked first,
then the global mappings.
This function can be used to map a key even when it's already
mapped, and have it do the original mapping too. Sketch: >
exe 'nnoremap <Tab> ==' . maparg('<Tab>', 'n')
mapcheck({name}[, {mode} [, {abbr}]]) *mapcheck()*
Check if there is a mapping that matches with {name} in mode
{mode}. See |maparg()| for {mode} and special names in
{name}.
When {abbr} is there and it is non-zero use abbreviations
instead of mappings.
A match happens with a mapping that starts with {name} and
with a mapping which is equal to the start of {name}.
matches mapping "a" "ab" "abc" ~
mapcheck("a") yes yes yes
mapcheck("abc") yes yes yes
mapcheck("ax") yes no no
mapcheck("b") no no no
The difference with maparg() is that mapcheck() finds a
mapping that matches with {name}, while maparg() only finds a
mapping for {name} exactly.
When there is no mapping that starts with {name}, an empty
String is returned. If there is one, the rhs of that mapping
is returned. If there are several mappings that start with
{name}, the rhs of one of them is returned.
The mappings local to the current buffer are checked first,
then the global mappings.
This function can be used to check if a mapping can be added
without being ambiguous. Example: >
:if mapcheck("_vv") == ""
: map _vv :set guifont=7x13<CR>
:endif
< This avoids adding the "_vv" mapping when there already is a
mapping for "_v" or for "_vvv".
match({expr}, {pat}[, {start}[, {count}]]) *match()*
When {expr} is a |List| then this returns the index of the
first item where {pat} matches. Each item is used as a
String, |Lists| and |Dictionaries| are used as echoed.
Otherwise, {expr} is used as a String. The result is a
Number, which gives the index (byte offset) in {expr} where
{pat} matches.
A match at the first character or |List| item returns zero.
If there is no match -1 is returned.
Example: >
:echo match("testing", "ing") " results in 4
:echo match([1, 'x'], '\a') " results in 1
< See |string-match| for how {pat} is used.
*strpbrk()*
Vim doesn't have a strpbrk() function. But you can do: >
:let sepidx = match(line, '[.,;: \t]')
< *strcasestr()*
Vim doesn't have a strcasestr() function. But you can add
"\c" to the pattern to ignore case: >
:let idx = match(haystack, '\cneedle')
<
If {start} is given, the search starts from byte index
{start} in a String or item {start} in a |List|.
The result, however, is still the index counted from the
first character/item. Example: >
:echo match("testing", "ing", 2)
< result is again "4". >
:echo match("testing", "ing", 4)
< result is again "4". >
:echo match("testing", "t", 2)
< result is "3".
For a String, if {start} > 0 then it is like the string starts
{start} bytes later, thus "^" will match at {start}. Except
when {count} is given, then it's like matches before the
{start} byte are ignored (this is a bit complicated to keep it
backwards compatible).
For a String, if {start} < 0, it will be set to 0. For a list
the index is counted from the end.
If {start} is out of range ({start} > strlen({expr}) for a
String or {start} > len({expr}) for a |List|) -1 is returned.
When {count} is given use the {count}'th match. When a match
is found in a String the search for the next one starts one
character further. Thus this example results in 1: >
echo match("testing", "..", 0, 2)
< In a |List| the search continues in the next item.
Note that when {count} is added the way {start} works changes,
see above.
See |pattern| for the patterns that are accepted.
The 'ignorecase' option is used to set the ignore-caseness of
the pattern. 'smartcase' is NOT used. The matching is always
done like 'magic' is set and 'cpoptions' is empty.
*matchadd()* *E798* *E799* *E801*
matchadd({group}, {pattern}[, {priority}[, {id}]])
Defines a pattern to be highlighted in the current window (a
"match"). It will be highlighted with {group}. Returns an
identification number (ID), which can be used to delete the
match using |matchdelete()|.
The optional {priority} argument assigns a priority to the
match. A match with a high priority will have its
highlighting overrule that of a match with a lower priority.
A priority is specified as an integer (negative numbers are no
exception). If the {priority} argument is not specified, the
default priority is 10. The priority of 'hlsearch' is zero,
hence all matches with a priority greater than zero will
overrule it. Syntax highlighting (see 'syntax') is a separate
mechanism, and regardless of the chosen priority a match will
always overrule syntax highlighting.
The optional {id} argument allows the request for a specific
match ID. If a specified ID is already taken, an error
message will appear and the match will not be added. An ID
is specified as a positive integer (zero excluded). IDs 1, 2
and 3 are reserved for |:match|, |:2match| and |:3match|,
respectively. If the {id} argument is not specified,
|matchadd()| automatically chooses a free ID.
The number of matches is not limited, as it is the case with
the |:match| commands.
Example: >
:highlight MyGroup ctermbg=green guibg=green
:let m = matchadd("MyGroup", "TODO")
< Deletion of the pattern: >
:call matchdelete(m)
< A list of matches defined by |matchadd()| and |:match| are
available from |getmatches()|. All matches can be deleted in
one operation by |clearmatches()|.
matcharg({nr}) *matcharg()*
Selects the {nr} match item, as set with a |:match|,
|:2match| or |:3match| command.
Return a |List| with two elements:
The name of the highlight group used
The pattern used.
When {nr} is not 1, 2 or 3 returns an empty |List|.
When there is no match item set returns ['', ''].
This is useful to save and restore a |:match|.
Highlighting matches using the |:match| commands are limited
to three matches. |matchadd()| does not have this limitation.
matchdelete({id}) *matchdelete()* *E802* *E803*
Deletes a match with ID {id} previously defined by |matchadd()|
or one of the |:match| commands. Returns 0 if succesfull,
otherwise -1. See example for |matchadd()|. All matches can
be deleted in one operation by |clearmatches()|.
matchend({expr}, {pat}[, {start}[, {count}]]) *matchend()*
Same as match(), but return the index of first character after
the match. Example: >
:echo matchend("testing", "ing")
< results in "7".
*strspn()* *strcspn()*
Vim doesn't have a strspn() or strcspn() function, but you can
do it with matchend(): >
:let span = matchend(line, '[a-zA-Z]')
:let span = matchend(line, '[^a-zA-Z]')
< Except that -1 is returned when there are no matches.
The {start}, if given, has the same meaning as for match(). >
:echo matchend("testing", "ing", 2)
< results in "7". >
:echo matchend("testing", "ing", 5)
< result is "-1".
When {expr} is a |List| the result is equal to match().
matchlist({expr}, {pat}[, {start}[, {count}]]) *matchlist()*
Same as match(), but return a |List|. The first item in the
list is the matched string, same as what matchstr() would
return. Following items are submatches, like "\1", "\2", etc.
in |:substitute|. When an optional submatch didn't match an
empty string is used. Example: >
echo matchlist('acd', '\(a\)\?\(b\)\?\(c\)\?\(.*\)')
< Results in: ['acd', 'a', '', 'c', 'd', '', '', '', '', '']
When there is no match an empty list is returned.
matchstr({expr}, {pat}[, {start}[, {count}]]) *matchstr()*
Same as match(), but return the matched string. Example: >
:echo matchstr("testing", "ing")
< results in "ing".
When there is no match "" is returned.
The {start}, if given, has the same meaning as for match(). >
:echo matchstr("testing", "ing", 2)
< results in "ing". >
:echo matchstr("testing", "ing", 5)
< result is "".
When {expr} is a |List| then the matching item is returned.
The type isn't changed, it's not necessarily a String.
*max()*
max({list}) Return the maximum value of all items in {list}.
If {list} is not a list or one of the items in {list} cannot
be used as a Number this results in an error.
An empty |List| results in zero.
*min()*
min({list}) Return the minimum value of all items in {list}.
If {list} is not a list or one of the items in {list} cannot
be used as a Number this results in an error.
An empty |List| results in zero.
*mkdir()* *E739*
mkdir({name} [, {path} [, {prot}]])
Create directory {name}.
If {path} is "p" then intermediate directories are created as
necessary. Otherwise it must be "".
If {prot} is given it is used to set the protection bits of
the new directory. The default is 0755 (rwxr-xr-x: r/w for
the user readable for others). Use 0700 to make it unreadable
for others.
This function is not available in the |sandbox|.
Not available on all systems. To check use: >
:if exists("*mkdir")
<
*mode()*
mode() Return a string that indicates the current mode:
n Normal
v Visual by character
V Visual by line
CTRL-V Visual blockwise
s Select by character
S Select by line
CTRL-S Select blockwise
i Insert
R Replace
c Command-line
r Hit-enter prompt
This is useful in the 'statusline' option. In most other
places it always returns "c" or "n".
nextnonblank({lnum}) *nextnonblank()*
Return the line number of the first line at or below {lnum}
that is not blank. Example: >
if getline(nextnonblank(1)) =~ "Java"
< When {lnum} is invalid or there is no non-blank line at or
below it, zero is returned.
See also |prevnonblank()|.
nr2char({expr}) *nr2char()*
Return a string with a single character, which has the number
value {expr}. Examples: >
nr2char(64) returns "@"
nr2char(32) returns " "
< The current 'encoding' is used. Example for "utf-8": >
nr2char(300) returns I with bow character
< Note that a NUL character in the file is specified with
nr2char(10), because NULs are represented with newline
characters. nr2char(0) is a real NUL and terminates the
string, thus results in an empty string.
*getpid()*
getpid() Return a Number which is the process ID of the Vim process.
On Unix this is a unique number. On MS-DOS it's always zero.
*getpos()*
getpos({expr}) Get the position for {expr}. For possible values of {expr}
see |line()|.
The result is a |List| with four numbers:
[bufnum, lnum, col, off]
"bufnum" is zero, unless a mark like '0 or 'A is used, then it
is the buffer number of the mark.
"lnum" and "col" are the position in the buffer. The first
column is 1.
The "off" number is zero, unless 'virtualedit' is used. Then
it is the offset in screen columns from the start of the
character. E.g., a position within a <Tab> or after the last
character.
This can be used to save and restore the cursor position: >
let save_cursor = getpos(".")
MoveTheCursorAround
call setpos('.', save_cursor)
< Also see |setpos()|.
pathshorten({expr}) *pathshorten()*
Shorten directory names in the path {expr} and return the
result. The tail, the file name, is kept as-is. The other
components in the path are reduced to single letters. Leading
'~' and '.' characters are kept. Example: >
:echo pathshorten('~/.vim/autoload/myfile.vim')
< ~/.v/a/myfile.vim ~
It doesn't matter if the path exists or not.
prevnonblank({lnum}) *prevnonblank()*
Return the line number of the first line at or above {lnum}
that is not blank. Example: >
let ind = indent(prevnonblank(v:lnum - 1))
< When {lnum} is invalid or there is no non-blank line at or
above it, zero is returned.
Also see |nextnonblank()|.
printf({fmt}, {expr1} ...) *printf()*
Return a String with {fmt}, where "%" items are replaced by
the formatted form of their respective arguments. Example: >
printf("%4d: E%d %.30s", lnum, errno, msg)
< May result in:
" 99: E42 asdfasdfasdfasdfasdfasdfasdfas" ~
Often used items are:
%s string
%6s string right-aligned in 6 bytes
%.9s string truncated to 9 bytes
%c single byte
%d decimal number
%5d decimal number padded with spaces to 5 characters
%x hex number
%04x hex number padded with zeros to at least 4 characters
%X hex number using upper case letters
%o octal number
%% the % character itself
Conversion specifications start with '%' and end with the
conversion type. All other characters are copied unchanged to
the result.
The "%" starts a conversion specification. The following
arguments appear in sequence:
% [flags] [field-width] [.precision] type
flags
Zero or more of the following flags:
# The value should be converted to an "alternate
form". For c, d, and s conversions, this option
has no effect. For o conversions, the precision
of the number is increased to force the first
character of the output string to a zero (except
if a zero value is printed with an explicit
precision of zero).
For x and X conversions, a non-zero result has
the string "0x" (or "0X" for X conversions)
prepended to it.
0 (zero) Zero padding. For all conversions the converted
value is padded on the left with zeros rather
than blanks. If a precision is given with a
numeric conversion (d, o, x, and X), the 0 flag
is ignored.
- A negative field width flag; the converted value
is to be left adjusted on the field boundary.
The converted value is padded on the right with
blanks, rather than on the left with blanks or
zeros. A - overrides a 0 if both are given.
' ' (space) A blank should be left before a positive
number produced by a signed conversion (d).
+ A sign must always be placed before a number
produced by a signed conversion. A + overrides
a space if both are used.
field-width
An optional decimal digit string specifying a minimum
field width. If the converted value has fewer bytes
than the field width, it will be padded with spaces on
the left (or right, if the left-adjustment flag has
been given) to fill out the field width.
.precision
An optional precision, in the form of a period '.'
followed by an optional digit string. If the digit
string is omitted, the precision is taken as zero.
This gives the minimum number of digits to appear for
d, o, x, and X conversions, or the maximum number of
bytes to be printed from a string for s conversions.
type
A character that specifies the type of conversion to
be applied, see below.
A field width or precision, or both, may be indicated by an
asterisk '*' instead of a digit string. In this case, a
Number argument supplies the field width or precision. A
negative field width is treated as a left adjustment flag
followed by a positive field width; a negative precision is
treated as though it were missing. Example: >
:echo printf("%d: %.*s", nr, width, line)
< This limits the length of the text used from "line" to
"width" bytes.
The conversion specifiers and their meanings are:
doxX The Number argument is converted to signed decimal
(d), unsigned octal (o), or unsigned hexadecimal (x
and X) notation. The letters "abcdef" are used for
x conversions; the letters "ABCDEF" are used for X
conversions.
The precision, if any, gives the minimum number of
digits that must appear; if the converted value
requires fewer digits, it is padded on the left with
zeros.
In no case does a non-existent or small field width
cause truncation of a numeric field; if the result of
a conversion is wider than the field width, the field
is expanded to contain the conversion result.
c The Number argument is converted to a byte, and the
resulting character is written.
s The text of the String argument is used. If a
precision is specified, no more bytes than the number
specified are used.
% A '%' is written. No argument is converted. The
complete conversion specification is "%%".
Each argument can be Number or String and is converted
automatically to fit the conversion specifier. Any other
argument type results in an error message.
*E766* *E767*
The number of {exprN} arguments must exactly match the number
of "%" items. If there are not sufficient or too many
arguments an error is given. Up to 18 arguments can be used.
pumvisible() *pumvisible()*
Returns non-zero when the popup menu is visible, zero
otherwise. See |ins-completion-menu|.
This can be used to avoid some things that would remove the
popup menu.
*E726* *E727*
range({expr} [, {max} [, {stride}]]) *range()*
Returns a |List| with Numbers:
- If only {expr} is specified: [0, 1, ..., {expr} - 1]
- If {max} is specified: [{expr}, {expr} + 1, ..., {max}]
- If {stride} is specified: [{expr}, {expr} + {stride}, ...,
{max}] (increasing {expr} with {stride} each time, not
producing a value past {max}).
When the maximum is one before the start the result is an
empty list. When the maximum is more than one before the
start this is an error.
Examples: >
range(4) " [0, 1, 2, 3]
range(2, 4) " [2, 3, 4]
range(2, 9, 3) " [2, 5, 8]
range(2, -2, -1) " [2, 1, 0, -1, -2]
range(0) " []
range(2, 0) " error!
<
*readfile()*
readfile({fname} [, {binary} [, {max}]])
Read file {fname} and return a |List|, each line of the file
as an item. Lines broken at NL characters. Macintosh files
separated with CR will result in a single long line (unless a
NL appears somewhere).
When {binary} is equal to "b" binary mode is used:
- When the last line ends in a NL an extra empty list item is
added.
- No CR characters are removed.
Otherwise:
- CR characters that appear before a NL are removed.
- Whether the last line ends in a NL or not does not matter.
All NUL characters are replaced with a NL character.
When {max} is given this specifies the maximum number of lines
to be read. Useful if you only want to check the first ten
lines of a file: >
:for line in readfile(fname, '', 10)
: if line =~ 'Date' | echo line | endif
:endfor
< When {max} is negative -{max} lines from the end of the file
are returned, or as many as there are.
When {max} is zero the result is an empty list.
Note that without {max} the whole file is read into memory.
Also note that there is no recognition of encoding. Read a
file into a buffer if you need to.
When the file can't be opened an error message is given and
the result is an empty list.
Also see |writefile()|.
reltime([{start} [, {end}]]) *reltime()*
Return an item that represents a time value. The format of
the item depends on the system. It can be passed to
|reltimestr()| to convert it to a string.
Without an argument it returns the current time.
With one argument is returns the time passed since the time
specified in the argument.
With two arguments it returns the time passed between {start}
and {end}.
The {start} and {end} arguments must be values returned by
reltime().
{only available when compiled with the +reltime feature}
reltimestr({time}) *reltimestr()*
Return a String that represents the time value of {time}.
This is the number of seconds, a dot and the number of
microseconds. Example: >
let start = reltime()
call MyFunction()
echo reltimestr(reltime(start))
< Note that overhead for the commands will be added to the time.
The accuracy depends on the system.
Leading spaces are used to make the string align nicely. You
can use split() to remove it. >
echo split(reltimestr(reltime(start)))[0]
< Also see |profiling|.
{only available when compiled with the +reltime feature}
*remote_expr()* *E449*
remote_expr({server}, {string} [, {idvar}])
Send the {string} to {server}. The string is sent as an
expression and the result is returned after evaluation.
The result must be a String or a |List|. A |List| is turned
into a String by joining the items with a line break in
between (not at the end), like with join(expr, "\n").
If {idvar} is present, it is taken as the name of a
variable and a {serverid} for later use with
remote_read() is stored there.
See also |clientserver| |RemoteReply|.
This function is not available in the |sandbox|.
{only available when compiled with the |+clientserver| feature}
Note: Any errors will cause a local error message to be issued
and the result will be the empty string.
Examples: >
:echo remote_expr("gvim", "2+2")
:echo remote_expr("gvim1", "b:current_syntax")
<
remote_foreground({server}) *remote_foreground()*
Move the Vim server with the name {server} to the foreground.
This works like: >
remote_expr({server}, "foreground()")
< Except that on Win32 systems the client does the work, to work
around the problem that the OS doesn't always allow the server
to bring itself to the foreground.
Note: This does not restore the window if it was minimized,
like foreground() does.
This function is not available in the |sandbox|.
{only in the Win32, Athena, Motif and GTK GUI versions and the
Win32 console version}
remote_peek({serverid} [, {retvar}]) *remote_peek()*
Returns a positive number if there are available strings
from {serverid}. Copies any reply string into the variable
{retvar} if specified. {retvar} must be a string with the
name of a variable.
Returns zero if none are available.
Returns -1 if something is wrong.
See also |clientserver|.
This function is not available in the |sandbox|.
{only available when compiled with the |+clientserver| feature}
Examples: >
:let repl = ""
:echo "PEEK: ".remote_peek(id, "repl").": ".repl
remote_read({serverid}) *remote_read()*
Return the oldest available reply from {serverid} and consume
it. It blocks until a reply is available.
See also |clientserver|.
This function is not available in the |sandbox|.
{only available when compiled with the |+clientserver| feature}
Example: >
:echo remote_read(id)
<
*remote_send()* *E241*
remote_send({server}, {string} [, {idvar}])
Send the {string} to {server}. The string is sent as input
keys and the function returns immediately. At the Vim server
the keys are not mapped |:map|.
If {idvar} is present, it is taken as the name of a variable
and a {serverid} for later use with remote_read() is stored
there.
See also |clientserver| |RemoteReply|.
This function is not available in the |sandbox|.
{only available when compiled with the |+clientserver| feature}
Note: Any errors will be reported in the server and may mess
up the display.
Examples: >
:echo remote_send("gvim", ":DropAndReply ".file, "serverid").
\ remote_read(serverid)
:autocmd NONE RemoteReply *
\ echo remote_read(expand("<amatch>"))
:echo remote_send("gvim", ":sleep 10 | echo ".
\ 'server2client(expand("<client>"), "HELLO")<CR>')
<
remove({list}, {idx} [, {end}]) *remove()*
Without {end}: Remove the item at {idx} from |List| {list} and
return it.
With {end}: Remove items from {idx} to {end} (inclusive) and
return a list with these items. When {idx} points to the same
item as {end} a list with one item is returned. When {end}
points to an item before {idx} this is an error.
See |list-index| for possible values of {idx} and {end}.
Example: >
:echo "last item: " . remove(mylist, -1)
:call remove(mylist, 0, 9)
remove({dict}, {key})
Remove the entry from {dict} with key {key}. Example: >
:echo "removed " . remove(dict, "one")
< If there is no {key} in {dict} this is an error.
Use |delete()| to remove a file.
rename({from}, {to}) *rename()*
Rename the file by the name {from} to the name {to}. This
should also work to move files across file systems. The
result is a Number, which is 0 if the file was renamed
successfully, and non-zero when the renaming failed.
This function is not available in the |sandbox|.
repeat({expr}, {count}) *repeat()*
Repeat {expr} {count} times and return the concatenated
result. Example: >
:let separator = repeat('-', 80)
< When {count} is zero or negative the result is empty.
When {expr} is a |List| the result is {expr} concatenated
{count} times. Example: >
:let longlist = repeat(['a', 'b'], 3)
< Results in ['a', 'b', 'a', 'b', 'a', 'b'].
resolve({filename}) *resolve()* *E655*
On MS-Windows, when {filename} is a shortcut (a .lnk file),
returns the path the shortcut points to in a simplified form.
On Unix, repeat resolving symbolic links in all path
components of {filename} and return the simplified result.
To cope with link cycles, resolving of symbolic links is
stopped after 100 iterations.
On other systems, return the simplified {filename}.
The simplification step is done as by |simplify()|.
resolve() keeps a leading path component specifying the
current directory (provided the result is still a relative
path name) and also keeps a trailing path separator.
*reverse()*
reverse({list}) Reverse the order of items in {list} in-place. Returns
{list}.
If you want a list to remain unmodified make a copy first: >
:let revlist = reverse(copy(mylist))
search({pattern} [, {flags} [, {stopline} [, {timeout}]]]) *search()*
Search for regexp pattern {pattern}. The search starts at the
cursor position (you can use |cursor()| to set it).
{flags} is a String, which can contain these character flags:
'b' search backward instead of forward
'c' accept a match at the cursor position
'e' move to the End of the match
'n' do Not move the cursor
'p' return number of matching sub-pattern (see below)
's' set the ' mark at the previous location of the cursor
'w' wrap around the end of the file
'W' don't wrap around the end of the file
If neither 'w' or 'W' is given, the 'wrapscan' option applies.
If the 's' flag is supplied, the ' mark is set, only if the
cursor is moved. The 's' flag cannot be combined with the 'n'
flag.
'ignorecase', 'smartcase' and 'magic' are used.
When the {stopline} argument is given then the search stops
after searching this line. This is useful to restrict the
search to a range of lines. Examples: >
let match = search('(', 'b', line("w0"))
let end = search('END', '', line("w$"))
< When {stopline} is used and it is not zero this also implies
that the search does not wrap around the end of the file.
A zero value is equal to not giving the argument.
When the {timeout} argument is given the search stops when
more than this many milli seconds have passed. Thus when
{timeout} is 500 the search stops after half a second.
The value must not be negative. A zero value is like not
giving the argument.
{only available when compiled with the +reltime feature}
If there is no match a 0 is returned and the cursor doesn't
move. No error message is given.
When a match has been found its line number is returned.
*search()-sub-match*
With the 'p' flag the returned value is one more than the
first sub-match in \(\). One if none of them matched but the
whole pattern did match.
To get the column number too use |searchpos()|.
The cursor will be positioned at the match, unless the 'n'
flag is used.
Example (goes over all files in the argument list): >
:let n = 1
:while n <= argc() " loop over all files in arglist
: exe "argument " . n
: " start at the last char in the file and wrap for the
: " first search to find match at start of file
: normal G$
: let flags = "w"
: while search("foo", flags) > 0
: s/foo/bar/g
: let flags = "W"
: endwhile
: update " write the file if modified
: let n = n + 1
:endwhile
<
Example for using some flags: >
:echo search('\<if\|\(else\)\|\(endif\)', 'ncpe')
< This will search for the keywords "if", "else", and "endif"
under or after the cursor. Because of the 'p' flag, it
returns 1, 2, or 3 depending on which keyword is found, or 0
if the search fails. With the cursor on the first word of the
line:
if (foo == 0) | let foo = foo + 1 | endif ~
the function returns 1. Without the 'c' flag, the function
finds the "endif" and returns 3. The same thing happens
without the 'e' flag if the cursor is on the "f" of "if".
The 'n' flag tells the function not to move the cursor.
searchdecl({name} [, {global} [, {thisblock}]]) *searchdecl()*
Search for the declaration of {name}.
With a non-zero {global} argument it works like |gD|, find
first match in the file. Otherwise it works like |gd|, find
first match in the function.
With a non-zero {thisblock} argument matches in a {} block
that ends before the cursor position are ignored. Avoids
finding variable declarations only valid in another scope.
Moves the cursor to the found match.
Returns zero for success, non-zero for failure.
Example: >
if searchdecl('myvar') == 0
echo getline('.')
endif
<
*searchpair()*
searchpair({start}, {middle}, {end} [, {flags} [, {skip}
[, {stopline} [, {timeout}]]]])
Search for the match of a nested start-end pair. This can be
used to find the "endif" that matches an "if", while other
if/endif pairs in between are ignored.
The search starts at the cursor. The default is to search
forward, include 'b' in {flags} to search backward.
If a match is found, the cursor is positioned at it and the
line number is returned. If no match is found 0 or -1 is
returned and the cursor doesn't move. No error message is
given.
{start}, {middle} and {end} are patterns, see |pattern|. They
must not contain \( \) pairs. Use of \%( \) is allowed. When
{middle} is not empty, it is found when searching from either
direction, but only when not in a nested start-end pair. A
typical use is: >
searchpair('\<if\>', '\<else\>', '\<endif\>')
< By leaving {middle} empty the "else" is skipped.
{flags} 'b', 'c', 'n', 's', 'w' and 'W' are used like with
|search()|. Additionally:
'r' Repeat until no more matches found; will find the
outer pair
'm' return number of Matches instead of line number with
the match; will be > 1 when 'r' is used.
When a match for {start}, {middle} or {end} is found, the
{skip} expression is evaluated with the cursor positioned on
the start of the match. It should return non-zero if this
match is to be skipped. E.g., because it is inside a comment
or a string.
When {skip} is omitted or empty, every match is accepted.
When evaluating {skip} causes an error the search is aborted
and -1 returned.
For {stopline} and {timeout} see |search()|.
The value of 'ignorecase' is used. 'magic' is ignored, the
patterns are used like it's on.
The search starts exactly at the cursor. A match with
{start}, {middle} or {end} at the next character, in the
direction of searching, is the first one found. Example: >
if 1
if 2
endif 2
endif 1
< When starting at the "if 2", with the cursor on the "i", and
searching forwards, the "endif 2" is found. When starting on
the character just before the "if 2", the "endif 1" will be
found. That's because the "if 2" will be found first, and
then this is considered to be a nested if/endif from "if 2" to
"endif 2".
When searching backwards and {end} is more than one character,
it may be useful to put "\zs" at the end of the pattern, so
that when the cursor is inside a match with the end it finds
the matching start.
Example, to find the "endif" command in a Vim script: >
:echo searchpair('\<if\>', '\<el\%[seif]\>', '\<en\%[dif]\>', 'W',
\ 'getline(".") =~ "^\\s*\""')
< The cursor must be at or after the "if" for which a match is
to be found. Note that single-quote strings are used to avoid
having to double the backslashes. The skip expression only
catches comments at the start of a line, not after a command.
Also, a word "en" or "if" halfway a line is considered a
match.
Another example, to search for the matching "{" of a "}": >
:echo searchpair('{', '', '}', 'bW')
< This works when the cursor is at or before the "}" for which a
match is to be found. To reject matches that syntax
highlighting recognized as strings: >
:echo searchpair('{', '', '}', 'bW',
\ 'synIDattr(synID(line("."), col("."), 0), "name") =~? "string"')
<
*searchpairpos()*
searchpairpos({start}, {middle}, {end} [, {flags} [, {skip}
[, {stopline} [, {timeout}]]]])
Same as searchpair(), but returns a |List| with the line and
column position of the match. The first element of the |List|
is the line number and the second element is the byte index of
the column position of the match. If no match is found,
returns [0, 0].
>
:let [lnum,col] = searchpairpos('{', '', '}', 'n')
<
See |match-parens| for a bigger and more useful example.
searchpos({pattern} [, {flags} [, {stopline} [, {timeout}]]]) *searchpos()*
Same as |search()|, but returns a |List| with the line and
column position of the match. The first element of the |List|
is the line number and the second element is the byte index of
the column position of the match. If no match is found,
returns [0, 0].
Example: >
:let [lnum, col] = searchpos('mypattern', 'n')
< When the 'p' flag is given then there is an extra item with
the sub-pattern match number |search()-sub-match|. Example: >
:let [lnum, col, submatch] = searchpos('\(\l\)\|\(\u\)', 'np')
< In this example "submatch" is 2 when a lowercase letter is
found |/\l|, 3 when an uppercase letter is found |/\u|.
server2client( {clientid}, {string}) *server2client()*
Send a reply string to {clientid}. The most recent {clientid}
that sent a string can be retrieved with expand("<client>").
{only available when compiled with the |+clientserver| feature}
Note:
This id has to be stored before the next command can be
received. I.e. before returning from the received command and
before calling any commands that waits for input.
See also |clientserver|.
Example: >
:echo server2client(expand("<client>"), "HELLO")
<
serverlist() *serverlist()*
Return a list of available server names, one per line.
When there are no servers or the information is not available
an empty string is returned. See also |clientserver|.
{only available when compiled with the |+clientserver| feature}
Example: >
:echo serverlist()
<
setbufvar({expr}, {varname}, {val}) *setbufvar()*
Set option or local variable {varname} in buffer {expr} to
{val}.
This also works for a global or local window option, but it
doesn't work for a global or local window variable.
For a local window option the global value is unchanged.
For the use of {expr}, see |bufname()| above.
Note that the variable name without "b:" must be used.
Examples: >
:call setbufvar(1, "&mod", 1)
:call setbufvar("todo", "myvar", "foobar")
< This function is not available in the |sandbox|.
setcmdpos({pos}) *setcmdpos()*
Set the cursor position in the command line to byte position
{pos}. The first position is 1.
Use |getcmdpos()| to obtain the current position.
Only works while editing the command line, thus you must use
|c_CTRL-\_e|, |c_CTRL-R_=| or |c_CTRL-R_CTRL-R| with '='. For
|c_CTRL-\_e| and |c_CTRL-R_CTRL-R| with '=' the position is
set after the command line is set to the expression. For
|c_CTRL-R_=| it is set after evaluating the expression but
before inserting the resulting text.
When the number is too big the cursor is put at the end of the
line. A number smaller than one has undefined results.
Returns 0 when successful, 1 when not editing the command
line.
setline({lnum}, {line}) *setline()*
Set line {lnum} of the current buffer to {line}.
{lnum} is used like with |getline()|.
When {lnum} is just below the last line the {line} will be
added as a new line.
If this succeeds, 0 is returned. If this fails (most likely
because {lnum} is invalid) 1 is returned. Example: >
:call setline(5, strftime("%c"))
< When {line} is a |List| then line {lnum} and following lines
will be set to the items in the list. Example: >
:call setline(5, ['aaa', 'bbb', 'ccc'])
< This is equivalent to: >
:for [n, l] in [[5, 6, 7], ['aaa', 'bbb', 'ccc']]
: call setline(n, l)
:endfor
< Note: The '[ and '] marks are not set.
setloclist({nr}, {list} [, {action}]) *setloclist()*
Create or replace or add to the location list for window {nr}.
When {nr} is zero the current window is used. For a location
list window, the displayed location list is modified. For an
invalid window number {nr}, -1 is returned.
Otherwise, same as |setqflist()|.
Also see |location-list|.
setmatches({list}) *setmatches()*
Restores a list of matches saved by |getmatches()|. Returns 0
if succesfull, otherwise -1. All current matches are cleared
before the list is restored. See example for |getmatches()|.
*setpos()*
setpos({expr}, {list})
Set the position for {expr}. Possible values:
. the cursor
'x mark x
{list} must be a |List| with four numbers:
[bufnum, lnum, col, off]
"bufnum" is the buffer number. Zero can be used for the
current buffer. Setting the cursor is only possible for
the current buffer. To set a mark in another buffer you can
use the |bufnr()| function to turn a file name into a buffer
number.
Does not change the jumplist.
"lnum" and "col" are the position in the buffer. The first
column is 1. Use a zero "lnum" to delete a mark.
The "off" number is only used when 'virtualedit' is set. Then
it is the offset in screen columns from the start of the
character. E.g., a position within a <Tab> or after the last
character.
Returns 0 when the position could be set, -1 otherwise.
An error message is given if {expr} is invalid.
Also see |getpos()|
This does not restore the preferred column for moving
vertically. See |winrestview()| for that.
setqflist({list} [, {action}]) *setqflist()*
Create or replace or add to the quickfix list using the items
in {list}. Each item in {list} is a dictionary.
Non-dictionary items in {list} are ignored. Each dictionary
item can contain the following entries:
bufnr buffer number; must be the number of a valid
buffer
filename name of a file; only used when "bufnr" is not
present or it is invalid.
lnum line number in the file
pattern search pattern used to locate the error
col column number
vcol when non-zero: "col" is visual column
when zero: "col" is byte index
nr error number
text description of the error
type single-character error type, 'E', 'W', etc.
The "col", "vcol", "nr", "type" and "text" entries are
optional. Either "lnum" or "pattern" entry can be used to
locate a matching error line.
If the "filename" and "bufnr" entries are not present or
neither the "lnum" or "pattern" entries are present, then the
item will not be handled as an error line.
If both "pattern" and "lnum" are present then "pattern" will
be used.
Note that the list is not exactly the same as what
|getqflist()| returns.
If {action} is set to 'a', then the items from {list} are
added to the existing quickfix list. If there is no existing
list, then a new list is created. If {action} is set to 'r',
then the items from the current quickfix list are replaced
with the items from {list}. If {action} is not present or is
set to ' ', then a new list is created.
Returns zero for success, -1 for failure.
This function can be used to create a quickfix list
independent of the 'errorformat' setting. Use a command like
":cc 1" to jump to the first position.
*setreg()*
setreg({regname}, {value} [,{options}])
Set the register {regname} to {value}.
If {options} contains "a" or {regname} is upper case,
then the value is appended.
{options} can also contains a register type specification:
"c" or "v" |characterwise| mode
"l" or "V" |linewise| mode
"b" or "<CTRL-V>" |blockwise-visual| mode
If a number immediately follows "b" or "<CTRL-V>" then this is
used as the width of the selection - if it is not specified
then the width of the block is set to the number of characters
in the longest line (counting a <Tab> as 1 character).
If {options} contains no register settings, then the default
is to use character mode unless {value} ends in a <NL>.
Setting the '=' register is not possible.
Returns zero for success, non-zero for failure.
Examples: >
:call setreg(v:register, @*)
:call setreg('*', @%, 'ac')
:call setreg('a', "1\n2\n3", 'b5')
< This example shows using the functions to save and restore a
register. >
:let var_a = getreg('a', 1)
:let var_amode = getregtype('a')
....
:call setreg('a', var_a, var_amode)
< You can also change the type of a register by appending
nothing: >
:call setreg('a', '', 'al')
settabwinvar({tabnr}, {winnr}, {varname}, {val}) *settabwinvar()*
Set option or local variable {varname} in window {winnr} to
{val}.
Tabs are numbered starting with one. For the current tabpage
use |setwinvar()|.
When {winnr} is zero the current window is used.
This also works for a global or local buffer option, but it
doesn't work for a global or local buffer variable.
For a local buffer option the global value is unchanged.
Note that the variable name without "w:" must be used.
Vim briefly goes to the tab page {tabnr}, this may trigger
TabLeave and TabEnter autocommands.
Examples: >
:call settabwinvar(1, 1, "&list", 0)
:call settabwinvar(3, 2, "myvar", "foobar")
< This function is not available in the |sandbox|.
setwinvar({nr}, {varname}, {val}) *setwinvar()*
Like |settabwinvar()| for the current tab page.
Examples: >
:call setwinvar(1, "&list", 0)
:call setwinvar(2, "myvar", "foobar")
shellescape({string}) *shellescape()*
Escape {string} for use as shell command argument.
On MS-Windows and MS-DOS, when 'shellslash' is not set, it
will enclose {string} double quotes and double all double
quotes within {string}.
For other systems, it will enclose {string} in single quotes
and replace all "'" with "'\''".
Example: >
:echo shellescape('c:\program files\vim')
< results in:
"c:\program files\vim" ~
Example usage: >
:call system("chmod +x -- " . shellescape(expand("%")))
simplify({filename}) *simplify()*
Simplify the file name as much as possible without changing
the meaning. Shortcuts (on MS-Windows) or symbolic links (on
Unix) are not resolved. If the first path component in
{filename} designates the current directory, this will be
valid for the result as well. A trailing path separator is
not removed either.
Example: >
simplify("./dir/.././/file/") == "./file/"
< Note: The combination "dir/.." is only removed if "dir" is
a searchable directory or does not exist. On Unix, it is also
removed when "dir" is a symbolic link within the same
directory. In order to resolve all the involved symbolic
links before simplifying the path name, use |resolve()|.
sort({list} [, {func}]) *sort()* *E702*
Sort the items in {list} in-place. Returns {list}. If you
want a list to remain unmodified make a copy first: >
:let sortedlist = sort(copy(mylist))
< Uses the string representation of each item to sort on.
Numbers sort after Strings, |Lists| after Numbers.
For sorting text in the current buffer use |:sort|.
When {func} is given and it is one then case is ignored.
When {func} is a |Funcref| or a function name, this function
is called to compare items. The function is invoked with two
items as argument and must return zero if they are equal, 1 if
the first one sorts after the second one, -1 if the first one
sorts before the second one. Example: >
func MyCompare(i1, i2)
return a:i1 == a:i2 ? 0 : a:i1 > a:i2 ? 1 : -1
endfunc
let sortedlist = sort(mylist, "MyCompare")
<
*soundfold()*
soundfold({word})
Return the sound-folded equivalent of {word}. Uses the first
language in 'spellang' for the current window that supports
soundfolding. 'spell' must be set. When no sound folding is
possible the {word} is returned unmodified.
This can be used for making spelling suggestions. Note that
the method can be quite slow.
*spellbadword()*
spellbadword([{sentence}])
Without argument: The result is the badly spelled word under
or after the cursor. The cursor is moved to the start of the
bad word. When no bad word is found in the cursor line the
result is an empty string and the cursor doesn't move.
With argument: The result is the first word in {sentence} that
is badly spelled. If there are no spelling mistakes the
result is an empty string.
The return value is a list with two items:
- The badly spelled word or an empty string.
- The type of the spelling error:
"bad" spelling mistake
"rare" rare word
"local" word only valid in another region
"caps" word should start with Capital
Example: >
echo spellbadword("the quik brown fox")
< ['quik', 'bad'] ~
The spelling information for the current window is used. The
'spell' option must be set and the value of 'spelllang' is
used.
*spellsuggest()*
spellsuggest({word} [, {max} [, {capital}]])
Return a |List| with spelling suggestions to replace {word}.
When {max} is given up to this number of suggestions are
returned. Otherwise up to 25 suggestions are returned.
When the {capital} argument is given and it's non-zero only
suggestions with a leading capital will be given. Use this
after a match with 'spellcapcheck'.
{word} can be a badly spelled word followed by other text.
This allows for joining two words that were split. The
suggestions also include the following text, thus you can
replace a line.
{word} may also be a good word. Similar words will then be
returned. {word} itself is not included in the suggestions,
although it may appear capitalized.
The spelling information for the current window is used. The
'spell' option must be set and the values of 'spelllang' and
'spellsuggest' are used.
split({expr} [, {pattern} [, {keepempty}]]) *split()*
Make a |List| out of {expr}. When {pattern} is omitted or
empty each white-separated sequence of characters becomes an
item.
Otherwise the string is split where {pattern} matches,
removing the matched characters.
When the first or last item is empty it is omitted, unless the
{keepempty} argument is given and it's non-zero.
Other empty items are kept when {pattern} matches at least one
character or when {keepempty} is non-zero.
Example: >
:let words = split(getline('.'), '\W\+')
< To split a string in individual characters: >
:for c in split(mystring, '\zs')
< If you want to keep the separator you can also use '\zs': >
:echo split('abc:def:ghi', ':\zs')
< ['abc:', 'def:', 'ghi'] ~
Splitting a table where the first element can be empty: >
:let items = split(line, ':', 1)
< The opposite function is |join()|.
str2nr( {expr} [, {base}]) *str2nr()*
Convert string {expr} to a number.
{base} is the conversion base, it can be 8, 10 or 16.
When {base} is omitted base 10 is used. This also means that
a leading zero doesn't cause octal conversion to be used, as
with the default String to Number conversion.
When {base} is 16 a leading "0x" or "0X" is ignored. With a
different base the result will be zero.
Text after the number is silently ignored.
strftime({format} [, {time}]) *strftime()*
The result is a String, which is a formatted date and time, as
specified by the {format} string. The given {time} is used,
or the current time if no time is given. The accepted
{format} depends on your system, thus this is not portable!
See the manual page of the C function strftime() for the
format. The maximum length of the result is 80 characters.
See also |localtime()| and |getftime()|.
The language can be changed with the |:language| command.
Examples: >
:echo strftime("%c") Sun Apr 27 11:49:23 1997
:echo strftime("%Y %b %d %X") 1997 Apr 27 11:53:25
:echo strftime("%y%m%d %T") 970427 11:53:55
:echo strftime("%H:%M") 11:55
:echo strftime("%c", getftime("file.c"))
Show mod time of file.c.
< Not available on all systems. To check use: >
:if exists("*strftime")
stridx({haystack}, {needle} [, {start}]) *stridx()*
The result is a Number, which gives the byte index in
{haystack} of the first occurrence of the String {needle}.
If {start} is specified, the search starts at index {start}.
This can be used to find a second match: >
:let comma1 = stridx(line, ",")
:let comma2 = stridx(line, ",", comma1 + 1)
< The search is done case-sensitive.
For pattern searches use |match()|.
-1 is returned if the {needle} does not occur in {haystack}.
See also |strridx()|.
Examples: >
:echo stridx("An Example", "Example") 3
:echo stridx("Starting point", "Start") 0
:echo stridx("Starting point", "start") -1
< *strstr()* *strchr()*
stridx() works similar to the C function strstr(). When used
with a single character it works similar to strchr().
*string()*
string({expr}) Return {expr} converted to a String. If {expr} is a Number,
String or a composition of them, then the result can be parsed
back with |eval()|.
{expr} type result ~
String 'string'
Number 123
Funcref function('name')
List [item, item]
Dictionary {key: value, key: value}
Note that in String values the ' character is doubled.
Also see |strtrans()|.
*strlen()*
strlen({expr}) The result is a Number, which is the length of the String
{expr} in bytes.
If you want to count the number of multi-byte characters (not
counting composing characters) use something like this: >
:let len = strlen(substitute(str, ".", "x", "g"))
<
If the argument is a Number it is first converted to a String.
For other types an error is given.
Also see |len()|.
strpart({src}, {start}[, {len}]) *strpart()*
The result is a String, which is part of {src}, starting from
byte {start}, with the byte length {len}.
When non-existing bytes are included, this doesn't result in
an error, the bytes are simply omitted.
If {len} is missing, the copy continues from {start} till the
end of the {src}. >
strpart("abcdefg", 3, 2) == "de"
strpart("abcdefg", -2, 4) == "ab"
strpart("abcdefg", 5, 4) == "fg"
strpart("abcdefg", 3) == "defg"
< Note: To get the first character, {start} must be 0. For
example, to get three bytes under and after the cursor: >
strpart(getline("."), col(".") - 1, 3)
<
strridx({haystack}, {needle} [, {start}]) *strridx()*
The result is a Number, which gives the byte index in
{haystack} of the last occurrence of the String {needle}.
When {start} is specified, matches beyond this index are
ignored. This can be used to find a match before a previous
match: >
:let lastcomma = strridx(line, ",")
:let comma2 = strridx(line, ",", lastcomma - 1)
< The search is done case-sensitive.
For pattern searches use |match()|.
-1 is returned if the {needle} does not occur in {haystack}.
If the {needle} is empty the length of {haystack} is returned.
See also |stridx()|. Examples: >
:echo strridx("an angry armadillo", "an") 3
< *strrchr()*
When used with a single character it works similar to the C
function strrchr().
strtrans({expr}) *strtrans()*
The result is a String, which is {expr} with all unprintable
characters translated into printable characters |'isprint'|.
Like they are shown in a window. Example: >
echo strtrans(@a)
< This displays a newline in register a as "^@" instead of
starting a new line.
submatch({nr}) *submatch()*
Only for an expression in a |:substitute| command. Returns
the {nr}'th submatch of the matched text. When {nr} is 0
the whole matched text is returned.
Example: >
:s/\d\+/\=submatch(0) + 1/
< This finds the first number in the line and adds one to it.
A line break is included as a newline character.
substitute({expr}, {pat}, {sub}, {flags}) *substitute()*
The result is a String, which is a copy of {expr}, in which
the first match of {pat} is replaced with {sub}. This works
like the ":substitute" command (without any flags). But the
matching with {pat} is always done like the 'magic' option is
set and 'cpoptions' is empty (to make scripts portable).
'ignorecase' is still relevant. 'smartcase' is not used.
See |string-match| for how {pat} is used.
And a "~" in {sub} is not replaced with the previous {sub}.
Note that some codes in {sub} have a special meaning
|sub-replace-special|. For example, to replace something with
"\n" (two characters), use "\\\\n" or '\\n'.
When {pat} does not match in {expr}, {expr} is returned
unmodified.
When {flags} is "g", all matches of {pat} in {expr} are
replaced. Otherwise {flags} should be "".
Example: >
:let &path = substitute(&path, ",\\=[^,]*$", "", "")
< This removes the last component of the 'path' option. >
:echo substitute("testing", ".*", "\\U\\0", "")
< results in "TESTING".
synID({lnum}, {col}, {trans}) *synID()*
The result is a Number, which is the syntax ID at the position
{lnum} and {col} in the current window.
The syntax ID can be used with |synIDattr()| and
|synIDtrans()| to obtain syntax information about text.
{col} is 1 for the leftmost column, {lnum} is 1 for the first
line. 'synmaxcol' applies, in a longer line zero is returned.
When {trans} is non-zero, transparent items are reduced to the
item that they reveal. This is useful when wanting to know
the effective color. When {trans} is zero, the transparent
item is returned. This is useful when wanting to know which
syntax item is effective (e.g. inside parens).
Warning: This function can be very slow. Best speed is
obtained by going through the file in forward direction.
Example (echoes the name of the syntax item under the cursor): >
:echo synIDattr(synID(line("."), col("."), 1), "name")
<
synIDattr({synID}, {what} [, {mode}]) *synIDattr()*
The result is a String, which is the {what} attribute of
syntax ID {synID}. This can be used to obtain information
about a syntax item.
{mode} can be "gui", "cterm" or "term", to get the attributes
for that mode. When {mode} is omitted, or an invalid value is
used, the attributes for the currently active highlighting are
used (GUI, cterm or term).
Use synIDtrans() to follow linked highlight groups.
{what} result
"name" the name of the syntax item
"fg" foreground color (GUI: color name used to set
the color, cterm: color number as a string,
term: empty string)
"bg" background color (like "fg")
"fg#" like "fg", but for the GUI and the GUI is
running the name in "#RRGGBB" form
"bg#" like "fg#" for "bg"
"bold" "1" if bold
"italic" "1" if italic
"reverse" "1" if reverse
"inverse" "1" if inverse (= reverse)
"underline" "1" if underlined
"undercurl" "1" if undercurled
Example (echoes the color of the syntax item under the
cursor): >
:echo synIDattr(synIDtrans(synID(line("."), col("."), 1)), "fg")
<
synIDtrans({synID}) *synIDtrans()*
The result is a Number, which is the translated syntax ID of
{synID}. This is the syntax group ID of what is being used to
highlight the character. Highlight links given with
":highlight link" are followed.
synstack({lnum}, {col}) *synstack()*
Return a |List|, which is the stack of syntax items at the
position {lnum} and {col} in the current window. Each item in
the List is an ID like what |synID()| returns.
The first item in the List is the outer region, following are
items contained in that one. The last one is what |synID()|
returns, unless not the whole item is highlighted or it is a
transparent item.
This function is useful for debugging a syntax file.
Example that shows the syntax stack under the cursor: >
for id in synstack(line("."), col("."))
echo synIDattr(id, "name")
endfor
system({expr} [, {input}]) *system()* *E677*
Get the output of the shell command {expr}.
When {input} is given, this string is written to a file and
passed as stdin to the command. The string is written as-is,
you need to take care of using the correct line separators
yourself. Pipes are not used.
Note: newlines in {expr} may cause the command to fail. The
characters in 'shellquote' and 'shellxquote' may also cause
trouble.
This is not to be used for interactive commands.
The result is a String. Example: >
:let files = system("ls")
< To make the result more system-independent, the shell output
is filtered to replace <CR> with <NL> for Macintosh, and
<CR><NL> with <NL> for DOS-like systems.
The command executed is constructed using several options:
'shell' 'shellcmdflag' 'shellxquote' {expr} 'shellredir' {tmp} 'shellxquote'
({tmp} is an automatically generated file name).
For Unix and OS/2 braces are put around {expr} to allow for
concatenated commands.
The command will be executed in "cooked" mode, so that a
CTRL-C will interrupt the command (on Unix at least).
The resulting error code can be found in |v:shell_error|.
This function will fail in |restricted-mode|.
Note that any wrong value in the options mentioned above may
make the function fail. It has also been reported to fail
when using a security agent application.
Unlike ":!cmd" there is no automatic check for changed files.
Use |:checktime| to force a check.
tabpagebuflist([{arg}]) *tabpagebuflist()*
The result is a |List|, where each item is the number of the
buffer associated with each window in the current tab page.
{arg} specifies the number of tab page to be used. When
omitted the current tab page is used.
When {arg} is invalid the number zero is returned.
To get a list of all buffers in all tabs use this: >
tablist = []
for i in range(tabpagenr('$'))
call extend(tablist, tabpagebuflist(i + 1))
endfor
< Note that a buffer may appear in more than one window.
tabpagenr([{arg}]) *tabpagenr()*
The result is a Number, which is the number of the current
tab page. The first tab page has number 1.
When the optional argument is "$", the number of the last tab
page is returned (the tab page count).
The number can be used with the |:tab| command.
tabpagewinnr({tabarg}, [{arg}]) *tabpagewinnr()*
Like |winnr()| but for tab page {arg}.
{tabarg} specifies the number of tab page to be used.
{arg} is used like with |winnr()|:
- When omitted the current window number is returned. This is
the window which will be used when going to this tab page.
- When "$" the number of windows is returned.
- When "#" the previous window nr is returned.
Useful examples: >
tabpagewinnr(1) " current window of tab page 1
tabpagewinnr(4, '$') " number of windows in tab page 4
< When {tabarg} is invalid zero is returned.
*tagfiles()*
tagfiles() Returns a |List| with the file names used to search for tags
for the current buffer. This is the 'tags' option expanded.
taglist({expr}) *taglist()*
Returns a list of tags matching the regular expression {expr}.
Each list item is a dictionary with at least the following
entries:
name Name of the tag.
filename Name of the file where the tag is
defined. It is either relative to the
current directory or a full path.
cmd Ex command used to locate the tag in
the file.
kind Type of the tag. The value for this
entry depends on the language specific
kind values. Only available when
using a tags file generated by
Exuberant ctags or hdrtag.
static A file specific tag. Refer to
|static-tag| for more information.
More entries may be present, depending on the content of the
tags file: access, implementation, inherits and signature.
Refer to the ctags documentation for information about these
fields. For C code the fields "struct", "class" and "enum"
may appear, they give the name of the entity the tag is
contained in.
The ex-command 'cmd' can be either an ex search pattern, a
line number or a line number followed by a byte number.
If there are no matching tags, then an empty list is returned.
To get an exact tag match, the anchors '^' and '$' should be
used in {expr}. Refer to |tag-regexp| for more information
about the tag search regular expression pattern.
Refer to |'tags'| for information about how the tags file is
located by Vim. Refer to |tags-file-format| for the format of
the tags file generated by the different ctags tools.
tempname() *tempname()* *temp-file-name*
The result is a String, which is the name of a file that
doesn't exist. It can be used for a temporary file. The name
is different for at least 26 consecutive calls. Example: >
:let tmpfile = tempname()
:exe "redir > " . tmpfile
< For Unix, the file will be in a private directory (only
accessible by the current user) to avoid security problems
(e.g., a symlink attack or other people reading your file).
When Vim exits the directory and all files in it are deleted.
For MS-Windows forward slashes are used when the 'shellslash'
option is set or when 'shellcmdflag' starts with '-'.
tolower({expr}) *tolower()*
The result is a copy of the String given, with all uppercase
characters turned into lowercase (just like applying |gu| to
the string).
toupper({expr}) *toupper()*
The result is a copy of the String given, with all lowercase
characters turned into uppercase (just like applying |gU| to
the string).
tr({src}, {fromstr}, {tostr}) *tr()*
The result is a copy of the {src} string with all characters
which appear in {fromstr} replaced by the character in that
position in the {tostr} string. Thus the first character in
{fromstr} is translated into the first character in {tostr}
and so on. Exactly like the unix "tr" command.
This code also deals with multibyte characters properly.
Examples: >
echo tr("hello there", "ht", "HT")
< returns "Hello THere" >
echo tr("<blob>", "<>", "{}")
< returns "{blob}"
*type()*
type({expr}) The result is a Number, depending on the type of {expr}:
Number: 0
String: 1
Funcref: 2
List: 3
Dictionary: 4
To avoid the magic numbers it should be used this way: >
:if type(myvar) == type(0)
:if type(myvar) == type("")
:if type(myvar) == type(function("tr"))
:if type(myvar) == type([])
:if type(myvar) == type({})
values({dict}) *values()*
Return a |List| with all the values of {dict}. The |List| is
in arbitrary order.
virtcol({expr}) *virtcol()*
The result is a Number, which is the screen column of the file
position given with {expr}. That is, the last screen position
occupied by the character at that position, when the screen
would be of unlimited width. When there is a <Tab> at the
position, the returned Number will be the column at the end of
the <Tab>. For example, for a <Tab> in column 1, with 'ts'
set to 8, it returns 8.
For the byte position use |col()|.
For the use of {expr} see |col()|.
When 'virtualedit' is used {expr} can be [lnum, col, off], where
"off" is the offset in screen columns from the start of the
character. E.g., a position within a <Tab> or after the last
character.
When Virtual editing is active in the current mode, a position
beyond the end of the line can be returned. |'virtualedit'|
The accepted positions are:
. the cursor position
$ the end of the cursor line (the result is the
number of displayed characters in the cursor line
plus one)
'x position of mark x (if the mark is not set, 0 is
returned)
Note that only marks in the current file can be used.
Examples: >
virtcol(".") with text "foo^Lbar", with cursor on the "^L", returns 5
virtcol("$") with text "foo^Lbar", returns 9
virtcol("'t") with text " there", with 't at 'h', returns 6
< The first column is 1. 0 is returned for an error.
A more advanced example that echoes the maximum length of
all lines: >
echo max(map(range(1, line('$')), "virtcol([v:val, '$'])"))
visualmode([expr]) *visualmode()*
The result is a String, which describes the last Visual mode
used in the current buffer. Initially it returns an empty
string, but once Visual mode has been used, it returns "v",
"V", or "<CTRL-V>" (a single CTRL-V character) for
character-wise, line-wise, or block-wise Visual mode
respectively.
Example: >
:exe "normal " . visualmode()
< This enters the same Visual mode as before. It is also useful
in scripts if you wish to act differently depending on the
Visual mode that was used.
If an expression is supplied that results in a non-zero number
or a non-empty string, then the Visual mode will be cleared
and the old value is returned. Note that " " and "0" are also
non-empty strings, thus cause the mode to be cleared.
*winbufnr()*
winbufnr({nr}) The result is a Number, which is the number of the buffer
associated with window {nr}. When {nr} is zero, the number of
the buffer in the current window is returned. When window
{nr} doesn't exist, -1 is returned.
Example: >
:echo "The file in the current window is " . bufname(winbufnr(0))
<
*wincol()*
wincol() The result is a Number, which is the virtual column of the
cursor in the window. This is counting screen cells from the
left side of the window. The leftmost column is one.
winheight({nr}) *winheight()*
The result is a Number, which is the height of window {nr}.
When {nr} is zero, the height of the current window is
returned. When window {nr} doesn't exist, -1 is returned.
An existing window always has a height of zero or more.
Examples: >
:echo "The current window has " . winheight(0) . " lines."
<
*winline()*
winline() The result is a Number, which is the screen line of the cursor
in the window. This is counting screen lines from the top of
the window. The first line is one.
If the cursor was moved the view on the file will be updated
first, this may cause a scroll.
*winnr()*
winnr([{arg}]) The result is a Number, which is the number of the current
window. The top window has number 1.
When the optional argument is "$", the number of the
last window is returned (the window count).
When the optional argument is "#", the number of the last
accessed window is returned (where |CTRL-W_p| goes to).
If there is no previous window or it is in another tab page 0
is returned.
The number can be used with |CTRL-W_w| and ":wincmd w"
|:wincmd|.
Also see |tabpagewinnr()|.
*winrestcmd()*
winrestcmd() Returns a sequence of |:resize| commands that should restore
the current window sizes. Only works properly when no windows
are opened or closed and the current window and tab page is
unchanged.
Example: >
:let cmd = winrestcmd()
:call MessWithWindowSizes()
:exe cmd
<
*winrestview()*
winrestview({dict})
Uses the |Dictionary| returned by |winsaveview()| to restore
the view of the current window.
If you have changed the values the result is unpredictable.
If the window size changed the result won't be the same.
*winsaveview()*
winsaveview() Returns a |Dictionary| that contains information to restore
the view of the current window. Use |winrestview()| to
restore the view.
This is useful if you have a mapping that jumps around in the
buffer and you want to go back to the original view.
This does not save fold information. Use the 'foldenable'
option to temporarily switch off folding, so that folds are
not opened when moving around.
The return value includes:
lnum cursor line number
col cursor column
coladd cursor column offset for 'virtualedit'
curswant column for vertical movement
topline first line in the window
topfill filler lines, only in diff mode
leftcol first column displayed
skipcol columns skipped
Note that no option values are saved.
winwidth({nr}) *winwidth()*
The result is a Number, which is the width of window {nr}.
When {nr} is zero, the width of the current window is
returned. When window {nr} doesn't exist, -1 is returned.
An existing window always has a width of zero or more.
Examples: >
:echo "The current window has " . winwidth(0) . " columns."
:if winwidth(0) <= 50
: exe "normal 50\<C-W>|"
:endif
<
*writefile()*
writefile({list}, {fname} [, {binary}])
Write |List| {list} to file {fname}. Each list item is
separated with a NL. Each list item must be a String or
Number.
When {binary} is equal to "b" binary mode is used: There will
not be a NL after the last list item. An empty item at the
end does cause the last line in the file to end in a NL.
All NL characters are replaced with a NUL character.
Inserting CR characters needs to be done before passing {list}
to writefile().
An existing file is overwritten, if possible.
When the write fails -1 is returned, otherwise 0. There is an
error message if the file can't be created or when writing
fails.
Also see |readfile()|.
To copy a file byte for byte: >
:let fl = readfile("foo", "b")
:call writefile(fl, "foocopy", "b")
<
*feature-list*
There are three types of features:
1. Features that are only supported when they have been enabled when Vim
was compiled |+feature-list|. Example: >
:if has("cindent")
2. Features that are only supported when certain conditions have been met.
Example: >
:if has("gui_running")
< *has-patch*
3. Included patches. First check |v:version| for the version of Vim.
Then the "patch123" feature means that patch 123 has been included for
this version. Example (checking version 6.2.148 or later): >
:if v:version > 602 || v:version == 602 && has("patch148")
< Note that it's possible for patch 147 to be omitted even though 148 is
included.
all_builtin_terms Compiled with all builtin terminals enabled.
amiga Amiga version of Vim.
arabic Compiled with Arabic support |Arabic|.
arp Compiled with ARP support (Amiga).
autocmd Compiled with autocommand support. |autocommand|
balloon_eval Compiled with |balloon-eval| support.
balloon_multiline GUI supports multiline balloons.
beos BeOS version of Vim.
browse Compiled with |:browse| support, and browse() will
work.
builtin_terms Compiled with some builtin terminals.
byte_offset Compiled with support for 'o' in 'statusline'
cindent Compiled with 'cindent' support.
clientserver Compiled with remote invocation support |clientserver|.
clipboard Compiled with 'clipboard' support.
cmdline_compl Compiled with |cmdline-completion| support.
cmdline_hist Compiled with |cmdline-history| support.
cmdline_info Compiled with 'showcmd' and 'ruler' support.
comments Compiled with |'comments'| support.
cryptv Compiled with encryption support |encryption|.
cscope Compiled with |cscope| support.
compatible Compiled to be very Vi compatible.
debug Compiled with "DEBUG" defined.
dialog_con Compiled with console dialog support.
dialog_gui Compiled with GUI dialog support.
diff Compiled with |vimdiff| and 'diff' support.
digraphs Compiled with support for digraphs.
dnd Compiled with support for the "~ register |quote_~|.
dos32 32 bits DOS (DJGPP) version of Vim.
dos16 16 bits DOS version of Vim.
ebcdic Compiled on a machine with ebcdic character set.
emacs_tags Compiled with support for Emacs tags.
eval Compiled with expression evaluation support. Always
true, of course!
ex_extra Compiled with extra Ex commands |+ex_extra|.
extra_search Compiled with support for |'incsearch'| and
|'hlsearch'|
farsi Compiled with Farsi support |farsi|.
file_in_path Compiled with support for |gf| and |<cfile>|
filterpipe When 'shelltemp' is off pipes are used for shell
read/write/filter commands
find_in_path Compiled with support for include file searches
|+find_in_path|.
fname_case Case in file names matters (for Amiga, MS-DOS, and
Windows this is not present).
folding Compiled with |folding| support.
footer Compiled with GUI footer support. |gui-footer|
fork Compiled to use fork()/exec() instead of system().
gettext Compiled with message translation |multi-lang|
gui Compiled with GUI enabled.
gui_athena Compiled with Athena GUI.
gui_gtk Compiled with GTK+ GUI (any version).
gui_gtk2 Compiled with GTK+ 2 GUI (gui_gtk is also defined).
gui_mac Compiled with Macintosh GUI.
gui_motif Compiled with Motif GUI.
gui_photon Compiled with Photon GUI.
gui_win32 Compiled with MS Windows Win32 GUI.
gui_win32s idem, and Win32s system being used (Windows 3.1)
gui_running Vim is running in the GUI, or it will start soon.
hangul_input Compiled with Hangul input support. |hangul|
iconv Can use iconv() for conversion.
insert_expand Compiled with support for CTRL-X expansion commands in
Insert mode.
jumplist Compiled with |jumplist| support.
keymap Compiled with 'keymap' support.
langmap Compiled with 'langmap' support.
libcall Compiled with |libcall()| support.
linebreak Compiled with 'linebreak', 'breakat' and 'showbreak'
support.
lispindent Compiled with support for lisp indenting.
listcmds Compiled with commands for the buffer list |:files|
and the argument list |arglist|.
localmap Compiled with local mappings and abbr. |:map-local|
mac Macintosh version of Vim.
macunix Macintosh version of Vim, using Unix files (OS-X).
menu Compiled with support for |:menu|.
mksession Compiled with support for |:mksession|.
modify_fname Compiled with file name modifiers. |filename-modifiers|
mouse Compiled with support mouse.
mouseshape Compiled with support for 'mouseshape'.
mouse_dec Compiled with support for Dec terminal mouse.
mouse_gpm Compiled with support for gpm (Linux console mouse)
mouse_netterm Compiled with support for netterm mouse.
mouse_pterm Compiled with support for qnx pterm mouse.
mouse_xterm Compiled with support for xterm mouse.
multi_byte Compiled with support for editing Korean et al.
multi_byte_ime Compiled with support for IME input method.
multi_lang Compiled with support for multiple languages.
mzscheme Compiled with MzScheme interface |mzscheme|.
netbeans_intg Compiled with support for |netbeans|.
netbeans_enabled Compiled with support for |netbeans| and it's used.
ole Compiled with OLE automation support for Win32.
os2 OS/2 version of Vim.
osfiletype Compiled with support for osfiletypes |+osfiletype|
path_extra Compiled with up/downwards search in 'path' and 'tags'
perl Compiled with Perl interface.
postscript Compiled with PostScript file printing.
printer Compiled with |:hardcopy| support.
profile Compiled with |:profile| support.
python Compiled with Python interface.
qnx QNX version of Vim.
quickfix Compiled with |quickfix| support.
reltime Compiled with |reltime()| support.
rightleft Compiled with 'rightleft' support.
ruby Compiled with Ruby interface |ruby|.
scrollbind Compiled with 'scrollbind' support.
showcmd Compiled with 'showcmd' support.
signs Compiled with |:sign| support.
smartindent Compiled with 'smartindent' support.
sniff Compiled with SNiFF interface support.
statusline Compiled with support for 'statusline', 'rulerformat'
and special formats of 'titlestring' and 'iconstring'.
sun_workshop Compiled with support for Sun |workshop|.
spell Compiled with spell checking support |spell|.
syntax Compiled with syntax highlighting support |syntax|.
syntax_items There are active syntax highlighting items for the
current buffer.
system Compiled to use system() instead of fork()/exec().
tag_binary Compiled with binary searching in tags files
|tag-binary-search|.
tag_old_static Compiled with support for old static tags
|tag-old-static|.
tag_any_white Compiled with support for any white characters in tags
files |tag-any-white|.
tcl Compiled with Tcl interface.
terminfo Compiled with terminfo instead of termcap.
termresponse Compiled with support for |t_RV| and |v:termresponse|.
textobjects Compiled with support for |text-objects|.
tgetent Compiled with tgetent support, able to use a termcap
or terminfo file.
title Compiled with window title support |'title'|.
toolbar Compiled with support for |gui-toolbar|.
unix Unix version of Vim.
user_commands User-defined commands.
viminfo Compiled with viminfo support.
vim_starting True while initial source'ing takes place.
vertsplit Compiled with vertically split windows |:vsplit|.
virtualedit Compiled with 'virtualedit' option.
visual Compiled with Visual mode.
visualextra Compiled with extra Visual mode commands.
|blockwise-operators|.
vms VMS version of Vim.
vreplace Compiled with |gR| and |gr| commands.
wildignore Compiled with 'wildignore' option.
wildmenu Compiled with 'wildmenu' option.
windows Compiled with support for more than one window.
winaltkeys Compiled with 'winaltkeys' option.
win16 Win16 version of Vim (MS-Windows 3.1).
win32 Win32 version of Vim (MS-Windows 95/98/ME/NT/2000/XP).
win64 Win64 version of Vim (MS-Windows 64 bit).
win32unix Win32 version of Vim, using Unix files (Cygwin)
win95 Win32 version for MS-Windows 95/98/ME.
writebackup Compiled with 'writebackup' default on.
xfontset Compiled with X fontset support |xfontset|.
xim Compiled with X input method support |xim|.
xsmp Compiled with X session management support.
xsmp_interact Compiled with interactive X session management support.
xterm_clipboard Compiled with support for xterm clipboard.
xterm_save Compiled with support for saving and restoring the
xterm screen.
x11 Compiled with X11 support.
*string-match*
Matching a pattern in a String
A regexp pattern as explained at |pattern| is normally used to find a match in
the buffer lines. When a pattern is used to find a match in a String, almost
everything works in the same way. The difference is that a String is handled
like it is one line. When it contains a "\n" character, this is not seen as a
line break for the pattern. It can be matched with a "\n" in the pattern, or
with ".". Example: >
:let a = "aaaa\nxxxx"
:echo matchstr(a, "..\n..")
aa
xx
:echo matchstr(a, "a.x")
a
x
Don't forget that "^" will only match at the first character of the String and
"$" at the last character of the string. They don't match after or before a
"\n".
==============================================================================
5. Defining functions *user-functions*
New functions can be defined. These can be called just like builtin
functions. The function executes a sequence of Ex commands. Normal mode
commands can be executed with the |:normal| command.
The function name must start with an uppercase letter, to avoid confusion with
builtin functions. To prevent from using the same name in different scripts
avoid obvious, short names. A good habit is to start the function name with
the name of the script, e.g., "HTMLcolor()".
It's also possible to use curly braces, see |curly-braces-names|. And the
|autoload| facility is useful to define a function only when it's called.
*local-function*
A function local to a script must start with "s:". A local script function
can only be called from within the script and from functions, user commands
and autocommands defined in the script. It is also possible to call the
function from a mappings defined in the script, but then |<SID>| must be used
instead of "s:" when the mapping is expanded outside of the script.
*:fu* *:function* *E128* *E129* *E123*
:fu[nction] List all functions and their arguments.
:fu[nction] {name} List function {name}.
{name} can also be a |Dictionary| entry that is a
|Funcref|: >
:function dict.init
:fu[nction] /{pattern} List functions with a name matching {pattern}.
Example that lists all functions ending with "File": >
:function /File$
<
*:function-verbose*
When 'verbose' is non-zero, listing a function will also display where it was
last defined. Example: >
:verbose function SetFileTypeSH
function SetFileTypeSH(name)
Last set from /usr/share/vim/vim-7.0/filetype.vim
<
See |:verbose-cmd| for more information.
*E124* *E125*
:fu[nction][!] {name}([arguments]) [range] [abort] [dict]
Define a new function by the name {name}. The name
must be made of alphanumeric characters and '_', and
must start with a capital or "s:" (see above).
{name} can also be a |Dictionary| entry that is a
|Funcref|: >
:function dict.init(arg)
< "dict" must be an existing dictionary. The entry
"init" is added if it didn't exist yet. Otherwise [!]
is required to overwrite an existing function. The
result is a |Funcref| to a numbered function. The
function can only be used with a |Funcref| and will be
deleted if there are no more references to it.
*E127* *E122*
When a function by this name already exists and [!] is
not used an error message is given. When [!] is used,
an existing function is silently replaced. Unless it
is currently being executed, that is an error.
For the {arguments} see |function-argument|.
*a:firstline* *a:lastline*
When the [range] argument is added, the function is
expected to take care of a range itself. The range is
passed as "a:firstline" and "a:lastline". If [range]
is excluded, ":{range}call" will call the function for
each line in the range, with the cursor on the start
of each line. See |function-range-example|.
When the [abort] argument is added, the function will
abort as soon as an error is detected.
When the [dict] argument is added, the function must
be invoked through an entry in a |Dictionary|. The
local variable "self" will then be set to the
dictionary. See |Dictionary-function|.
The last used search pattern and the redo command "."
will not be changed by the function.
*:endf* *:endfunction* *E126* *E193*
:endf[unction] The end of a function definition. Must be on a line
by its own, without other commands.
*:delf* *:delfunction* *E130* *E131*
:delf[unction] {name} Delete function {name}.
{name} can also be a |Dictionary| entry that is a
|Funcref|: >
:delfunc dict.init
< This will remove the "init" entry from "dict". The
function is deleted if there are no more references to
it.
*:retu* *:return* *E133*
:retu[rn] [expr] Return from a function. When "[expr]" is given, it is
evaluated and returned as the result of the function.
If "[expr]" is not given, the number 0 is returned.
When a function ends without an explicit ":return",
the number 0 is returned.
Note that there is no check for unreachable lines,
thus there is no warning if commands follow ":return".
If the ":return" is used after a |:try| but before the
matching |:finally| (if present), the commands
following the ":finally" up to the matching |:endtry|
are executed first. This process applies to all
nested ":try"s inside the function. The function
returns at the outermost ":endtry".
*function-argument* *a:var*
An argument can be defined by giving its name. In the function this can then
be used as "a:name" ("a:" for argument).
*a:0* *a:1* *a:000* *E740* *...*
Up to 20 arguments can be given, separated by commas. After the named
arguments an argument "..." can be specified, which means that more arguments
may optionally be following. In the function the extra arguments can be used
as "a:1", "a:2", etc. "a:0" is set to the number of extra arguments (which
can be 0). "a:000" is set to a |List| that contains these arguments. Note
that "a:1" is the same as "a:000[0]".
*E742*
The a: scope and the variables in it cannot be changed, they are fixed.
However, if a |List| or |Dictionary| is used, you can changes their contents.
Thus you can pass a |List| to a function and have the function add an item to
it. If you want to make sure the function cannot change a |List| or
|Dictionary| use |:lockvar|.
When not using "...", the number of arguments in a function call must be equal
to the number of named arguments. When using "...", the number of arguments
may be larger.
It is also possible to define a function without any arguments. You must
still supply the () then. The body of the function follows in the next lines,
until the matching |:endfunction|. It is allowed to define another function
inside a function body.
*local-variables*
Inside a function variables can be used. These are local variables, which
will disappear when the function returns. Global variables need to be
accessed with "g:".
Example: >
:function Table(title, ...)
: echohl Title
: echo a:title
: echohl None
: echo a:0 . " items:"
: for s in a:000
: echon ' ' . s
: endfor
:endfunction
This function can then be called with: >
call Table("Table", "line1", "line2")
call Table("Empty Table")
To return more than one value, return a |List|: >
:function Compute(n1, n2)
: if a:n2 == 0
: return ["fail", 0]
: endif
: return ["ok", a:n1 / a:n2]
:endfunction
This function can then be called with: >
:let [success, div] = Compute(102, 6)
:if success == "ok"
: echo div
:endif
<
*:cal* *:call* *E107* *E117*
:[range]cal[l] {name}([arguments])
Call a function. The name of the function and its arguments
are as specified with |:function|. Up to 20 arguments can be
used. The returned value is discarded.
Without a range and for functions that accept a range, the
function is called once. When a range is given the cursor is
positioned at the start of the first line before executing the
function.
When a range is given and the function doesn't handle it
itself, the function is executed for each line in the range,
with the cursor in the first column of that line. The cursor
is left at the last line (possibly moved by the last function
call). The arguments are re-evaluated for each line. Thus
this works:
*function-range-example* >
:function Mynumber(arg)
: echo line(".") . " " . a:arg
:endfunction
:1,5call Mynumber(getline("."))
<
The "a:firstline" and "a:lastline" are defined anyway, they
can be used to do something different at the start or end of
the range.
Example of a function that handles the range itself: >
:function Cont() range
: execute (a:firstline + 1) . "," . a:lastline . 's/^/\t\\ '
:endfunction
:4,8call Cont()
<
This function inserts the continuation character "\" in front
of all the lines in the range, except the first one.
When the function returns a composite value it can be further
dereferenced, but the range will not be used then. Example: >
:4,8call GetDict().method()
< Here GetDict() gets the range but method() does not.
*E132*
The recursiveness of user functions is restricted with the |'maxfuncdepth'|
option.
AUTOMATICALLY LOADING FUNCTIONS ~
*autoload-functions*
When using many or large functions, it's possible to automatically define them
only when they are used. There are two methods: with an autocommand and with
the "autoload" directory in 'runtimepath'.
Using an autocommand ~
This is introduced in the user manual, section |41.14|.
The autocommand is useful if you have a plugin that is a long Vim script file.
You can define the autocommand and quickly quit the script with |:finish|.
That makes Vim startup faster. The autocommand should then load the same file
again, setting a variable to skip the |:finish| command.
Use the FuncUndefined autocommand event with a pattern that matches the
function(s) to be defined. Example: >
:au FuncUndefined BufNet* source ~/vim/bufnetfuncs.vim
The file "~/vim/bufnetfuncs.vim" should then define functions that start with
"BufNet". Also see |FuncUndefined|.
Using an autoload script ~
*autoload* *E746*
This is introduced in the user manual, section |41.15|.
Using a script in the "autoload" directory is simpler, but requires using
exactly the right file name. A function that can be autoloaded has a name
like this: >
:call filename#funcname()
When such a function is called, and it is not defined yet, Vim will search the
"autoload" directories in 'runtimepath' for a script file called
"filename.vim". For example "~/.vim/autoload/filename.vim". That file should
then define the function like this: >
function filename#funcname()
echo "Done!"
endfunction
The file name and the name used before the # in the function must match
exactly, and the defined function must have the name exactly as it will be
called.
It is possible to use subdirectories. Every # in the function name works like
a path separator. Thus when calling a function: >
:call foo#bar#func()
Vim will look for the file "autoload/foo/bar.vim" in 'runtimepath'.
This also works when reading a variable that has not been set yet: >
:let l = foo#bar#lvar
However, when the autoload script was already loaded it won't be loaded again
for an unknown variable.
When assigning a value to such a variable nothing special happens. This can
be used to pass settings to the autoload script before it's loaded: >
:let foo#bar#toggle = 1
:call foo#bar#func()
Note that when you make a mistake and call a function that is supposed to be
defined in an autoload script, but the script doesn't actually define the
function, the script will be sourced every time you try to call the function.
And you will get an error message every time.
Also note that if you have two script files, and one calls a function in the
other and vise versa, before the used function is defined, it won't work.
Avoid using the autoload functionality at the toplevel.
Hint: If you distribute a bunch of scripts you can pack them together with the
|vimball| utility. Also read the user manual |distribute-script|.
==============================================================================
6. Curly braces names *curly-braces-names*
Wherever you can use a variable, you can use a "curly braces name" variable.
This is a regular variable name with one or more expressions wrapped in braces
{} like this: >
my_{adjective}_variable
When Vim encounters this, it evaluates the expression inside the braces, puts
that in place of the expression, and re-interprets the whole as a variable
name. So in the above example, if the variable "adjective" was set to
"noisy", then the reference would be to "my_noisy_variable", whereas if
"adjective" was set to "quiet", then it would be to "my_quiet_variable".
One application for this is to create a set of variables governed by an option
value. For example, the statement >
echo my_{&background}_message
would output the contents of "my_dark_message" or "my_light_message" depending
on the current value of 'background'.
You can use multiple brace pairs: >
echo my_{adverb}_{adjective}_message
..or even nest them: >
echo my_{ad{end_of_word}}_message
where "end_of_word" is either "verb" or "jective".
However, the expression inside the braces must evaluate to a valid single
variable name, e.g. this is invalid: >
:let foo='a + b'
:echo c{foo}d
.. since the result of expansion is "ca + bd", which is not a variable name.
*curly-braces-function-names*
You can call and define functions by an evaluated name in a similar way.
Example: >
:let func_end='whizz'
:call my_func_{func_end}(parameter)
This would call the function "my_func_whizz(parameter)".
==============================================================================
7. Commands *expression-commands*
:let {var-name} = {expr1} *:let* *E18*
Set internal variable {var-name} to the result of the
expression {expr1}. The variable will get the type
from the {expr}. If {var-name} didn't exist yet, it
is created.
:let {var-name}[{idx}] = {expr1} *E689*
Set a list item to the result of the expression
{expr1}. {var-name} must refer to a list and {idx}
must be a valid index in that list. For nested list
the index can be repeated.
This cannot be used to add an item to a list.
*E711* *E719*
:let {var-name}[{idx1}:{idx2}] = {expr1} *E708* *E709* *E710*
Set a sequence of items in a |List| to the result of
the expression {expr1}, which must be a list with the
correct number of items.
{idx1} can be omitted, zero is used instead.
{idx2} can be omitted, meaning the end of the list.
When the selected range of items is partly past the
end of the list, items will be added.
*:let+=* *:let-=* *:let.=* *E734*
:let {var} += {expr1} Like ":let {var} = {var} + {expr1}".
:let {var} -= {expr1} Like ":let {var} = {var} - {expr1}".
:let {var} .= {expr1} Like ":let {var} = {var} . {expr1}".
These fail if {var} was not set yet and when the type
of {var} and {expr1} don't fit the operator.
:let ${env-name} = {expr1} *:let-environment* *:let-$*
Set environment variable {env-name} to the result of
the expression {expr1}. The type is always String.
:let ${env-name} .= {expr1}
Append {expr1} to the environment variable {env-name}.
If the environment variable didn't exist yet this
works like "=".
:let @{reg-name} = {expr1} *:let-register* *:let-@*
Write the result of the expression {expr1} in register
{reg-name}. {reg-name} must be a single letter, and
must be the name of a writable register (see
|registers|). "@@" can be used for the unnamed
register, "@/" for the search pattern.
If the result of {expr1} ends in a <CR> or <NL>, the
register will be linewise, otherwise it will be set to
characterwise.
This can be used to clear the last search pattern: >
:let @/ = ""
< This is different from searching for an empty string,
that would match everywhere.
:let @{reg-name} .= {expr1}
Append {expr1} to register {reg-name}. If the
register was empty it's like setting it to {expr1}.
:let &{option-name} = {expr1} *:let-option* *:let-&*
Set option {option-name} to the result of the
expression {expr1}. A String or Number value is
always converted to the type of the option.
For an option local to a window or buffer the effect
is just like using the |:set| command: both the local
value and the global value are changed.
Example: >
:let &path = &path . ',/usr/local/include'
:let &{option-name} .= {expr1}
For a string option: Append {expr1} to the value.
Does not insert a comma like |:set+=|.
:let &{option-name} += {expr1}
:let &{option-name} -= {expr1}
For a number or boolean option: Add or subtract
{expr1}.
:let &l:{option-name} = {expr1}
:let &l:{option-name} .= {expr1}
:let &l:{option-name} += {expr1}
:let &l:{option-name} -= {expr1}
Like above, but only set the local value of an option
(if there is one). Works like |:setlocal|.
:let &g:{option-name} = {expr1}
:let &g:{option-name} .= {expr1}
:let &g:{option-name} += {expr1}
:let &g:{option-name} -= {expr1}
Like above, but only set the global value of an option
(if there is one). Works like |:setglobal|.
:let [{name1}, {name2}, ...] = {expr1} *:let-unpack* *E687* *E688*
{expr1} must evaluate to a |List|. The first item in
the list is assigned to {name1}, the second item to
{name2}, etc.
The number of names must match the number of items in
the |List|.
Each name can be one of the items of the ":let"
command as mentioned above.
Example: >
:let [s, item] = GetItem(s)
< Detail: {expr1} is evaluated first, then the
assignments are done in sequence. This matters if
{name2} depends on {name1}. Example: >
:let x = [0, 1]
:let i = 0
:let [i, x[i]] = [1, 2]
:echo x
< The result is [0, 2].
:let [{name1}, {name2}, ...] .= {expr1}
:let [{name1}, {name2}, ...] += {expr1}
:let [{name1}, {name2}, ...] -= {expr1}
Like above, but append/add/subtract the value for each
|List| item.
:let [{name}, ..., ; {lastname}] = {expr1}
Like |:let-unpack| above, but the |List| may have more
items than there are names. A list of the remaining
items is assigned to {lastname}. If there are no
remaining items {lastname} is set to an empty list.
Example: >
:let [a, b; rest] = ["aval", "bval", 3, 4]
<
:let [{name}, ..., ; {lastname}] .= {expr1}
:let [{name}, ..., ; {lastname}] += {expr1}
:let [{name}, ..., ; {lastname}] -= {expr1}
Like above, but append/add/subtract the value for each
|List| item.
*E106*
:let {var-name} .. List the value of variable {var-name}. Multiple
variable names may be given. Special names recognized
here: *E738*
g: global variables
b: local buffer variables
w: local window variables
t: local tab page variables
s: script-local variables
l: local function variables
v: Vim variables.
:let List the values of all variables. The type of the
variable is indicated before the value:
<nothing> String
# Number
* Funcref
:unl[et][!] {name} ... *:unlet* *:unl* *E108* *E795*
Remove the internal variable {name}. Several variable
names can be given, they are all removed. The name
may also be a |List| or |Dictionary| item.
With [!] no error message is given for non-existing
variables.
One or more items from a |List| can be removed: >
:unlet list[3] " remove fourth item
:unlet list[3:] " remove fourth item to last
< One item from a |Dictionary| can be removed at a time: >
:unlet dict['two']
:unlet dict.two
:lockv[ar][!] [depth] {name} ... *:lockvar* *:lockv*
Lock the internal variable {name}. Locking means that
it can no longer be changed (until it is unlocked).
A locked variable can be deleted: >
:lockvar v
:let v = 'asdf' " fails!
:unlet v
< *E741*
If you try to change a locked variable you get an
error message: "E741: Value of {name} is locked"
[depth] is relevant when locking a |List| or
|Dictionary|. It specifies how deep the locking goes:
1 Lock the |List| or |Dictionary| itself,
cannot add or remove items, but can
still change their values.
2 Also lock the values, cannot change
the items. If an item is a |List| or
|Dictionary|, cannot add or remove
items, but can still change the
values.
3 Like 2 but for the |List| /
|Dictionary| in the |List| /
|Dictionary|, one level deeper.
The default [depth] is 2, thus when {name} is a |List|
or |Dictionary| the values cannot be changed.
*E743*
For unlimited depth use [!] and omit [depth].
However, there is a maximum depth of 100 to catch
loops.
Note that when two variables refer to the same |List|
and you lock one of them, the |List| will also be
locked when used through the other variable.
Example: >
:let l = [0, 1, 2, 3]
:let cl = l
:lockvar l
:let cl[1] = 99 " won't work!
< You may want to make a copy of a list to avoid this.
See |deepcopy()|.
:unlo[ckvar][!] [depth] {name} ... *:unlockvar* *:unlo*
Unlock the internal variable {name}. Does the
opposite of |:lockvar|.
:if {expr1} *:if* *:endif* *:en* *E171* *E579* *E580*
:en[dif] Execute the commands until the next matching ":else"
or ":endif" if {expr1} evaluates to non-zero.
From Vim version 4.5 until 5.0, every Ex command in
between the ":if" and ":endif" is ignored. These two
commands were just to allow for future expansions in a
backwards compatible way. Nesting was allowed. Note
that any ":else" or ":elseif" was ignored, the "else"
part was not executed either.
You can use this to remain compatible with older
versions: >
:if version >= 500
: version-5-specific-commands
:endif
< The commands still need to be parsed to find the
"endif". Sometimes an older Vim has a problem with a
new command. For example, ":silent" is recognized as
a ":substitute" command. In that case ":execute" can
avoid problems: >
:if version >= 600
: execute "silent 1,$delete"
:endif
<
NOTE: The ":append" and ":insert" commands don't work
properly in between ":if" and ":endif".
*:else* *:el* *E581* *E583*
:el[se] Execute the commands until the next matching ":else"
or ":endif" if they previously were not being
executed.
*:elseif* *:elsei* *E582* *E584*
:elsei[f] {expr1} Short for ":else" ":if", with the addition that there
is no extra ":endif".
:wh[ile] {expr1} *:while* *:endwhile* *:wh* *:endw*
*E170* *E585* *E588* *E733*
:endw[hile] Repeat the commands between ":while" and ":endwhile",
as long as {expr1} evaluates to non-zero.
When an error is detected from a command inside the
loop, execution continues after the "endwhile".
Example: >
:let lnum = 1
:while lnum <= line("$")
:call FixLine(lnum)
:let lnum = lnum + 1
:endwhile
<
NOTE: The ":append" and ":insert" commands don't work
properly inside a ":while" and ":for" loop.
:for {var} in {list} *:for* *E690* *E732*
:endfo[r] *:endfo* *:endfor*
Repeat the commands between ":for" and ":endfor" for
each item in {list}. Variable {var} is set to the
value of each item.
When an error is detected for a command inside the
loop, execution continues after the "endfor".
Changing {list} inside the loop affects what items are
used. Make a copy if this is unwanted: >
:for item in copy(mylist)
< When not making a copy, Vim stores a reference to the
next item in the list, before executing the commands
with the current item. Thus the current item can be
removed without effect. Removing any later item means
it will not be found. Thus the following example
works (an inefficient way to make a list empty): >
:for item in mylist
:call remove(mylist, 0)
:endfor
< Note that reordering the list (e.g., with sort() or
reverse()) may have unexpected effects.
Note that the type of each list item should be
identical to avoid errors for the type of {var}
changing. Unlet the variable at the end of the loop
to allow multiple item types.
:for [{var1}, {var2}, ...] in {listlist}
:endfo[r]
Like ":for" above, but each item in {listlist} must be
a list, of which each item is assigned to {var1},
{var2}, etc. Example: >
:for [lnum, col] in [[1, 3], [2, 5], [3, 8]]
:echo getline(lnum)[col]
:endfor
<
*:continue* *:con* *E586*
:con[tinue] When used inside a ":while" or ":for" loop, jumps back
to the start of the loop.
If it is used after a |:try| inside the loop but
before the matching |:finally| (if present), the
commands following the ":finally" up to the matching
|:endtry| are executed first. This process applies to
all nested ":try"s inside the loop. The outermost
":endtry" then jumps back to the start of the loop.
*:break* *:brea* *E587*
:brea[k] When used inside a ":while" or ":for" loop, skips to
the command after the matching ":endwhile" or
":endfor".
If it is used after a |:try| inside the loop but
before the matching |:finally| (if present), the
commands following the ":finally" up to the matching
|:endtry| are executed first. This process applies to
all nested ":try"s inside the loop. The outermost
":endtry" then jumps to the command after the loop.
:try *:try* *:endt* *:endtry* *E600* *E601* *E602*
:endt[ry] Change the error handling for the commands between
":try" and ":endtry" including everything being
executed across ":source" commands, function calls,
or autocommand invocations.
When an error or interrupt is detected and there is
a |:finally| command following, execution continues
after the ":finally". Otherwise, or when the
":endtry" is reached thereafter, the next
(dynamically) surrounding ":try" is checked for
a corresponding ":finally" etc. Then the script
processing is terminated. (Whether a function
definition has an "abort" argument does not matter.)
Example: >
:try | edit too much | finally | echo "cleanup" | endtry
:echo "impossible" " not reached, script terminated above
<
Moreover, an error or interrupt (dynamically) inside
":try" and ":endtry" is converted to an exception. It
can be caught as if it were thrown by a |:throw|
command (see |:catch|). In this case, the script
processing is not terminated.
The value "Vim:Interrupt" is used for an interrupt
exception. An error in a Vim command is converted
to a value of the form "Vim({command}):{errmsg}",
other errors are converted to a value of the form
"Vim:{errmsg}". {command} is the full command name,
and {errmsg} is the message that is displayed if the
error exception is not caught, always beginning with
the error number.
Examples: >
:try | sleep 100 | catch /^Vim:Interrupt$/ | endtry
:try | edit | catch /^Vim(edit):E\d\+/ | echo "error" | endtry
<
*:cat* *:catch* *E603* *E604* *E605*
:cat[ch] /{pattern}/ The following commands until the next ":catch",
|:finally|, or |:endtry| that belongs to the same
|:try| as the ":catch" are executed when an exception
matching {pattern} is being thrown and has not yet
been caught by a previous ":catch". Otherwise, these
commands are skipped.
When {pattern} is omitted all errors are caught.
Examples: >
:catch /^Vim:Interrupt$/ " catch interrupts (CTRL-C)
:catch /^Vim\%((\a\+)\)\=:E/ " catch all Vim errors
:catch /^Vim\%((\a\+)\)\=:/ " catch errors and interrupts
:catch /^Vim(write):/ " catch all errors in :write
:catch /^Vim\%((\a\+)\)\=:E123/ " catch error E123
:catch /my-exception/ " catch user exception
:catch /.*/ " catch everything
:catch " same as /.*/
<
Another character can be used instead of / around the
{pattern}, so long as it does not have a special
meaning (e.g., '|' or '"') and doesn't occur inside
{pattern}.
NOTE: It is not reliable to ":catch" the TEXT of
an error message because it may vary in different
locales.
*:fina* *:finally* *E606* *E607*
:fina[lly] The following commands until the matching |:endtry|
are executed whenever the part between the matching
|:try| and the ":finally" is left: either by falling
through to the ":finally" or by a |:continue|,
|:break|, |:finish|, or |:return|, or by an error or
interrupt or exception (see |:throw|).
*:th* *:throw* *E608*
:th[row] {expr1} The {expr1} is evaluated and thrown as an exception.
If the ":throw" is used after a |:try| but before the
first corresponding |:catch|, commands are skipped
until the first ":catch" matching {expr1} is reached.
If there is no such ":catch" or if the ":throw" is
used after a ":catch" but before the |:finally|, the
commands following the ":finally" (if present) up to
the matching |:endtry| are executed. If the ":throw"
is after the ":finally", commands up to the ":endtry"
are skipped. At the ":endtry", this process applies
again for the next dynamically surrounding ":try"
(which may be found in a calling function or sourcing
script), until a matching ":catch" has been found.
If the exception is not caught, the command processing
is terminated.
Example: >
:try | throw "oops" | catch /^oo/ | echo "caught" | endtry
<
*:ec* *:echo*
:ec[ho] {expr1} .. Echoes each {expr1}, with a space in between. The
first {expr1} starts on a new line.
Also see |:comment|.
Use "\n" to start a new line. Use "\r" to move the
cursor to the first column.
Uses the highlighting set by the |:echohl| command.
Cannot be followed by a comment.
Example: >
:echo "the value of 'shell' is" &shell
< *:echo-redraw*
A later redraw may make the message disappear again.
And since Vim mostly postpones redrawing until it's
finished with a sequence of commands this happens
quite often. To avoid that a command from before the
":echo" causes a redraw afterwards (redraws are often
postponed until you type something), force a redraw
with the |:redraw| command. Example: >
:new | redraw | echo "there is a new window"
<
*:echon*
:echon {expr1} .. Echoes each {expr1}, without anything added. Also see
|:comment|.
Uses the highlighting set by the |:echohl| command.
Cannot be followed by a comment.
Example: >
:echon "the value of 'shell' is " &shell
<
Note the difference between using ":echo", which is a
Vim command, and ":!echo", which is an external shell
command: >
:!echo % --> filename
< The arguments of ":!" are expanded, see |:_%|. >
:!echo "%" --> filename or "filename"
< Like the previous example. Whether you see the double
quotes or not depends on your 'shell'. >
:echo % --> nothing
< The '%' is an illegal character in an expression. >
:echo "%" --> %
< This just echoes the '%' character. >
:echo expand("%") --> filename
< This calls the expand() function to expand the '%'.
*:echoh* *:echohl*
:echoh[l] {name} Use the highlight group {name} for the following
|:echo|, |:echon| and |:echomsg| commands. Also used
for the |input()| prompt. Example: >
:echohl WarningMsg | echo "Don't panic!" | echohl None
< Don't forget to set the group back to "None",
otherwise all following echo's will be highlighted.
*:echom* *:echomsg*
:echom[sg] {expr1} .. Echo the expression(s) as a true message, saving the
message in the |message-history|.
Spaces are placed between the arguments as with the
|:echo| command. But unprintable characters are
displayed, not interpreted.
The parsing works slightly different from |:echo|,
more like |:execute|. All the expressions are first
evaluated and concatenated before echoing anything.
The expressions must evaluate to a Number or String, a
Dictionary or List causes an error.
Uses the highlighting set by the |:echohl| command.
Example: >
:echomsg "It's a Zizzer Zazzer Zuzz, as you can plainly see."
< See |:echo-redraw| to avoid the message disappearing
when the screen is redrawn.
*:echoe* *:echoerr*
:echoe[rr] {expr1} .. Echo the expression(s) as an error message, saving the
message in the |message-history|. When used in a
script or function the line number will be added.
Spaces are placed between the arguments as with the
:echo command. When used inside a try conditional,
the message is raised as an error exception instead
(see |try-echoerr|).
Example: >
:echoerr "This script just failed!"
< If you just want a highlighted message use |:echohl|.
And to get a beep: >
:exe "normal \<Esc>"
<
*:exe* *:execute*
:exe[cute] {expr1} .. Executes the string that results from the evaluation
of {expr1} as an Ex command. Multiple arguments are
concatenated, with a space in between. {expr1} is
used as the processed command, command line editing
keys are not recognized.
Cannot be followed by a comment.
Examples: >
:execute "buffer " nextbuf
:execute "normal " count . "w"
<
":execute" can be used to append a command to commands
that don't accept a '|'. Example: >
:execute '!ls' | echo "theend"
< ":execute" is also a nice way to avoid having to type
control characters in a Vim script for a ":normal"
command: >
:execute "normal ixxx\<Esc>"
< This has an <Esc> character, see |expr-string|.
Note: The executed string may be any command-line, but
you cannot start or end a "while", "for" or "if"
command. Thus this is illegal: >
:execute 'while i > 5'
:execute 'echo "test" | break'
<
It is allowed to have a "while" or "if" command
completely in the executed string: >
:execute 'while i < 5 | echo i | let i = i + 1 | endwhile'
<
*:comment*
":execute", ":echo" and ":echon" cannot be followed by
a comment directly, because they see the '"' as the
start of a string. But, you can use '|' followed by a
comment. Example: >
:echo "foo" | "this is a comment
==============================================================================
8. Exception handling *exception-handling*
The Vim script language comprises an exception handling feature. This section
explains how it can be used in a Vim script.
Exceptions may be raised by Vim on an error or on interrupt, see
|catch-errors| and |catch-interrupt|. You can also explicitly throw an
exception by using the ":throw" command, see |throw-catch|.
TRY CONDITIONALS *try-conditionals*
Exceptions can be caught or can cause cleanup code to be executed. You can
use a try conditional to specify catch clauses (that catch exceptions) and/or
a finally clause (to be executed for cleanup).
A try conditional begins with a |:try| command and ends at the matching
|:endtry| command. In between, you can use a |:catch| command to start
a catch clause, or a |:finally| command to start a finally clause. There may
be none or multiple catch clauses, but there is at most one finally clause,
which must not be followed by any catch clauses. The lines before the catch
clauses and the finally clause is called a try block. >
:try
: ...
: ... TRY BLOCK
: ...
:catch /{pattern}/
: ...
: ... CATCH CLAUSE
: ...
:catch /{pattern}/
: ...
: ... CATCH CLAUSE
: ...
:finally
: ...
: ... FINALLY CLAUSE
: ...
:endtry
The try conditional allows to watch code for exceptions and to take the
appropriate actions. Exceptions from the try block may be caught. Exceptions
from the try block and also the catch clauses may cause cleanup actions.
When no exception is thrown during execution of the try block, the control
is transferred to the finally clause, if present. After its execution, the
script continues with the line following the ":endtry".
When an exception occurs during execution of the try block, the remaining
lines in the try block are skipped. The exception is matched against the
patterns specified as arguments to the ":catch" commands. The catch clause
after the first matching ":catch" is taken, other catch clauses are not
executed. The catch clause ends when the next ":catch", ":finally", or
":endtry" command is reached - whatever is first. Then, the finally clause
(if present) is executed. When the ":endtry" is reached, the script execution
continues in the following line as usual.
When an exception that does not match any of the patterns specified by the
":catch" commands is thrown in the try block, the exception is not caught by
that try conditional and none of the catch clauses is executed. Only the
finally clause, if present, is taken. The exception pends during execution of
the finally clause. It is resumed at the ":endtry", so that commands after
the ":endtry" are not executed and the exception might be caught elsewhere,
see |try-nesting|.
When during execution of a catch clause another exception is thrown, the
remaining lines in that catch clause are not executed. The new exception is
not matched against the patterns in any of the ":catch" commands of the same
try conditional and none of its catch clauses is taken. If there is, however,
a finally clause, it is executed, and the exception pends during its
execution. The commands following the ":endtry" are not executed. The new
exception might, however, be caught elsewhere, see |try-nesting|.
When during execution of the finally clause (if present) an exception is
thrown, the remaining lines in the finally clause are skipped. If the finally
clause has been taken because of an exception from the try block or one of the
catch clauses, the original (pending) exception is discarded. The commands
following the ":endtry" are not executed, and the exception from the finally
clause is propagated and can be caught elsewhere, see |try-nesting|.
The finally clause is also executed, when a ":break" or ":continue" for
a ":while" loop enclosing the complete try conditional is executed from the
try block or a catch clause. Or when a ":return" or ":finish" is executed
from the try block or a catch clause of a try conditional in a function or
sourced script, respectively. The ":break", ":continue", ":return", or
":finish" pends during execution of the finally clause and is resumed when the
":endtry" is reached. It is, however, discarded when an exception is thrown
from the finally clause.
When a ":break" or ":continue" for a ":while" loop enclosing the complete
try conditional or when a ":return" or ":finish" is encountered in the finally
clause, the rest of the finally clause is skipped, and the ":break",
":continue", ":return" or ":finish" is executed as usual. If the finally
clause has been taken because of an exception or an earlier ":break",
":continue", ":return", or ":finish" from the try block or a catch clause,
this pending exception or command is discarded.
For examples see |throw-catch| and |try-finally|.
NESTING OF TRY CONDITIONALS *try-nesting*
Try conditionals can be nested arbitrarily. That is, a complete try
conditional can be put into the try block, a catch clause, or the finally
clause of another try conditional. If the inner try conditional does not
catch an exception thrown in its try block or throws a new exception from one
of its catch clauses or its finally clause, the outer try conditional is
checked according to the rules above. If the inner try conditional is in the
try block of the outer try conditional, its catch clauses are checked, but
otherwise only the finally clause is executed. It does not matter for
nesting, whether the inner try conditional is directly contained in the outer
one, or whether the outer one sources a script or calls a function containing
the inner try conditional.
When none of the active try conditionals catches an exception, just their
finally clauses are executed. Thereafter, the script processing terminates.
An error message is displayed in case of an uncaught exception explicitly
thrown by a ":throw" command. For uncaught error and interrupt exceptions
implicitly raised by Vim, the error message(s) or interrupt message are shown
as usual.
For examples see |throw-catch|.
EXAMINING EXCEPTION HANDLING CODE *except-examine*
Exception handling code can get tricky. If you are in doubt what happens, set
'verbose' to 13 or use the ":13verbose" command modifier when sourcing your
script file. Then you see when an exception is thrown, discarded, caught, or
finished. When using a verbosity level of at least 14, things pending in
a finally clause are also shown. This information is also given in debug mode
(see |debug-scripts|).
THROWING AND CATCHING EXCEPTIONS *throw-catch*
You can throw any number or string as an exception. Use the |:throw| command
and pass the value to be thrown as argument: >
:throw 4711
:throw "string"
< *throw-expression*
You can also specify an expression argument. The expression is then evaluated
first, and the result is thrown: >
:throw 4705 + strlen("string")
:throw strpart("strings", 0, 6)
An exception might be thrown during evaluation of the argument of the ":throw"
command. Unless it is caught there, the expression evaluation is abandoned.
The ":throw" command then does not throw a new exception.
Example: >
:function! Foo(arg)
: try
: throw a:arg
: catch /foo/
: endtry
: return 1
:endfunction
:
:function! Bar()
: echo "in Bar"
: return 4710
:endfunction
:
:throw Foo("arrgh") + Bar()
This throws "arrgh", and "in Bar" is not displayed since Bar() is not
executed. >
:throw Foo("foo") + Bar()
however displays "in Bar" and throws 4711.
Any other command that takes an expression as argument might also be
abandoned by an (uncaught) exception during the expression evaluation. The
exception is then propagated to the caller of the command.
Example: >
:if Foo("arrgh")
: echo "then"
:else
: echo "else"
:endif
Here neither of "then" or "else" is displayed.
*catch-order*
Exceptions can be caught by a try conditional with one or more |:catch|
commands, see |try-conditionals|. The values to be caught by each ":catch"
command can be specified as a pattern argument. The subsequent catch clause
gets executed when a matching exception is caught.
Example: >
:function! Foo(value)
: try
: throw a:value
: catch /^\d\+$/
: echo "Number thrown"
: catch /.*/
: echo "String thrown"
: endtry
:endfunction
:
:call Foo(0x1267)
:call Foo('string')
The first call to Foo() displays "Number thrown", the second "String thrown".
An exception is matched against the ":catch" commands in the order they are
specified. Only the first match counts. So you should place the more
specific ":catch" first. The following order does not make sense: >
: catch /.*/
: echo "String thrown"
: catch /^\d\+$/
: echo "Number thrown"
The first ":catch" here matches always, so that the second catch clause is
never taken.
*throw-variables*
If you catch an exception by a general pattern, you may access the exact value
in the variable |v:exception|: >
: catch /^\d\+$/
: echo "Number thrown. Value is" v:exception
You may also be interested where an exception was thrown. This is stored in
|v:throwpoint|. Note that "v:exception" and "v:throwpoint" are valid for the
exception most recently caught as long it is not finished.
Example: >
:function! Caught()
: if v:exception != ""
: echo 'Caught "' . v:exception . '" in ' . v:throwpoint
: else
: echo 'Nothing caught'
: endif
:endfunction
:
:function! Foo()
: try
: try
: try
: throw 4711
: finally
: call Caught()
: endtry
: catch /.*/
: call Caught()
: throw "oops"
: endtry
: catch /.*/
: call Caught()
: finally
: call Caught()
: endtry
:endfunction
:
:call Foo()
This displays >
Nothing caught
Caught "4711" in function Foo, line 4
Caught "oops" in function Foo, line 10
Nothing caught
A practical example: The following command ":LineNumber" displays the line
number in the script or function where it has been used: >
:function! LineNumber()
: return substitute(v:throwpoint, '.*\D\(\d\+\).*', '\1', "")
:endfunction
:command! LineNumber try | throw "" | catch | echo LineNumber() | endtry
<
*try-nested*
An exception that is not caught by a try conditional can be caught by
a surrounding try conditional: >
:try
: try
: throw "foo"
: catch /foobar/
: echo "foobar"
: finally
: echo "inner finally"
: endtry
:catch /foo/
: echo "foo"
:endtry
The inner try conditional does not catch the exception, just its finally
clause is executed. The exception is then caught by the outer try
conditional. The example displays "inner finally" and then "foo".
*throw-from-catch*
You can catch an exception and throw a new one to be caught elsewhere from the
catch clause: >
:function! Foo()
: throw "foo"
:endfunction
:
:function! Bar()
: try
: call Foo()
: catch /foo/
: echo "Caught foo, throw bar"
: throw "bar"
: endtry
:endfunction
:
:try
: call Bar()
:catch /.*/
: echo "Caught" v:exception
:endtry
This displays "Caught foo, throw bar" and then "Caught bar".
*rethrow*
There is no real rethrow in the Vim script language, but you may throw
"v:exception" instead: >
:function! Bar()
: try
: call Foo()
: catch /.*/
: echo "Rethrow" v:exception
: throw v:exception
: endtry
:endfunction
< *try-echoerr*
Note that this method cannot be used to "rethrow" Vim error or interrupt
exceptions, because it is not possible to fake Vim internal exceptions.
Trying so causes an error exception. You should throw your own exception
denoting the situation. If you want to cause a Vim error exception containing
the original error exception value, you can use the |:echoerr| command: >
:try
: try
: asdf
: catch /.*/
: echoerr v:exception
: endtry
:catch /.*/
: echo v:exception
:endtry
This code displays
Vim(echoerr):Vim:E492: Not an editor command: asdf ~
CLEANUP CODE *try-finally*
Scripts often change global settings and restore them at their end. If the
user however interrupts the script by pressing CTRL-C, the settings remain in
an inconsistent state. The same may happen to you in the development phase of
a script when an error occurs or you explicitly throw an exception without
catching it. You can solve these problems by using a try conditional with
a finally clause for restoring the settings. Its execution is guaranteed on
normal control flow, on error, on an explicit ":throw", and on interrupt.
(Note that errors and interrupts from inside the try conditional are converted
to exceptions. When not caught, they terminate the script after the finally
clause has been executed.)
Example: >
:try
: let s:saved_ts = &ts
: set ts=17
:
: " Do the hard work here.
:
:finally
: let &ts = s:saved_ts
: unlet s:saved_ts
:endtry
This method should be used locally whenever a function or part of a script
changes global settings which need to be restored on failure or normal exit of
that function or script part.
*break-finally*
Cleanup code works also when the try block or a catch clause is left by
a ":continue", ":break", ":return", or ":finish".
Example: >
:let first = 1
:while 1
: try
: if first
: echo "first"
: let first = 0
: continue
: else
: throw "second"
: endif
: catch /.*/
: echo v:exception
: break
: finally
: echo "cleanup"
: endtry
: echo "still in while"
:endwhile
:echo "end"
This displays "first", "cleanup", "second", "cleanup", and "end". >
:function! Foo()
: try
: return 4711
: finally
: echo "cleanup\n"
: endtry
: echo "Foo still active"
:endfunction
:
:echo Foo() "returned by Foo"
This displays "cleanup" and "4711 returned by Foo". You don't need to add an
extra ":return" in the finally clause. (Above all, this would override the
return value.)
*except-from-finally*
Using either of ":continue", ":break", ":return", ":finish", or ":throw" in
a finally clause is possible, but not recommended since it abandons the
cleanup actions for the try conditional. But, of course, interrupt and error
exceptions might get raised from a finally clause.
Example where an error in the finally clause stops an interrupt from
working correctly: >
:try
: try
: echo "Press CTRL-C for interrupt"
: while 1
: endwhile
: finally
: unlet novar
: endtry
:catch /novar/
:endtry
:echo "Script still running"
:sleep 1
If you need to put commands that could fail into a finally clause, you should
think about catching or ignoring the errors in these commands, see
|catch-errors| and |ignore-errors|.
CATCHING ERRORS *catch-errors*
If you want to catch specific errors, you just have to put the code to be
watched in a try block and add a catch clause for the error message. The
presence of the try conditional causes all errors to be converted to an
exception. No message is displayed and |v:errmsg| is not set then. To find
the right pattern for the ":catch" command, you have to know how the format of
the error exception is.
Error exceptions have the following format: >
Vim({cmdname}):{errmsg}
or >
Vim:{errmsg}
{cmdname} is the name of the command that failed; the second form is used when
the command name is not known. {errmsg} is the error message usually produced
when the error occurs outside try conditionals. It always begins with
a capital "E", followed by a two or three-digit error number, a colon, and
a space.
Examples:
The command >
:unlet novar
normally produces the error message >
E108: No such variable: "novar"
which is converted inside try conditionals to an exception >
Vim(unlet):E108: No such variable: "novar"
The command >
:dwim
normally produces the error message >
E492: Not an editor command: dwim
which is converted inside try conditionals to an exception >
Vim:E492: Not an editor command: dwim
You can catch all ":unlet" errors by a >
:catch /^Vim(unlet):/
or all errors for misspelled command names by a >
:catch /^Vim:E492:/
Some error messages may be produced by different commands: >
:function nofunc
and >
:delfunction nofunc
both produce the error message >
E128: Function name must start with a capital: nofunc
which is converted inside try conditionals to an exception >
Vim(function):E128: Function name must start with a capital: nofunc
or >
Vim(delfunction):E128: Function name must start with a capital: nofunc
respectively. You can catch the error by its number independently on the
command that caused it if you use the following pattern: >
:catch /^Vim(\a\+):E128:/
Some commands like >
:let x = novar
produce multiple error messages, here: >
E121: Undefined variable: novar
E15: Invalid expression: novar
Only the first is used for the exception value, since it is the most specific
one (see |except-several-errors|). So you can catch it by >
:catch /^Vim(\a\+):E121:/
You can catch all errors related to the name "nofunc" by >
:catch /\<nofunc\>/
You can catch all Vim errors in the ":write" and ":read" commands by >
:catch /^Vim(\(write\|read\)):E\d\+:/
You can catch all Vim errors by the pattern >
:catch /^Vim\((\a\+)\)\=:E\d\+:/
<
*catch-text*
NOTE: You should never catch the error message text itself: >
:catch /No such variable/
only works in the english locale, but not when the user has selected
a different language by the |:language| command. It is however helpful to
cite the message text in a comment: >
:catch /^Vim(\a\+):E108:/ " No such variable
IGNORING ERRORS *ignore-errors*
You can ignore errors in a specific Vim command by catching them locally: >
:try
: write
:catch
:endtry
But you are strongly recommended NOT to use this simple form, since it could
catch more than you want. With the ":write" command, some autocommands could
be executed and cause errors not related to writing, for instance: >
:au BufWritePre * unlet novar
There could even be such errors you are not responsible for as a script
writer: a user of your script might have defined such autocommands. You would
then hide the error from the user.
It is much better to use >
:try
: write
:catch /^Vim(write):/
:endtry
which only catches real write errors. So catch only what you'd like to ignore
intentionally.
For a single command that does not cause execution of autocommands, you could
even suppress the conversion of errors to exceptions by the ":silent!"
command: >
:silent! nunmap k
This works also when a try conditional is active.
CATCHING INTERRUPTS *catch-interrupt*
When there are active try conditionals, an interrupt (CTRL-C) is converted to
the exception "Vim:Interrupt". You can catch it like every exception. The
script is not terminated, then.
Example: >
:function! TASK1()
: sleep 10
:endfunction
:function! TASK2()
: sleep 20
:endfunction
:while 1
: let command = input("Type a command: ")
: try
: if command == ""
: continue
: elseif command == "END"
: break
: elseif command == "TASK1"
: call TASK1()
: elseif command == "TASK2"
: call TASK2()
: else
: echo "\nIllegal command:" command
: continue
: endif
: catch /^Vim:Interrupt$/
: echo "\nCommand interrupted"
: " Caught the interrupt. Continue with next prompt.
: endtry
:endwhile
You can interrupt a task here by pressing CTRL-C; the script then asks for
a new command. If you press CTRL-C at the prompt, the script is terminated.
For testing what happens when CTRL-C would be pressed on a specific line in
your script, use the debug mode and execute the |>quit| or |>interrupt|
command on that line. See |debug-scripts|.
CATCHING ALL *catch-all*
The commands >
:catch /.*/
:catch //
:catch
catch everything, error exceptions, interrupt exceptions and exceptions
explicitly thrown by the |:throw| command. This is useful at the top level of
a script in order to catch unexpected things.
Example: >
:try
:
: " do the hard work here
:
:catch /MyException/
:
: " handle known problem
:
:catch /^Vim:Interrupt$/
: echo "Script interrupted"
:catch /.*/
: echo "Internal error (" . v:exception . ")"
: echo " - occurred at " . v:throwpoint
:endtry
:" end of script
Note: Catching all might catch more things than you want. Thus, you are
strongly encouraged to catch only for problems that you can really handle by
specifying a pattern argument to the ":catch".
Example: Catching all could make it nearly impossible to interrupt a script
by pressing CTRL-C: >
:while 1
: try
: sleep 1
: catch
: endtry
:endwhile
EXCEPTIONS AND AUTOCOMMANDS *except-autocmd*
Exceptions may be used during execution of autocommands. Example: >
:autocmd User x try
:autocmd User x throw "Oops!"
:autocmd User x catch
:autocmd User x echo v:exception
:autocmd User x endtry
:autocmd User x throw "Arrgh!"
:autocmd User x echo "Should not be displayed"
:
:try
: doautocmd User x
:catch
: echo v:exception
:endtry
This displays "Oops!" and "Arrgh!".
*except-autocmd-Pre*
For some commands, autocommands get executed before the main action of the
command takes place. If an exception is thrown and not caught in the sequence
of autocommands, the sequence and the command that caused its execution are
abandoned and the exception is propagated to the caller of the command.
Example: >
:autocmd BufWritePre * throw "FAIL"
:autocmd BufWritePre * echo "Should not be displayed"
:
:try
: write
:catch
: echo "Caught:" v:exception "from" v:throwpoint
:endtry
Here, the ":write" command does not write the file currently being edited (as
you can see by checking 'modified'), since the exception from the BufWritePre
autocommand abandons the ":write". The exception is then caught and the
script displays: >
Caught: FAIL from BufWrite Auto commands for "*"
<
*except-autocmd-Post*
For some commands, autocommands get executed after the main action of the
command has taken place. If this main action fails and the command is inside
an active try conditional, the autocommands are skipped and an error exception
is thrown that can be caught by the caller of the command.
Example: >
:autocmd BufWritePost * echo "File successfully written!"
:
:try
: write /i/m/p/o/s/s/i/b/l/e
:catch
: echo v:exception
:endtry
This just displays: >
Vim(write):E212: Can't open file for writing (/i/m/p/o/s/s/i/b/l/e)
If you really need to execute the autocommands even when the main action
fails, trigger the event from the catch clause.
Example: >
:autocmd BufWritePre * set noreadonly
:autocmd BufWritePost * set readonly
:
:try
: write /i/m/p/o/s/s/i/b/l/e
:catch
: doautocmd BufWritePost /i/m/p/o/s/s/i/b/l/e
:endtry
<
You can also use ":silent!": >
:let x = "ok"
:let v:errmsg = ""
:autocmd BufWritePost * if v:errmsg != ""
:autocmd BufWritePost * let x = "after fail"
:autocmd BufWritePost * endif
:try
: silent! write /i/m/p/o/s/s/i/b/l/e
:catch
:endtry
:echo x
This displays "after fail".
If the main action of the command does not fail, exceptions from the
autocommands will be catchable by the caller of the command: >
:autocmd BufWritePost * throw ":-("
:autocmd BufWritePost * echo "Should not be displayed"
:
:try
: write
:catch
: echo v:exception
:endtry
<
*except-autocmd-Cmd*
For some commands, the normal action can be replaced by a sequence of
autocommands. Exceptions from that sequence will be catchable by the caller
of the command.
Example: For the ":write" command, the caller cannot know whether the file
had actually been written when the exception occurred. You need to tell it in
some way. >
:if !exists("cnt")
: let cnt = 0
:
: autocmd BufWriteCmd * if &modified
: autocmd BufWriteCmd * let cnt = cnt + 1
: autocmd BufWriteCmd * if cnt % 3 == 2
: autocmd BufWriteCmd * throw "BufWriteCmdError"
: autocmd BufWriteCmd * endif
: autocmd BufWriteCmd * write | set nomodified
: autocmd BufWriteCmd * if cnt % 3 == 0
: autocmd BufWriteCmd * throw "BufWriteCmdError"
: autocmd BufWriteCmd * endif
: autocmd BufWriteCmd * echo "File successfully written!"
: autocmd BufWriteCmd * endif
:endif
:
:try
: write
:catch /^BufWriteCmdError$/
: if &modified
: echo "Error on writing (file contents not changed)"
: else
: echo "Error after writing"
: endif
:catch /^Vim(write):/
: echo "Error on writing"
:endtry
When this script is sourced several times after making changes, it displays
first >
File successfully written!
then >
Error on writing (file contents not changed)
then >
Error after writing
etc.
*except-autocmd-ill*
You cannot spread a try conditional over autocommands for different events.
The following code is ill-formed: >
:autocmd BufWritePre * try
:
:autocmd BufWritePost * catch
:autocmd BufWritePost * echo v:exception
:autocmd BufWritePost * endtry
:
:write
EXCEPTION HIERARCHIES AND PARAMETERIZED EXCEPTIONS *except-hier-param*
Some programming languages allow to use hierarchies of exception classes or to
pass additional information with the object of an exception class. You can do
similar things in Vim.
In order to throw an exception from a hierarchy, just throw the complete
class name with the components separated by a colon, for instance throw the
string "EXCEPT:MATHERR:OVERFLOW" for an overflow in a mathematical library.
When you want to pass additional information with your exception class, add
it in parentheses, for instance throw the string "EXCEPT:IO:WRITEERR(myfile)"
for an error when writing "myfile".
With the appropriate patterns in the ":catch" command, you can catch for
base classes or derived classes of your hierarchy. Additional information in
parentheses can be cut out from |v:exception| with the ":substitute" command.
Example: >
:function! CheckRange(a, func)
: if a:a < 0
: throw "EXCEPT:MATHERR:RANGE(" . a:func . ")"
: endif
:endfunction
:
:function! Add(a, b)
: call CheckRange(a:a, "Add")
: call CheckRange(a:b, "Add")
: let c = a:a + a:b
: if c < 0
: throw "EXCEPT:MATHERR:OVERFLOW"
: endif
: return c
:endfunction
:
:function! Div(a, b)
: call CheckRange(a:a, "Div")
: call CheckRange(a:b, "Div")
: if (a:b == 0)
: throw "EXCEPT:MATHERR:ZERODIV"
: endif
: return a:a / a:b
:endfunction
:
:function! Write(file)
: try
: execute "write" a:file
: catch /^Vim(write):/
: throw "EXCEPT:IO(" . getcwd() . ", " . a:file . "):WRITEERR"
: endtry
:endfunction
:
:try
:
: " something with arithmetics and I/O
:
:catch /^EXCEPT:MATHERR:RANGE/
: let function = substitute(v:exception, '.*(\(\a\+\)).*', '\1', "")
: echo "Range error in" function
:
:catch /^EXCEPT:MATHERR/ " catches OVERFLOW and ZERODIV
: echo "Math error"
:
:catch /^EXCEPT:IO/
: let dir = substitute(v:exception, '.*(\(.\+\),\s*.\+).*', '\1', "")
: let file = substitute(v:exception, '.*(.\+,\s*\(.\+\)).*', '\1', "")
: if file !~ '^/'
: let file = dir . "/" . file
: endif
: echo 'I/O error for "' . file . '"'
:
:catch /^EXCEPT/
: echo "Unspecified error"
:
:endtry
The exceptions raised by Vim itself (on error or when pressing CTRL-C) use
a flat hierarchy: they are all in the "Vim" class. You cannot throw yourself
exceptions with the "Vim" prefix; they are reserved for Vim.
Vim error exceptions are parameterized with the name of the command that
failed, if known. See |catch-errors|.
PECULIARITIES
*except-compat*
The exception handling concept requires that the command sequence causing the
exception is aborted immediately and control is transferred to finally clauses
and/or a catch clause.
In the Vim script language there are cases where scripts and functions
continue after an error: in functions without the "abort" flag or in a command
after ":silent!", control flow goes to the following line, and outside
functions, control flow goes to the line following the outermost ":endwhile"
or ":endif". On the other hand, errors should be catchable as exceptions
(thus, requiring the immediate abortion).
This problem has been solved by converting errors to exceptions and using
immediate abortion (if not suppressed by ":silent!") only when a try
conditional is active. This is no restriction since an (error) exception can
be caught only from an active try conditional. If you want an immediate
termination without catching the error, just use a try conditional without
catch clause. (You can cause cleanup code being executed before termination
by specifying a finally clause.)
When no try conditional is active, the usual abortion and continuation
behavior is used instead of immediate abortion. This ensures compatibility of
scripts written for Vim 6.1 and earlier.
However, when sourcing an existing script that does not use exception handling
commands (or when calling one of its functions) from inside an active try
conditional of a new script, you might change the control flow of the existing
script on error. You get the immediate abortion on error and can catch the
error in the new script. If however the sourced script suppresses error
messages by using the ":silent!" command (checking for errors by testing
|v:errmsg| if appropriate), its execution path is not changed. The error is
not converted to an exception. (See |:silent|.) So the only remaining cause
where this happens is for scripts that don't care about errors and produce
error messages. You probably won't want to use such code from your new
scripts.
*except-syntax-err*
Syntax errors in the exception handling commands are never caught by any of
the ":catch" commands of the try conditional they belong to. Its finally
clauses, however, is executed.
Example: >
:try
: try
: throw 4711
: catch /\(/
: echo "in catch with syntax error"
: catch
: echo "inner catch-all"
: finally
: echo "inner finally"
: endtry
:catch
: echo 'outer catch-all caught "' . v:exception . '"'
: finally
: echo "outer finally"
:endtry
This displays: >
inner finally
outer catch-all caught "Vim(catch):E54: Unmatched \("
outer finally
The original exception is discarded and an error exception is raised, instead.
*except-single-line*
The ":try", ":catch", ":finally", and ":endtry" commands can be put on
a single line, but then syntax errors may make it difficult to recognize the
"catch" line, thus you better avoid this.
Example: >
:try | unlet! foo # | catch | endtry
raises an error exception for the trailing characters after the ":unlet!"
argument, but does not see the ":catch" and ":endtry" commands, so that the
error exception is discarded and the "E488: Trailing characters" message gets
displayed.
*except-several-errors*
When several errors appear in a single command, the first error message is
usually the most specific one and therefor converted to the error exception.
Example: >
echo novar
causes >
E121: Undefined variable: novar
E15: Invalid expression: novar
The value of the error exception inside try conditionals is: >
Vim(echo):E121: Undefined variable: novar
< *except-syntax-error*
But when a syntax error is detected after a normal error in the same command,
the syntax error is used for the exception being thrown.
Example: >
unlet novar #
causes >
E108: No such variable: "novar"
E488: Trailing characters
The value of the error exception inside try conditionals is: >
Vim(unlet):E488: Trailing characters
This is done because the syntax error might change the execution path in a way
not intended by the user. Example: >
try
try | unlet novar # | catch | echo v:exception | endtry
catch /.*/
echo "outer catch:" v:exception
endtry
This displays "outer catch: Vim(unlet):E488: Trailing characters", and then
a "E600: Missing :endtry" error message is given, see |except-single-line|.
==============================================================================
9. Examples *eval-examples*
Printing in Binary ~
>
:" The function Nr2Bin() returns the Hex string of a number.
:func Nr2Bin(nr)
: let n = a:nr
: let r = ""
: while n
: let r = '01'[n % 2] . r
: let n = n / 2
: endwhile
: return r
:endfunc
:" The function String2Bin() converts each character in a string to a
:" binary string, separated with dashes.
:func String2Bin(str)
: let out = ''
: for ix in range(strlen(a:str))
: let out = out . '-' . Nr2Bin(char2nr(a:str[ix]))
: endfor
: return out[1:]
:endfunc
Example of its use: >
:echo Nr2Bin(32)
result: "100000" >
:echo String2Bin("32")
result: "110011-110010"
Sorting lines ~
This example sorts lines with a specific compare function. >
:func SortBuffer()
: let lines = getline(1, '$')
: call sort(lines, function("Strcmp"))
: call setline(1, lines)
:endfunction
As a one-liner: >
:call setline(1, sort(getline(1, '$'), function("Strcmp")))
scanf() replacement ~
*sscanf*
There is no sscanf() function in Vim. If you need to extract parts from a
line, you can use matchstr() and substitute() to do it. This example shows
how to get the file name, line number and column number out of a line like
"foobar.txt, 123, 45". >
:" Set up the match bit
:let mx='\(\f\+\),\s*\(\d\+\),\s*\(\d\+\)'
:"get the part matching the whole expression
:let l = matchstr(line, mx)
:"get each item out of the match
:let file = substitute(l, mx, '\1', '')
:let lnum = substitute(l, mx, '\2', '')
:let col = substitute(l, mx, '\3', '')
The input is in the variable "line", the results in the variables "file",
"lnum" and "col". (idea from Michael Geddes)
getting the scriptnames in a Dictionary ~
*scriptnames-dictionary*
The |:scriptnames| command can be used to get a list of all script files that
have been sourced. There is no equivalent function or variable for this
(because it's rarely needed). In case you need to manipulate the list this
code can be used: >
" Get the output of ":scriptnames" in the scriptnames_output variable.
let scriptnames_output = ''
redir => scriptnames_output
silent scriptnames
redir END
" Split the output into lines and parse each line. Add an entry to the
" "scripts" dictionary.
let scripts = {}
for line in split(scriptnames_output, "\n")
" Only do non-blank lines.
if line =~ '\S'
" Get the first number in the line.
let nr = matchstr(line, '\d\+')
" Get the file name, remove the script number " 123: ".
let name = substitute(line, '.\+:\s*', '', '')
" Add an item to the Dictionary
let scripts[nr] = name
endif
endfor
unlet scriptnames_output
==============================================================================
10. No +eval feature *no-eval-feature*
When the |+eval| feature was disabled at compile time, none of the expression
evaluation commands are available. To prevent this from causing Vim scripts
to generate all kinds of errors, the ":if" and ":endif" commands are still
recognized, though the argument of the ":if" and everything between the ":if"
and the matching ":endif" is ignored. Nesting of ":if" blocks is allowed, but
only if the commands are at the start of the line. The ":else" command is not
recognized.
Example of how to avoid executing commands when the |+eval| feature is
missing: >
:if 1
: echo "Expression evaluation is compiled in"
:else
: echo "You will _never_ see this message"
:endif
==============================================================================
11. The sandbox *eval-sandbox* *sandbox* *E48*
The 'foldexpr', 'includeexpr', 'indentexpr', 'statusline' and 'foldtext'
options are evaluated in a sandbox. This means that you are protected from
these expressions having nasty side effects. This gives some safety for when
these options are set from a modeline. It is also used when the command from
a tags file is executed and for CTRL-R = in the command line.
The sandbox is also used for the |:sandbox| command.
These items are not allowed in the sandbox:
- changing the buffer text
- defining or changing mapping, autocommands, functions, user commands
- setting certain options (see |option-summary|)
- setting certain v: variables (see |v:var|) *E794*
- executing a shell command
- reading or writing a file
- jumping to another buffer or editing a file
- executing Python, Perl, etc. commands
This is not guaranteed 100% secure, but it should block most attacks.
*:san* *:sandbox*
:san[dbox] {cmd} Execute {cmd} in the sandbox. Useful to evaluate an
option that may have been set from a modeline, e.g.
'foldexpr'.
*sandbox-option*
A few options contain an expression. When this expression is evaluated it may
have to be done in the sandbox to avoid a security risk. But the sandbox is
restrictive, thus this only happens when the option was set from an insecure
location. Insecure in this context are:
- sourcing a .vimrc or .exrc in the current directory
- while executing in the sandbox
- value coming from a modeline
Note that when in the sandbox and saving an option value and restoring it, the
option will still be marked as it was set in the sandbox.
==============================================================================
12. Textlock *textlock*
In a few situations it is not allowed to change the text in the buffer, jump
to another window and some other things that might confuse or break what Vim
is currently doing. This mostly applies to things that happen when Vim is
actually doing something else. For example, evaluating the 'balloonexpr' may
happen any moment the mouse cursor is resting at some position.
This is not allowed when the textlock is active:
- changing the buffer text
- jumping to another buffer or window
- editing another file
- closing a window or quitting Vim
- etc.
vim:tw=78:ts=8:ft=help:norl:
|